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ABSTRACT

Patients with dementia may exhibit abnormally altered liking for environmental sounds
and music but such altered auditory hedonic responses have not been studied systemat-
ically. Here we addressed this issue in a cohort of 73 patients representing major canonical
dementia syndromes (behavioural variant frontotemporal dementia (bvFTD), semantic
dementia (SD), progressive nonfluent aphasia (PNFA) amnestic Alzheimer's disease (AD))
using a semi-structured caregiver behavioural questionnaire and voxel-based morphom-
etry (VBM) of patients' brain MR images. Behavioural responses signalling abnormal
aversion to environmental sounds, aversion to music or heightened pleasure in music
(‘musicophilia’) occurred in around half of the cohort but showed clear syndromic and
genetic segregation, occurring in most patients with bvFTD but infrequently in PNFA and
more commonly in association with MAPT than C9orf72 mutations. Aversion to sounds was
the exclusive auditory phenotype in AD whereas more complex phenotypes including
musicophilia were common in bvFTD and SD. Auditory hedonic alterations correlated with
grey matter loss in a common, distributed, right-lateralised network including antero-
mesial temporal lobe, insula, anterior cingulate and nucleus accumbens. Our findings
suggest that abnormalities of auditory hedonic processing are a significant issue in com-
mon dementias. Sounds may constitute a novel probe of brain mechanisms for emotional
salience coding that are targeted by neurodegenerative disease.

VBM © 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).
- and their caregivers: examples range from abnormal responses

1. Introduction

to thermoregulatory and other basic homeostatic signals
(Ahmed et al., 2014) to pathological seeking of rewarding stimuli

Altered emotional responsiveness to salient sensory stimuliis a
key issue in neurodegenerative diseases. From a clinical
perspective, emotional dysregulation is likely to contribute to a
wide spectrum of symptoms that impact the lives of patients

such as food, sex or drugs (Perry et al., 2014; Whitwell et al.,
2007; Woolley et al., 2007) and derangements of complex so-
cial behaviours (Clark, Downey, Golden, et al., 2014; Mahoney,
Rohrer, Omar, Rossor, & Warren, 2011; Sturm et al., 2013).
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From a neurobiological perspective, such dysfunction illumi-
nates critical neural mechanisms mediated by brain networks
that are targeted by neurodegenerative pathologies (Zhou &
Seeley, 2014). Altered emotional responses are a hallmark of
diseases in the frontotemporal lobar degeneration (FTLD)
spectrum, particularly in association with the syndromes led by
behavioural disintegration (behavioural variant frontotemporal
dementia, bvFTD) and semantic disintegration (semantic de-
mentia, SD) (Duval et al., 2012; Hodges & Patterson, 2007; Rankin
et al.,, 2009; Rohrer & Warren, 2010; Snowden et al., 2001).
However, emotional disturbances may also be significant in
other FTLD syndromes such as progressive nonfluent aphasia
(PNFA) (Kumfor et al., 2011; Rohrer & Warren, 2011; Rohrer,
Sauter, Scott, Rossor, & Warren, 2012) and with other neuro-
degenerative pathologies, notably Alzheimer's disease (AD)
(Sturm et al., 2013). This phenotypic overlap reflects the
involvement in these diseases of distributed fronto-temporal,
parietal and subcortical circuitry previously implicated in the
representation, decoding and evaluation of salient stimuli
(Sescousse, Caldu, Segura, & Dreher, 2013).

In contrast to the better characterised phenotypes of lan-
guage, perceptual and executive impairment, phenotypes of
altered emotional responsiveness are difficult to capture using
standard neuropsychological instruments and remain poorly
defined in the dementias. This reflects the inherently complex
organisation of emotional behaviour, which is often only
partly accessible to explicit cognitive decoding and relies
intimately on subjective states of emotional awareness or
affect. Besides neuropsychological and psychophysical pro-
cedures, a complete characterisation of affective responses in
patients with dementia requires detailed analysis of output
behaviours, particularly those signalling pleasure or aversion.
Furthermore, it is necessary to sample a wide range of stimuli
and behaviours, as alterations of affective processing in
neurodegenerative diseases may extend to categories of
stimuli that lack primary biological reward value. The audi-
tory domain is a particularly promising vehicle with which to
explore affective abnormalities in these diseases, since sound
encompasses a broad continuum of sensory signals ranging
from the highly biologically or perceptually salient to the
banal to the richly symbolic. A key example of the last is
music: this essential abstract stimulus has been shown to
engage reward circuitry extensively in the healthy brain
(Blood & Zatorre, 2001; Blood, Zatorre, Bermudez, & Evans,
1999; Koelsch, 2014; Menon & Levitin, 2005; Salimpoor et al.,
2013; Salimpoor, Zald, Zatorre, Dagher & McIntosh, 2015)
and musical pleasure is associated with powerful autonomic
responses (Grewe, Nagel, Kopiez, & Altenmdiller, 2005).
Musical pleasure is likely to depend heavily on factors such as
familiarity, pattern recognition and predictability based on
past experience (Koelsch, 2014; Salimpoor et al., 2015; Zatorre
& Salimpoor, 2013): the integrative neural computations
required are likely to be vulnerable in the dementias. Music
may become the object of obsessional interest or ‘musico-
philia’ in neurodegenerative syndromes (Fletcher, Downey,
Witoonpanich, & Warren, 2013), and more generic abnor-
malities of affective responsiveness to hedonically neutral
sounds also occur: for example, a substantial proportion of
patients with SD exhibit increased sensitivity and aversion to
everyday environmental noises (Mahoney, Rohrer, Goll, et al.,

