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Transcriptional, epigenetic and 
retroviral signatures identify 
regulatory regions involved 
in hematopoietic lineage 
commitment
Oriana Romano1,2,3,*, Clelia Peano4,*, Guidantonio Malagoli Tagliazucchi2,*, Luca Petiti4, 
Valentina Poletti5, Fabienne Cocchiarella1, Ermanno Rizzi4,6, Marco Severgnini4, 
Alessia Cavazza7, Claudia Rossi8, Pasqualepaolo Pagliaro9, Alessandro Ambrosi10, 
Giuliana Ferrari8,10, Silvio Bicciato2, Gianluca De Bellis4, Fulvio Mavilio1,5 & Annarita Miccio1,3,11

Genome-wide approaches allow investigating the molecular circuitry wiring the genetic and epigenetic 
programs of human somatic stem cells. Hematopoietic stem/progenitor cells (HSPC) give rise to the 
different blood cell types; however, the molecular basis of human hematopoietic lineage commitment 
is poorly characterized. Here, we define the transcriptional and epigenetic profile of human HSPC and 
early myeloid and erythroid progenitors by a combination of Cap Analysis of Gene Expression (CAGE), 
ChIP-seq and Moloney leukemia virus (MLV) integration site mapping. Most promoters and transcripts 
were shared by HSPC and committed progenitors, while enhancers and super-enhancers consistently 
changed upon differentiation, indicating that lineage commitment is essentially regulated by enhancer 
elements. A significant fraction of CAGE promoters differentially expressed upon commitment 
were novel, harbored a chromatin enhancer signature, and may identify promoters and transcribed 
enhancers driving cell commitment. MLV-targeted genomic regions co-mapped with cell-specific active 
enhancers and super-enhancers. Expression analyses, together with an enhancer functional assay, 
indicate that MLV integration can be used to identify bona fide developmentally regulated enhancers. 
Overall, this study provides an overview of transcriptional and epigenetic changes associated to HSPC 
lineage commitment, and a novel signature for regulatory elements involved in cell identity.

The gene expression program of stem/progenitor cells and their progeny is temporally controlled by the coor-
dinated action of transcription factors (TFs) that bind to DNA regulatory elements, including promoters 
and enhancers. TFs regulate gene expression and at the same time shape the epigenetic state of chromatin by 
recruiting DNA methylation and histone modification complexes playing essential roles during commitment1,2. 
Promoters and enhancers are associated to specific chromatin signatures generated by histone modifications3. 
In particular, the combination of histone H3 methylation and acetylation profiles allows the definition of strong 
and weak promoters and enhancers3–7. Super-enhancers were recently defined as clusters of acetylated enhancers, 
which are densely occupied by TFs and control the expression of genes defining cell identity8,9.
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Genome-wide approaches allow to analyze the functional relationships between chromatin dynamics, gene 
expression patterns and cell phenotype with unprecedented levels of detail and integration. Most of the available 
knowledge on the molecular mechanisms driving stem cell development, commitment and differentiation comes 
from the study of murine models10,11, embryonic stem cells12–17, or terminally differentiated cells5,18–26, while 
much less is known about primary somatic stem/progenitor cells, particularly in a human context18,19,27–31. The 
differential usage of regulatory regions by hematopoietic stem cells, multipotent and committed progenitors was 
recently defined in the murine system10,11. The transcriptome and epigenome of differentiated hematopoietic 
cells were extensively analyzed also in the human system32–34. However, information on promoter, enhancer and 
super-enhancer usage in the early phases of human lineage differentiation is still lacking, and necessary to unravel 
the mechanisms driving early decisions on commitment and lineage restriction by a multipotent progenitor.

This study describes the transcriptional and epigenetic profile of human HSPC and their early committed 
erythroid and myeloid progeny, as determined by CAGE, ChIP-seq for histone modifications, and retroviral 
scanning, a novel tool to map active regulatory sequences based on the integration properties of the Moloney 
murine leukemia virus (MLV). MLV integrates almost exclusively in active promoters and enhancers in mamma-
lian genomes35–37, as a consequence of the binding of the viral integrase to the bromodomain and extraterminal 
protein BRD4, which tethers the pre-integration complex to chromatin regions rich in acetylated histones38–41. 
High-definition maps of MLV integration sites (“integromes”) therefore provide an additional, functional tool 
to identify active regulatory regions in cell development and differentiation. We integrated data coming from 
transcriptome, epigenome and integrome analysis in coherent maps that describe the differential genetic and epi-
genetic programs of HSPC and committed progenitors/precursors, and define known as well as novel promoters, 
enhancers and super-enhancers associated with erythroid and myeloid commitment. Finally, we show that MLV 
integration clusters target bona fide cell-specific enhancers and genes defining cell identity.

