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Abstract

Quantum entanglement is the key property that makes quaintiommation theory different
from its classical counterpart and is also a valuable playsgsource with massive potential for
technological applications. However, our understandihgntanglement is still far from com-
plete despite intense research activities. Like other iphlysesources, the first step towards
exploiting them fully is to know how to quantify. There are mpaeasons to focus on the en-
tanglement of continuous-variable states since the widgrdegrees of freedom of physical
systems carrying quantum information are frequently canttiis, rather than discrete. Much of
the effort has been concentrated on Gaussian states, bebage are common as the ground or
thermal states of optical modes. Within this framework, ynakeresting topics have been stud-
ied and some significant progress made. Nevertheless, aaesian states are also extremely
important; this is especially so in condensed-phase sygstetmere harmonic behaviour in any
degree of freedom is likely to be only an approximation. Sptfeere is little knowledge about
the quantification of entanglement in non-Gaussian states.

This thesis aims to contribute to the active field of reseamajuantum entanglement by
introducing a new approach to the analysis of entanglenespicially in continuous-variable
states, and shows that it leads to the first systematic dicatitn of the (local) entanglement
in arbitrary bipartite non-Gaussian states. By applyinig lifcal approach, many new insights
can be gained. Notably, local entanglements of systemssaithoth wavefunctions are fully
characterised by the derived simple expressions, providedvavefunction is known. The
local (logarithmic) negativity of any two-mode mixed s&tm@n be directly computed from the
closed-form formulae given. For multi-mode mixed statis, approach provides a scheme that
permits much simpler numerical computation for quantifyentanglement than is generally

possible from directly computing the full entanglementia# system.
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Chapter 1

Introduction

Despite the recognition of quantum entanglement as the pradbund feature of quan-
tum mechanics in the early 20th century, it is only in the ldsren years that scientists
started to recognise the possibility of exploitation of muan entanglement for practical pur-
poses [BBPS96, BDSW96, BB®6]. The various proposals of technological applications,
such as quantum computing [Deu85], quantum cryptograptg9E] and quantum telepor-
tation [BBC"93], have fuelled the rapidly growing interest of quanturteeglement as a topic
of research. Partial but significant progress has been raatld,the intense research activities,
in our knowledge of this intriguing and immensely deep ptmeeoa of Nature but a complete
theory of quantum entanglement is still years away, and farenguestions and puzzles still
wait to be answered.

Entanglement is the capacity of quantum states to exhibrelations that cannot be ac-
counted for classically. A pure state of a pair of quanturntesys is called entangled if it is
unfactorizable (inseparable) into a product of statesso$iitbsystems. A mixed state is entan-
gled if it cannot be represented as a mixture of factorizéd@earable) pure states. For practical
purposes, it is not enough to only know if quantum statesmangled, one of the main tasks of
quantum information theory [NCO00, Ved06] is therefore taugtify the amount of entanglement
that quantum states possess.

For pure bipartite states, the extent of entanglement iplgigiven by the von Neumann
entropy of the reduced state [DHRO02, Vid00, PR97]. As foredistates, the entanglement be-
come much more complicated and is still not completely ustded. Much work still needs
to be done in order to characterise and quantify entangleoidnpartite systems, not to men-
tion the extention of these investigations to multiparsiystems, where even less is known (for
example, necessary and sufficient criteria for sepanglaiti¢ still lacking).

Apart from the key role that quantum entanglement plays enagtlvancement of quan-

tum technology, the research of entanglement merits pdatiattention for the sake of purely
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scientific curiosity. Most interacting systems exhibit thatural occurrence of entangle-
ment, and their ground states are generally entangled §\W8o002a, Woo02b, OW01, ON02,
OAFF02, BR0O1]. Although no one has yet proposed a univemsdl easy-to-compute en-
tanglement measure which can quantify entanglement of aayptgm system in any con-
text, by using suitable entanglement measures, the studsniinglement properties of a
number of physical models, including spin chains, coupleinfons and harmonic oscilla-
tors [ONO2, OAFF02, VLRKO03, LRV04, JK04, ZW02, MD, AEPWOZXEO04, Ved03] has not

only uncovered many interesting aspects of entanglememtatially extended many-body sys-
tems but also often lead us to a much deeper insight of thefuaedtal properties and behaviour
of these systems. Therefore, studying quantum entangtesiant only interesting in its own

right but also important for its usefulness to other fieldplofsics.

1.1 Motivation

Quantum information can be carried by either a discretet¢fidimensional) system like a two-
level atom or an electron spin, or by a continuous-variaisifnfte-dimensional) systems such
as harmonic oscillators or light modes. The underlying degrof freedom of physical sys-
tems carrying quantum information are often continuoutherathan discrete, this justifies the
focus on continuous-variable states. The research of gommiformation theory and applica-
tions with continuous variables is a flourishing field thah@s us new and exciting perspec-

tive [BP03, BvLO5, CLPO7].

The special class of Gaussian states (i.e., states whoseekighction is a Gaussian; ex-
amples of Gaussian states include coherent, thermal arebsed states of a optical mode)
plays a very important role, especially in quantum optichese Gaussian states can eas-
ily be produced and manipulated experimentally. Moreowethout the need of a descrip-
tion that is complicated by the overly complex technicefitiof infinite-dimensional Hilbert
spaces, their useful properties (for example, entangl§noam be completely determined by
the (relatively small) finite-dimensional covariance mabf two-point correlations between
the canonically conjugated quadrature operators (posaiod momentum) [EP03]. Within
this framework, many interesting topics have been studiedexample, entanglement dis-
tillation for Gaussian states [DGCZ00, ESP02a, Fiu02, GQfaltipartite entangled Gaussian
states [vLB0O, GKLCO01, ASI04, ASI06] and entanglement meas, such as entanglement of
formation [GWK™03, WGK"04, Shi04] and logarithmic negativity [AEPW02, APEOQ3, VW02

However, many physical realisations of quantum infornmagowocessing, for example,

electron charge qubits and superconducting charge (or dulsits, are based on continuous-
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variable states in condensed matter systems, where statgem@erally non-Gaussian. Much
less is known about the entanglement of these non-Gaudsit@as & view of the fact that the

lack of knowledge about how to quantify it has proved to be pmabstacle.

1.2 Overview

| therefore present a new approach to the analysis of quaetianglement of general quan-
tum states, especially continuous-variable non-Gaustites. The focus is on entanglement
localised near particular regions in configuration spaeelfical entanglement), which we anal-
yse via a thought experiment in which the entangled statesisrfieasured to localise it. This
corresponds to a particular type of projective filteringgdito identify the distribution of entan-
glement in a state which has a pre-existing bipartite atrectl will demonstrate that this local

approach leads to, among other results, variable-resaoluiapping of entanglement distribu

tions and to our knowledge, the first efficient method to gif\aspects of quantum entangle

ment in arbitrary bipartite continuous-variable (non-&sian) states.

The thesis is organised as follows: the theoretical backutds briefly sketched out in
Chapter 2 and Chapter 3. A brief but just sufficient introdurctof the fundamentals of the
quantum information theory is presented in Chapter 2, aed th Chapter 3, the essential
knowledge of qguantum entanglement that forms the basisaftbearch is provided. A mathe-
matical formalism of the local approach to quantum entangla is laid out in detail in Chap-
ter 4 while examples of its application to the analysis oaagtement in discrete-variable sys-
tems are also given. Next, the attention is fully turned taoticmous-variable states. First,
the question “how is quantum entanglement distributed ifigaration-space” is addressed in
Chapter 5, and the results are then compared with the ddssicelations [LFO7a]. In the
limit of the size of the preliminary projective measuremieeing very small, surprisingly many
interesting results can be derived, and the rest of thesheili be made up of discussions
of these . Chapter 6 is concerned with arbitrary smooth twalencontinuous-variable states,
and it is shown how by using our local approach, the (localxmgiement can be analytically
quantified from simple expressions, whether the state is pumixed [LFO7b]. The results
are then generalised to arbitrary smooth bipartite mulienpure states in Chapter 7, and again
the (local) entanglement can be computed directly and @itplvia simple expressions, with-
out the time-consuming numerical evaluation of the fullegiement generally inevitable for
high-dimensional continuous-variable states [LFO08]. Wparticles in interacting systems are
indistinguishable; the problem of indistinguishabilitashso far been ignored in the thesis but

will now be worked out in Chapter 8. Finally, a brief summalfysmnificant results of each
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chapter is given in Chapter 9, and conclusions are drawn.
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Chapter 2

Fundamentals of Quantum Information

2.1 Classical Information

The rapid development of computer science in the twentietiiury has provided us an entirely
new way of thinking about physics that physical systems amplg computers. A physical
system evolves from a initial state to some final state justdi computer, after given an input,
performs computations to give out an output. In other wditsgvolution of a physical system
is equivalent to information processing of a computer arad the values of the physical at-
tributes of the system can be thought of as information hglthé system at a given moment in
time. Consequently, the laws of physics completely govieeriaws of information processing.
As its name suggests, classical information theory asstihasnformation evolves ac-
cording to the laws of classical physics. The cornerstondasfsical information theory is the

formulation of the Shannon entropy.

2.1.1 Shannon entropy

Shannon developed his theory of information in 1948, whiatwaered an important question
of information processing: How can information be quantifie

He proposed that any measure of informatioshould satisfy the following three require-

ments:
1. The amount of informatioi in an event must depend only on its probabiligy
2. I'is a continuous function of the probability.
3. I is additive.

These lead to a unique measure of information, called thargimentropy. For a random

variable X that has a probability distributiom, ..., p,, of the different possible values the
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random variable takes, ttf&hannon entropis defined as
H(X)= —ZpilogQ(pi). (2.1)

The Shannon entropy df can be viewed as quantifying either the amount of unceyt&ietore
we learn the value oK or how much information gainealfter we learn the value oX'.

The importance of the Shannon entropy to classical infdomaheory can not be over-
stated but the discussion of this will be beyond the scopéisfthesis. However, we will
introduce here some relevant measures of information #rabe defined through the Shannon

entropy.
2.1.1.1 Relative entropy

Therelative entropymeasures the difference in information between two randanablesX

andY’, and is defined as follows:

HX[Y)

- sz' logo(gi) — H(X) (2.2)

= Yplon (5). (2:3)
wherep; andg; are probability function for random variablésandY respectively. The relative
entropy is always positive, and whéh = Y, the relative entropy betweexi andY vanishes.

The Shannon entropy is a special case of the relative ensiopg the Shannon entropy
of a random variable is the entropy relative to a definitelpwn state, i.e.q; = 1 so that
HX)=H(X |Y).
2.1.1.2 Joint entropy
Thejoint entropymeasures the combined information in two random varialllesdY’, and is
defined as the entropy of the joint distributionXfandY :

H(X,Y) = pijlogy(piy), (2.4)
2¥)
where the events ok andY are labeled by and;j respectively. The additive property of the
Shannon entropy gives that
H(X,Y)=H(X)+H() (2.5)
only if X andY are independent events.
2.1.1.3 Conditional entropy

Theconditional entropymeasures the information contained in one random variabaén ghat

the outcome of another random variable is known, and is difuse

X )2 S (22). o

1,J
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The conditional and joint entropies are related by
H(X,)Y)=HX)+ H(Y | X). (2.7)

2.1.1.4 Mutual information

Themutual informatiorbetween two random variablés andY is the differences between the

amount of information required to expre&sandY separately and as a joint distribution:
I(X:Y)=HX)+HY)-H(X,Y). (2.8)

If X andY are independent, the mutual information between them @ Z@n the other hand,
if X andY are completely correlated, then the mutual informatiorwken them is the same

as the information contained iK (or Y).

2.2 Quantum Information

2.2.1 Quantum mechanics

The theory of quantum mechanics developed in the early 2&thucy gives us a complete
new understanding of Nature (in contrast to the classicaltbigian physics), and provides the

foundation for the latest developments in quantum inforomadnd computation.

2.2.1.1 The postulates of quantum mechanics

There are four postulates of quantum mechanics, which bnesaieed in order to describe any

quantum system, expressed here in terms of pure statesrplicty:
1. Statesof physical systems are represented by vectors in Hilbextesp
2. Observablesre represented by Hermitian operators, which have reahegues.

3. If |¢1),...,|¢n) are orthogonal states, themeeasuremendf a quantum staté)) can
be made by use of a projective measurement operater |¢;){(¢;| so that the statg))

collapses into the state;) with a probability| (¢; | ) |2.

4. When no measurement is made)@edquantum system evolves according tordtary
transformationso any change can be expressed by the action of an unitargtiomerA

operationU is unitary if it can be written as
U= i) {ail, (2.9)

where bothy); andg; form orthonormal bases.
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2.2.1.2 Quantum measurements

Quantum measurement are described by a set of measureneataop)\/;, that act on the

state space of the measured system and satisfy the congdstesiation,

> MM =1, (2.10)

2

wherel is the identity operator. The probability of the outconmi&dccurs after measuring the

initial state of the quantum system) is given by
pi = (UM MifY), (2.11)

and the state of the system after the measurement is

M; ) '
V(WM M)

The projective measurements described in Postulate 3 aer@mbclass of measurements.

(2.12)

Projective operator®; not only satisfy the completeness relation but also areogahal pro-
jectors so that they are Hermitian aRdP; = 9;;/ P;.

Measurements are irreversible processes because thegusydtem “loses” the informa-
tion that we gained from the measurements whereas a unitalytien of a quantum system is
fully reversible, which means that the dynamics of an ismlatystem is reversible in the same

way as classical Newtonian dynamics, since no informatimugthe system is gained or lost.