2011). As the symptom profile of SD encompasses both
heightened pleasure in music and aversion to environmental
sounds, it is evident that changes in auditory hedonic
responsiveness produced by neurodegenerative syndromes
are likely to be complex and bi-directional. Neuroanatomical
correlates of these symptoms have been described in auditory
cortical and subcortical pathways, antero-mesial temporal
and frontal reward circuitry (Fletcher et al., 2013; Mahoney,
Rohrer, Goll, et al., 2011; Mahoney, Rohrer, Omar, Rossor &
Warren, 2011). More generic alterations in affective and
autonomic responses to emotional sounds have been
described in various dementia syndromes (Fletcher et al., in
press-a, in press-b). These observations underline the poten-
tial of sound to probe brain networks that mediate affective
responses and are targeted by neurodegenerative diseases.
However, phenotypes of altered affective response to sound
and their brain bases have not been studied systematically
across dementia syndromes.

Here we addressed this issue in cohorts of patients repre-
senting major canonical syndromes of FTLD and AD. Altered
hedonic responses to nonverbal sound — increased pleasure,
anhedonia or aversion to environmental sounds and music —
in these diseases were indexed from patients' verbal and
nonverbal behaviours, as recorded using a semi-structured
caregiver questionnaire. The questionnaire also recorded any
alterations in patients' sweet food preferences, in order to
assess hedonic responses of sounds in relation to a hedonic
behaviour that is commonly affected in dementia but linked to
a primary biological reward (Perry et al., 2014; Whitwell et al.,
2007; Woolley et al., 2007). Structural neuroanatomical sub-
strates of abnormal auditory hedonic responses were assessed
using voxel-based morphometry (VBM) of patients' brain MR
images. Based on previous clinical evidence, we hypothesised
that these neurodegenerative syndromes would produce a
complex of auditory hedonic abnormalities with bi-directional
shifts in the valuation of particular sound categories (envi-
ronmental sound and music); and that such abnormalities
would be more common in the syndromes of bvFTD and SD
than other neurodegenerative syndromes, and would correlate
with altered sweet food preference. We further hypothesised
that altered auditory hedonic responsiveness would be asso-
ciated with grey matter changes in a distributed brain network
including areas previously implicated in encoding the affective
salience of sounds and other sensory signals (in particular,
insula and anterior cingulate cortex: Zhou & Seeley, 2014),
evaluating their affective meaning (in particular, antero-mesial
temporal lobe: Omar et al., 2011; Hsieh, Hornberger, Piguet, &
Hodges, 2012) and representing their reward value (in partic-
ular, ventral striatum: Sescousse et al., 2013).

2. Methods
2.1. Patient characteristics

A cohort of 73 patients was recruited over a three-year interval
via a tertiary cognitive disorders clinic. The cohort comprised
56 patients with a syndrome of FTLD (bvFTD, n = 22; SD,
n = 19; PNFA, n = 15) and 17 patients with amnestic AD. All
were diagnosed by an experienced cognitive neurologist and
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fulfilled consensus diagnostic criteria (Dubois et al., 2007,
Gorno-Tempini et al., 2011; Rascovsky et al., 2007). The syn-
dromic diagnosis was supported in each case by detailed
neuropsychological assessment (in relation to an historical
age- and gender-matched cohort of 50 healthy individuals:
Table 1) following a standard protocol and further corrobo-
rated by CSF or brain amyloid PET imaging findings (ratio of
total tau: beta-amyloid;.4, levels >1in 9/9 AD patients and <.8
in 14/14 FTLD patients, Florbetapir PET negative for amyloid
deposition in 6/6 FTLD patients for whom data were available).
All patients had a profile of regional brain atrophy on MRI
consistent with the syndromic diagnosis; no patient had
radiological evidence of significant or strategic vascular
damage. Genetic screening of the patient cohort revealed 13
patients with a pathogenic mutation (seven C9orf72; six
MAPT). All patients with a genetic mutation presented with
bvFTD apart from one patient with a C9orf72 expansion who
presented with PNFA.

Patients with clinically relevant alterations of peripheral
hearing loss were not included in the study; 12 patients with
hearingloss and eight patients with tinnitus were excluded on
this basis. Participants underwent screening of peripheral
hearing function using a previously described adapted audi-
ometry procedure (Golden et al., 2015).

All participants gave written informed consent to be
involved in the study, which was approved by the local

institutional ethics committee in accordance with the Decla-
ration of Helsinki.

2.2.  Analysis of hedonic symptoms

Patient caregivers were asked to complete a questionnaire
detailing any symptoms suggesting alterations in the pleasure
that patients derived from nonverbal sounds (environmental
sounds and/or music) (see Table S1in Supplementary Material
on-line). Altered auditory hedonic responses were classified
generally as increased or decreased liking for environmental
sounds and increased or decreased liking for music. Before
completing the questionnaire, caregivers were given exam-
ples of behaviours that might signal altered liking for sounds
relative to the patient's premorbid behaviour (such as
expressed liking or aversion for the sound, seeking or avoid-
ance of the sound and/or amount of time spent listening to
music). The caregiver questionnaire also recorded any alter-
ation in patients' sweet food preference.