Results
Purification and characterization of multipotent and lineage-restricted hematopoietic pro-
genitors. We prospectively enriched human HSPC as CD34+/CD133+ population by FACS (Fig. 1A). HSPC 
showed high levels of CD38, indicating that the majority of the cells were early hematopoietic progenitors42 
(Fig. 1A). Committed erythroid and myeloid progenitors/precursors (EPP and MPP) were isolated as CD34low/
CD36high and CD34−/CD13+ populations (Fig. 1B,C). Over 95% of EPP were CD71+ and expressed low levels 
of glycophorin A (GYPA), indicating that they are mainly composed by erythroid progenitors32 (Fig. 1B). MPP 
expressed the myeloid differentiation markers CD33 and CD11b (Fig. 1C)43 and low levels of the late differenti-
ation marker CD14 (not shown). In a clonal progenitor assay, HSPC gave rise to mixed colonies (CFU-GEMM), 
and both myeloid (CFU-GM, CFU-G, CFU-M) and erythroid (BFU-E and CFU-E) colonies, thus confirming 
their multilineage potential (Fig. 1A). In contrast, EPP and MPP populations generated > 90% erythroid and 
myeloid colonies, respectively (Fig. 1B,C), confirming their lineage-restricted potential. EPP and MPP popula-
tions were grown in liquid culture under conditions supporting either erythroid (+ EPO) or myeloid (+ G-CSF) 
terminal differentiation. In the presence of EPO, EPP were able to differentiate into late erythrocytes, while MPP 
remained in an undifferentiated myeloid state (Supplementary Fig. 1A). Conversely, in the presence of G-CSF, 
MPP differentiate into granulocytes and monocytes while EPP grew poorly and acquired late myeloid markers 
(Supplementary Fig. 1B).

HSPC, EPP and MPP were further characterized by gene expression profiling on standard Affymetrix 
microarrays. Principal component analysis (PCA) of gene expression profiles showed that biological repli-
cates of each cell population were reproducible, and that HSPC, EPP and MPP exhibit distinct gene expres-
sion profiles (Supplementary Fig. 1C). Supervised analysis using dChip (fold-change >  2, p-value <  0.05) 
identified 415 and 126 differentially expressed (DE) genes upon erythroid and myeloid commitment of HSPC 
(Fig. 1D). Genes down-regulated in both conditions belong to TGFβ /BMP signaling pathways implicated in HSC 
self-renewal (NOG, CHRDL1, TGFB1I1), or to the tumor necrosis factor superfamily, involved in T- and B-cell 
functions (TNFSF13B, TNFSF4, LTB), while genes involved in leukocyte biology (MPO, CTSG, GZMA) were 
down-regulated upon erythroid commitment. Genes up-regulated in EPP are involved in erythrocyte differenti-
ation and homeostasis and include the master regulators GATA1 and KLF1. Instead, genes up-regulated in MPP 
are mainly involved in immune defense function of neutrophils and macrophages (e.g., ELANE, AZU1, CTSG) 
(Supplementary Table 1).

Defining transcription initiation in HSPC and lineage-restricted progenitors. To define the 
promoter usage in HSPC and their committed progeny, we used Cap Analysis of Gene Expression (CAGE), a 
technique that identifies active transcription start sites (TSSs) at single base-pair resolution and measures the 
expression level of each transcript44. We clustered CAGE tags into 2 levels: Level-1 promoters (“TSSs”) were cre-
ated by summing the weighted number of CAGE tags that have an identical 5′  start site, and were then clustered 
in Level-2 promoters (“CAGE promoters”) if they were within 20 bp of each other and had similar expression lev-
els. We mapped by CAGE ~0.6 ×  106 TSSs in each cell population, typically scattered over short genomic regions 
due to the inherent variability of transcription initiation45. As an example, 3 TSSs were mainly used to drive 
transcription of the human beta globin gene (HBB) in EPP, which started at low frequency at 13 nucleotide posi-
tions in a 58-bp region encompassing the 5′  UTR of HBB (Supplementary Fig. 2). We mapped most of the TSSs 
(> 70%) to regions annotated as promoters and 5′  UTR of known transcripts (Fig. 2A). Interestingly, 23% of TSSs 
were mapped to intergenic regions, exons, introns, and 3′  UTR, suggesting the presence of alternative or novel, 
yet unannotated promoters (Fig. 2A). Notably, TSSs mapping to exons, introns and 3′  UTRs of coding genes had 
lower expression levels compared to those mapping to promoters and 5′  UTRs (Supplementary Fig. 3A). About 
3.5% of TSSs mapped to the antisense strand of known genes, mostly in promoters and introns (Fig. 2A).
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Figure 1. Purification and characterization of multipotent and lineage-restricted hematopoietic progenitors.  
(A–C) FACS analysis and CFC assay of HSPC, EPP and MPP. Under conditions supporting erythroid differentiation, 
EPP differentiated into late erythrocytes (CD71+/GYPA+), while MPP remained in an undifferentiated myeloid 
state (CD11blow/CD14low/CD71low). In the presence of G-CSF, MPP differentiated into mature myeloid cells 
(CD11b+/CD14+) while EPP expressed low levels of late myeloid markers (CD11blow/CD14low) (D) HSPC, EPP 
and MPP gene expression profiles. Supervised analysis was performed using a fold-change threshold equal to 2 
and a P-value threshold equal to 0.05, to obtain a list of differentially-expressed genes.
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Figure 2. Analysis of CAGE promoters. (A) Genomic distribution of CAGE TSSs in HSPC, EPP and MPP. 
TSSs were mapped to regions annotated as promoters (500 bp-long regions upstream annotated TSSs), 5′  UTR, 
exon, intron and 3′  UTR of coding and noncoding genes (in sense or antisense orientation) or as intergenic 
regions. For each category, frequency is indicated. (B) Distribution of total and differentially used CAGE 
promoters overlapping with epigenetically defined promoters and enhancers. (C) Annotation of total and 
differentially used CAGE promoters. The graphs show the proportions of total and differentially used CAGE 
promoters associated to coding RNA and ncRNA (miRNA, rRNA, snoRNA and snRNAand lincRNA).  
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We defined > 13,000 CAGE promoters of similar average length (160 ±  101 bp) in each cell type as clusters 
of nearby TSSs (13,852 in HSPC, 13,609 in MPP and 14,041 in EPP), > 96% of which overlapping with epige-
netically defined promoters (Fig. 2B). We assigned CAGE promoters to the closest transcript using publicly 
available datasets. The majority (~80%) of CAGE promoters were annotated to known genes and particularly 
to protein-coding transcripts (Fig. 2C). A correlation of the microarray expression values with the tpm counts 
of all CAGE transcripts associated to known genes showed a statistically significant concordance between the 
two data sets (Pearson’s r ~ 0.54) (Supplementary Fig. 3B). Transcription of ~10% of known genes was driven > 2 
alternative promoters (Supplementary Table 2). Interestingly, > 2,600 promoters (~20%) were not associated with 
known genes (Fig. 2C), and may drive transcription of yet unknown transcripts. About 24% of CAGE promoters 
overlapped with repetitive elements, ~6% of which were transposable elements (LINE, SINE and LTR) (Fig. 2D).