2.2.1.3 The density operator

The density operatop of a mixture of states, in which a statg, not necessarily orthonormal

with respect to the othef;’s, occurs with probabilityp;, is expressed as
p="> pildi){eil, (2.13)

and we callp amixedstate. When a state’) occurs with certainty, i.eo = [¢)(¢], it is called
apurestate.
There are infinitely many equivalent ways of writing down sagne density operator, and

given any mixture of states, we can always diagonalise thsityeoperator of the mixture as
p=>_pili)il, (2.14)
)

where thep;’s are positive eigenvalues and thgs are orthonormal.
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2.2.1.4 The trace operation

The trace of a density operatplis

Tr(p) = S (nlpln) (2.15)

n

and is independent of the choice of the basis|sgt The trace of a pure state) is always
1 if the state is normalised. It follows the trace of a densipgratorp = 3. p;|i)(i| is also
always 1, provided all the states and corresponding prbtiadiare normalised; this simply
arises from the fact that all the probabilities for variouscomes should add up to 1.

The trace operator can also be used to distinguish betweerapd mixed states. Because

the square of the density matpxs
pPo= D pili) D> pili) Gl (2.16)
i J
= D_pliil, (2.17)
where|i) and|j) are orthonormal, the trace of the density operator squargivén by

Tr(p®) = pi. (2.18)

>, p? = 1ifand only if p is a pure state. For mixed statd3(p?) < 1.

2.2.1.5 The reduced density operator

Suppose Alice and Bob share a composite quantum stdtewith the joint orthonormal basis
[i4)]5B) in the Hilbert spacé{s ® Hp, whereA and B indicate the subsystems belonging to
Alice and Bob respectively, Alice’eeduced density operatdalso called theeduced density

matrix) is defined by

p? = Trp(pP), (2.19)

whereTrz represents thpartial trace over Bob’s subsystem and is defined as

Trp(p1?) = 3 _(i710"7157). (2.20)
J
The reduced density operator describes a subsystem of aos@mpguantum system, and
its importance draws from the fact that many important prioge of a quantum system are
completely determined by the eigenvalues of the reduceditgesperator of the system. Ad-
ditionally, it also completely determines the outcome of areasurement performed by Alice

only. These points will become clear in the later analysiguafntum entanglement.
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2.2.1.6 The Schmidt decomposition

A pure bipartite quantum staig*? can be written as
AP =Y " aylih)57), (2.21)
ij

where|i4) and|j?) are any fixed orthonormal bases for systemsand B respectively, for
some complex numbex;;. There exist orthonormal statés?) for systemA and ]z/zJB> for

systemB such that we can find tH&chmidt decompositioof 142 written as
A8 =3 "N E), (2.22)

where )\; are non-negative real numbers satisfylng \? = 1 known as theSchmidt coeffi-
cients Note that the sum now goes over only tferather than both thés andj’s. There is no
analogue of Schmidt decomposition for mixed states, howeve

By the Schmidt decomposition, we can immediately trace auoheubsystem separately

to obtain reduced density operaters andp?:
pt =D Xl (2:23)

and

PP = NP @] (2.24)

The eigenvalues g andp? are identical so many of the properties of the quantum staté

can be determined by either reduced density operator.

2.2.1.7 Quantum entanglement

The most intriguing phenomenon arising from quantum meickar quantum entanglement,
which is the central theme of this thesis and will be descrilbedetail later. In essence, en-
tanglement is the quantum correlations between two or maoaetgm systems that can not be
explained by classical physics, and is the fundamentauresahat makes quantum computa-

tion and communication differ from their classical couptets.

2.2.2 Quantum operations

The quantum operation formalisns the key tool for the description of the dynamicsogfen
quantum systems [NCO0O0]. A system, which interacts with sother system —itenvironment
—whose dynamics we wish to average over, is an open systeshsytems are never perfectly
closed, and the mathematical formalism of quantum operatian be used to describe a wide

range of physical scenarios, hamely closed systems thaipaeed suddenly and subject to
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measurements, nearly closed systems that are weakly cotgptheir environments, and sys-
tems that are strongly coupled to the environment. Its ise$s in quantum information theory
draws from its suitability to describe the transformatidmetween an initial state and a final

statep’ without the complexity arising from explicit continuougie consideration:

o =E(p), (2.25)

the mapkE is aquantum operatiorthat describes the dynamical change to a state after some
physical process.
A map from an “input” set of density operators to an “outpiét ef density operators and

satisfying the following three properties is defined to beiardum operatiofi:

1. E should preserve the normalisation of the initial sjate

Tr[E(p)) =1 if Tr[p] =1. (2.26)

2. IE should bdinear:
EO pipi) = > piE(ps). (2.27)

3. Eis acompletely positivenap. IfIE only acts on the syste®and we introduce an extra
system (the environmenB, with p being any possible joint density matrix BfandS,
then the result of the composite operat{@ E)p is another positive operator, whefe

denotes the identity map on the environment

A quantum operatiofi is written as
E(p) = > EipE], (2.28)

for some set of operatofsF; } on Hilbert space, anl_, EjEZ < 1. Thisis known as the Kraus
representation or operator-sum representation of thetguaoperation, and the operatdrg; }
are known as the Kraus operators.

Unitary transformation]t(p) = U pUT, and measurements}; (p) = MipMZ-T , are two
examples of quantum operations. The state of the quantutensysymediately after the mea-

surement is
Ei(p)
Tr[IE; (p)]

with the probability that the outcomieoccurs being; = Tr[EE;(p)]. The dynamics of a closed

(2.29)

quantum system are described by a unitary transformatiomeder, unlike unitary evolutions,

which are reversible, quantum operations are, in generaligrsible.
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2.2.3 Qubits

The basic unit of classical information is calledbd. In quantum information theory, the
corresponding concept is termedjabit (short forquantum bit. Whereas a classical bit only
has either 0 or 1 as its state, a qubit is a two-dimensionaltquasystem, whose staf¢) can
be written as superpositions cbmputational basis state)) and|1) (arbitrary orthonormal
states):

) = al0) + B|1), (2.30)

wherea and3 are complex numbers such that? + |3]? = 1.
In classical information theory, bits can be perfectly eapi However, theuantum no-
cloning theorenjWz82] states that cloning of quantum bits is impossible anplies that the

knowledge we can learn about an unknown quantum state igtimi

2.2.4 Von Neumann entropy

Just as classical information can be quantified by using l@@son entropy, there is a unique
measure of quantum information, the von Neumann entypyrhe von Neumann entropy of

a density operatop written in diagonal form, equation 2.14, is defined as

Sy(p) —Tr(plog, p) (2.31)

= = pilogy(p). (2.32)

The von Neumann entropy is a continuous function of the pitiias p; of outcomes of

measurements made on a quantum system and is additive so that

Su(p1 @ p2) = Su(p1) + Su(p2) (2.33)

for two uncorrelated systems andp-.
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Chapter 3

Introduction to Quantum Entanglement

Quantum information theory opens up the possibility ofisitilg quantum entanglement as a
physical resource for applications which are not possilassically. The study of quantum en-
tanglement is therefore one of the most important and istiege topics in the field of quantum

information processing.

3.1 Whatis an Entangled State

3.1.1 Local operations and classical communication

The ability to performlocal operations and classical communicatirOCC) is essential for
many quantum information processing protocols. LOCC mehasif Alice and Bob share
a quantum system, they can perform quantum operations enthair own subsystems and
communicate only classically.

The concept of LOCC operations also plays an important patté study of quantum
entanglement. It can be used to distinguiglantum correlationshat can occur in many-party
quantum states frorolassical correlations Classical correlations can be defined as those that
can be generated by LOCC operations. LOCC operations atmwegver, are not enough to
simulate quantum effects in a quantum system. Therefoesetquantum correlations that can
not be created by LOCC operations alone are what wegcahtum entanglementt follows
from this definition of quantum entanglement th&@CC operations cannot increase the degree
of entanglement in quantum states

Any LOCC operation can be written in the form osaparable operatian
Z pi = Z A ® Bz‘PAZT' ® Bz'T (3.1)

such that

Y AlaeBB =191 (3.2)

i
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whereA; is an operator acting on Alice’s subsysteR),is an operator acting on Bob's,is the
identity operatory is the initial state ang,’s are possible operation outcomes that occur with
probabilitiesp; = Tr(4; ® B,—pAI ® Bj). The formA ® B shows that Alice and Bob perform
their operations locally so they can not interfere with eattfer’s subsystem while the same
index: means that their operations are classically correlateda@gtassical communications
performed. Note, however, that not all separable operstan be implemented by using LOCC
[BDF+99].

The LOCC operation does not necessarily correspond to auresasnt; this is only true if
A; and B; are Hermitian and positive. For general measurements,enherpost-measurement
state is not necessarily known (unlike projective measargs), they are best described by
the POVM (positive operator-valued measure) formalisme POVM operators are always
positive. However, if the measurement outconiefound to occur with certainty, equation 3.1

becomes
A ® Bz'pAZT ® BJ

P = . 3.3
7T (A @ BypAl © BY) 59

3.1.2 Separable states

A statep? shared by Alice and Bob is said to beparabldWer89] if it can be written in the

form

PP = "pipit @ pP, (3.4)
[

wherep; is a probability distribution.

Separable states are the most general class of states thbé gaepared perfectly from
scratch by LOCC operations; Alice simply prepares a sbﬁtevvith some probabilityp; and
informs Bob (by telephone, for example) to prepare the siﬁteTherefore,separable states
contain no entanglement

Separability of a state is used to define quantum entanglemdmon-separable states
are entangled For example, if a bipartite pure quantum states entangled, doing a partial
trace over any one of the subsystems leads to a mixed s&t&r(Trz(p)?) < 1. In contrast,
if the pure state is separable= p* ® p?, we will still be left with a pure state, either* or

pB, after tracing out Bob’s or Alice’s subsystem respectively

3.1.3 Positive-partial-transpose-preserving operatiosn

Even though the very notion of quantum entanglement is difineLOCC operations, un-
fortunately it turns out that there is no unique entangleénme@asure under this set of opera-
tions [VCO01, HSS03]. This leads to the consideration of aergeneral and closely related

set of operations, the positive-partial-transpose-pvisg operations (PPT operations). These
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operations are defined as those that map any state which ktigsgopartial transpose (for the
definition of the partial transposition, see Section 3%).Bito another state with positive partial
transpose. Research in this direction so far has indicaegadssibility of a unique entangle-
ment measure under PPT operations [APEOQ3], but furthearelsés needed before it becomes

clear whether this view is true.

3.1.4 Maximally entangled states

Entanglement does not change under local unitary operatien two states related by local
unitary operations have the same amount of entanglemené ftpartite d-dimensional system
(called a qudit), any pure state that is local unitarily &glént to

0,00 + 11, 1)+ ...+ |d—1,d—1)

+
lg) = N (3.5)

is maximally entangletbecause any pure or mixed state of bipartite d-dimensigstms can

be prepared from such states with certainty by using only C@perations [PV07].

For multi-partite systems, the situation is more complexd there is no equivalent and
unique concept of a multi-partite maximally entangledestat
3.1.5 Examples of entangled states

3.1.5.1 Bell states

An well-known example of entangled states is Bwll stategalso called the EPR states or EPR

pairs); the Bell states are four orthogonal two-qubit matiynentangled states:

[©F) = EQ%%EL (3.6)
L o1y £]10)
) = S 3.7)

3.1.5.2 Werner states

The Werner states are defined as a mixture of Bell states:

v = Frw—><w—r+%<w+><w+\+r<1>+><<1>+\+\<1>—><<1>—\> (38

4F — 1 1—F
= ; |\If‘>(\1f‘|—|——3 1, (3.9)

where the parametdr determines the degree of “mixedness” with< £ < 1 and1 is the

identity operator. The Werner states are entangledfor 1/2.
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3.1.6 Pauli matrices

Three matrices are extremely useful in the study of quantformation; these are theauli

matrices(also known as the Pauli operators):

. 0 1
o, = X = : (3.10)
10
. 0 —i
o, = Y = : (3.11)
i 0
. 1 0
o, = 7 = . (3.12)
0 —1

One or more of the Pauli matrices can be applied locally tmghdetween any of the Bell
states; for example, by applying the Pakilimatrix to the first qubit while doing nothing to the

second qubit, the staté™) is converted into the stat@ ™):

[

(X @1)|o) = (3.13)

Sl
[\
= [a)
_ o o O
o o O
o O
= (e} [a)

(3.14)

Sl =
[\)
—

= U, (3.15)

wherel is the identity operator.

3.2 Quantification of Quantum Entanglement
3.2.1 Pure states

For pure states, the amount of entanglem&nih a quantum state can be completely and
uniquely quantified by calculating the von Neumann entraigyhe reduced density operator of
p (for any of its subsystem). The entanglement quantifiedvifaig is sometimes known as the
entropy of entanglement
For example, the reduced density operator of the Bell $ate for the first qubit is
po1 = Trge(|2T)(@7]) (3.16)

|0)€0] + [1)¢L]

. (3.17)
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We can then calculate the von Neumann entropy (equatior) ta2fuantify entanglement:
E=S,(pg1) = 1. (3.18)

This shows that the staté@™) is fully entangled. Note thaf is completely determined by the
Schmidt coefficients, which do not change irrespective attvisubsystem the partial trace is
over (see Section 2.2.1.6), i.&,(pg1) = Sy(pg2). For a two-qubit system, the entropy of

entanglement goes from 0 for an unentangled state to 1 foxamaly entangled state.

3.2.2 Mixed states
Quantification of entanglement in a mixed state, howevenoisas straightforward as in the
case of pure states because the Schmidt decomposition orltg ¥or pure states. Consider the

following example:

pE = %(\01><01y +|01)(10] + [10){01] + [10)(10]) = [T ) (TT; (3.19)

ps = %(\01><01y+\10><101):%yw+><w+y+%\\lf‘><\lf‘\. (3.20)

Both states have the same entropy of entanglement accdalihg von Neumann entropy of
the reduced density operator for each. This is clearly wrdrge stateps is an equal mixture

of two maximally entangled Bell states and is separablegigu 3.4). pg therefore contains
no entanglement whereas the staieis a maximally entangled Bell state. The von Neumann
entropy therefore cannot be used to quantify the amounttahgfement in mixed states.

There is currently no definite and unique way to measure ttamglement of mixed states,
and many entanglement measures have been proposed , adomi advantages and disad-
vantages [PV07,BBPS96,Rai99,HHT01,BDSW96, Wo0098a, WodPRK97,VP98,VPJIK97,
CWO04]. Here, only some of the entanglement measures rdlevaur purpose will be intro-

duced.

