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The radiative transport equation can be used as a light transport model in a medium 
with scattering particles, such as biological tissues. In the radiative transport equation, the 
refractive index is assumed to be constant within the medium. However, in biomedical 
media, changes in the refractive index can occur between different tissue types. In this 
work, light propagation in a medium with piece-wise constant refractive index is 
considered. Light propagation in each sub-domain with a constant refractive index is 
modeled using the radiative transport equation and the equations are coupled using 
boundary conditions describing Fresnel reflection and refraction phenomena on the 
interfaces between the sub-domains. The resulting coupled system of radiative transport 
equations is numerically solved using a finite element method. The approach is tested 
with simulations. The results show that this coupled system describes light propagation 
accurately through comparison with the Monte Carlo method. It is also shown that 
neglecting the internal changes of the refractive index can lead to erroneous boundary 
measurements of scattered light.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The radiative transport equation (RTE) can be used to model propagation of particles such as neutrons and photons in 
a scattering medium [1–3]. Applications can be found in atmospheric and ocean optics [4], astrophysics [5], nuclear reactor 
physics [6] and biomedical optics [7]. In biomedical diffuse optical tomography (DOT), images of the optical properties 
of the target are reconstructed from measurements of near-infrared light made on the surface of the target. The image 
reconstruction procedure in DOT requires a model for light propagation inside the target in which the RTE can be utilized 
[8–11].

The RTE takes into account absorption and multiple scattering inside tissues and treats photons as particles which 
propagate along straight lines between scattering and absorption events. The refractive index is assumed to be a constant 
inside tissues. However, the refractive index can change between different tissue types inside the target even though these 
changes are typically neglected in DOT.
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Fig. 1. A sketch of sub-domains having different refractive indices. The interfaces Γ between the sub-domains are marked with gray color and the outer 
boundaries ∂Ωout with black color.

A more general version of the RTE with a spatially dependent refractive index was derived in [12], and more recently 
investigated in [13–21]. This model allows curved photon paths between absorption and scattering events based on the 
gradient field of the refractive index. Therefore, the refractive index is assumed to be a smooth continuous function such 
that the gradient is well defined. However, in biomedical applications the refractive index can have jumps between different 
tissue types, such as between skull and cerebrospinal fluid in the brain, and a smooth function may not approximate these 
jumps correctly.

The RTE with piecewise constant refractive index with Fresnel reflection and transmission between the regions has 
been considered in [22–28]. The approach was developed for a one dimensional spherically symmetric case in [22,23] and 
for multilayered media in [24–27]. Furthermore, a one dimensional plane parallel geometry with multilayered media was 
considered in [28]. In this paper, this approach is extended to general geometry. Light propagation in each sub-domain with 
a constant refractive index is modeled using the RTE and the equations are coupled using boundary conditions describing 
Fresnel reflection and transmission on the interfaces between the sub-domains. This leads to a coupled system of radiative 
transport equations (cRTE).

In the numerical solution of the RTE, different discretization methods have been applied for both the spatial and angular 
parts of the solution. For the spatial part, a finite difference method [29–31], a finite element method (FEM) [32–35] and a 
finite volume method [36–38] have been the most commonly applied approaches. For the angular part, a discrete ordinate 
method [29–31,33,36,38], the FEM [34,35,39–41] and a spherical harmonics method (Pn) [42–45] have been utilized.

In this work, the cRTE is numerically solved using the FEM both in the space and in the angle. In the approach, the 
boundary conditions are formulated in a general form. Hence, the model is applicable in complex geometries represented 
by finite element meshes with an arbitrary number of sub-domains and inhomogeneous parameter distributions. Moreover, 
using the FEM for the angular part enables an accurate and simple implementation of the boundary conditions.

The rest of the paper is organized as follows. In Section 2, the RTE and the boundary conditions between piece-wise 
constant regions of refractive index are reviewed and the coupled system of RTEs is described. In Section 3, the numerical 
approximation of the coupled system of the RTEs using the FEM is described. In Section 4, simulation results are shown. 
Section 5 gives the conclusions.