A minority of active promoters is differentially expressed during lineage commitment of 
HSPC. To determine the differential promoter usage during hematopoietic lineage commitment, we identified 
714 differentially used (DU) promoters between HSPC and EPP (306 down-regulated and 408 up-regulated) and 
1,127 between HSPC and MPP (576 down-regulated and 551 up-regulated). We observed a high degree of corre-
lation between DU CAGE promoters and DE genes: > 40% DE genes were associated with DU CAGE annotated 
promoters. Moreover, we validated differential RNA expression by qRT-PCR in a sample of 18 DU promoters 
(Supplementary Fig. 4). Only 78 promoters were expressed exclusively in HSPC and down-regulated in both 
EPP and MPP (“HSPC-specific”), while the remaining down-regulated promoters remained expressed in one of 
the two lineages. On the contrary, the vast majority of up-regulated promoters were lineage-specific: 399 out of 
408 were upregulated in EPP only (“EPP-specific”), and 522 out of 551 in MPP only (“MPP-specific”). Notably, 
14% of DU CAGE promoters overlapped with epigenetically defined enhancers, a significantly higher proportion 
compared to total CAGE promoters (3%, P <  0.0001) (Fig. 2B), and 30% were not associated to known genes 
compared to 20% for total promoters (P <  0.01) (Fig. 2C). DU promoters mapped to transposable elements more 
frequently than total CAGE promoters (14% vs. 6%, P <  0.0001) (Fig. 2D), as well as to intergenic and intronic 
regions (Supplementary Fig. 5).

We observed lineage-specific alternative promoter usage only for 6 genes. As an example, the LMO2 gene, coding 
for a developmentally regulated TF, is transcribed from 3 different promoters, of which Promoter 3 was active only 
in HSPC, Promoter 1 mainly in HSPC and MPP, and Promoter 2 predominantly in EPP (Supplementary Fig. 6).

A significant number of genes associated with CAGE promoters were functionally linked in cell-specific net-
works, e.g., DNMT3A and CD34 pathways for HSPC-specific and down-regulated promoters, and the GATA1 and 
CSF3R pathways for EPP- and MPP-specific promoters, respectively (Supplementary Fig. 7A). Genes transcribed 
by HSPC-specific promoters were enriched in functional categories related to multicellular organismal devel-
opment and immune response (Supplementary Fig. 7B). Genes associated to EPP- and MPP-specific promoters 
were mainly involved in erythroid development and leukocyte biology, respectively (Supplementary Fig. 7B).  
Conversely, promoters down-regulated in EPP were associated with genes involved in leukocyte biology, 
while those down-regulated in MPP were associated to translation and macromolecular complex organization 
(Supplementary Fig. 7B).

We then looked at the set of DU promoters driving the expression of TFs, co-factors and chromatin mod-
ifiers (Supplementary Fig. 4 and Supplementary Table 3). A few factors were highly expressed only in HSPC, 
such as the HSC regulators MYCN and DNMT3A, HOXA7, an essential TF in hematopoietic progenitors, SLA2, 
implicated in lymphocyte biology and NAP1L3 (nucleosome assembly protein 1-like 3), the function of which 
in hematopoiesis is yet unknown. EPP- and MPP-specific promoters drove the expression of known erythroid 
and myeloid transcriptional regulators, such as TAL1, GATA1 and KLF1 in EPP, and NFIA, KLF4 and STAT6 in 
MPP. However, more than 50% of EPP- and MPP-specific TFs and co-factors were not previously associated to 
erythropoiesis or myelopoiesis (Supplementary Table 3).