3.2.3 Entanglement measures
3.2.3.1 Properties of entanglement measures

There is no unique entanglement measure for mixed stateslitiatent measures do not all
possess the same properties [VPRK97,DHR02]. A good ergarggit measur& should satisfy

the following desirable conditions:

1. For arbitrary bipartite systemS(p) of a statep is a mapping from density operators into

positive real numbers.

2. £(p) = 0if the statep is separable.
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3. For any statep and any local unitary transformatiaii, the amount of entanglement

remains unchanged, that is,
E(p) = EUs® UppUl  U) (3.21)
for local unitary transformation on both Alice’s and Bobarfs.

4. The expected entanglement does not increase under LO&&tioms:

A; ® BipAl @ Bl
OB ;’ ), (3.22)

(2

wherep;, A; andB; are as defined in equation 3.1.

5. The entanglement measure reduces to the entropy of éertaen for a pure state =

) (]
E(p) = Sulp™), (3.23)

wherep? is the reduced density operator of

Different entanglement measures are the most appropmater wifferent contexts, and not all
postulated measures possess all the above desired pespehtiy functionf that satisfy the

first four conditions is called aentanglement monotone

3.2.3.2 Entanglement of formation
The entanglement of formatioof a mixed statep, shared by Alice and Bob, is defined by
[BBPS96, Wo0098a]

Er(p) = min > piSu(p}), (3.24)

where S, is the von Neumann entropy. The minimum is taken over all ipspure-state
decompositions of the state= >, p;[;)(¢;| andpt = Trp(|3b;)(¢;]) is the reduced density
operator for Alice’s subsystem. If we consider infinitelyga number of copies of, we can

further define theegularisedor asymptoticversion of the entanglement of formation:

Er(p®") .

EF(p) = limy oo (3.25)

There is a closely related measure of entanglement, nalmsgntanglement cogi-. The
entanglement cost is defined as the asymptotic number ofnmadlyi entangled states that are
required to create a given mixed state by LOCC operatiorss,egnals the regularised entan-
glement of formation [HHTO1]. However, it is currently urdwin whether the entanglement
cost is equal to the entanglement of formation generallgndtiough the yet proven additivity

of the entanglement of formation would imply thét = &¢.
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For a pure stat@)), the limiting ratiolim,, . ..m/n, which represents the minimum num-
berm of maximally entangled states required in order to obtaiersam number of high-quality
copiesn of the (nonmaximally entangled) stateby LOCC actions only, is its (regularised) en-
tanglement of formatio&x(|1) (x|). This provides the operational interpretationfef.

Apart from cases of low dimensionality and some cases wiifn lsymmetry [VWO1,
MVO00, EFP00], it is usually extremely difficult to solv€r analytically. In practice, one
must apply numerical methods to evaludte for general states [AVMO1]. However, in the
case of a two-qubit system, there is an exact formula for tit@nglement of formation via the

use of theconcurrencgWoo098a, Woo01].

3.2.3.3 Concurrence

For a bipartite mixed state the two-qubitconcurrences defined as
C(p) = max{0,\; — Ao — A3 — Ay}, (3.26)

where )\, (n = 1, 2, 3, 4) are the square roots of the eigenvalues in dengpasder of the

product matrixpp. Herep is the “spin-flipped” state and is defined by
p=(oy®oy)p"(0y @ 0y), (3.27)

where the complex conjugate is taken in the standard bakishvior a pair of spin-1/2 particles
is {|11)=[11), [10), [01),

matrix (equation 3.11). The eigenvalugs are real and non-negative, and the value of the

00)=|]1)}, and o, expressed in the same standard basis is a Pauli

concurrence ranges from zero from an unentangled stateityp fon a maximally entangled
state.
The concurrence can then be used to calculate the entangleformation of a two-

qubit mixed statey:

Er(p) = h (1 i 12_ Cz(ﬁ)) (3.28)

with

h(e) = —elogy(e) — (1 —€) logy(1 — ). (3.29)
There is one-to-one correspondence between the two-quiniucrence and the two-qubit en-
tanglement of formation. For higher dimensional systeimsie is no unique definition of the
concurrence.
3.2.3.4 Entanglement of distillation

The entanglement of distillatiol€p measures the rate at which a noisy mixed state can be

converted into a maximally entangled state by LOCC actidmsea|BBPS96, Rai99]. This has
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the opposite operational interpretation to that of themgitament of formatiorf . Distilling a
numberm of maximally entangled states from an initial numlesf copies of a nonmaximally
entangled statg by using only LOCC, the limiting ratidim,,_..,m/n is defined to be the
entanglement of distillation of the stagte&p(p).

The ability to know how much entanglement in a given statasslidble is very important
for quantum information processing but computatior€gfin general is exceedingly difficult
and little progress has been made. The entanglement of fionmarovides a upper bound on

the entanglement of distillation [DHR02, PV07]
Er > Ep. (3.30)

For pure states, the entanglement of distillation and thangfement of formation are exactly
the same, and both equal to the entropy of entanglement.

There are entangled states from which no entanglement cdistiked, these are the so-
calledbound entangledtates. Consequentl§p = 0 for all separable states but the converse

iS not true.
3.2.3.5 Negativity

If Alice and Bob share a bipartite mixed statedescribed by the Hilbert spa@é, ® Hp, its

matrix elements are given by

Prpv = (m| @ (u| p[n) ® |v) (3:31)

in a local orthonormal basis (the Latin letters describe&$ subsystem while the Greek letters

describe Bob’s). Theartial transpositionof the statey with respect to Bob is defined as

PTB = Z Pmu,nV|m><n| ® |v)(ul, (3.32)
m,(,n,V
such that
PrE s = Pravinp- (3.33)

The form of the operatqgs’3 depends on the choice of local basis, but its eigenvaluestiana
are independent of whether the partial transposition isrtadver Alice’s subsystem or Bob's.
The Peres-Horodecki criterion is a well-known techniquedébect entanglement: the
positivity of the partially transposed density operatorac$tate is necessary for separability
and is sufficient to prove that a given statdas no entanglement of distillatiad?p(p) = 0
[Per96, HHH96, Hor97, HHH8].
ThenegativityV/ of a mixed state is defined as [VW02, EP99, ZHSL 98]

T _
N(p)Einp 2” 1, (3.34)
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where|| X || = TrvXTX is the trace norm. This is an entanglement monotone [PleQ5Q]
VWO02] that attempts to quantify the “negativity” in the speien of the partially transposed
density operatop’®, and therefore we can also definéas the sum of the absolute values of
the negative eigenvalues of p’5:

Np)= > Il (3.35)

is.t. \;<0

The negativity\/ coincides with the entropy of entanglement for maximallyaegled states

but not for any other entangled pure states.
3.2.3.6 Logarithmic negativity

Another entanglement monotone [Ple05] can also be defireth@ipartially transposed density

operatorp”s: thelogarithmic negativitywhich is defined as

En(p) = log,|p"™ . (3.36)

In contrast to the negativit}/ , £or has a nice feature of being additive by construction and has
an operational interpretation as the PPT-entanglemenf@osxact preparation of a quantum
state under the set of PPT operations [APEO3].

En is an upper bound to the entanglement of distillaign[VWO02]. However, unlikeSp
and&r, the logarithmic negativity does not reduce to the entrdpgrmanglement for all pure

states.

3.3 Continuous-Variable Systems

So far the description of entanglement has mainly been flated for bipartite systems with
finite dimensional constituents. However, quantum infdromacan be carried by either finite
dimensional systems like electron spins, or by infinite disienal systems such as harmonic
oscillators. The finite dimensional setting is often alsfemed to as discrete whereas the
infinite dimensional setting is describedamtinuous-variabldecause in this case pure states
are simply described by wavefunctions in continuous pasior momentum variables. There
are many reasons to focus on the entanglement of contintariahle states [BvL05, BPO3,
EPO03, CLPO07], since the underlying degrees of freedom o$iphl/systems carrying quantum
information are frequently continuous, rather than digcrélany experimental realisations of
quantum information protocols are based on continuouisdvar systems so it is not surprising
that the study of entanglement of continuous-variableesystis a very active and important
research area.

The quantification of entanglement of continuous-variaystems is as difficult, if not

more, as the guantification of entanglement of discrete tquastates. Most attention has been
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turned to a simple class of states, tBaussian statessince these are common (especially in
quantum optics) as the ground or thermal states of opticalesioand a significant amount
of knowledge has been gained [WGCO06, Sim00, DGCZ00, WW01,GKX., GDCZz01, EP02,
ESP02a, GC02, GECP03, ESP02b, GWWIB, WGK'04, Shi04, APE03, AEPW02, PEDCO05a,
CEPDO6].

3.3.1 Gaussian states

Any quantum state described by a density operataan be equivalently represented by a

Wigner functionin phase space; the Wigner function is defined as [HOSW84]:

W(X> p) =

o0 2.
| @yieylpixy)e P, (3.37)

(rh)N J_
where N is the number of the variables of a mixed quantum stagmdx, p andy are N-
dimensional vectors. The integration is over all compasefy. However, the Wigner function
is generally not a probability distribution since it can egative-valued. Quantum states of a
system consisting oV degrees of freedom are called Gaussian if it has a Gaussignewi
function (always positive definite in this case), or equawly its characteristic functionis
Gaussian [Hol82, EP03, ADMS95, BP03].

Thedisplacement operatgalso calledWeyl operatoy is defined as
W =it oR (3.38)

for the 2N-dimensional vector¢ < R?M, where the canonical coordinate operators
(Ry,...,Ron) = (X1...,, XN, P1...,, Py), and thesymplecti2N x 2N matrix is given

by
0 1
o= M (3.39)
-1y O
The characteristic function [Sch01, WM94] is defined as ttygeetation value of the displace-
ment operator:

x(§) = Te(Wp). (3.40)

It is also the Fourier transform of the Wigner function witspect to both position and mo-

mentum variables:
X(g) — /dx/dp e%(glpl~~~+§NPN_§N+1X1~~~—§2NXN)W(X7 p). (3.41)

If y takes the form,

X(€) = x(0)ei€" 7d=3E ot (3.42)
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the characteristic function is a Gaussian function in plspsee. As a consequence, a Gaussian
characteristic function (and hence a Gaussian state) ractiesised by the displacement vector
d and thecovariance matrixy.

d and~y are respectively thiérst andsecond moments a quantum state. The first moments
are the expectation values of the canonical coordinates; (R;), = Tr(R; p), and they can
be made to vanish by means of unitary translations so theyptaffect the entanglement of the
state in any way. The second moments are defined as the expeci@ues(R;R;) and can

be embodied in the real symmettia x 2n covariance matrix;, whose elements are given by

e = 2ReTr|p(R; — (R;),)(Ri - (Re),)|

Tr [p({Rj, R} —2(R)), <Rk>p)}, (3.43)

where{} denotes the anticommutator. Any real symmetric magrsatisfying the Heisenberg

uncertainty principle [SSM87,SMD94, Ser06]

v +io >0, (3.44)

whereio is the canonical commutation relatioR;, Ry] = io i, represents a valid quantum

state. Equation 3.44 is also a consequence of the positiitye statep.

The covariance matrix and the uncertainty relation prowdecessary condition for the
separability of Gaussian states. A bipartite Gaussiaa sfarbitrarily many modes is separable
if the covariance matrix corresponding to its partiallynsposed state satisfies equation 3.44
[Sim00, DGCZ00, WWO01, GKLCO01, GDCZ01]. The use of the pesii of the convariance
matrix of the partially transposed Gaussian state is sinbildhe use of the positivity of the

partial transpose of a finite-dimensional state discusadaein Section 3.2.3.5.

3.3.1.1 Entanglement of formation

The entanglement of formation of Gaussian states can beededither with respect to decom-
positions in pure Gaussian states (therefore called thesEauentanglement of formation) or
with respect to decompositions in arbitrary pure states ¢ggiation 3.24). The Gaussian entan-
glement of formation is an entanglement monotone under Sauwperations. Gaussian op-
erations are those quantum operations (completely pesitiaps) that map all Gaussian states
onto other Gaussian states. For two-mode Gaussian stae§atussian entanglement of for-
mation can be explicitly computed; furthermore, if the stigtalso symmetric, both definitions

of the entanglement of formation coincide [GWRB3, WGK'04].
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3.3.1.2 Entanglement of distillation

Unlike the entanglement of formation, the entanglementistflidtion cannot be defined with
respect to Gaussian operations only [ESP02a, GC02]; oneaousider general quantum oper-
ations. Computations of the entanglement of distillatiomextremely difficult. However, some
other measures of entanglement (for example, the logatheyativity [VWO02]) may be used

to find its upper bounds.

3.3.1.3 Logarithmic negativity
In contrast to most other entanglement measures, for atgp@aussian state, the logarithmic
negativity is completely determined by the covariance iaif its partially transposed state,
and hence can be computed easily [AEPWO0?2].

For a system ofi = n4 + np harmonic oscillators in a Gaussian state described by the
covariance matrixy (there must be no correlations between positions and m@nsath that
the covariance matrix is a direct sum of a position partand a momentum pary,, v =
(72 @ 7p)/2), the entanglement between the two groups of oscillatorguasitified by the

logarithmic negativity is

2n
En=— ZlogQ [min(l, Q‘Ak(ia_lyTB)
k=1

)] , (3.45)

where{\;}, 1 < k < 2n, are the eigenvalues 6677, o is the symplectic matrix. The

partial transpose of the covariance matyiis

T8 = TAT (3.46)

with
r=r,er, (3.47)

and
r,=1,. (3.48)

I', is an x n diagonal matrix. If the-th diagonal element df,, belongs to group!, (I',); = 1.

Otherwise(T',); = —1.

3.3.2 Non-Gaussian states

Even though there has been significant progress in the djaatitin of entanglement in Gaus-
sian states, especially bipartite ones, we should remethaethenon-Gaussian stateme also
extremely important; this is especially so in condenseasphsystems, where harmonic be-

haviour in any degree of freedom is likely to be only an appr@tion. Much less is known
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about the entanglement of these non-Gaussian states. otiiatas our research that we hope
may shed some light into this direction.