Patient subgroups with and without hedonic symptoms
and healthy controls were compared using linear regression
and proportions exhibiting symptoms were compared using
Pearson's chi-square test. Relations of auditory hedonic
symptoms to disease duration and severity (MMSE score) and
with altered sweet food preference were assessed using
Pearson's correlation tests. A threshold p < .05 was accepted as

Table 1 — General demographic and neuropsychological data for patient subgroups with and without auditory hedonic

symptoms.
FTLD AD Healthy controls*
Auditory hedonic No auditory hedonic Auditory hedonic No auditory hedonic
General
No. (F:M) 31 (9:22)f 25 (15:10) 7 (2:5)f 10 (5:5) 50 (23:27)
Syndrome: bvFTD/SD/PNFA 19/11/1 3/8/14 NA NA NA
Genetic: C9orf72/MAPT 3/6 4/0 NA NA NA
Age (years) 64.7 (52—79) 64.9 (52—75) 66.3 (60—73) 66.4 (53—80) 67.5 (54—80)
Education (years) 14 (11-21) 15 (11-20) 13 (11-17) 13.9 (12—-17) 15.2 (10—18)
Symptom duration (years) 6.1 (3—18) 5.7 (3—21) 6 (4—9) 4.4 (2—6) NA
MMSE 24 (12—30) 19 (1-30) 24 (20—25) 20 (13—30) 29.6 (28—30)
Q
Verbal 80 (40—119) 82 (55-115) 94 (71-115) 84 (55-108) 120 (101-137)
Performance 101 (74—135) 96 (66—135) 86 (61—125) 84 (57-119) 115 (84—141)
Episodic memory
RMT faces (/50) 31 (24-50)% 37 (25—46) 36 (27—43) 32 (23—46) 43 (30—50)
RMT words (/50) 34 (23-49) 37 (18-48) 34 (27-47) 31 (27-42) 48 (39-50)
Semantic processing
BPVS (/150) 110 (2—149) 109 (25-149) 133 (106—146) 124 (52-147) 147 (137—150)
Executive function
Stroop inhibition (180 s) 88 (40-180) 103 (50—180) 135 (42-180) 107 (73-138) 58 (35—103)
Digit span reverse (/12) 4 (0-7) 4 (0-7) 3.5(2-6) 3 (1-5) 5(3-7)
Visuospatial
VOSP object decision (/20) 16 (8—20) 16 (3—20) 16.5 (14—18) 16 (11-19) 18 (12—20)

Mean (range) data are shown unless otherwise indicated and maximum scores on neuropsychology tests are also indicated in parentheses.
Significant differences (p < .05) between patients and healthy controls are in bold; *historical control group (to reference neuropsychological
characterisation of disease groups); tfour patients with environmental sound aversion alone, 10 with musicophilia alone, eight with music
aversion alone, five with both musicophilia and environmental sound aversion, four with both music and environmental sound aversion (see
text, Fig. 1); tifive patients with environmental sound aversion alone, two with both music and environmental sound aversion; *significantly
(p < .05) different from non-symptomatic patients with FTLD; AD, syndrome of Alzheimer's disease led by decline in episodic memory; BPVS,
British Picture Vocabulary Scale; bvFTD, behavioural variant of frontotemporal dementia; C9orf72, mutation in open reading frame 72 on
chromosome 9; FTLD, frontotemporal lobar degeneration; MAPT, mutation in microtubule associated protein tau gene; MMSE, Mini-Mental
State Examination score; NA, not applicable; PNFA, progressive nonfluent aphasia; RMT, Recognition Memory Test; SD, semantic dementia;

VOSP; Visual Object and Space Perception battery.
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the criterion for a statistically significant difference in all
comparisons.

2.3. Brain image acquisition and VBM

At the time of questionnaire data collection each patient un-
derwent volumetric brain MRI on a 3.0 T Siemens scanner
(Siemens, Erlangen, Germany) using a 32 channel phased
array head coil. A sagittal 3-D magnetization prepared rapid
gradient echo T1 weighted volumetric MRI (echo time/repeti-
tion time/inversion time 2.9/2200/900 ms, dimensions of
256 x 256 x 208, voxel size of 1.1 x 1.1 x 1.1 mm) was acquired.
In all cases, volumetric scans were assessed visually in all
planes to ensure adequate coverage and to exclude artefacts
or significant motion.

Pre-processing of patient brain MR images for VBM was
performed using New Segment (Ashburner & Friston, 2005)
the DARTEL (Ashburner, 2007) toolbox of SPM8 (www.fil.ion.
ucl.ac.uk/spm) running under Matlab7.0®. Segmentation,
normalisation and modulation of grey and white matter im-
ages were performed using default parameter settings. Images
were smoothed using a Gaussian filter with full-width-half-
maximum 6 mm. In order to adjust for individual differ-
ences in global grey matter volume during subsequent anal-
ysis, total intracranial volume was calculated for each
participant by summing grey matter, white matter and cere-
brospinal fluid volumes following segmentation of all three
tissue classes. A study-specific group mean template brain
image was created by warping all native space whole-brain
images to the final DARTEL template and calculating the
average of the warped brain images.