To better understand the regulatory circuitry operating on lineage-specific CAGE promoters, we analyzed 
putative TF binding sites (TFBS) within the proximal regions of cell-specific promoters. HSPC-specific promoters 
were fairly enriched for binding motifs of the ETS family of TFs, which regulate development and maintenance of 
HSCs and their differentiation along multiple lineages (Fig. 2E). EPP- and MPP-specific promoters were enriched 
for motifs of ubiquitous promoter-associated TFs, like SP1 and TBP, and lineage-specific TFs, such as GATA1, 
TAL1 and KLF1 (EKLF) for EPP, and GABPA, FLI1, and PU.1 for MPP (Fig. 2E).

Next, we analyzed CAGE promoters not assigned to known genes. Around 22% of these unannotated promot-
ers harbored an epigenetic enhancer signature, a frequency that increased up to 45% for DU promoters (Fig. 3A), 
suggesting that they may represent regulatory regions associated with enhancer-derived RNA acting in cis on 
adjacent target genes. Regions surrounding EPP-specific unannotated promoters were associated with erythroid 
phenotypes (Fig. 3B), while those surrounding promoters down-regulated upon erythroid and myeloid com-
mitment were associated with leukocyte phenotypes and RNA processing/macromolecular complex assembly, 
respectively (Fig. 3C). Finally, both annotated and unannotated promoters were enriched for the same ubiquitous 
and cell-specific TF motifs (Fig. 3D), indicating that novel promoters are in fact regulated by the same TFs bind-
ing to annotated promoters.

(D) Distribution of total and differentially used CAGE promoters amongst the different classes of repetitive 
elements, defined by RepeatMasker. Total CAGE promoters: HSPC, EPP and MPP. Differentially used CAGE 
promoters: HSPC/EPP and HSPC/MPP. (E) Top enriched TF motifs within CAGE promoters (− 300 to + 100 bp 
from TSSs). Transcription factor motif finding in cell-specific promoters was performed using HOMER 
software. The frequency of target (background) sequences enriched in TF motifs and p-values are indicated.
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Genome-wide histone modification profiling reveals that the majority of enhancers are differ-
entially used in HSPC and lineage-restricted progenitors. To obtain a genome-wide description of 
chromatin changes occurring upon HSPC commitment, we used H3K4me3 and H3K4me1 to define putative 

Figure 3. Analysis of novel CAGE promoters. (A) Distribution of total and differentially used unannotated 
CAGE promoters overlapping with epigenetically defined promoters and enhancers. (B,C) Gene ontology 
analysis of unannotated CAGE promoters. CAGE promoters (EPP- specific and down-regulated upon HSPC 
commitment), which were not assigned to any known gene or transcript, were analyzed using GREAT. 
(D) Top enriched TF motifs within annotated and unannotated CAGE promoters. Cell-specific annotated 
and unannotated CAGE promoters were enriched for similar cell-specific and ubiquitous transcription factor 
motifs. TF motif analysis was performed using HOMER. The frequency of target (background) sequences 
enriched in TF motifs and p-values are indicated.
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promoters and enhancers, and H3K27ac to distinguish strong (H3K27ac+) from weak/inactive (H3K27ac−) regu-
latory elements. We identified > 12,000 promoter regions in HSPC, EPP and MPP, with a similar average size, 60% 
of which carried the H3K27ac mark, and > 44% were associated with CAGE TSSs (Supplementary Table 4). Most 
of H3K27ac+ promoters (> 72%) were actively transcribed, and of these, 12% were not annotated, suggesting the 
presence of yet uncharacterized genes. In parallel, we defined > 49,000 putative enhancers in both multipotent 
and committed progenitors (Supplementary Table 5). Roughly a quarter of enhancers were enriched in H3K27ac 
and only a minor fraction (< 1%) was associated with CAGE unannotated promoters (Supplementary Table 5). 
These transcribed regions were more likely to be marked by H3K27ac and could represent eRNA-associated 
enhancers.

Next, we evaluated the dynamics of ChIP-defined regulatory elements upon HSPC commitment. The vast 
majority of strong EPP and MPP promoter regions (92% and 93%, respectively), and a low proportion of the 
weak/inactive ones, were shared with HSPC (Fig. 4A). On the contrary, a much lower proportion of both strong 
and weak enhancers were shared upon lineage commitment while the majority was cell-specific (Fig. 4A), sug-
gesting that enhancers play a major role in HSPC commitment. Overall, we identified 7,107, 1,026 and 2,675 
cell-specific promoters and 35,318, 19,465 and 43,120 cell-specific enhancers in HSPC, EPP and MPP, respec-
tively. ChIP-defined cell-specific regulatory regions were modestly enriched in binding motifs of general and 
hematopoietic TFs, the majority of which were shared by the three populations (Fig. 4B).