2. Radiative transport equation with piece-wise constant refractive index

Let Ω ⊂ R
d be the physical domain with a boundary ∂Ω , and d = 2, 3 be the dimension of the domain. In addition, let 

ŝ ∈ S
d−1 denote a unit vector in the direction of interest on the unit sphere Sd−1. Let the refractive index n be a piece-wise 

constant within N disjoint sub-domains Ωk , k = 1, ..., N . An interface between the sub-domains Ωk and Ωn with different 
refractive indices nk and nn is denoted by Γk,n = ∂Ωk ∩ ∂Ωn as shown in Fig. 1. Further, the union of the interfaces of the 
sub-domain Ωk can be written as Γk = ⋃N

n=1,n �=k Γk,m . With these notations, the boundary of the sub-domain Ωk can be 
divided into the outer boundary and the union of the interfaces ∂Ωk = ∂Ωk,out ∪ Γk . Light propagation in each sub-domain 
Ωk can be modeled using the RTE and the equations are coupled using the boundary conditions at the interfaces Γk,n .

2.1. Radiative transport equation

The frequency domain version of the RTE in the sub-domain Ωk can be written as [8](
iω

ck
+ ŝ · ∇ + μa

)
φk(r, ŝ) = μsLφk(r, ŝ) (1)

where i is the imaginary unit, ω is the angular modulation frequency of the input signal, ck = c0/nk is the speed of light in 
the sub-domain Ωk , c0 is the speed of light in a vacuum, φk(r, ̂s) is the radiance in the sub-domain Ωk , and μs = μs(r) and 
μa = μa(r) are the scattering and absorption coefficients of the medium, respectively [1,2]. The scattering operator L is

Lφk(r, ŝ) = −φk(r, ŝ) +
∫
d−1

Θ
(
ŝ · ŝ′)φk

(
r, ŝ′)dŝ′. (2)
S
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Fig. 2. Interface Γk,n between the sub-domains Ωk and Ωn with different refractive indices nk and nn . The direction of incoming radiance to the interface 
is denoted by ŝi , the direction of reflected radiance by ŝr and the direction of radiance which transmits through the interface is denoted by ŝt . Outward 
unit normal is denoted by n̂.

The scattering phase function Θ(ŝ · ŝ′) describes the probability for a photon with an initial direction ŝ′ to scatter in a 
direction ŝ. In this work, the Henyey–Greenstein scattering function [46] is used

Θ
(
ŝ · ŝ′) = 1

|Sd−1|
1 − g2

(1 + g2 − 2gŝ · ŝ′)d/2
, (3)

where g ∈ [−1, 1] is the anisotropy parameter defining the shape of the probability distribution. In biological tissues, g is 
typically close to one indicating that scattering is forward-peaked. Further, |Sd−1| is the surface measure of Sd−1 (|S1| = 2π
and |S2| = 4π ). The fluence is defined as an integral of the radiance over the angular directions [8]

Φk(r) =
∫

Sd−1

φk(r, ŝ)dŝ. (4)

2.2. Boundary conditions

The boundary condition in the sub-domain Ωk at the interface Γk,n in an inward direction ŝr,k takes into account the 
reflected radiance from a direction ŝi,k and the transmitted radiance from the sub-domain Ωn from a direction ŝt,k as shown 
in Fig. 2. The boundary condition can be written as

φk(r, ŝ) = Rk,nφk
(
r, H−1

k ŝ
) + Tn,kφn

(
r, K −1

n,k (ŝ)
)
, r ∈ Γk,n, ŝ · n̂k < 0, (5)

where Rk,n = Rk,n(ŝi,k, n̂k, nk, nk) is the Fresnel reflection coefficient between the sub-domains Ωk and Ωn

Rk,n = 1

2

(
nk cos θk − nn cos θn

nk cos θk + nn cos θn

)2

+ 1

2

(
nk cos θn − nn cos θk

nk cos θn + nn cos θk

)2

, (6)

where

cos θk = n̂k · ŝi,k, (7)

cos θn =
√

1 −
(

nk

nn

)2(
1 − (cos θk)

2
)
. (8)