For non-Gaussian states there is some progress in finditgrigrifor entanglement
[KTSCO06,ABO5, NK06,HZ06a, SV05, MPHH, HZ06b, SV06, MBZ0Q6lUt much less in quan-
tifying it. The common theme of these papers is the spedificadf sufficient conditions for
entanglement; many of the papers use developments of theigee suggested by Shchukin
and Vogel [SV05], allowing entanglement criteria to be sfed in terms of the expectation val-
ues of products of annihilation and creation operatorsy&ne therefore implicitly restricted to
states (albeit non-Gaussian ones) of canonical systemdsyyaconstruction they detect the ex-
istence of entanglement but do not quantify it. We on therdthhed are mainly concerned with
the quantification of entanglement, and will thereforeddtrce a new approach to the analysis
of entanglement and demonstrate in the rest of the thedistthangs a new perspective on

guantum entanglement of arbitrary continuous-varialdeest
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Chapter 4

A Local Approach to Quantum Entanglement

4.1 Introduction

We present a thought experiment, leading to a new approattretanalysis of quantum en-
tanglement equally applicable to discrete or continucarsable systems, based on a particular
type of projective filtering operations, in which one or bptrties makes a preliminary mea-
surement of the state with only enough resolution to detegmihether or not the particle re-
sides in a chosen region, before attempting to make use eftiamglement. This approach will
be particularly useful for the analysis of quantum entamglet in continuous-variable systems
since it provides the systematic quantification of the egitanent in such states, especially
where other means of quantification is lacking or extremdHcdlt. What we are concerned
with is the entanglement remaining after preliminary measients to localise particles in par-
ticular regions of finite-widths , instead of tigdobal entanglement. Quantum entanglement is
inherently non-local so this remaining entanglement isest thelocal entanglementwithout
causing confusion, to emphasise the distinction betweemew local approach and the usual

way of analysing entanglement.

The theory is formulated here in terms of spatial entangtémehich plays a significant
role in many physical realizations of quantum informationgessing. However our local ap-
proach to entanglement has a wide range of applicabilityat@mus types of quantum systems,
and the results can be easily recast in terms of other typestahglement. We first demon-
strate how to apply our approach to discrete-variable Bystey using a spin system as an
example here, and show how the entanglement varies as aoflurftthe parameters of the
initial state. In this case, our results are examples ofrgh¢anent distillation and concentra-
tion [BBPT96,BBPS96]. Then, in the next chapter and the rest of thésthes will concentrate

solely on continuous-variable systems.
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4.2 Theory

4.2.1 Restricting configuration space by von Neumann measements

Consider Alice and Bob share a system, each subsystem islasby a single coordinate,
and their parts are distinguishable: let the configuratfmace of the whole system of interact-
ing particles be described by the coordinaggsand ¢z, whereq4 describes Alice’s particle
and ¢z describes Bob’s. The particles are assumed to be distimglis, and the effects of
indistinguishability will be considered in detalil in a latehapter. We will initially present the
case in which only Alice makes a preparatory measurementomsystem; suppose she has
access to some restricted portidnof the configuration space of “her” particle, whose coordi-
nate isqg4 (alternatively, if only Bob makes a preparatory measurdmenwill have access to
some restricted portioff of the configuration space of his particle, whose coordiisig). If
she measures her system with just enough accuracy to detemfiether it is in regiopd or
not, but no more, the effect is to localise the wavefunctibimee inside, or outside, the chosen

region. The restriction to lying inside the region corresp®to the projector

Eq = / |QA> <QA| dQA ® Lother, (41)
A

wherel er 1S the identity operation for all the other particles in tgstem.

4.2.2 The discarding ensemble

SupposeA is of finite extent, and Alice measures the position of hetigarwith just enough
accuracy to determine whether it is i or not. If so, she keeps the state for further use; if
not, she discards it (and tells Bob she has done so). Theretisty matrix appropriate to the

ensemble of retained systems is

EapEa
Tr(Eap)
HA((]A) p(QAa Gothers; qzap q(/)ther) HA(Q:q)

f f_A p(QA> Gother; A, QOther)dQAdQOther ’

wheref 4 is a generalised Heavyside function defined so that

1 ifge A
0alq) = . (4.3)
0 otherwise

The subscriptD refers to the discarding of the unwanted states; we refdrisadensity matrix
as describing thdiscarding ensembleéNote that, if the originap was a pure statg)) (1|, then

the post-selected density matrix is also pure:

_ EA)(Y|Ea

PDA= = ET) (4.4)
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In particular this means that even though the system hagoanis variables and is therefore
infinite-dimensional, its entanglemeéip 4 (in the discarding ensemble) is in principle deter-

mined by the von Neumann entropy of the reduced density matr'pgA = Trg(pp,A):

Epa = Su(pp ) = —Tr (p_4logs p ) - (4.5)

If, however, the statg is mixed, the entanglement of the post-selected gtatg can still
be quantified by simply choosing other entanglement measostéead, such as the entangle-

ment of formatior€z or the negativity\/.

4.2.3 The nondiscarding ensemble
On the other hand if Alice choosest to discard the system when she fails to detect a particle

in region A, the appropriate density matrix is
PNDA=EapEa+ ExpEy, (4.6)

where the subscriplv D refers to “nondiscarding” and the complementary projedfor is

defined as

Eq=1-E4— / 14} {@aldga © Losher- @.7)

qA
Equation (4.6) describes a mixed state in which Alice canhigyothesis) perform no further

operation or measurements on the component projectel fy It differs from the original
density matrixp in that off-diagonal elements gfconnectingg4 € A andgs ¢ A have been
set to zero.

Letpa = Tr(E 4 p E 4) be the probability of finding Alice’s particle inl. Since the first
and second components pf;p 4 can be distinguished by Alice and Bob using LOCC, they
canteleporp4&p 4+ (1—pa)Ep, 4 qubits on average between them. Hence the entanglement
in the nondiscarding ensemifg;p 4 (as quantified by the entanglement of distillatiég) is
not less tharpa€p 4 + (1 — pa)ép,a. That is, for any entanglement measure that has an
operational interpretation in terms of resources avasldtit exploitation (for examplefp, the

entanglement of formatiofir and the logarithmic negativit§ ),

EnDpA > paEp A+ (1 —pa)ep ar (4.8)

On the other hand, equation 4.6 also constitutes a validndpasition of the nondiscarding
density matrixonp 4 into orthogonal states distinguishable by local measungsné follows
that the entanglement in the discarding ensenshle 4 ( as quantified by the entanglement
of formation) is not greater than the average entanglemktiti® decomposition:’&xp 4 <

pAED. A+ (1—pa)Ep 4. Actually, the prior statement is true for a larger classradhaglement
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measures; provided the entanglement measure is conveéxdséig and the negativity\/, but
not&y), we have:

EnD.A<PpAED A+ (1 —pa)ep ar (4.9)
The only way these two observations can be consistent is étitanglement in the nondiscard-

ing ensemble (measured by the entanglement of formatiayual to

EnpA =pAED A+ (1 —pa)Ep ar (4.10)

If all the operators available to Alice have support onlyegion. A (i.e. if she can neither
measure her particle’s properties, nor manipulate it in\&ay, except when it is ind) then
the component projected by 4 is “out of reach”, and the second componént p E 4 of the

statepn p, 4 is functionally equivalent to the separable staiey 14 E4) ® p'B, where
PP =Tra(BEa pEw), (4.11)

as far as any operation that Alice and Bob can perform is coece It does not possess any
entanglement properties that are useful to Alice and Bolthdhcase, equation (4.10) reduces
to

END,A=DAED, A (4.12)
This is theusefulentanglement in the nondiscarding ensemble. Since onlyghble entan-
glement is of any interest, we shall from now on define theregieament in the nondiscarding
ensemble in terms of the useful part, i.e. equation 4.1%ausof equation 4.10, and focus on
Ep, 4, noting that€xp 4 can be simply obtained from it.

Both the entanglement in the discarding ensentije, and the entanglement in the
nondiscarding ensembiyp 4 Will be referred as théocal entanglementbecause in contrast
to theglobal entanglement initially present within the whole quanturategn, they represent
the entanglement remaining after one or more subsystenestemriocalised The term local
entanglement will make it clear that we take a local view inanalysis, complementary to the
more usual global picture of entanglement, without impythat the entanglement is “local”
(which is impossible).

4.2.4 Precise measurements of position
If, on the other hand, Alice measures the position accysalelt again keeps only those oc-
casions when the results lie withjd (of width a), the discarding ensemble’s density matrix

is

_ JEq.pEq@,dQa
J Tr(Eq, p)dQa

PP as a—0, Qa€A (4.13)



4.2. Theory 49

where the integration is over the s&tof values ofgy locatedprecisely atgq = Q4, the
subscriptP refers to measuring precisely aff , is the projector corresponding to measuring

Alice’s particle A precisely at positiof) 4:
Eg, =0(qa —Qa)®15. (4.14)

Equation (4.13) describes a density matrix that is diagomé) 4; it is a mixed state even if
all the measurements where the particle is not found iare discarded. Furthermore, unless
there are some additional degrees of freedom of particle iswdre not measured, the overall

density matrix can be written as an incoherent sum of prostates:
pp = p(Qa,q8:Qa,q8) = Y Pa(Qa)¥n(Qa, 4V (Qa, q5) (4.15)

wherey, (Q 4, qp) is a state in which particle A is located exactlyca without any informa-
tion about where particle B is ang,(Q 1) is the probability of@ 4 being then-th element of
the setA. pp therefore contains no remaining entanglement with Bolrtiga B.

Note that in the limit of very small measurement regions,distinction between precise
and imprecise measurements blurs. The case of vanishingll eegions will be investigated

further and surprising results presented in the later enapt

4.2.5 Measurements by both parties

Exactly analogous formulae can be written down for the cadese Bob makes a preliminary

measurement on his particle, or both partners make a measate The density matrix in

the discarding ensemble, after both parties make prelmyimseasurements to localise their

particles, is

E Epp EpEa
Tr(EAEBp)

0.4(q4)08(aB) p(qa, aB; a4, d) 08(d5)0.4(d4)
Js [aplaa. aB;qa, q8)dqadgs

PD,AB (4.16)

)

whereFEj is the projector corresponding to Bob localising his p#tio regionB of its config-

uration space

Ep = / dgplother ® |gB) (gB] (4.17)
B

with 1,1, being the identity operation for all the other particlesia system, and is another
generalised Heavyside function defined so that
1 ifqgeB

O5(q) = . (4.18)
0 otherwise
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It follows from equation 4.12 thdbr any convex entanglement measéreith an operational
definition the (useful) entanglement in the nondiscarding ensensbnmply related to the

entanglement in the discarding ensemble by

END,.AB = PAB ED,AB (4.19)
wherep 4 g is the probability of finding Alice’s particle within the rem A and Bob’s particle
in the regions.

4.2.6 An inequality for the discarding entanglement

Suppose Alice and Bob divide their configuration spacesarget of segmentd and’3 respec-
tively, and each make a measurement determining in whicimeegthe system is located. In

the nondiscarding ensemble, equation 4.6 generalises to

pND.AB = Y Es EapEAEg, (4.20)
AB

where
A
> B = 15 (4.21)
B

However, this corresponds to a local operation performedilige and Bob. Their shared

entanglement is non-increasing under this operationetoes,

E(p) = E(pND,AB). (4.22)

But, by a straightforward extension of the argument givaviausly (Section 4.2.3), the entan-

glement in the nondiscarding ensemble is

E(pnD,aB) = > pAsE(pD,a5), (4.23)
AB
where
pas = Tr(Eg Eap) (4.24)

is the probability of finding Alice’s part of the system ihand Bob’s part in3, andpp, 45 is
the density matrix in the discarding ensemble after thissmesment result has been obtained,
given in equation 4.16. Combining equation 4.22 and equnati@3 we obtain the following
inequality for the average of the entanglements in the ditiog ensemble over all the partitions

5[):

Ep = ZPABg(pD,AB)
AB
E(p). (4.25)

IN
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4.3 Spin Systems

We can make an exactly analogous theory for the case where &tid Bob share a system de-
fined on some other state space, for example a spin systenagsemore familiar in quantum
information theory. We simply replace the projection operd 4 by one defined in spin space;
for example,E 4 might project onto states with a specified spin componenginen direction.
The rest of the theory is then as outlined previously. We nive gn example to demonstrate

how this works.

4.3.1 An example of pure spin states

Suppose that both Alice and Bob each possess two spins; $hegins belonging to each of
them are entangled, as are the second spins, and the ova@ll/s of the system is a product

of the state of the two pairs. For example, we could write

[Y) = (00891! Ta1TB1) +sin 6| lA1lBl>> ® (COS 62| Ta21B2) + sin 6y lAle2>); (4.26)

the state is pure so entanglement between Alice’s and Babsystems is well quantified by
the von Neumann entropy of the reduced density matrix. Sagpdso that Alice and Bob
can only handle systems if the total spihg available to each party are such thd = 0;
perhaps the parts of the state with non-zero moment are éastLise of the presence of large
fluctuating fields in the environment. In the discarding emske defined by this restriction, the

state becomes

V2
= 4.27
) g v/1 — cos 201 cos 20, ( )

(COS 01 Ta1TB1)sinba| | a2l B2) +sinbi| | a1lp1) cos by TA2T32>),

again this restricted state is pure but entanglement stimddme quite different.
This type of measurement is familiar in other contexts—faraple entanglement distil-

lation and concentration [BB6, BBPS96].