To analyze the influence of H3K27ac+ cell-specific enhancers on nearby genes, we analyzed the expression 
level of the closest CAGE promoters. We observed a mild increase in the expression level of promoters close to 
active enhancers in all three cell population compared to unrelated cell populations, and at least in EPP and MPP, 
a significant increase compared to total CAGE promoters used by these populations (Fig. 4C). Functional anno-
tation of genes targeted by active enhancers showed a low enrichment for cell-specific gene ontology categories 
(Supplementary Fig. 8).

Super-enhancers are specific in HSPC and their committed progeny. Super-enhancers (SEs) have 
been described as clusters of enhancers, involved in the specification of cell identity8. By using H3K27ac ChIP-seq 
data, we defined 755 SEs in HSPC, 513 in EPP and 600 in MPP (Supplementary Table 6 and Fig. 5A), all actively 
transcribed as previously described9. The majority of SEs were cell-specific (Fig. 5B) and showed a moderate 
enrichment in common and cell-specific TF motifs (Supplementary Fig. 9). Expression of CAGE promoters close 
to EPP- and MPP- specific SEs tended to be higher than the average expression of the total CAGE promoter pop-
ulation in the same cells, or the expression of the same promoters in other cell types (Fig. 5C). HSPC-specific SEs 
were associated with genes involved in metabolic processes, RNA processing, and T cell phenotypes, while EPP- 
and MPP-specific SEs were associated to erythroid and myeloid phenotypes, respectively (Fig. 5D).

Retroviral scanning defines a sub-population of mostly cell-specific regulatory elements. We 
mapped and analyzed the distribution of > 27,000 MLV integration sites in each cell population. About 22% of 
MLV integrations occurred in TSS-proximal regions and the remaining ones were equally distributed in inter-
genic and intragenic regions (Supplementary Fig. 10A). Statistical comparison with a random dataset identified 
a total of 3,498, 2,989 and 4,103 integration clusters in HSPC, EPP and MPP, respectively, with a comparable 
median span of 5.9, 6.0 and 4.8 kb (see Supplementary Methods). Virtually all clusters overlapped with epigenet-
ically defined regulatory regions, two-thirds in enhancers and one-third in promoters (Fig. 6A). However, inte-
gration clusters targeted only a small fraction of ChIP-defined regulatory regions, i.e., 6% of promoters and 4% of 
enhancers. Virtually all promoters (97%) and three quarters of the enhancers targeted by MLV integrations were 
acetylated (compared to ~60 and 15% H3K27ac+ non-targeted promoters and enhancers, respectively; Fig. 6A 
and Supplementary Fig. 10B), and most of the targeted promoters were associated with CAGE transcripts (com-
pared to ~55% transcribed non-targeted promoters; Fig. 6B and Supplementary Fig. 10C). Strikingly, 10 to 13% 
of the MLV integrations targeted transcribed enhancers, which represented < 1% of the total enhancer population 
(Fig. 6B and Supplementary Table 5). In addition, MLV clusters targeted SEs at a significantly higher frequency 
compared to the fraction of total active enhancers (53 vs. 12%, 57 vs. 11% and 73 vs. 17% in HSPC, EPP and MPP, 
respectively, p <  0.0001).

Differently from CAGE and epigenetically defined promoters, only a small proportion of the MLV-targeted 
promoters were shared between HSPC and their EPP and MPP progeny (Fig. 6C). Likewise, the majority of the 
MLV-targeted enhancers was cell-specific (Fig. 6C). We observed a higher tendency of weak/inactive regulatory 
regions to show cell-specificity compared to strong ones (Fig. 6C). For each cell type, the expression level of 
CAGE promoters flanking cell-specific, MLV-targeted strong enhancers was significantly higher than the aver-
age values of the total CAGE promoters in the same cells, or the expression of the same promoters in other cell 
types (Fig. 6D), indicating that MLV-defined regions are bona fide cell-specific and developmentally regulated 
enhancers. HSPC-specific, MLV-targeted enhancers were associated with genes expressed in hematopoietic organ 
development and in the immune system, while EPP-specific enhancers were associated to erythrocyte differen-
tiation and MPP-specific enhancers to regulation of the immune system and leukocyte differentiation (Fig. 6E 
and Supplementary Fig. 11A). In addition, genes flanking cell-specific MLV-targeted enhancers are function-
ally linked in cell-specific pathways (Supplementary Fig. 11B). The same regions were moderately enriched in 
hematopoietic TF motifs (Fig. 6F). Comparison with TF ChIP-seq datasets showed that a considerable fraction of 
MLV cell-specific clusters was targeted by HSPC-, EPP- and MPP-related TFs (Supplementary Fig. 12).