Further, Tn,k is the Fresnel transmission coefficient between the sub-domains Ωn and Ωk

Tn,k = 1 − Rn,k. (9)

Fig. 3 shows the Fresnel reflection coefficient R and the transmission coefficient T as a function of an incident angle.
The mapping H−1

k is the inverse reflection law giving the initial direction of the radiance ŝi,k for a given direction of the 
reflected radiance ŝr,k . The reflection law can be written in a vector form as Hk : ŝi,k → ŝr,k

ŝr,k = Hk ŝi,k, (10)

Hk = (
I − 2n̂kn̂T

k

)
, (11)

where I is an identity matrix. The inverse reflection law H−1
k can be computed

ŝi,k = H−1
k ŝr,k = Hk ŝr,k, (12)

since the matrix Hk is a Householder transformation and thus H−1
k = Hk .

The mapping K −1
n,k is the inverse Snell’s law giving the direction ŝt,k from which the radiance is transmitted from the 

sub-domain Ωn into the sub-domain Ωk for a given direction ŝr,k . The Snell’s law for the refraction of the radiance between 
the sub-domains Ωn and Ωk can be written in a vector form Kn,k : (ŝt,k, n̂n, nn, nk) → ŝr,k

ŝr,k = nn ŝt,k +
(

cosϕk − nn cosϕn

)
n̂n, (13)
nk nk
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Fig. 3. Fresnel reflection coefficient R (left column) and transmission coefficient T (right column) between sub-domains with refractive indices n1 = 1.4 and 
n2 = 1.33 (top row) and refractive indices n1 = 1.33 and n2 = 1.4 (bottom row) as a function of incoming angle. The critical angle θcrit = sin−1(n2/n1) is 
marked with a gray vertical line when total internal reflection occurs.

where

cosϕn = n̂n · ŝt,k, (14)

cosϕk =
√

1 −
(

nn

nk

)2(
1 − (cosϕn)2

)
. (15)

The inverse Snell’s law K −1
n,k : (ŝr,k, n̂n, nn, nk) → ŝt,k can be computed as Kn,k : (−ŝr,k, −n̂n, nk, nn) → −ŝt,k due to the reci-

procity principle of light propagation.
The boundary condition for the outer boundary in the sub-domain Ωk takes into account a boundary source φ0,k(r, ̂s)

and the reflection of the radiance due to a mismatch in refractive indices at the outer boundary

φk(r, ŝ) = φ0,k(r, ŝ) + Rk,outφk(r, Hk ŝ), r ∈ ∂Ωk,out, ŝ · n̂k < 0, (16)

where Rk,out = Rk,out(ŝi,k, n̂k, nk, nout) is the reflection coefficient between the sub-domain Ωk and the exterior of the do-
main Ω with the refractive index nout.

2.3. Coupled system of radiative transport equations

The coupled system of RTEs for N sub-domains with different refractive indices can be written as(
iω

ck
+ ŝ · ∇ + μa

)
φk(r, ŝ) = μsLφk(r, ŝ), r ∈ Ωk (17a)

φk(r, ŝ) = φ0,k(r, ŝ) + Rk,outφk(r, Hk ŝ), r ∈ ∂Ωk,out, ŝ · n̂k,< 0, (17b)
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φk(r, ŝ) = Rk,nφk(r, Hk ŝ) + Tn,kφn
(
r, K −1

n,k (ŝ)
)
, r ∈ Γk,n, ŝ · n̂k < 0,

n,k = 1, . . . , N. (17c)

3. Finite element approximation of the coupled system

In this work, the solution of the cRTE (17) is numerically approximated using the FEM. In the FEM, a variational formu-
lation of the original problem is derived, and then this infinite dimensional problem is discretized using a suitable set of 
basis functions.