4.3.1.1 Results
We present results in Figure 4.1. For the spin system we @endhe full entanglement present
in the state equation 4.26 dependsferandd;, with periods ofr /2, as shown in Figure 4.&).
The maximum entanglement is 2 ebits and occéys<{ 2 = (2n + 1)7/4) when both pairs of
spins are in the Bell stat®™) (equation 3.6). Whefi; = 6, = nr/2, the state reduces to all
spins either all up or down so completely loses any entangém

Now if the restricted region for both Alice and Bob is choserioé the subspace in which

the totalz-component of spin takes the value zero, and we work in theadiing ensemble so



4.3. Spin Systems 52
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(a) Unrestricted (b) Restricted (discarding ensemble) (c) Differences

Figure 4.1: Entanglement (von Neumann entrépyp“)) present in the chosen spin system (a)
when the total sping/; are unrestricted, (b) in the discarding ensemble whrior each party

must be 0. (c) Entanglement differences between the twesrase, = S, (p3) — S, (p?).

all other states are eliminated, the entanglement prgsesfithe system become very different.
Figure 4.16) shows that the entanglement distribution of the restlictate has periods of
7 instead ofr/2, and the maximum possible entanglement (now 1 ebit sinceetieicted
subspaces for both Alice and Bob are two-dimensional) issaed whenevef; = 65 or 6, +05

are integer multiples of- so that the restricted state is in the Bell state. Note tlexietlis a
singularity whenevetos 26, cos 26, = 1, corresponding to nodes in the restricted wavefunction
(equation 4.27). Further treatment of nodes will be fullyadissed later in Section 7.3.4.

If we compare Figure 4.3] and Figure 4.1f), we see that in some instances the re-
stricted state has higher entanglement. This is indeeda$e as shown in Figure 4c)(where
AS, = sv(pg) — S,(p*) is plotted against both; andés. This is an example of the familiar
process of entanglement concentration [BBB, BBPS96], in which some partial entangle-
ment is concentrated after chosen local measurementsadiamaent is not created on average
in our example because the probability of findiig = 0 is not 100%. Therefore the inequality
equation 4.25 is not violated.

Entanglement of a bipartite mixed spin state can also béyepsantified by using nega-

tivity A/(p) instead as the entanglement measure.
4.3.2 An example of mixed spin states
Consider the mixed state defined by

_16F 1 1-F

P="715 ) (| +1—5]l, (4.28)

where|v) is as defined in equation 4.26 (in contrast to the definitiolVefner states, this is
not in general a maximally entangled state) &d [1/16, 1]. Note that wher¥' = 1, the state

becomes pure. Again an example of discarding ensemblesecabthined by projecting the
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state (4.28) ontd/, = 0 subspace and renormalising accordingly.

4.3.2.1 Results

Now we perform a similar calculation for the mixed state @opn 4.28), comparing the entan-
glement (as measured by the negativity) present when thedpinsi/; are unrestricted and
the entanglement in the discarding ensemble whigtior each party must be 0. The results are
presented in Figure 4.2. We choose three valuds far comparison;F = 0.3, F' = 0.65 and
F=1.

In Figure 4.3, we plot the variation of the entanglementntifiad by N, with F' by choos-
ing (a) bothd, andé, to ber /4 and (b) bothy; andé, to be2x /5. The original entanglement
&, when the total sping/, are unrestricted is plotted as a red line, the entanglenmetitel
discarding ensembl&p when the totalM/, for each party must be 0 is plotted as a green line,

and the average @fp over all possible values of the totdd; (= 0, +2, +4)

Ep = pm.Ep(M,) (4.29)
M

is plotted as a blue line. For both cas€s,= £p. The entanglements in case (a) vanish at the
same pointF’ = 0.25. This is similar to what we will observe in a later chapterdi@m 6.4): in
that occasion, we showed that the entanglement (as medsythd negativity) of a two-mode
Gaussian thermal state vanishes at the same temperatardlesg of whether the initial state,
or the post-selected state in the discarding ensembleydgest However, this is not a general
phenomenon as it is clear th&) vanishes much earlier than the other entanglements.

We also plot the variation of the entanglement, but this tijuantified by the logarithmic
negativity €47, under the same circumstances in Figure 4.4. Again, we sgdhth entangle-
ments vanish at the same place in fa)= 62 = 7/4 but not in (b)6; = 6, = 27 /5. In
both Figure 4.3 and Figure 4.4, the entanglement in the @is@aensemble can sometimes be
larger than the original entanglement, but the averagenglgment in the discarding ensem-
ble over all possible partitions is always less or equal ¢éodfiginal entanglement as expected
from equation 4.25. It is important to remember that sincth llbe negativity and the loga-
rithmic negativity do not fully satisfy the criteria for bey convex and having an operational

interpretation£p does not give us the entanglement in the nondiscarding dnleem

4.4 Summary

We have presented a thought experiment that gives an approdoe analysis of quantum en-
tanglement, equally applicable to discrete or continuargable systems. It involves choosing

a region of the two-party configuration space and making geptiwe measurement with only
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(a) Unrestricted (b) Restricted (discarding ensemble) (c) Differences

Figure 4.2: Entanglement (negativity) present in the mixed state (equation 4.28) (a) when the
total spinsM; are unrestricted, (b) in the discarding ensemble whkror each party must be
0. (c) Entanglement differences between the two caséé;= N (pp) — N (p,). F determines

the “mixedness” of the state; whdn= 1, the state is pure.
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@0 =0, == (b) 01 =02 = 3

Figure 4.3: Variation of the entanglement (negativity with F € [1/16,1]. F' is a quantity
that determines the mixedness of the state as defined byi@yda28. The red line is for the
original entanglemerf, when the total spind/, are unrestricted, whereas the green line is for
the entanglement in the discarding ensenfijjlewhen M, for each party must be 0, and the
blue line is for the average &fp, £p, over all possible combinations aff, (= 0, +2). Note
that€, > £p always, even though sometimés > &,. (a) Bothé; andf, have been set to

m/4 to produce the plots. (b) Both andf, have been set t&4r/25.

@0 =0,=1 (b) 61 =02 = 5

Figure 4.4: Variation of the entanglement (the logarithmégativity £xr) with F' € [1/16, 1].

F is a quantity that determines the mixedness of the state faredeby equation 4.28. The
red line is for the original entanglemeéii when the total spind/; are unrestricted, whereas
the green line is for the entanglement in the discardingrabtef, when M for each party
must be 0, and the blue line is for the averag€pf £p, over all possible combinations of
(= 0, +2). Note that, > £p always, even though sometimés > &,. (a) Bothd; and6,
have been set to/4 to produce the plots. (b) Both andf, have been set 47 /25.
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enough resolution to determine whether or not the systeita® this region, then character-
ising the entanglement remaining in the correspondingesiggmble (the local entanglement).
Our approach is particularly simple to implement for puraest, since in this case the sub-
ensemble in which the system is definitely located in theireduegion after the measurement
is also a pure state, and hence its entanglement can be sitmuigtcterised by the entropy of
the reduced density matrices.

Even though the thought experiment described is based dtiomosoordinates, our local
approach to entanglement is not limited to only the analykgpatial entanglement. To clearly
illustrate this point, an example of the application of ouethod to states of a simple spin
system, where Alice and Bob share two pairs of spin-1/2 gestiis given here (whereas the
application to the analysis of spatial entanglement isugised in detail in the next chapter). It
is shown how the amount of entanglement located in the cheggon (in this case th&/, = 0
manifold) varies as the characteristics of the states dhayeAlice and Bob are altered. We
presented results for both pure and mixed states, and shawehtanglement is affected by
parameters of the states, in this case the “mixedngsgioth qualitatively and quantitatively.
The entanglement in the discarding ensenthiein some situations can be “concentrated” to
be higher than the original entangleméiip) of the statey but theaverageentanglement in the
discarding ensemblép, is always less or equal to the original entanglement (eguati25).
We have only discussed systems wiliscretevariables here but our local approach can also
be used to analyse entanglement arising framtinuousdegrees of freedom (not only spatial
coordinates), which actually is one of the major strengtheus approach. From this point
onwards, we will concentrate exclusively on continuousalde quantum entanglement.

Our approach suffers from the disadvantage that there ismasle on the entanglements
in the discarding ensemble: the sum of the entanglementsdiiothe sub-regions defined by a
given decomposition of configuration space does not yiedih entanglement of the system.
Instead, the entanglements from the sub-regions satisfiniguality in equation 4.25. Further
studies will therefore be needed in order to understand irerdetail the relationship between

the local entanglement and the global entanglement.
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Chapter 5

Entanglement Distributions: Mapping the
Entanglement in Coupled Harmonic

Oscillators

5.1 Introduction

Studying the entanglement properties of a number of spatatended many-body systems
including spin chains, coupled fermions, and harmonicliagois [ON02, OAFF02, VLRKO03,
LRV04,JK04,ZW02,MD,AEPWO02,PHEO04, Ved03] has both givefiormation on the potential
uses of these systems in quantum information processibyialied insight into their funda-
mental properties. The ground states of these interactisigms are generally entangled due
to interactions.

In this chapter we address the questiamhere in configuration space is the entangle-
ment between two particles locate8pecifically, we investigate the location dependence of the
ground-state entanglement between two interacting stdragsy applying our local approach,
described fully in Chapter 4. We choose a pair of coupled barmoscillators as an example,
since this is a system for which many exact results are dlaillAEPW02, GWK™03]. We
assign one oscillator to each of the two communicating @surilice and Bob, but perform
a thought experiment in which one or both of them first meatfiugesystem in configuration
space, with just enough precision to localise it in some ehaggion, and thereafter are re-
stricted to operations only within that region. We ask hois thstriction affects the spatial en-
tanglement available to them for other purposes—for exanipt teleporting additional qubits
between them. Our research is concerned with the entangtdmeéveenocalised particles,
and hence contrasts with previous studies [BR04, PEDCO&0[] of the entanglement of a
finite region of space with the rest of the system.

We shall focus on studying the variations of the entangldérperperties with the size of



5.2. Quantum Harmonic Oscillators 58

the region. For the present the two particles are assumee disbnguishable. We argue that
the shared entanglement remaining to Alice and Bob prowadeatural measure of where in
configuration space the entanglement was originally lata&érst, we introduce the system of
interest, the ground state of coupled harmonic oscillaiarSection 5.2. Then, two different

ways to numerically compute the local entanglements, aigunapping of the entanglement
distributions with variable resolution, are described gti®n 5.3. Results are presented in
Section 5.4. Particularly, it is shown that the entangleindistributions are very different from

that of the classical correlations. Last, we summarisdlipriie Section 5.6.

5.2 Quantum Harmonic Oscillators

Consider a harmonic system with a Hamiltonian (taking 1)

. T( Vmw? /2 0 )
H=R R, (5.1)
0 ]lN/(Zm)

where the vecto? of quadrature operators is given by the positidtis= X; and conjugate
momentaR . ; = Pj, for1 < j < N, the positive-definiteV x N matrix V contains the cou-
pling coefficients among the positions, ands the natural frequency of uncoupled oscillators
of massm. For a translationally invariant system the potential imatements depend only on
the difference between the indice¥.; ;, = v(_p)moan for 1 < j,k < N. The covariance

matrix v (equation 3.43) of the ground state is then [AEPWO02]

1
v = 5(@697”%)

1 V—1/2

5

o me1/2). (5.2)
mw

The ground state we seek is an example of a Gaussian statdefbigy matrix of a Gaus-

sian state forV degrees of freedom can be written in the coordinate repratsam [SSM87]
as

p(a;q’) (5.3)
- <2>N/2<det L)H?

s

(alpld’)

1 i
exp | -a7La ~ a7LG - (@~ @) M@~ o) + 50~ ¢)TK@+ ).

whereL, M and K are realN-dimensional matrices witlh, and M symmetric, whileK is

The density matrix of equation 5.3 describesemtredGaussian state, i.e. one wi{l) = (P) = 0. The
results in this thesis are also valid for displaced Gausstates since displacements can be implemented by local

unitaries.
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arbitrary. These matrices are related to the covariancexmaby

T
1 1 0 2L 0 1 0

57 1_ e . %(L+M)_1 w1 ) (5.4)
We note that for a pure Gaussian st = 0 andK is symmetric. Since the Hamiltonian given
in equation 5.1 has no coupling between position and momertriables;y is block diagonal
and henc& = 0. Furthermore if there are only nearest-neighbour interasf with a Hooke’s-
law spring constanf(, the interaction strength is characterised by the singleedsionless

parameter
2K
mw?’

(5.5)

o =

For the two-oscillator ground state we therefore have only mon-zero matrix (see Ap-

pendix A for details):

L mw 1+\/1+40¢ 1—\/1—1—401 (56)

4 \1-T¥4a 1+V1+4a

The one-particle reduced density matrices can then beyedx@ined by quadrature; for Parti-

clel,

o0
p(qa;ds) =/ dgpp(qa,qB;d4,aB)

— 00

2U1 — 2U2
= 4/ — exp[—v1 (g% + ¢'3) + 2v2qadl), (5.7)

where the state is normalised to unity and the constangndv, are

(L1g + Loy)?

8Loo
1420+ 3v1+4a
= mw (5.8)
4+ 41+ 4o

vi = Li;—

and

(Ly1g + Loy)?
8L99

142a—+1+4
= +a + % nw (5.9)

4+ 41+ 4o

where{L;;}, 1 < i,j < 2, are the elements of tHe matrix. From equation 5.7, we can also

Vy =

define the Gaussian characteristic lengtivhich characterises the probability distribution of a

single particle:

N

(v1 +v2)”

1 (s

N =

[NIES

. (5.10)
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In the case of the ground state of our system, the entangtéméeatermined b¥/

wlogy w

Su(p™) 2—10g2(1—w)—m7 (5.11)
where .
1+3\/1+4a+2[a—(1+4a)4—(1+4a)3] (5.12)
1+2a—+vV1+4a ' '
5.3 Method

Because only the ground state is considered here, we canlatalthe von Neumann entropy

Sv(pg), and hence the local entanglement, numerically by usingdifferent approaches.