To determine whether the putative enhancers identified by combining ChIP-seq and retroviral scanning have 
transcriptional activity in a functional assay, we tested 8 MLV-targeted erythroid and myeloid enhancers in a 
reporter assay in EPP and MPP respectively. As expected, erythroid-specific MLV-targeted regions had higher 
activity in EPP than in MPP and vice versa (Fig. 7A), confirming that MLV identifies cell-specific enhancers, 
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Figure 4. Analysis of epigenetically defined regulatory regions. (A) Dynamics of promoter and enhancer 
chromatin signatures upon HSPC commitment. Venn diagrams show the overlap of strong (H3K27ac+) and 
weak/inactive (H3K27ac−) promoters (H3K4me3 >  H3K4me1) and enhancers (H3K4me1 >  H3K4me3) 
identified in HSPC, EPP and MPP. The fraction of non-overlapping HSPC, EPP and MPP regulatory regions is 
indicated. Overall, we identified 7,107, 1,026 and 2,675 cell-specific promoters and 35,318, 19,465 and 43,120 
cell-specific enhancers in HSPC, EPP and MPP, respectively. (B) Top enriched TF motifs in epigenetically 
defined regulatory regions. Putative TFBS in cell-specific promoters and enhancers were identified using 
HOMER. The frequency of target (background) sequences enriched in TF motifs and p-values are indicated.  
(C) Expression levels of CAGE promoters surrounding HSPC-, EPP- and MPP-specific enhancers (± 5 kb 
interval) in HSPC, EPP, MPP, embryonic stem cells (ES) and keratinocytes (KER). As control, expression 
levels of total HSPC, EPP and MPP CAGE promoters were analyzed. A t-test was used to determine significant 
differences in the expression values associated to CAGE promoters in the different cell types (*P <  0.05). 
The median expression levels of genes close to weak/inactive enhancers was similar among the different cell 
populations (data not shown). Comparable results were obtained by analyzing the expression levels of CAGE 
promoters in a 100-Kb window (data not shown).
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Figure 5. Analysis of super-enhancers. (A) The plots represents the distribution of H3K27ac ChIP-seq signal 
(in units of reads per million, on y-axis) across all the H3K27ac-containing enhancers (x-axis). Enhancers were 
ranked by increasing H3K27ac ChIP-seq signal. H3K27ac is not evenly distributed across the enhancer regions, 
with a subset of enhancers containing exceptionally high amounts of H3K27ac (SEs), as defined by surpassing 
the inflection point. (B) Differential SE usage upon erythroid and myeloid commitment. Venn diagrams showed 
the fraction of non-overlapping HSPC, EPP and MPP SEs. Overall, we identified 415 HSPC-specific, 245 EPP-
specific and 337 MPP-specific SEs. (C) Expression levels of CAGE promoters driving the expression of genes 
targeted by cell-specific SE were analyzed in HSPC, EPP, MPP, embryonic stem cells (ES) and keratinocytes 
(KER). As control, we analyzed the expression levels of total HSPC, EPP and MPP CAGE promoters. Statistical 
significance was calculated as described in Fig. 4C legend (*P <  0.05; **P <  0.01; ***P <  0.001). (D) GREAT 
analysis of cell-specific SEs.
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Figure 6. Characterization of MLV-targeted regulatory regions. (A,B) Fraction of MLV clusters 
overlapping with epigenetically defined H3K27ac+, H3K27ac−, transcribed and untranscribed regulatory 
regions. (C) Dynamics of MLV-targeted promoters and enhancers upon HSPC commitment. Venn 
diagrams show the overlap of MLV-targeted strong (H3K27ac+) and weak/inactive (H3K27ac−) promoters 
(H3K4me3 >  H3K4me1) and enhancers (H3K4me1 >  H3K4me3) identified in HSPC, EPP and MPP. The 
fraction of non-overlapping HSPC, EPP and MPP regulatory regions hit by MLV is indicated. We defined 
a total of 1,241 HSPC-specific, 1,998 EPP-specific and 1,833 MPP-specific MLV clusters. (D) Distribution 
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possibly controlling the expression of nearby genes. As examples, MLV was able to target known cell-specific 
regulatory regions, such as the intronic enhancer of the BCL11A gene46 and the HBS1L-MYB intergenic region 
containing erythroid-specific MYB enhancers47 (Fig. 7B and Supplementary Fig. 13). MLV scanning identified 
also novel enhancers in a cell-specific fashion (Supplementary Fig. 13), such as the integration clusters map-
ping to different regions of the KIT locus in HSPC, EPP and MPP (Fig. 7C). These clusters most likely identify 
enhancers used to exert a lineage-specific control of the locus during hematopoietic differentiation (Fig. 7D and 
Supplementary Fig. 14), such as the erythroid-specific enhancer #4, which is primarily active in EPP (Fig. 7E) and 
is targeted by the erythroid master regulator GATA1 (Fig. 7F).

Discussion
Human hematopoiesis is a well-characterized system in which HSCs give rise to a multilineage progeny through 
progressive commitment and differentiation of a hierarchy of lineage-restricted progenitors. The expression of 
specific surface markers allows isolating progenitors and their progeny, and subjecting them to genome-wide 
analysis of transcriptomes and regulatory elements. Epigenetically defined enhancers and promoters and tran-
scriptional profiles have been reported for human HSPC9,18 and mature precursors5,18–24. In the present study, 
we attempted to define the chromatin and transcriptional dynamics underlying human hematopoietic lineage 
commitment in early erythroid and myeloid progenitors. Gene expression analyses and clonogenic assays showed 
that our EPP and MPP populations represent earlier stages of erythroid and myeloid differentiation compared to 
the mature cells analyzed in previous studies18–21,48.