To derive the variational formulation of the coupled system, we follow a similar procedure as in [34,47–50]. Thus, first 
each of the equations in (17a) are multiplied by a test function vk and integrated over the domain Ωk × S

d−1. Then, by 
using the Green’s theorem [51], separating the resulting boundary integrals over the outer boundary ∂Ωk,out and over the 
interfaces Γk,n , and utilizing the boundary conditions (17b) and (17c), the variational formulation is obtained. The variational 
formulation of the cRTE (17) with a streamline diffusion modification [32,48,52] can be written as

N∑
k=1

(∫
Ωk

∫
Sd−1

iω

ck
φk(r, ŝ)vk(r, ŝ)dŝdr −

∫
Ωk

∫
Sd−1

ŝ · ∇vk(r, ŝ)φk(r, ŝ)dŝdr

+
∫

∂Ωk

∫
Sd−1

(ŝ · n̂k)+φk(r, ŝ)vk(r, ŝ)dŝdS −
∫

∂Ωk,out

∫
Sd−1

(ŝ · n̂k)−Rk,outφk(r, Hk ŝ)vk(r, ŝ)dŝdS

−
N∑

n=1,n �=k

∫
Γk,n

∫
Sd−1

(ŝ · n̂k)−Rk,nφk(r, Hk ŝ)vk(r, ŝ)dŝdS

−
N∑

n=1,n �=k

∫
Γk,n

∫
Sd−1

(ŝ · n̂k)−Tn,kφn
(
r, K −1

n,k (ŝ)
)

vk(r, ŝ)dŝdS +
∫
Ωk

∫
Sd−1

μaφk(r, ŝ)vk(r, ŝ)dŝdr

−
∫
Ωk

∫
Sd−1

Lφk(r, ŝ)vk(r, ŝ)dŝdr +
∫
Ωk

∫
Sd−1

δ
iω

c
φk(r, ŝ)ŝ · ∇vk(r, ŝ)dŝdr

+
∫
Ωk

∫
Sd−1

δ
(
ŝ · ∇φk(r, ŝ)

)(
ŝ · ∇vk(r, ŝ)

)
dŝdr +

∫
Ωk

∫
Sd−1

δμaφk(r, ŝ)vk(r, ŝ)dŝdr

−
∫
Ωk

δ

∫
Sd−1

Lφk(r, ŝ)
(
ŝ · ∇vk(r, ŝ)

)
dŝdr −

∫
∂Ωk,out

∫
Sd−1

(ŝ · n̂k)−φ0,k(r, ŝ)vk(r, ŝ)dŝdS

)
= 0 (18)

where δ is a streamline-diffusion modification parameter and (ŝ · n̂k)+ and (ŝ · n̂k)− denote the positive and negative parts 
of the function (ŝ · n̂k).

The FE-approximation is obtained by approximating the solutions φk(r, ̂s) of the variational formulation (18) with a linear 
combination of the basis functions

φk(r, ŝ) ≈
Ns,k∑
i=1

Na,k∑
l=1

αk
ilψi,k(r)ψl,k(ŝ), (19)

where ψi,k(r) and ψl,k(ŝ) are the nodal basis functions of the spatial and angular discretizations of Ωk × S
d−1, αk

il is the 
radiance in spatial nodal point i into angular direction l in the sub-domain Ωk , and Ns,k and Na,k are the number of spatial 
and angular nodes in the sub-domain Ωk , respectively. Therefore, different number of angular directions can be used in 
different sub-domains if that is feasible. In this work, we use a piecewise linear basis for both spatial and angular parts of 
the solution. The FE-approximation of the coupled model can be written in a matrix form as⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 C1,2 · · · · · · C1,N

C2,1 A2
. . .

. . .
...

...
. . .

. . .
. . .

...

CN−1,1
. . .

. . . AN−1 CN−1,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

α1

...

αN

⎞
⎟⎠ =

⎛
⎜⎝

b1

...

bN

⎞
⎟⎠ , (20)
CN,1 · · · · · · CN,N−1 AN
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Fig. 4. Mesh for the domain with an oblique surface between the sub-domains with different refractive indices. The sub-domain Ω1 is marked with dark 
gray and the sub-domain Ω2 with light gray. The source is marked with a black circle.

where the vector of radiances in the different sub-domains is α = (α1, . . . , αN ) = (α1
1,1, ..., α