5.3.1 Expansion in a complete set

We define an orthonormal set of functioRs (¢) }, with support in a regiond of configuration
space of widtl2a centred at coordinatg
7ta
[ stwsita = (5.13)
q—a

A suitable choice is

¢ilq) = \/gcos(%) iis odd

bi(q) = ﬁm(%) iis even (5.14)

= 0 if |¢g—q|>a
We then approximate the appropriate post-selected demsityix by an expansion in a
finite set of the functions defined in equation 5.14; as an @k@nif only Alice makes a pre-
liminary measurement to localise her particle in the regignve have the density matrix in the
discarding ensemble as (see Section 4.2.2. For simpliggywill drop regions ‘A* and “B*

from the previously used notatiqyg 4 from here onwards.)

B(aaidh) pr(bz (q4)85(da), (5.15)

with p;; given by

gata ,
dQA / dgy
ga— q

Ga—a

&5 (qa)p™ (g5 d4) b5 (), (5.16)

where p”(q4;¢) is given by equation 5.7. We normalige}(qa; ¢4) by its trace and can

then quantify entanglement by calculating the von Neumantropy from this normalised

2Qur derivation is in Appendix A. A similar but much more comig treatment is published earlier elsewhere

so that the entanglement of general pure Gaussian two-ntaids $s known exactly [RRO5].
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pg(qA;q'A). Unfortunately the quadratures in equation 5.16 must bfoeed numerically,

making this approach quite time-consuming.

5.3.2 Configuration-space grid

We therefore explored also a direct real-space approackhich we firstdiscretisethe con-
figuration space into a finite number of measurement “birtsntselect only those bins that
correspond to the regions within which Alice’s and Bob’spedive particles localise. For ex-
ample, consider again the case in which only Alice makes kngrery measurement, if the
region isga — a < qa < qa + a, we divide this space intd/p regions withNz + 1 equally
spaced pointsg(y’s) covering the intervals fromy = g4 — a t0 ga + a. We then build the
(Np + 1) x (Ng + 1) post-selected one-particle reduced density matik; ¢;) by calcu-

lating its elementg;;’s from the one-particle reduced density matrix, equatiah 5
pij = p(dhiq)) for 1<i,j<Np+1. (5.17)

As in the other approach, we calculate the von Neumann gnofine normalisedag(qA; q4)
in order to quantify the entanglement.

Note that if on the other hand both parties make a prelimimagasurement, we start
from the full 2-particle density matrix and apply Bob’s mgions with respect to his oscillator
before we reduce it into the one-particle density matrixAtice’s oscillator.

We compare both approaches in Figure 5.1 by computing tlaé émtanglement (the von
Neumann entropy,,) in the case described later in Section 5.4.2.1 with varyngvhich is the
number of expansion functions in equation 5.15 for the egjpanin-a-complete-set approach
(the blue line) but is the number of bimgp for the configuration-space-grid approach (the
red line). 2a = 4, § = 0 anda = 6 for all the calculations. We find that results from the two
approaches converge to the same value as the number of grtd, o the number of expansion
functions, tend to infinity but the expansion-in-a-comg@lsét approach is prone to numerical
errors and takes much longer to compute. Therefore, we edadhat the grid-based approach

is superior, and it has been used for all the results pregémthis chapter.

5.4 Results

5.4.1 The limit of very small region sizes

For the Gaussian system described in Section 5.2, the dataagt can be evaluated analyti-
cally in the limit of very small region sizes by following thmethod described in Chapter 6.

Here we briefly describe the relevant results for completene
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Figure 5.1: Comparison of the two methods for quantifying ltbcal entanglement (measured
by the von Neumann entrop§,) numberically. Method 1 (the blue line) is the expansion-
in-a-complete-set approach (described in Section 5.3hievivethod 2 (the red line) is the
configuration-space-grid approach (Section 5.3/2)is the number of expansion functions in
equation 5.15 for Method 1, and is the number of biWys for Method 2.2a = 4, § = 0 and

o = 6 for all the calculations.

5.4.1.1 Only Alice’s particle restricted

Suppose only Alice makes a preliminary measurement, aratrdetes that her particle is lo-
cated in a region of lengtku centred at coordinaig,, as in Section 5.3j4 —a < g4 < ga+a.
In the discarding ensemble, the entangleme#iis= h(¢€) in equation 3.29 with
CL2(L12 + L21)2

12L9

e a(v1+4a—1)
6(1+2a++1+4a)

Note that this depends only @nand on the parameters of the underlying oscillator system; i

(5.18)

is independent af. Note also that the entanglement is non-zero for any nom<«zeand can be

made arbitrarily large (for a given very smal)l by increasingy.

5.4.1.2 Both particles restricted

On the other hand, if both parties make measurements, thaisb restricting Bob’s particle

to a region of lengtt2b aroundgp, the entanglement is once again given/tjy) but nowe
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becomes

a?b?(Lyg + Lap)?
9
a2b2m 22

- #(1—1—2@—\/1%—4@). (5.19)

Once again, this result depends only on the dimensionlasgling strengtha and the fun-
damental length uni(mw)‘l/2 of the oscillators; it is agaimdependenbf the location of
the centres of the measurement regions (this is the conseguwd equation 7.27). Later we
will see that a1 andb increase, the entanglement distribution gradually chasgethat more

entanglement is located at some parts of configuration gpacethe others.

5.4.2 Finite region sizes
5.4.2.1 Only Alice’s particle restricted

We will setm = 1/2, w = 1 and choose the Gaussian characteristic length (equati® for
an uncoupled harmonic system= 1, as our unit of length.

In this section, we consider the case in which only Alice nsekpreliminary measurement
to determine that her particle lies within a finite-size cegiSuppose that the size of this region
is 2a and the location of the centre of the regiojshe von Neumann entropfglv(pfg) depends
on both2a andg. This is shown in Figure 5.2. We look at the variation wijtfirst; Figure 5.2
along theg-axis shows some of the examples. For firitehe entanglement is higher if we
measure around the centre of the wavefunction, where tHeapility of finding a particle is
highest, than if we take our measurements further away fl@rcentre of the wavefunction
where the chance of finding a particle is very low.

We can understand this variation by examining Alice’s medected reduced density ma-
trix in the centre of Figure 5.27(= 0) and at the edgej(= +4). At the edge, the diagonal
elements increase rapidly towards one end; the eigenvaludgs density matrix are domi-
nated by these terms, resulting in one eigenvalue being ¢twd and the other eigenvalues
being very small. The von Neumann entropy will thereforedde small. In contrast, the di-
agonal elements in the centre case, instead of being dadibgta single element at one end,
are approximately constant. The resulting spread of eaaes leads to a higher von Neumann
entropy.

We would also expect that as the region size approachestdietmfiguration space, the
entanglement in the discarding ensemble should tend tontiaagement originally present in
the whole system; this is shown in the upper part of Figure Wwtire the entanglement rises

with a until it saturates to the peak value of magnituﬁiepg) = (.702 given by equation 5.11.
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ScaledS(p)
2a=16 2a=0.001 2a=16+ - — 2a=0.1
2a=0.1 A
el 2a=0.5
2a=0.5
0.6
2a=8 2a=1
2a=8 0.
2a=1 ,'0 4
2a=6 %a:% ! |
2a=2 ) a= S 0.2 AR )
\ 205 2 ! \»~d/20°) 5209
p e T/RTD; yo0.7¢ € =091
6 -4 -2 2 4 6 8 -6 -4 -2 2 4 6 g d

@a=6 (b) & =0.06

Figure 5.2: Top: Variation of the entanglemefit(p4,) with both the widtr2a and the centrg

of the preliminary-measurement region. Bottasia(p4) plotted againsg for different widths,
re-scaled such thaﬂv(pg) has the same peak value@t= 0. A plot (the black dashed line)
of the corresponding Gaussian probability distributionAtice’s particle, with a standard de-
viation o determined by the coupling strengih is shown for comparison. The different plots
correspond to two different coupling strengths, ¢ay 6 v.s. (b)a = 0.06. The number of

bins N used in the calculation was 200 in both cases.
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Roughly speaking, this saturation occurs once the regisrekpanded to include a significant
portion of the central part of the harmonic oscillator wawgdtion.

We have already seen that in the limit of smalhe entanglement becomes independent
of position. In fact, even for finite the entanglement is distributed very differently from the
probability distribution of Alice’s particle. This is shawin the lower part of Figure 5.2, where
the coloured curves show the entanglement (scaled to a cammagimum value) as a function
of g for different widths2a; for comparison, the black dashed plot shows the Gaussian on
particle probability distribution with standard deviatie given by equation 5.10. Note that the
width of the entanglement plot varies non-monotonicallyhwi: the entanglement is constant
in the limits of small and large, and has a minimum width arourdd = 2 (for o = 6). Note
also thatSv(pfg) is very small but is non-zero even for smallas expected from equation 5.18.

For comparison, we also present in Figure 5.2(b) resultsafaruch weaker coupling,

a = 0.06 compared withne = 6: for weak coupling, the entanglement has smaller peak salue
(= 0.00859 in this case) and its spread is narrower, but the qualitdéaéures are similar in
both cases.

5.4.2.2 Both particles restricted: entanglement distitins

Next we consider the case where both Alice and Bob make prelimjn measurements, but not
necessarily in the same way.

We start by considering two different cases; the first (Cags that both parties’ prelim-
inary measurements restrict their particles to regionh wigntical widths and centres & b
andg4a = ¢g), whereas in the second case (Case 2) the region widths ergathe but the
centre of Bob's region is always fixed around the centre ofitheefunction § = b, gg = 0).
The results, forx = 6, are shown together with the previous result (Case 3; onigeAhakes
a preliminary measurement, as shown in Figure 5.2(a)) forpawison in Figure 5.3. The en-
tanglement in the discarding ensemble of Case 3 is the highesf the three cases; this is as
expected, since the entanglement can only decrease umdadditional (local) measurements
made by Bob. When the widttu is small, the entanglement of Case 1 is higher than of Case 2.
However, ala increases, Case 2 converges more rapidly to Case 3 so teataisglement is
now higher than that of Case 1, uritit becomes so large that the differences between all three
cases disappear.
5.4.2.3 Both particles restricted: classical correlation
We now compare the entanglement distributions to the clalssorrelations between the par-

ticles. Suppose that Alice and Bob localise their respegbarticles to regions with the same

widths but different centres; the entanglement in the diing ensemble will depend on both
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Figure 5.3: Comparison of the two different cases of pralamy measurements done by both
parties together with the case that only one party makeslangmary measurement. The en-
tanglememSv(pg) is plotted against the centteof the preliminary-measurement region with
width 2a. (a) For2a = 0.5. (b) For other larger values @i. Red long-dashed line (Case 1):
Both parties’ preliminary measurements localise theitigias in regions with identical widths
and centreso = b andgs = ¢p). Blue thick short-dashed line (Case 2): The widths of the
regions are the same but one centre is always fixed arouneie of the wavefunction while
there is no restriction on the other centtie=f b, gz = 0). Black thin solid line (Case 3): Only
one party makes a preliminary measurement. In all threescise number of bins used in the

calculation isNg = 100 anda = 6.
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g4 andgg. We shall compare the entanglement distribution with tmagicle probability dis-
tribution P(q4 € AN gp € B), and the conditional probability distribution for Bob’sriale
given the position of Alice’s particleP(¢p € B | g4 € A).

The two-particle probability is

data dB+b
Plgae AngpeB) = / dQA/ dgp
q q

A—a B—b
p(qa,9B; 94, 48B), (5.20)
and in the limit of smalk, b we have
P(ga € ANgp € B) = 4abp(qa,dB; 44, dB). (5.21)

The conditional probability is

P(ga € ANgp € B)
P(ga € A)

PlggeBlgqacA) = , (5.22)

whereP(q4 € A) is the one-particle probability. In the limit of smaill b this becomes

(A, 7B 74, 4B)

P
PlggeB|lgae A) =2b - 5.23
( B ‘ ) PA(QA,QA) ( )
In each case the small-b limit can be easily evaluated: we find
o 74 + qp)* 74 — qB)*
a3, ) = Goexp(— A LIS (04— 07 (5.24)
loprd 207
with ‘classical’ standard deviations
1
A —
2(L11 + ng)
= V72, (5.25)
1
c
0‘_ =
2(L1y — Li2)
- (= (5.26)
Vi+da® '
and
p(da; 5344, TB) T3 | dads _ Tp
= (3exp(—=5 - == 5.27
gy O T oge T o) (5:27)
with
4
g =
! (L1 +v2 —vy)
1+ vV1+4da)(1+200++vV1+4a) 1
= )2; (5.28)
402
1
o9 =

4L
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Figure 5.4: Dependence of the entanglemﬁg\(tpfg) on the locations of the centres of the
preliminary-measurement regiofig andgp. (a) the width2a of the regions is 0.5. (Da = 4.

In both casesNg = 100 anda = 6.

2

1
_ 3. 5.29
Sy ik (5.29)
1
012 = STt
_ 1 )b (5.30)
- Y V1+da-1"" '

where(, and(s are normalisation constants.

For finite a andb we capture the shape of the distributions by fitting the nically cal-
culated values oP(g4 € ANgp € B),andP(qp € B | g4 € A) using the same expressions,
equation 5.24 and equation 5.27, thereby extracting naalevalues foro¢, 01,2 andoya.
We also use the function, equation 5.24, to fit the entangi¢mlistribution, thereby obtaining
two further parametensi2 which quantify the extent of the entanglement distribuidong its
principal axes.

As before, we takex = 6. In Figure 5.4, we show two cases of entanglement distobati
for different widths 2a = 0.5 and2a = 4) of the preliminary-measurement regions. We
see that the entanglement distribution with lar@eris more symmetric. The corresponding
joint probability distributions and conditional probatyildistributions are shown respectively
in Figure 5.5 and Figure 5.6. (Note that the figures show wifferange ofj4 andgg.) The
classical probability distribution® (g4 N g5) are more localised and symmetric in space than
the entanglement distributions.