HSPC and their committed progeny shared most of the promoters and transcripts, suggesting that transcrip-
tional states are largely maintained in early hematopoietic differentiation and only a relatively small number 
of DU promoters determine progenitor identity. The differentially regulated fraction of promoters transcribe 
for the most part DE genes and are enriched in binding sites for TFs essential for hematopoietic development. 
Interestingly, we identified only 78 promoters expressed exclusively in HSPC and down-regulated in both EPP 
and MPP, while the remaining down-regulated promoters remained expressed in one of the two lineages. On the 
contrary, > 95% of the promoters up-regulated in EPP and MPP were lineage-specific. These data indicate the 
existence of very few strictly HSPC-specific promoters and factors maintaining multilineage potential, and that 
lineage commitment is exerted by up-regulation of a few hundred promoters, including those driving the expres-
sion of known lineage-specific master TFs, as well as TFs and chromatin modifiers not previously associated with 
the erythroid and myeloid commitment.

One third of the DU promoters were novel and mapped to intragenic or intergenic regions. Overall, we discov-
ered 577 cell-specific novel promoters, driving the expression of potentially regulatory ncRNAs. These promoters 
were enriched in cell-specific TFBS and were surrounded by protein-coding, cell-specific genes. A high propor-
tion (40%) of unannotated DU CAGE promoters were marked by histone modifications typical of enhancers. 
These results support the hypothesis that a consistent fraction of novel CAGE promoters drives the expression of 
eRNAs, possibly involved in the regulation of proximal genes49–54 and in the fine tuning of HSPC commitment. 
Moreover, a significant fraction of DU CAGE promoters overlapped with transposable elements, which play a role 
in developmental gene regulation and specification of cell fate55–58.

Analysis of histone modification signatures allowed the identification of > 49,000 putative enhancers in each 
cell population, indicating that most promoters interact with multiple enhancers. Differently from promoters, 
enhancers consistently changed upon commitment: > 50% of the active enhancers and SEs mapped in EPP and 
MPP were not shared with HSPC, and 60 to 80% of the active enhancers and SEs mapped in HSPC disappeared 
in EPP and MPP. These data indicate that enhancers are dramatically redefined during lineage commitment, and 
that differential enhancer usage is responsible for the differential regulation of promoter activity underlying line-
age restriction. Activation of the set of lineage-specific enhancers is most likely responsible for both activation of 
lineage-specific promoters and fine tuning of the non-specific ones.

To provide additional clues to the genomic regions defining cell identity, we exploited the integration proper-
ties of MLV, a retrovirus that targets chromatin regions, epigenetically marked as active promoters and enhanc-
ers35,37. This preference is the consequence of the direct binding of the MLV integrase to BRD4, which tether the 
virus to acetylated histones38–41. By using MLV as a biological scanner, we mapped ~10,000 regulatory regions, 
representing a small fraction of the ChIP-defined promoters and enhancers (~5%). Acetylated enhancers repre-
sented the major target of MLV integrations, as well as transcriptionally active, acetylated promoters. In particu-
lar, MLV targeted at high frequency CAGE-defined transcribed enhancers (~40%) and SEs (> 50%), enriched in 
H3K27 acetylation and BRD4 binding sites. Interestingly, MLV scanning identifies at high frequency cell-specific 
regulatory elements and differentially expressed promoters: while most of the active promoters are shared by 
HSPC and committed progenitors, MLV clusters mapped preferentially their cell-specific fraction. Moreover, the 
expression level of transcripts driven by promoters close to MLV-targeted enhancers was significantly higher in 
each cell type compared to the others, indicating that MLV-defined regulatory regions are bona fide cell-specific 

of expression levels of CAGE promoters in a ± 5 kb interval centered on cell-specific enhancers hit by MLV. 
As control, expression levels of total HSPC, EPP and MPP CAGE promoters were analyzed. A t-test was 
performed as described in Fig. 4C legend (*P <  0.05; **P <  0.01; ***P <  0.001). A similar correlation was 
observed from promoters in a 100-Kb window around the enhancers (data not shown). (E) GREAT was used 
to assign a biological meaning to cell-specific MLV clusters. The analysis showed that MLV is able to target 
genomic regions involved in cell-specific functions. (F) Top enriched TF motifs in cell-specific MLV clusters. 
HOMER was used to predict TFBS in cell-specific genomic regions targeted by MLV. The frequency of target 
(background) sequences enriched in TF motifs and p-values are indicated.
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Figure 7. Cell-specific regulatory regions targeted by MLV. (A) Validation of putative regulatory elements 
in hematopoietic primary cells. 8 potential EPP and MPP enhancer elements hit by MLV were cloned by PCR, 
inserted upstream of a basal promoter and transfected in EPP and MPP. Luciferase activity was quantitated after 
18 hr. Fold induction relative to a negative control region was calculated. The log2 of the ratio between EPP and 
MPP fold induction for each enhancer is shown. All the putative enhancers were able to induce the transcription 
of the reporter gene in a cell-specific fashion. (B) MLV targets erythroid-specific regulatory regions in EPP. 
MLV clusters and integrations targeting the intronic enhancer of the BCL11A gene (upper panel) and the 
HBS1L-MYB intergenic region containing MYB enhancers (lower panel) are highlighted with red boxes.  
(C) Differential MLV integration preferences in HSPC, EPP and MPP inside the KIT locus. The erythroid-
specific KIT enhancer (#4) is highlighted with a red box. (D) CAGE expression levels of the KIT promoter in 
HSPC, EPP and MPP. (E) Fold luciferase induction of the erythroid-specific KIT enhancer (#4) compared to a 
negative control region (37- and 3.5-fold luciferase induction in EPP and MPP, respectively). (F) The erythroid 
master regulator GATA1 binds the erythroid-specific KIT enhancer. ChIP assay was performed in EPP to 
analyze GATA1 binding to the KIT enhancer (#4). Two genomic regions were used as negative and positive 
controls for GATA1 binding, respectively (Neg Ctrl and Pos Ctrl).
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enhancers. The analysis of a larger dataset of integrations (> 1 million) in HSPC37 showed that the same genomic 
regions and genes related to HSPC cell identity were highly targeted by MLV (data not shown). Chromosome 
conformation capture combined with immunofluorescence experiments will be performed to investigate whether 
MLV is recruited to transcription factories, where enhancers are juxtaposed to promoters of co-expressed genes59, 
and eRNAs expressed in response to RNA PolII transcription.