Using linear regression, voxel intensity (grey matter vol-
ume) was modelled separately over the combined FTLD cohort
and within the AD cohort as a function of the presence of
altered liking for any sounds, and altered liking for music or
environmental sounds in isolation. Patient age, total intra-
cranial volume, disease duration and (in the FTLD analysis)
syndromic group were included as covariates of no interest.
Anatomical small volumes of interest based on the prior
anatomical hypotheses were created to cover key regions in
each cerebral hemisphere previously implicated in hedonic
processing of sounds and other sensory stimuli (Sescousse
et al., 2013): these regions comprised antero-mesial temporal
lobe (cortex anterior to Heschl's gyrus, amygdala and hippo-
campus), insula and anterior cingulate cortex and ventral
striatum (nucleus accumbens, caudate and putamen). Regions
were customised from the Oxford/Harvard brain maps in
FSLview v3.1 (Desikan et al., 2006; Jenkinson, Beckmann,
Behrens, Woolrich, & Smith, 2012) to fit the mean brain tem-
plate. To help protect against voxel drop-out due to potentially
marked local regional atrophy in particular scans, a custom-
ised explicit brain mask was applied based on a specified
‘consensus’ voxel threshold intensity criterion (Ridgway et al.,
2009) whereby a voxel was included in the analysis if grey
matter intensity at that voxel was >.1 in >70% of participants
(rather than in all participants, as with the default SPM8
mask). Statistical parametric maps of regional grey matter
volume correlating with presence or absence of symptoms
were examined at threshold p < .05 after family-wise error
(FWE) correction for multiple voxel-wise t-tests over the whole

brain and after small volume correction within pre-specified
anatomical regions.

3. Results
3.1. General participant characteristics

Demographic, clinical and general neuropsychological char-
acteristics of the patient cohort are summarised in Table 1.
Participant subgroups (FTLD versus AD and within each dis-
ease group, subgroups with and without altered sound plea-
sure) did not differ in age, gender, years of education, disease
duration or overall severity (based on MMSE score). Peripheral
hearing function based on audiometric screening did not
differ significantly (p > .05) between groups. On general neu-
ropsychological assessment the FTLD subgroup with auditory
hedonic symptoms performed significantly worse on the
recognition memory test for faces than the FTLD subgroup
without such symptoms; there were no other significant
neuropsychological differences between disease subgroups
with and without auditory hedonic symptoms.

3.2. Characteristics of hedonic symptoms

Symptoms of altered auditory hedonic valuation occurred in a
substantial proportion of patients in both the FTLD cohort (31/
56 cases, 55%) and the AD cohort (7/17 cases, 41%), with
comparable overall frequency in each disease (p = .31). The
breakdown of auditory hedonic symptoms by diseases and
syndromes is schematised in Fig. 1. Within the FTLD cohort,
symptoms were significantly more common in the bvFTD
group (19/22 cases, 86%) than the SD group (11/19 cases, 58%)
(p = .04) and in both the bvFTD and SD groups than the PNFA
group (1/15 cases, 7%) (p < .01). Altered liking for environ-
mental sounds and for music were each exhibited by patients
in both the FTLD and AD cohorts, however the relative

musicophilia sound music
P aversion aversion
bvFTD 3
bvFTD 3
SD1
AD 2
PNFA 1

Fig. 1 — Diagrammatic breakdown of auditory hedonic
symptoms across the patient cohort. Case numbers in each
symptom category are indicated. Key: AD, syndrome of
Alzheimer's disease led by decline in episodic memory
(light grey); bvFTD, behavioural variant of frontotemporal
dementia (dark grey); PNFA, progressive nonfluent aphasia
(black); SD, semantic dementia (white).
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frequency and directionality of these symptoms varied be-
tween diseases: patients with FTLD who developed auditory
hedonic symptoms variously exhibited decreased liking for
environmental sounds (13/31 cases, 42%), decreased liking for
music (12/31 cases, 39%) or increased liking for music
(‘musicophilia’; 15/31 cases, 48%) alone or in combination,
whereas those patients with AD who developed hedonic
symptoms uniformly exhibited decreased liking for sounds
(environmental sounds in 7/7 cases; music additionally in 2/7
cases, 29%). Only one patient in the entire study cohort
experienced abnormally increased liking for neutral environ-
mental sounds: this patient with a syndromic diagnosis of SD
derived pleasure from certain mechanical sounds such as a
hair-dryer as well as exhibiting a heightened emotional
response to music.

Caregiver questionnaire reports indicated a diverse phe-
nomenology of altered auditory hedonic responses in indi-
vidual patients (representative extracts for individual
patients are in Table S2 in Supplementary Material on-line).
Typically patients with reduced liking for environmental
sounds were described by caregivers as having become un-
usually sensitive to the relevant sound since onset of their
illness; exposure to certain environmental noises (particu-
larly those with higher pitch or penetrating timbre such as
children's voices) would provoke expressions of distress in
these patients and they would take sometimes elaborate
steps to avoid such sounds, even in situations where these
would previously have been regarded as unobtrusive or
banal. Patients with reduced liking for music were described
as exhibiting a wider repertoire of responses, ranging from
indifference (loss of previous interest and enjoyment) to
active avoidance, distress or irritation. In order to capture
this dynamic component of reduced liking, henceforth we
refer to environmental sound and music
Conversely, patients with increased liking for music [in line
with previous descriptions of musicophilia: (Fletcher et al.,
2013)] exhibited music craving or seeking, often demanding
to listen to a narrow repertoire of songs for up to many hours
each day but sometimes also engaging in more organised
behaviours such as taking up a musical instrument or buying
music equipment.