In the limit of very smalla, Sv(pf,‘) is constant everywhere (equation 5.19)3§0and09

must diverge; the results in Table 5.1 show thﬁtdiverges more quickly as reduces, while
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Figure 5.5: The dependence of the classical joint probghitiq4 € AN gp € B) ongy and
- (@)2a = 0.5. (b) 2a = 4. In both casesy = 6.
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Figure 5.6: Dependence of the conditional probabilty;z € B | g4 € A) ongs andgg. (a)
2a = 0.5. (b) 2a = 4. In both casesy = 6.

a=206 ag 09 ag o¢ o1 09 019
2a — 0 00 oo | 1.41| 0.632| 0.866| 0.577 | 0.500
2a =0.5 1104 2.29| 1.43| 0.665| 0.937| 0.603| 0.531
20 =4 | 3.44|210|237| 200 | 11.0 | 1.53 | 2.64

Table 5.1: Table of values fora = 6.
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the two parameters become comparable for largs the entanglement distribution becomes
more symmetric. Indeed, the distributions of the entangle#nand the classical correlations
become more alike &: increases, because both distributions are flat out to andisteeither
side of the wavefunction’s central peak.

We can also study the effect of varying the coupling strengfbr a fixed (small2a. We
plot ¢¢ and o againsta with 2¢ = 0.5 in Figure 5.7a whereas?, o<, o1, o2 andayy in
Figure 5.7b. The entanglement distribution is the most asgtrical and asy increases, the
difference betweenf ando? widens. Of the guantities determining the classical proipab
distribution,ag remains constant with increasing butc® gradually decreases. These trends
arise because the two particles tend to move together wieegpiting joining them becomes
strong. Therefore, as increases, the white rod in Figure 5.6 rotates about thee@ftthe
square from the lingg = 0 towards the diagonajs = §p. o1 is always the largest out of the
three parameters for the conditional probability distiifno. For weakx, o142 is larger thanry
but asa: becomes larger, at some point the two plots interceptoands no longer larger than
09.

How in the limit of very smalla these quantities (equations 5.25, 5.26, 5.28, 5.29, 5.30)
vary with « is shown in Figure 5.7c. We see that the behaviour of thesatitjea does not
change much, compared with the previous results vitaes 0.5, apart from that the intercep-
tion points happen at smaller. Note thatag diverge asi — 0, so these parameters are not

shown.

5.5 Non-Gaussian Mixed States

5.5.0.4 The state

Even though we have so far only considered Gaussian puesstais also straightforward to
apply our local approach to map the entanglement distdbatbf non-Gaussian mixed states,
provided we use suitable quantities as the entanglemensureffor example, the negativity

N). Here we will provide an example to demonstrate this.

Consider a mixed state that is a mixture of Bell states:

pe = pIOTHT| + (1 —p)[TTN(TT] (5.31)

_ 1_27(|oo> + |11>> (<00| n <11|> L4 ;p) <|01> n |10>) ((01| n <10|>, (5.32)

with a probabilityp. Note that whemp = 1/2, the statep, is separable. By choosirjg) and|1)

as the ground state and the first excited state of a systenavintimite symmetric square-well
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Figure 5.7: Plots ot ,, 0_, 01, 012 andos againsta. In the plot legend() stands for the
‘quantum’ entanglement distribution addfor the ‘classical’ probability distribution. (a) and
(b): Numerical results2a is chosen to be 0.5 for all the cases. (c) Analytical resuitshe

limit of very smalla.
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potential (fromg = —0.5 to ¢ = +0.5) [Zet01]:

0) = V2cos(mq) (5.33)
1) = V2sin(27q), (5.34)

pe describes a non-Gaussian continuous-variable system.

5.5.0.5 Results

(a) 2a = 0.001

-0.4 -0.2

(=)

0.2 0.4

<l
>

(b) 2a = 0.1

Figure 5.8: Dependence of the entanglem&fitop) on the locations of the centres of the
preliminary-measurement regiogg andgp for a non-Gaussian mixed statg, described in

Section 5.5. (a) the widtha of the regions is 0.001. (2« = 0.1. In both casesNp = 20.

The statep. with p = 0.2 is chosen as an example. We consider the case where both
parties make preliminary measurements and the rest of #igsasmfollows from Section 5.3.2.
Note that here the entanglements are quantified by the migathe original density matrix

pe Will be discretised instead of the reduced density matfix The widths of the measured
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Figure 5.9: Dependence of the joint probabil®(q4 € AN gp € B) on the locations of the
centres of the preliminary-measurement regignsandgp for a non-Gaussian mixed statg,

described in Section 5.5. (a) the width of the regions is 0.001. (2« = 0.1.

regions are the same for both parties- b. In Figure 5.8, we show two cases of entanglement
distributions, by moving the centres of the measured regjonand gz within the potential
well, for different widths: (aRa = 0.001 and (b)2a = 0.11. The corresponding distribution of
the two-particle probability?(q4 € ANgp € B) (as defined by equation 5.20) is also shown in
Figure 5.9 for comparison; the widths are se2éo= 2b = 0.1 and the region centreg, and

Gs, vary from —0.45 to +0.45. Interestingly, the entanglements are not the highestaaiegl
where the particles are most likely to be found in contragii¢oearlier Gaussian examples. We
can also see that the entanglements are "concentratedticutar places, and the entanglement

distribution is broadened out for the larger region.

5.6 Summary

Our local approach to entanglement (Section 4.2) is appliatetermine the location in con-

figuration space of the entanglement between two intedirbsystems. Specifically, we
consider states of a continuous-variable system in whiagteAlnd Bob share a pair of coupled
harmonic oscillators is given. The results are presentedfasction of the strength of the cou-
pling between the oscillators, as well as of the size andilmtaf the preliminary measurement
regions. In all cases the remaining entanglement satui@tee total entanglement of the sys-
tem as the measured regions become large. For small measgieds the entanglement tends
to zero, but for a fixed region size, the configuration-spacation can be varied in order to
give a variable-resolution map of the entanglement digtioln. We find that the distribution of

the entanglement is qualitatively different from the clealscorrelations between the patrticles,
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being considerably more extended in configuration spacaetti@joint probability density and
becoming more and more diffuse as the size of the regionsdses.

An example is also given to demonstrate that it is straightdod to apply the local ap-
proach to make a variable-resolution map of entanglemsairildlitions of mixed non-Gaussian
states by using suitable quantities (for example, the nétyat\') as the entanglement measure
instead of the von Neumann entrofy that is applicable only to pure states. The entanglement
maps show that the entanglements are concentrated at setioepof configuration space and
by increasing the size of the measured region, the entaegledistribution is smoothed out.
The previous Gaussian example shows that the entanglensgmibution and the joint proba-
bility distribution peak around the same region of spacethis is not true in this non-Gaussian
example.

We conclude that this approach therefore provides an apeehtanswer to the question of
how much entanglement was originally located within thesgmoregion. We shall thus focus
on the limiting cases where the sizes of the chosen regiensxairemely small in the rest of the

thesis, surprisingly many interesting results can thendreld.
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Chapter 6

Entanglement in General Two-Mode
Continuous-Variable States: Local Approach

and Mapping to Two-Qubit Systems

6.1 Introduction

In this chapter we demonstrate how to apply our local appréadhe analysis of continuous-
variable entanglement, allowing entanglement to be dfiedtlocally in general (including
non-Gaussian) smooth two-mode continuous-variablesstate follow the approach, laid out
in Section 4.2 and applied to some harmonic system in Ch&pteut this time we consider
the limit where the sizes of the preliminary regions are sgpd to be extremely small. In-
terestingly in this limit, the description of each mode ie tontinuous-variable quantum state
becomes isomorphic to a single qubit. This enable us toelsiple closed-form formulae for
local entanglements (concurrence and negativity), yieldiatural definitions for corresponding

densities in configuration space.

First, we treat the pure states in Section 6.2 by making thedi@ler Taylor series approx-
imation; the use of the approximation is justified in the dmegion limit. Next, the analysis
is extended to mixed states in Section 6.3, where we giveettiper to compute the local con-
currence numerically and derive an analytical formula far bbcal negativity. We apply our
formula to two-mode Gaussian states in Section 6.4 and sbemtle two local entanglements
are simply related (differing only by a factor of 2). Somemexdes of non-Gaussian states are

then analysed in Section 6.5. Finally, we summarise in Se&i7.
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6.2 Pure States

6.2.1 Preliminary measurement on Alice’s particle only

The localising process is as described in Section 4.2. Sapihee state is pure; so isp. It

is therefore straightforward to calculate its local entangent from the von Neumann entropy
of the corresponding reduced density mayrﬂ = Trp[pp]. Suppose further that the initial
preliminary measurement is performed by Alice only, by deiaing whetherg 4 lies in the
region A := {g4 —a < ga < g4 + a}, and all instances in which this is not the case are
discarded. Now, since is to be very small, Alice’s original reduced density maipi (be-
fore the measurement) in the neighbourhood pftan be expanded (provided it is smooth in
configuration space) ds

A

pMqa,dy) = pr@u + 2,34 + ) (6.1)

= pbh + piha + povy + piizy + 02, y?),

where
oo™
A _ A
Prm = 8(]An 8(]f4mp (
Within region A, p4 is obtained by rescaling* according to equation 4.2, whete[E 4 p] =
2a[pfh + O(a?)].
Now seek right eigenfunctions,, of pg within the regionA:

(6.2)

QA7q/A)‘

qA=q'4,=qa

/ " 4y o (1) bn(y) = Adn(@). 6.3)

—a

Expandinge,, as a power series
$n(@) = an + by + O(2?), (6.4)

the eigenfunction condition becomes a matrix-vector égnaiperating on the expansion co-

efficients{a, b, ...}:

A A
2p640 0 p% 2’)% o an,
1 A
204t |+ LT b
2alpfy + O] || 0 L '
an an

1The low-order Taylor series approximation is well justifiéd practice any state that could be prepared would
be smooth and differentiable; in such cases Taylor's theaasures that the expansion we use becomes rapidly
better for small region sizes. Later in this chapter, Figueshows explicitly how the local entanglement converges

to our predicted small-region limit as the region size idear
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Expandingdet(M — A1) to ordera* and equating to zero, to ordet, the non-zero eigenvalues

are:
a? A A A A
A= W(Pnﬂoo‘ﬂmplo)
Ay = 1= ). (6.6)

So to the lowest non-trividlorder @?2), the eigenvalues, and hence the von Neumann entropy

of pr‘, are entirely determined by the quantity
€= /\1. (67)

Specifically, the von Neumann entropy in this casé‘Jspfg) = h(e) in equation 3.29. Note

that if Alice’s state is pure,

p(qa, ) Y(qa)*(da)
= ph (@)™ (@a)
op(qa) _
A %
P10 dqa ‘qA:qAT/) (QA)
_ L O0U*(dy)
A A
Po1 ¢(QA) 78(]14 ¢\~
OYP(qa) oY*(qy)
A —r JAJ 6.8
eyl P P (6.8)
and therefore
p1ipto = Po1Pi0s (6.9)

s0S,(p7) is zero as we would expect.
To find the leading corrections to this result (equation 6848 include all terms propor-

tional toz? or 2’2 in the expansion 6.1 fq5A:

ph@sa) = phy + piow + pora’ (6.10)

1

+§(Pé40952 + piha® + 2piyaa’)
1

+§(Pé4195295, + piyza’®)
1

+Zp§42:1323:'2 +O(23,23).

2If the amplitude of the wavefunction (or density matrix) isrfectly constant over the measurement region,
there is no entanglement. Indeed, this is why we find no tertherocal entanglement zeroth-order in the region
size. Our point is that by capturing the extent to which tlaesisnot constant (through including the lowest-order
non-constant terms in its Taylor expansion), we extracntiost important contributions to the local entanglement

for small region sizes.



6.2. Pure States 78

and then carry equation 6.4 to third order:

1 1
On(x) = ap + bpx + 5%952 + Ednwg + O(x4). (6.11)

From the eigenfunction condition 6.3, we find the third nemnezeigenvalue to be

4
a

Ag = (ptapi Pt

90k (Ph1P10 — P11PHO)

A A A A A A A A A
+P01P22P10 Tt P12P00P21 — PO1P12P20

—plopbard — P640P11410§42) +0(a®). (6.12)

Therefore, the corrections due to higher eigenvaluesingrisom the higher-order terms in
equation 6.1, affect (and hence the local entanglement) only to oraer This provides a

measure of the extent of the breakdown of the approximation.

6.2.2 Preliminary measurement on both particles

Itis possible to generalise this analysis to the case wiateAlice and Bob make a preliminary
measurement to localise their particles, within regighs= {G4 — a < g4 < G4 + a} and

B :={Gp—b < qp < qp+b} respectively. In that case one can expard a joint power series
in {qa,dY4,qB, R}, calculate the reduced density matpi% (also as a power-series expansion)
and proceed as above. However, further insight can be autdy an alternative approach.

Define for both Alice and Bob two-dimensional state spacesisting of

Gao(zr) = \/;; Par(w1) =4/ 2%3961;
éBo(r2) = \/;; op1(z2) =1/ %332, (6.13)

which are orthonormal on the intervalsa < 1 < a and—b < xo < b respectively;¢q
represents the constant component of the wave functiongatite spatially varying part. So
long as terms varying as” or higher can be neglected, a Taylor expansion of the joaiest
to linear order (equation 6.1) is equivalent to expanding the basis (equation 6.13), thereby
reducing the joint system to a two-qubit one. It can be shavopéndix E) that the third
largest eigenvalue gf4 (corresponding to the extent to which the two-qubit appration
fails) is now of order(ab)*.

We can now use any of the standard measures of the entangleftiea two-qubit system.

For pure states, the tangle [Wo098c] is

1 1 \?|4a2b? ?
T=1 <Gb|¢oo|2> 3 (Yoot11 — Yorv0)| (6.14)
where
or o™
Ynm = dga” WWQA’QB”%:@MB:%' (6.15)
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The prefactor in equation 6.14 comes from the normalisat@rdition
a b
/ d; / daralup (a1, )| = 1. (6.16)
—a —b
The entanglement is therefore
h((1—vV1—7)/2) =h(r/4+0O(7%)). (6.17)

By analogy with the definition of concurrence = /7 for two-qubit states [Wo098b], we

define theconcurrence density = C/(ab) such thatr = (cab)?; then

2
= 3—[P1100P0011 + pPoooopP1111

£0000

—p1000P0111 — PotooP1011) Y2, (6.18)
where
oS N LA, ;o

ikl = - - qA,qB; 4, q : 6.19
Pig 0qa’ gy’ dqp* 8qj9lp( 4,45) q4=q4=04,98=05=Tp ( )

For pure statesy; jr; = zpikw;fl.