1
1,Na,1

, ..., α1
Ns,1,Na,1

, ...,

αN
Ns,N ,Na,N

)T ∈ C

∑N
k=1 Ns,k Na,k . The matrix Ak ∈ C

Ns,k Na,k×Ns,k Na,k contains the FE-approximation of the RTE in the sub-
domain Ωk

Ak = A0,k + A1,k + A2,k + A3,k + A4,k, (21)

where

A0,k(h, s) = iω

ck

(∫
Ωk

ψi(r)ψ j(r)dr

∫
Sd−1

ψl(ŝ)ψm(ŝ)dŝ

+
∫
Ωk

δ

∫
Sd−1

ŝ · ∇ψ j(r)ψm(ŝ)ψl(ŝ)dŝψi(r)dr
)

, (22a)

A1,k(h, s) = −
∫
Ωk

∫
Sd−1

ŝ · ∇ψ j(r)ψm(ŝ)ψl(ŝ)dŝψi(r)dr

+
∫
Ωk

δ

∫
Sd−1

(
ŝ · ∇ψi(r)

)(
ŝ · ∇ψ j(r)

)
ψl(ŝ)ψm(ŝ)dŝdr, (22b)

A2,k(h, s) =
∫

∂Ωk

ψi(r)ψ j(r)dS

∫
Sd−1

(ŝ · n̂k)+ψl(ŝ)ψm(ŝ)dŝ

−
∫

∂Ωk,out

ψi(r)ψ j(r)dS

∫
Sd−1

(ŝ · n̂k)−Rk,outψl(H ŝ)ψm(ŝ)dŝ

−
∫

Γk,n

ψi(r)ψ j(r)dS

∫
Sd−1

(ŝ · n̂k)−Rk,nψl(H ŝ)ψm(ŝ)dŝ, (22c)

A3,k(h, s) =
∫
Ωk

μaψi(r)ψ j(r)dr
∫

Sd−1

ψl(ŝ)ψm(ŝ)dŝ

+
∫

δμaψi(r)
∫
d−1

(
ŝ · ∇ψ j(r)

)
ψm(ŝ)ψl(ŝ)dŝdr, (22d)
Ωk S
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Fig. 5. Logarithm of the amplitude (first and second column) and the phase shift (third and fourth column) of the fluence computed using the cRTE model 
(first and third column) and using the MC (second and fourth column) due to reflection from the oblique surface. Refractive index of the second sub-domain 
is n2 = 1 (first row), n2 = 1.3 (second row), n2 = 1.6 (third row) and n2 = 1.8 (fourth row). Directions of reflected and transmitted light with incoming 
angle of 45 deg are marked with black and purple lines, respectively, and the critical angle is marked with a white line.

A4,k(h, s) =
∫
Ωk

μsψi(r)ψ j(r)dr
∫

Sd−1

ψl(ŝ)ψm(ŝ)dŝ

+
∫
Ωk

δμsψi(r)
∫

Sd−1

(
ŝ · ∇ψ j(r)

)
ψm(ŝ)ψl(ŝ)dŝdr

−
∫

μsψi(r)ψ j(r)dr
∫
d−1

∫
d−1

Θ
(
ŝ · ŝ′)ψl

(
ŝ′)dŝ′ψm(ŝ)dŝ
Ωk S S
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Fig. 6. Mesh for the domain with a square inclusion inside the target. The sub-domain Ω1 is marked with dark gray and the sub-domain Ω2 with light 
gray. The source is marked with a black circle.

−
∫
Ωk

δμs

∫
Sd−1

(
ŝ · ∇ψ j(r)

)
ψm(ŝ)

∫
Sd−1

Θ
(
ŝ · ŝ′)ψl

(
ŝ′)dŝ′dŝψi(r)dr, (22e)

where h = Na,k( j − 1) + m, s = Na,k(i − 1) + l ( j, i = 1, . . . , Ns,k , m, l = 1, . . . , Na,k , and h, s = 1, . . . , Ns,k Na,k). Further, the 
matrix Cn,k ∈ R

Ns,n Na,n×Ns,k Na,k contains the coupling conditions on the interface Γk,n due to the radiance transmitted from 
the sub-domain Ωn into the sub-domain Ωk . Note that the matrix Cn,k is non-zero only if Ωn and Ωk share an interface Γk,n . 
The matrix Cn,k can be written as