Overall, through a combination of transcriptional, epigenetic and MLV signatures, this study provides a 
genome-wide description of chromatin and transcriptional dynamics and a collection of unannotated regulatory 
elements differentially used during commitment of human hematopoietic progenitors. In particular, the MLV 
integration preferences provide a biological scanning function for regulatory elements specifically active during 
cell state transition and involved in the specification of cell identity.

Methods
Cell culture and purification. We obtained human cord blood from healthy donors. Informed consent 
was obtained from all subjects. All experiments were performed in accordance with the Declaration of Helsinki 
(TIGET01 protocol). San Raffaele Scientific Institute Ethical Committee approved this study. Culture conditions 
and purification are described in Supplementary Methods.

Gene expression profiling and microarray analysis. We determined the transcriptional profiles of 
multipotent and lineage–committed progenitors using Affymetrix HG-U133 Plus 2.0 GeneChip arrays (3 bio-
logical replicates for each population) (Affymetrix, Santa Clara, CA). We performed quality controls in R using 
the Bioconductor AffyQControl package. All arrays in the dataset have good and reproducible quality metrics 
according to standard guidelines. To convert CEL file fluorescence signals to log2 expression values, we used 
the robust multi-array average procedure RMA of the Bioconductor affy package and the HG-U133 Plus 2.0 
custom Chip Definition Files (CDF) based on GeneAnnot60. We used Principal Component Analysis (PCA) 
coded by the prcomp function of the R stats package to verify the reproducibility of the 3 biological replicates. We 
used DNA-Chip Analyzer (dChip) software61,62 to identify differentially expressed genes with fold-change > 2, 
p-value <  0.05, and False Discovery Rate <  5%. In dChip, the False Discovery Rate (FDR) has been estimated 
permuting the sample labels randomly and computing the number of genes that satisfied the comparison criteria 
when applied to the randomly composed groups, i.e., quantifying the number of false positives (see http://www.
hsph.harvard.edu/cli/complab/dchip/ for details).

CAGE. We extracted RNA from multipotent and lineage-committed progenitors obtained from a pool of 3 
donors. DNAFORM Inc. (Japan) performed DeepCAGE library preparation and data analysis. We defined TSSs 
by summing the weighted number of CAGE tags at each genome position. Then we clustered TSSs to define pro-
moters if they were within 20 bp of each other. Using a custom R-script, we annotated promoters using publicly 
available data sets. We validated CAGE data by qRT-PCR. The details of promoter construction and annotation, 
statistical analyses and qRT-PCR are described in Supplementary Methods.

ChIP-seq. We performed ChIP-seq for H3K4me3, H3K4me1 and H3K27ac using a pool of 3 donors. ChIP 
library preparation and sequencing are described in Supplementary Methods. To identify promoters and enhanc-
ers, we developed a custom R-workflow that analyzes H3K4me3 and H3K4me1 islands generated by SICER63. We 
used H3K27ac to define active regions. Super-enhancers were defined using ROSE code8,64. Detailed information 
is available in Supplementary Methods.

Retroviral scanning. We transduced EPP and MPP obtained from a pool of 3 donors, mapped MLV inte-
gration sites by LM-PCR and pyrosequencing, and defined clusters of recurrent integrations, as previously 
described65. We used luciferase assays to validate putative MLV-targeted enhancers (see Supplementary Methods).

Bioinformatic analyses. We performed gene functional annotation using Ingenuity Pathways Analysis66, 
DAVID 6.767, and GREAT68. We performed TF motif finding using HOMER22. Background sequences were auto-
matically selected and weighted to resemble the same GC-content distribution observed in the target sequences. 
Top enriched motifs were shown. Motifs of TFs not expressed in these cell types, enriched in < 5% of the target 
sequences, or associated with a p-value >  10−2 were excluded.
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