Within the FTLD subgroup with altered auditory hedonic
responses, patients with bvFTD and SD were comparably
likely to develop environmental sound aversion (bvFTD 9/19
cases, 47%; SD 4/11 cases, 36%; p = .56); there was the
impression of an over-representation in the SD group of pa-
tients with musicophilia (bvFTD 8/19 cases, 42%; SD 7/11
cases, 64%) versus music aversion (bvFTD 8/19 cases, 42%; SD
3/11 cases, 27%), however this apparent disproportion did not
achieve statistical significance when the SD and bvFTD groups
were compared directly (p = .42). Musicophilia was accom-
panied by environmental sound aversion in a substantial
minority of patients with FTLD (bvFTD 3/19 cases, 16%; SD 2/11
cases, 18%); a comparable proportion of patients (6/38 cases,
16% of the combined cohort) exhibited aversion to both sound
categories. The single patient with PNFA who developed
auditory hedonic symptoms exhibited music aversion. Ge-
netic FTLD subtype influenced the development of auditory
hedonic alterations: symptoms were significantly more com-
mon in the MAPT mutation group (6/6 cases) than the C9orf72

‘aversion’.

mutation group (3/7 cases) (p = .03). Patients in both these
genetic subgroups tended to exhibit aversion to sounds;
musicophilia was reported only in isolated cases in each
subgroup (in each case accompanied by environmental sound
aversion).

Compared with auditory hedonic symptoms, pathological
sweet—tooth developed in a similar proportion of the FTLD
cohort overall (35/56 cases, 63%) and in association with
bvFTD (21/22 cases, 95%) and SD (9/19 cases, 47%). Pathological
sweet tooth was relatively more frequent than auditory he-
donic alterations in association with PNFA (5/15 cases, 33%)
but less frequent than auditory hedonic alterations in AD (5/17
cases, 29%). Development of pathological sweet tooth was
significantly correlated with development of any auditory
hedonic symptoms in both the FTLD and AD groups (p = .02
and p = .001, respectively) but not more specifically with a
particular auditory hedonic phenotype. Moreover, increased
liking for sweet foods was frequently coupled with reduced
liking for sounds (15/31 patients with auditory symptoms in
the FTLD cohort and 4/7 patients with auditory symptoms in
the AD cohort). Development of auditory hedonic symptoms
or pathological sweet tooth were not significantly correlated
with disease duration or severity (MMSE score), in either FTLD
or AD.

3.3. Neuroanatomical associations

Regional grey matter correlates of auditory hedonic symp-
toms from the VBM analysis are summarised in Table 2 and
statistical parametric maps are shown in Fig. 2.

At the most stringent statistical criterion (p < .05pwg cor-
rected over the whole brain volume), within the combined
FTLD cohort the presence of any auditory hedonic symptoms
was associated with grey matter loss in right temporal pole
and anterior superior temporal cortex, extending into mid and
posterior insula and putamen; while the presence of envi-
ronmental sound aversion alone was also associated with
grey matter loss in right anterior temporal lobe and insula,
extending to include right amygdala, hippocampus, entorhi-
nal and parahippocampal cortex.

No other grey matter associations of auditory hedonic
symptoms were identified at whole brain level. However,
further neuroanatomical associations were identified in the
FTLD cohort at significance threshold p < .05pwe corrected
within the anatomical regions specified by our prior hy-
potheses. Using this criterion, environmental sound aversion
was associated with additional grey matter loss in left
amygdala and nucleus accumbens. Music aversion was
associated with grey matter loss in an overlapping network
including right anterior temporal cortex, entorhinal cortex,
hippocampus and amygdala and bilateral mid and posterior
insula. No neuroanatomical associations of musicophilia
were identified at the prescribed significance threshold;
however, a post hoc analysis at a more lenient threshold
(p < .001 uncorrected over the whole brain) revealed relative
preservation of grey matter in right hippocampus (MNI peak
coordinates [38 —1 —28], z-score 3.80) in association with
musicophilia.

In the AD cohort, the presence of environmental sound
aversion was associated with grey matter loss in anterior
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Table 2 — Neuroanatomical associations of auditory hedonic symptoms in the patient cohort.