Cn,k(p, s) = −
∫

Γk,n

ψi(r)ψe(r)dS

∫
Sd−1

(ŝ · n̂k)−Tn,kψl
(

K −1
n,k (ŝ)

)
ψu(ŝ)dŝ, (23)

where p = Na,n(e − 1) + u (e = 1, . . . , Ns,n , u = 1, . . . , Na,n , and p = 1, . . . , Ns,n Na,n). The source vector in the sub-domain 
Ωk is

bk(h) =
∫

∂Ωk,out

ψ j(r)dS

∫
Sd−1

(ŝ · n̂k)−φ0,k(r, ŝ)ψm(ŝ)dŝ. (24)

4. Results

The performance of the proposed cRTE model was tested with 2D simulations. The solution of the cRTE was compared 
with the solution of the Monte Carlo (MC) simulation. In the MC simulations, a photon packet method, originally developed 
in [53] was modified to allow computation in complex inhomogeneous geometries represented by finite element meshes 
with piece-wise constant refractive indices [54].

The cRTE was solved using the FEM as described in Section 3. The FE-approximation was computed using Eq. (20). 
The quantity of interest was the fluence, Eq. (4), inside the domain and at the boundary.

4.1. Reflection from an oblique surface with mismatched refractive indices

First, a reflection from an oblique surface due to a mismatch in the refractive indices was investigated. The simulation 
domain Ω was a square [−20, 20] × [−20, 20] mm2 shown in Fig. 4. The domain was divided into two sub-domains with 
different refractive indices. The FE-mesh for the spatial discretization of the sub-domain Ω1 is marked with dark gray and 
the sub-domain Ω2 is marked with light gray in Fig. 4. The FE-meshes consisted of 1710 and 1091 nodes and 3261 and 
2043 triangular elements for the sub-domains Ω1 and Ω2, respectively. The angular domain S1 was discretized using 64 
equally spaced angular directions for the both sub-domains.

The scattering and absorption properties of the domain were: μs,1 = 0.1 mm−1, μs,2 = 0.1 mm−1, μa,1 = 0.01 mm−1, 
μa,2 = 0.01 mm−1, g1 = 0.8 and g2 = 0.8. These values correspond to a low-scattering medium with a forward-peaked 
scattering. Hence, the reflection from a surface with mismatched refractive indices should be clearly visible. The refractive 
index of the sub-domain Ω1 was n1 = 2 and the refractive index of the sub-domain Ω2 was given values n2 = 1, 1.3, 1.6, 1.8. 
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Fig. 7. Logarithm of the amplitude (first column) and the phase shift (second column) of the fluence computed using the cRTE model (first and third row) 
and using the MC (second and fourth row) due to reflection from the square inclusion inside the target. Refractive index of the inclusion is n2 = 1 (first 
and second row) and n2 = 2 (third and fourth row). Per cent relative error of the amplitude and the phase shift against the MC are shown in third and 
fourth columns.

The refractive index of the exterior of the domain Ω was nout = 1. The modulation frequency of the input signal was 
100 MHz. A collimated source with a narrow Gaussian angular dependence was located at (x, y) = (−20, 0) mm and it is 
marked with a black circle in Fig. 4.

The fluence computed using the cRTE and the MC is shown in Fig. 5. As it can be seen, when n2 = 1, most of 
the light reflects from the surface due a large mismatch in the refractive indices. In this case the critical angle is 
θcrit = sin−1(n2/n1) = 30 deg (with respect to the unit normal). This means that only the photons which hit the inter-
face almost perpendicularly can transmit through the interface. Thus, in this case when the medium is low-scattering, most 
of the photons from the collimated source retain their initial direction before hitting the interface at 45 deg angle and 
undergo total internal reflection. When the refractive index of the second sub-domain is increased, more light transmits 
through the surface with a refraction.
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Fig. 8. Logarithm of the amplitude (top left) and the phase shift (top right) of the fluence at the boundary computed using the cRTE model for n2 = 1 (gray
line), n2 = 1.4 (black line) and n2 = 2 (dashed line) as a function of distance along the boundary. Per cent relative difference of the amplitude (bottom left) 
and the phase shift (bottom right) against the case n2 = 1.4 are shown on the bottom row.