Auditory hedonic symptom Brain region Side Cluster size (voxels)  Co-ordinates (mm)  z-score
X y Z

FTLD

Any hedonic alteration Anterior superior temporal gyrus R 3002 54 15 -9 4.86
Anterior superior temporal sulcus R 51 5 —-15 4.43

Environmental sound aversion Anterior temporal cortex R 5275 42 17 -26 4.88
Nucleus accumbens R 668 3 15 -9 4.24
Amygdala L 413 -20 -3 -26 3.66
Inferior temporal gyrus R 209 50 0 -39 3.72

Music aversion Hippocampus/amygdala R 2864 26 -25 -24 4.69
Mid — posterior insula R 44 -1 -12 4.20
Entorhinal/parahippocampal cortex R 24 2 -35 4.10
Mid — posterior insula L 128 —42 -9 -5 3.83

AD

Environmental sound aversion Anterior cingulate cortex L 87 -12 32 31 421

All regions of grey matter atrophy shown were significantly associated with auditory hedonic symptoms at threshold p < .05gwe corrected for
multiple comparisons within the pre-specified anatomical small region of interest; associations in bold were additionally significant at
p < .05pwe corrected over the whole brain volume. All significant clusters >40 voxels are shown and peak (local maximum) coordinates are in
Montreal Neurological Institute standard stereotactic space (see also Fig. 2). AD, Alzheimer's disease; FTLD, frontotemporal lobar degeneration.

See text for explanation of symptom classifications.

cingulate cortex at significance threshold p < .05gwg corrected
within the pre-specified anatomical region of interest.

4, Discussion

Here we have presented evidence for phenotypes of abnormal
hedonic processing in canonical dementia syndromes.
Behavioural responses signalling abnormal aversion to envi-
ronmental sounds, aversion to music or heightened pleasure

in music (‘musicophilia’) were reported by caregivers in
around half of patients with FTLD and AD overall. However,
auditory hedonic symptoms showed clear syndromic and
genetic segregation, occurring in most patients with bvFTD
but infrequently in PNFA and more commonly in association
with MAPT than C9orf72 mutations. Aversion to environ-
mental sounds and music occurred most commonly in the
patient cohort overall and was the exclusive auditory pheno-
type in the AD group, whereas musicophilia was the single
most frequent auditory hedonic symptom in the FTLD cohort,

Fig. 2 — Statistical parametric maps (SPMs) showing regional grey matter atrophy significantly associated with: A, any
auditory hedonic symptoms in the combined FTLD cohort, centred on right anterior temporal lobe, insula and putamen; B,
C, environmental sound aversion in the combined FTLD cohort, including anterior temporal cortex, amygdala and nucleus
accumbens; D, environmental sound aversion in the AD cohort, in anterior cingulate cortex. The neuroanatomical
associations of music aversion in the FTLD cohort (not shown) comprised a similar distributed fronto-temporal network (see
Table 2). SPMs are thresholded at p < .05 after small volume correction for multiple voxel-wise comparisons in pre-specified
small anatomical volumes of interest and displayed on sections of a group mean T1-weighted MR brain template image in
MNI standard space; the right hemisphere is shown on the right of the axial sections. AD, Alzheimer's disease; FTLD,

frontotemporal lobar degeneration.
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particularly in association with SD. Complex conjoined or
bivalent auditory phenotypes were frequent, particularly in
the FTLD cohort. However, increased liking for environmental
sounds (reported in just one patient) appears to be an un-
common phenotype. While auditory hedonic symptoms were
generally correlated with development of pathological sweet
tooth, individual patients not uncommonly showed dissoci-
ated hedonic profiles and abnormal liking for sweet foods was
frequently accompanied by aversion to sounds. The pheno-
typic complexity of auditory hedonic alterations in the pre-
sent cohort was underpinned by a neuroanatomical profile of
grey matter loss in a common, distributed, right-lateralised
network including antero-mesial temporal lobe, insula, ante-
rior cingulate and nucleus accumbens.

These findings substantiate and extend previous evidence
for altered hedonic processing of environmental sounds and
music in dementia diseases, notably within the FTLD spec-
trum (Boeve & Geda, 2001; Fletcher et al., 2013, 2015a; Geroldi
et al., 2000; Mahoney, Rohrer, Goll, et al., 2011). These audi-
tory hedonic symptoms are representative of a broader
spectrum of hedonic alterations directed variously to bio-
logically rewarding stimuli such as food, sex and drugs
(Mendez & Shapira, 2013; Perry et al., 2014; Whitwell et al.,,
2007; Woolley et al., 2007), secondary reinforcers such as
money (Perry, Sturm, Wood, Miller, & Kramer, 2013) and ab-
stract entities such as colours (Chan et al., 2009). The hedonic
profile of AD is less well characterised than for FTLD. How-
ever, the finding of prominent sound aversion in the present
AD cohort corroborates other work demonstrating enhanced
sensitivity to punishments and social distress (Perry et al,,
2014; Sturm et al, 2013) as well as emotional sounds
(Fletcher et al., 2015a, 2015b) in AD. The neuroanatomical
correlates of auditory hedonic symptoms across the present
patient cohort are in line with a body of previous functional
neuroimaging work implicating a temporo-insulo-striatal
network in the processing of hedonically laden stimuli with
potential reward (or punishment) value (Koelsch, 2014;
Lawson et al., 2014, Pessiglione, Seymour, Flandin, Dolan, &
Frith, 2006; Salimpoor et al., 2013; Salimpoor et al., 2015;
Sescousse et al., 2013; Whitwell et al., 2007; Woolley et al.,
2007). Particular components of this network are likely to
decode, interpret and evaluate emotionally salient sensory
signals (Dreher, 2013; Hsieh et al,, 2012; Omar et al.,, 2011;
Sescousse et al., 2013; Zhou & Seeley, 2014). Although the
present study was not equipped to analyse these processes in
detail, certain inferences can be made based both on previous
functional neuroanatomical data in the healthy brain and
previous evidence in these diseases. Fronto-insular and
anterior cingulate cortices anchor a salience processing
network that is core to the pathogenesis of bvFTD and
functionally implicated in a number of other neurodegener-
ative syndromes, including AD (Seeley, Crawford, Zhou,
Miller, & Greicius, 2009; Sturm et al., 2013; Zhou & Seeley,
2014). Information about salient signals may be routed via
partly parallel pathways to amygdala and mesial temporal
lobe structures, anterior temporal cortex and striatal and
other subcortical regions (Sturm et al., 2013; Zhou & Seeley,
2014). The amygdala is heavily affected in FTLD and likely
to process intensity, arousal potential and novelty of affec-
tive signals (Metereau & Dreher, 2013; Sescousse et al., 2013;

Small et al., 2003). Anterior temporal cortex is a hub zone
for appraising the significance and relevance of sensory sig-
nals (Mitterschiffthaler, Fu, Dalton, Andrew, & Williams,
2007) and targeted by a number of neurodegenerative pa-
thologies: this region integrates multimodal sensory object
knowledge with stored autobiographical (and especially,
emotionally salient) experience, homeostatic status and
reward potential via strong interconnections with insula,
anterior cingulate and striatum (Olson, Plotzker, & Ezzyat,
2007). Involvement of anterior temporal cortex has been
linked to impaired vocal and musical emotion recognition
and more complex derangements of social signal processing
in dementias (Hsieh et al., 2012; Irish, Hodges, & Piguet, 2014;
Omar et al., 2011; Rohrer et al., 2012). The striatum and
particularly nucleus accumbens are affected early in FTLD
(Halabi et al., 2013; Moller et al., 2015); these structures code
reward intensity and prediction error (Blood & Zatorre, 2001;
Metereau & Dreher, 2013) and modulate activity in effector
circuits that govern appetitive and avoidance behaviours
(Zhou & Seeley, 2014).

Environmental sound and music aversion here had
closely overlapping neuroanatomical correlates, implicating
shared neural circuitry in the altered hedonic valuation of
these very different auditory phenomena. Moreover, these
neuroanatomical correlates were remote from more poste-
rior and lateral temporal cortices representing auditory
perceptual features. While we did not assess sound
perception or recognition directly, it is plausible that these
processes dissociate from the hedonic processing of sounds
in patients with dementia: preserved emotional responses
to music despite impaired melody perception are well
attested (Matthews, Chang, De May, Engstrom, & Miller,
2009) and it is further noteworthy that auditory hedonic
symptoms were uncommon in the present PNFA cohort
despite previously documented auditory perceptual deficits
in this syndromic group (Goll et al., 2010, 2011). Previous
work further suggests that particular categories of stimuli
(or reinforcement associated with those stimuli) may have
partly separable brain substrates (Mas-Herrero, Zatorre,
Rodriguez-Fornells, & Marco-Pallares, 2014; Metereau &
Dreher, 2013; Omar et al, 2011; Sescousse et al., 2013).
However, any such differentiation need not be based simply
on anatomical separation per se; it might inhere in profiles
of connectivity within the core network that processes he-
donic value. Modulation of connection strength between
nucleus accumbens, amygdala and other cortical and stria-
tal regions has been shown to underpin reward and aversive
learning in response to music and a range of other
hedonically-weighted stimuli (Camara, Rodriguez-Fornells,
& Munte, 2008; Cauda et al., 2011; Costa, Lang, Sabatinelli,
Versace, & Bradley, 2010; Klucken et al.,, 2014; Menon &
Levitin, 2005; Salimpoor et al., 2013), and altered connec-
tivity between these brain regions has been linked to specific
auditory and other behavioural phenotypes (Ma et al., 2010;
Maudoux et al., 2012; White et al., 2013). Although the pre-
sent study leaves this possibility unresolved, modulation of
network connectivity might explain the differential shifts in
hedonic value assigned to music and environmental sounds
within the patient cohort (including bivalent shifts in indi-
vidual patients) despite involvement of similar network
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elements. In this regard, it is of interest that hippocampal
grey matter change was correlated here both with sound
aversion and musicophilia: with the caveat that the present
musicophilia correlate was identified at a relaxed signifi-
cance criterion, this is consistent with previous evidence for
relative hippocampal sparing in association with musico-
philia in FTLD (Fletcher et al., 2013) and with other evidence
implicating hippocampus in processing musical emotion
(Fruhholz et al., 2014; Koelsch, 2014). Hippocampal mecha-
nisms may be particularly relevant to the processing of dy-
namic stimuli such as sounds, by engaging temporal,
contextual and mnestic processes (Frithholz, Trost, &
Grandjean, 2014; Kraus & Canlon, 2012). Connectivity
within brain circuits mediating hedonic processing is
determined in part by genotype (Dreher, 2013; Klucken et al,,
2014): this suggests a possible molecular basis for the dif-
ferential phenotypic effects of MAPT and C9orf72 mutations
in this study, though any molecular specificity is likely to
have been modulated by the topography of brain damage
associated with these mutations, MAPT mutations particu-
larly targeting the antero-mesial temporal lobes (Rohrer &
Warren, 2011).