When the cRTE and the MC solutions are compared, a good agreement is obtained except close to the source due to 
different discretization approaches. In the MC, the solution and the source are element-wise constant whereas in the FEM 
piece-wise linear basis is used. This difference is distinguishable since the medium is small and low-scattering.

4.2. Effect of the internal refractive index change on the boundary measurements

Next, the effect of the internal refractive index change on the boundary measurements was investigated. Two different 
cases were considered. In the first case, the inclusion with different refractive indices was located deep inside the target 
and in the second case the inclusion was located close to the boundary of the target.

4.2.1. Inclusion inside the target
First, the inclusion was located inside the target as shown in Fig. 6. The FE-mesh for the spatial discretization of the 

sub-domain Ω1 is marked with dark gray and the sub-domain Ω2 is marked with light gray. The FE-meshes consisted of 
3476 and 1051 nodes and 6398 and 1179 triangular elements for the sub-domains Ω1 and Ω2, respectively. The angular 
domain S1 was discretized using 64 equally spaced angular directions.

The scattering and absorption properties were: μs,1 = 1 mm−1, μs,2 = 1 mm−1, μa,1 = 0.01 mm−1, μa,2 = 0.01 mm−1, 
g1 = 0.8 and g2 = 0.8. The refractive index of the sub-domain Ω1 was n1 = 1.4 and the refractive index of the sub-domain 
Ω2 was n2 = 1, 1.05, ..., 2. The refractive index of the exterior was nout = 1.

The fluences computed using the cRTE and the MC are shown in Fig. 7. In addition, per cent relative error of the fluence 
computed using the cRTE against the MC is shown. Fig. 8 shows the fluence at the boundary computed using the cRTE for 
n2 = 1 (gray line), n2 = 1.4 (black line) and n2 = 2 (dashed line) as a function of distance along the boundary. In addition, 
per cent relative difference against the case with n2 = 1.4 (matched refractive indices) is shown. The mean of the relative 
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Fig. 9. Mean per cent relative difference of the amplitude (left) and the phase shift (right) of the fluence at the boundary as a function of refractive index 
of the inclusion n2.

Fig. 10. Mesh for the domain with a layer inclusion close to the boundary of the domain. The sub-domain Ω1 is marked with dark gray and the sub-domain 
Ω2 with light gray. The source is marked with a black circle.

difference of the boundary measurements against the case with n2 = 1.4 was computed for the amplitude and for the phase 
as

�|Φ| = mean

(∣∣∣∣ |Φ(r)| − |Φref(r)|
|Φref(r)|

∣∣∣∣
)

, (25)

�arg(Φ) = mean

(∣∣∣∣arg(Φ(r)) − arg(Φref(r))

arg(Φref(r))

∣∣∣∣
)

, (26)

where Φref(r) is the solution with n2 = 1.4, | · | is the absolute value and arg(·) is the phase angle. This quantity is shown 
in Fig. 9 for the amplitude (left image) and for the phase (right image).

The results in Fig. 7 show that when the refractive index of the inclusion is lower (n2 = 1) than the refractive index of 
the background (n1 = 1.4) strong reflection occurs when light enters the inclusion. In contrast, when the refractive index is 
larger (n2 = 2) than that of the background, more light is transmitted into the inclusion and total internal reflection takes 
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Fig. 11. Logarithm of the amplitude (first column) and the phase shift (second column) of the fluence computed using the cRTE model (first and third row) 
and using the MC (second and fourth row) due to reflection from the layer inclusion close to the boundary of the target. Refractive index of the inclusion 
is n2 = 1 (first and second row) and n2 = 2 (third and fourth row). Per cent relative error of the amplitude and the phase shift against the MC are shown 
in third and fourth columns.

place when light exits the inclusion. When the cRTE and the MC solutions are compared, a very good agreement is found 
and the relative error is under three per cent for both the amplitude and the phase further from the source.