The present evidence for auditory hedonic phenotypes in
dementia aligns these neurodegenerative diseases with a
broader spectrum of disorders characterised by abnormal
hedonic processing of sounds. The best known of these is
tinnitus, in which auditory perceptual dysfunction often has
a prominent component of emotional distress underpinned
by reorganised neural networks (Kraus & Canlon, 2012;
Maudoux et al.,, 2012; Mahoney, Rohrer, Goll, et al., 2011).
Focal brain lesions and seizures may be associated with
various selective alterations of musical hedonic experience
and behaviour, encompassing musical anhedonia (Griffiths,
Warren, Dean, & Howard, 2004; Satoh, Nakase, Nagata, &
Tomimoto, 2011), indifference to dissonance (Gosselin et al.,
2006), music craving (Rohrer, Smith, & Warren, 2006) and
shifts in musical taste (Sellal et al., 2003), as well as fixations
on musical analogues such as rhyme (Woollacott et al., 2014).
More commonly, phenotypic variations such as absent or
attenuated pleasure in music (musical anhedonia: Mas-
Herrero et al., 2014) and strong aversive responses to partic-
ular environmental sounds (misophonia: Edelstein, Brang,
Rouw, & Ramachandran, 2013; Schroder, Vulink, & Denys,
2011, Jastreboff & Jastreboff, 2015) may occur in isolation on
a developmental basis in normal individuals and have been
proposed to reflect specific patterns of connectivity between
auditory, limbic and autonomic brain networks. Considered
together, this evidence suggests that the auditory hedonic
phenotypes of dementia may reflect intrinsic patterns of
brain network activity that are released as the regulatory
controls on those networks are damaged by the neurode-
generative process, perhaps analogous to mechanisms pro-
posed to underpin hypersexuality (Mendez & Shapira, 2013)
and hyperphagia (Perry & Kramer, 2015; Woolley et al., 2007).
In particular, damage to anterior temporal mechanisms for
appraising the context and significance of sounds might
amplify any underlying propensity to label inherently
innocuous auditory stimuli as inappropriately aversive or
pleasurable (hypochondriasis in patients with right temporal
lobe atrophy may reflect a similar process operating on

somatic signals: Chan et al., 2009). Among those patients
exhibiting auditory hedonic symptoms in the present study,
environmental sounds provoked almost exclusively aversive
responses that contrasted with more variably valenced re-
sponses to music: we speculate that this apparent polar-
isation may reflect the preeminent neurobiological roles
these sound categories may once have served. From an
evolutionary perspective, the most salient (and biologically
invested) environmental noises are likely to have been
warning signals, whereas proto-musical sounds may have
been employed more ambiguously in emotional communi-
cation (Clark, Downey, & Warren, 2015; Fletcher et al., in
press-b).

This study has several limitations that suggest directions
for future work. Group sizes were relatively small; particularly
in the case of uncommon genetic mutations, the present
findings should be substantiated prospectively in larger co-
horts including presymptomatic individuals, in order to
assess the evolution of development of these phenotypes over
the course of disease. Ultimately, histopathological correla-
tion will be required. Brain mechanisms of deranged auditory
hedonic processing will only be fully defined using a multi-
modal approach. Connectivity-based (functional and tracto-
graphic) neuroimaging techniques will be required in order to
capture alterations in neural network integrity and activity
profiles. Autonomic techniques will be required in order to
track phenotypic changes that are predicted to occur in
response to emotionally salient sounds such as music (Grewe
et al., 2005) but which may not be accessible to explicit
behavioural coding in dementia syndromes (Fletcher et al., in
press-b). Sounds should be assessed in parallel to other hed-
onically laden stimuli: this will be particularly critical to
identify specific phenotypes that may differentiate stimuli
arising in the world at large from the more abstract stimuli
embodied in music. It will be of particular interest to assess
the extent to which environmental sound aversion developing
in association with neurodegenerative disease shares
phenotypic features with developmental misophonia: miso-
phonia appears to signify a diverse spectrum of phenotypes of
altered sound tolerance with relatively specific acoustic,
behavioural and perhaps also physiological or functional
neuroanatomical signatures (Edelstein et al., 2013; Jastreboff &
Jastreboff, 2015; Schroder et al., 2013) that might mutually
inform the study of neurodegenerative auditory phenotypes.
There is presently interest in the potential use of music as a
therapeutic tool in dementia (Hammar, Emami, Engstrom, &
Gotell, 2011; Vink, Birks, Bruinsma, & Scholten, 2004); the
data presented here give grounds for a more general, sys-
tematic and principled re-examination of sound-based ther-
apies in these diseases. Such therapies might be framed as
environmental modification or listening retraining, and
should be informed by psychoacoustic data and aligned with
work in other clinical populations (Cavanna, 2014; Jastreboff &
Jastreboff, 2015). Taking the limitations on the present study
into account, our findings suggest that abnormalities of
auditory hedonic processing are a significant issue in common
dementias and warrant further attention. Sounds may
constitute a novel probe of brain mechanisms for emotional
salience coding that are targeted by neurodegenerative
disease.
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