The results show that the fluence at the boundary is changed when the refractive index is not constant within the target. 
When the refractive index of the inclusion is lower (n2 = 1) than that of the background, larger values for the amplitude can 
be measured next to the source due to the reflection from the inclusion. At the opposite side of the target, the amplitude 
is up to 10% lower compared to the fluence without the inclusion. For the phase, smaller values can be measured next to 
the source since photons can arrive earlier to the boundary due to the possible reflection. If the refractive index is larger 
(n2 = 2) than that of the background, the amplitude is one to four per cent lower compared to the fluence obtained without 
the inclusion. For the phase, up to 8% larger values are obtained since photons can arrive later to the boundary due to the 
internal reflection inside the inclusion.
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Fig. 12. Logarithm of the amplitude (top left) and the phase shift (top right) of the fluence at the boundary computed using the cRTE model for n2 = 1
(gray line), n2 = 1.4 (black line) and n2 = 2 (dashed line) as a function of distance along the boundary. Per cent relative difference of the amplitude (bottom 
left) and the phase shift (bottom right) against the case n2 = 1.4 are shown on the bottom row.

4.2.2. Inclusion close to the boundary of the target
In the second case, the inclusion located close to the boundary of the target as shown in Fig. 10. The number of spatial 

and angular nodes and elements were the same as before. In addition, the scattering and absorption properties were the 
same as in the first case in Section 4.2.1. Again, we set the refractive index of the background to n1 = 1.4 and varied the 
refractive index of the layer n2.

The fluences computed using the cRTE and the MC are shown in Fig. 11 for n2 = 1 and for n2 = 2. In addition, per 
cent relative error of the fluence computed using the cRTE is shown. Fig. 12 shows the fluence at the boundary for n2 = 1, 
n2 = 1.4 and for n2 = 2. The mean of the relative difference of the boundary measurements against the case with n2 = 1.4
(matched refractive indices) is shown in Fig. 13.

The results in Fig. 11 show that for a smaller refractive index value (n2 = 1) strong reflection occurs in front of the 
source when light enters the layer. As a result, a major portion of light remains between the layer and the boundary of 
the target. In addition, the part of the light which is transmitted through the layer in the front of the source gets reflected 
at the opposite side of the layer. Hence, some part of the light remains trapped inside the inner boundary of the layer. In 
contrast, for a larger refractive index (n2 = 2) more light is transmitted into the layer and light propagates along the layer. 
This is due the total internal reflection. The cRTE and the MC solutions agree relative well even though some differences 
can be seen at the right-hand side of the target between the layer and the boundary of the target.

The results in Fig. 12 show that up to 15% larger and 25% smaller values can be measured for the amplitude next to the 
source and at the opposite side of the target, respectively, when the refractive index n2 is smaller than the background in 
comparison to the fluences computed without the inclusion. For the phase, up to 15% difference can be obtained. Based on 
the results it can be concluded that if the internal refractive index change occurs close to the boundary, significant changes 
in the boundary measurements can be obtained.



358 O. Lehtikangas et al. / Journal of Computational Physics 282 (2015) 345–359
Fig. 13. Mean per cent relative difference of the amplitude (left) and the phase shift (right) of the fluence at the boundary as a function of refractive index 
of the layer n2.

5. Conclusions

In this work, light propagation in a scattering medium with piece-wise constant refractive index using the radiative trans-
port equation was studied. Light propagation in each sub-domain with a constant refractive index was modeled using the 
RTE and the equations were coupled using boundary conditions describing Fresnel reflection and transmission phenomenas 
on the interfaces between the sub-domains. The resulting coupled system of RTEs was numerically solved using the FEM. 
The proposed model was tested using simulations and was compared with the solution of the Monte Carlo method. The re-
sults show that the coupled RTE model describes light propagation accurately in comparison with the Monte Carlo method. 
In addition, results show that neglecting internal refractive index changes can lead to erroneous boundary measurements 
of scattered light. This indicates that the quality of the DOT reconstructions could possible be increased by incorporating a 
model for internal refractive index changes in the image reconstruction procedure.
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