The negativity\V, defined by equation 3.34 can also be computed. For pures stetga-
tivity and concurrence are simply related [EP99, CAF0%]= C/2.

The accuracy of the two-qubit approximation is guarantéadsfficiently smalla andb)
by the fact that each party’s reduced density matrix has twadynon-zero eigenvalues of the

density matrix to ordefab)?.

6.3 Mixed States

The mapping to a two-qubit system applies also to mixed statbere exact recipes for the
entanglement of formation [Wo098b] and other measures moevk. We find that for mixed
statesp with the rank greater or equal to 4, all eigenvalugsof pp (as defined in [Wo098b],
where is the “spin-flipped” matrix) are at leading order propomt to (ab)2. However, the
rank determines the number of eigenvalyeghat are non-zero to ordénb)? so the rank-1
states have only one non-zero eigenvalug) (o order(ab)?, the rank-2 states have only two
(13, p4) @and the rank-3 states have only three, (43, 14).

The local concurrence is determined 8y= max{0, \/fia — /13 — \/f12 — \/H1} SO
again there is a well-defined concurrence densitgince the local concurrenag o« (ab)).
These leading terms (and hence the concurréyoan be found by solving a quartic, although
its roots are not simple in general. The solutions for rargteles are nevertheless given in

Appendix B.
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6.3.1 Negativity

Particularly simple expressions can be found for the loegativity of a mixed state. The

eigenvalues of the partially transposed density maifix are found to be

A o= 1—Apa® — Ayb? — Bia?h? 4+ O(a*, b

Ay = Chad®? 4+ O(a, b

A3 = % (D1a2 + Dob® + \/AC1a2b? + (D1a? + D2b2)2) +O(a*, b*)
Moo= % (Dla2 + Dyb* — \/4C1a%b? + (D1a® + D2b2)2) +0@a*,bY)  (6.20)

where Ay, As, By, Cq, Cy, D1 and D, are all real numbersD; and D, are always positive
(Appendix C). OnlyC, Cy, D; and D, are important for quantifying the local entanglentent

and their exact expressions are.

1
D, = 3 5 (11000000 — £0100£1000); (6.21)
£0000
1
Dy = 5 (P0011 0000 — £0001£0010); (6.22)
300000
1
C1 = 9 3 (Poooopomlplolo + £0011£0100£1000 + £0010£0001 21100
£0000
— 000101001010 — £0000£0011L1100 — L0010L1000£0101); (6.23)
—1
Cy = Q1 4 (P0101/70110/71001P1010 — 01000111 210011010 — L0101 2011010001011
81 C1 poooo

+£0100P01111000£1011 — £0011£0110£1001£1100 + £0010L0111L1001 L1100
00001 £0110£1011£1100 — L£0000£0111L1011L1100 + £0011£0110£1000£1101
—P0010£0111L1000£1101 — £0001L0110£1010£1101 + £0000£0111 10101101
+P0011£0100£1001P1110 — £0010£0101£1001£1110 — L0001£0100£1011P1110
+0000£01011011£1110 + L0001£0010£1101L1110 — L0011£1101L1110£0000
—P0011£0100£1000P1111 T+ £0010£0101 2100001111 + L00010100£1010L1111
—P0000£0101£1010P1111 — P0001L£00101100£1111 + L0000P0011L1100P1111)-  (6.24)
The entanglement can be quantified by the negative eiganvahd in the effective two-

qubit approximation, there is only one negative eigenvfiddDMO01]. We will now discuss

which X is negative under all the possible circumstances.

3Local entanglement should vanish when eithar b become zero. If\; is negative, the local negativity will
depend on it. In this case, we can always find some sufficiemigll values ofa andb such that\; becomes
positive, whatever the values of the coefficieAts A, and By, to make the local entanglement vanish at some very
small but non- zero values afandb. Combined with the fact that the partial transpose of a twbitcdensity matrix

has only one negative eigenvalue, this implies thamust always be positive.
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We note), and \4 are invariant under the change of sign of eithesr b; provided that
C7 > 0, \4 is always negative, and it becomes zero when either b vanishes so there is
no entanglement\| = 0) as expected. The negativity in this case is second orderimd b.
However, ifC7 < 0 andCy > 0, the state is unentangled whereag€’if < 0 but Co < 0, A\s
becomes the only negative eigenvalue, and hence the riggatithis case is proportional to
(ab)?.

It is worth noting that there is also no entanglement whené4e= 0. Since the pos-
itivity of the partial transpose of a state is a sufficient dition to prove that thalistillable
entanglemenis zero, there is no entanglement if eitliér= 0 or C; < 0 andCs > 0 is true.

When the initial joint quantum state is pure, reduces t@’, i.e. Co = (4 for pure states,
while Dy and D, vanish, and”; reduces to the same expression for the pure-state concarren
divided by 2, i.e?

V) =40 (6.25)

as what we would expect (with our definition of negativityy otwo-qubit pure state.

We could not analytically obtain the eigenvaluesppfin the most general case but we
found from our calculations that the concurrence is alwagpg@rtional to(ab) in the leading
order for any smooth two-mode state in contrast to neggtifiherefore, equation (6.25) does
not generally hold for mixed states. This observation isseiant with the prior study [MG04]
on the ordering of two-qubit states with respect to conaureeand negativity: the concurrence
and the negativity are the same for two-qubit pure stabes for those states with the same
concurrence, their negativity can vary between the maxinanch the minimum. In general,
the maximal negativity of two-qubit mixed states with a fixamhcurrence can never exceed
that concurrence [VADMO1] while the minimum negativity isoportional to the concurrence
squared (for small concurrence) [MGO04]. It is not surpgsthen that the maximal local neg-
ativity is proportional to(ab), like the local concurrence, but the minimal local negéativs
proportional to(ab)? instead.

Also, the local concurrence depends only on the “argga*whereas the local negativity
depends on the “shape” (i.e. anb separately) as well. However, if we seek the maximum
negativity while keeping ab) fixed, we find this occurs whea?D; = b?D,, to define the

maximised negativitgiven by (only valid forC; > 0)

Naax = (\/C1 + D1 Dy — /Dy D3)ab, (6.26)

4For pure states, as we will see later, we can apply equatibtodbtain these results.
5They define the negativity in a way that makes it exactly twiwes larger than our version.
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and subsequently obtain the correspondiegativity density. = Np../(ab) given by

n = \/Cl + DDy — \/DlDQ. (627)

Here we maximise the negativity by varying the shapé) for a fixed stateNote the contrast
with the approach of Miranowicet. al.[MGO04], where the states are varied so as to change the
negativity while keeping the concurrence constanta givena andb.

Since the local negativity of two-mode mixed states can bdihgdetermined by our very
simple closed-form formulae, this may lead one to wonderthdrehis result is straightforward
to be extended to multi-mode mixed states. Unfortunathly,is not the casé However, local
entanglement of mixed states of higher-dimensional systesn still be easily computed nu-
merically, provided the state is exactly known and the neigja{or the logarithmic negativity)

is the chosen entanglement measure.

6.3.2 Bound states.

It is known that there is no bound entanglement for a twogsystem. For (global) bound
states, our local measures will give no local entanglemecabise there is no distillable entan-
glement\ = 0 and it follows that concurrence is also zero in the effective-qubit approxi-

mation.

6.4 Gaussian States

Thecharacteristic functiory is defined in terms of the Weyl operatidf (takings = 1) through
X(X,P) = Tr(pW (X, P)); W(X,P)=¢XP=Fa), (6.28)

where the position operator is denoteditgnd the momentum operator pyA statep is said to

be Gaussian when its characteristic function is a Gaussiphase space. This important set of
states includes both thermal and ‘squeezed’ states of macregstems and plays a key role in
several fields of theoretical and experimental physics; seethem as an example because their
entanglement properties are better understood than thasleer continuous-variable systems,
while recognising that our approach is general. The coomdipg configuration-space density

matrix p(q; q’) can be written as in equation 5.3. In order fgg;q’) to be a valid quantum

SLater, we will show that the local concurrence and the loegjativity differs only by a factor of 2 in the limit
of very small measurement regions for any multi-mode bifgapure states (equation 7.24) and siggiaredconcur-
rence has a simple summation structure with linear corntdbs from each mode (equation 7.25). Consequently,
each mode contributewn-linearlyto the (non-squared) concurrence, and hence the negaiityell. This non-
linear structure of the local negativity for pure multi-necstates therefore makes the derivation of the correspgndin

mixed-state results a non-trivial task.
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state, the parameter matrices must have the following ptiepeL. > 0, L + M > 0 and
M > 0, such that the diagonal elements of the matrices safigfy> 0, (L;; + M;;) > 0 and
M;; > 0 for all 5. In contrast to Section 5.2, here we are interested in thes&au state in its

most general form so all matricek,(M andK) are assumed to be non-zero.

6.4.1 N = 2: General states

The density matrix of a general two-mode Gaussian stateiftewras

plq1, a2 41, 6) = %(L11L22 — L3)"? exp| — (q1L11q1 + q1L12g2 + q2La1q1 + g2 L22go)
—(@1Ludh + a1L11gs + gaL11gy + g5L1195)
—%((h —q)Mu(q1 —q)) — %(ch — q1)Mia (g2 — g3)
—%((D — qy)Mar(q1 — q1) — %(c& — q2) M2o(q2 — q3)
+%(Q1 — ) K (q +¢h) + %(fh —q1)Ki2(2 + ¢3)
+%(Q2 — o) Ko (q1 + ¢4) + %((D — g5) K22 (g2 + qé)]. (6.29)

In this case, the matrix conditions imply tha{, = Lo1, M2 = Ms;. By substituting equa-

tion 5.3 into equation 6.21, equation 6.22, equation 6.2Besuation 6.24, we obtain

bi= %; (6.30)
D= %5 (6.31)
G = %((Kw + K21)? + 4(2L19 + M3)? — 4M11M22>; (6.32)
C = % ((Km + K21)? + 4(2L19 + My2)? + M11M22>. (6.33)

D, and D, are always positive, as expected but note thais also always positive so the local
negativity for two-mode Gaussian states is always propaatito(ab). Therefore, it is possible
for the maximised negativity of a Gaussian state to be simgibted to the local concurrence.
We will prove now that this is indeed true.

From equation 6.26, the maximised negativity is equal to

ab
NMnax = 5 <\/(K12 + K21)? + 4(2L12 + Mi2)? — 24/ M1 Mo ) . (6.34)

However, in this case, we can also find concurrence exactyfimd all eigenvalueg; of pp:

a2b? 2
H1r = % <\/(K12 + K21)2 + 4M122 -2 M11M22> ; (6.35)

a?b?
o = <\/(K12 + Ko1)? + 4M3, + 2\/M11M22>

36

2
; (6.36)
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a2bh?
p3 = (\/(Ku + K91)? + 4(2L12 + Mj2)?

36

2
—\[2K3, + 2K3 + 4(2L1s + Myo)? + AM, + 4M11M22> . (6.37)

a2b?
pa = o (\/(Km + K21)? 4+ 4(2L12 + M2)?

2
/253, + 2K3, + 421z + Myo)? +AMF, + 4M11M22> . (6.39)

The matrix conditions ensure thaf is the largest eigenvalue so the local concurrghcan be

obtained from

Vi — I3 — 2 — i = %b<\/(K12 + K21)2 4 4(2L15 + M13)? — 2@).
(6.39)
Compared with equation 6.34, we note that the local connoe€ of any two-mode Gaussian
states is always equal to two times the corresponding maginegativityN ... Unfortu-
nately, this is not necessarily true for non-Gaussian stefor these non-Gaussian states, we
have to either resort to numerical analysis or use the nétyasis our choice of entanglement
measure.

In addition, by comparing equation 6.32 with equation 6.8@, find that ifC; < 0,
eqguation 6.39 is zero or negative, and hence there is no étahglement. It follows, for
two-mode Gaussian state, the local concurrence and niégginth arealwaysproportional to
(ab).

6.4.2 Thermal states of two harmonic oscillators

For thermal states of two similar but distinguishable dstwls each having mass, angular
frequencyw and coupling spring constaif with corresponding dimensionless coupling=
2K /mw?, K = 0 and the values of. andM are given by equation A.7 and in equation A.8
respectively in Appendix A. We adopatmu)‘l/2 as our length unit here.

First we consider the ground state. Equation 6.18 becomes

\/5;”“ \/1 +2a — V11 da. (6.40)

So, for a given small andb, the entanglement depends only®@mnd the fundamental length
unit; it is independenbf the location of the centrgg 4, 7) of the measurement regions. The
lack of dependence ofj4,qGz) is a special feature of Gaussian states (see equation 7.27),
and this result does not hold in genératote also that the concurrence density can be made

arbitrarily large by increasing.

"The result that the concurrence density is independenteofebion centres may seem obvious to some; they
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Figure 6.1: Entanglement properties as a function of regimmfor a Gaussian ground state with
« = 10andm = w = 1, in the case where both Alice and Bob make preliminary measents
and the region sizes are chosen to be the same. (a) Entamgléinédimensionless) as a
function of region sizea (in units of (mw)~'/2; log scale) for two different positions (data
points); the entanglements contained in the effective lavel systems constructed from the
two largest eigenvalues gf* are also shown (dashed lines). (b) The concurrence density
(in units of mw), computed from the entanglement of formation by invertimg relationS,, =
h((cab)?/4); note how it saturates to the exact result predicted by equ#t40 (horizontal

line) for small regions.
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41—

Figure 6.2: Negativity density: (full lines; in units ofmw ) and concurrence density(long
dashes; in units afww) as a function of temperatufg (in units ofw) for a thermal state of the
two-oscillator system discussed in the text having= m = w = 1, and for two different
values of the couplingv. The global negativityV, [AEPWO02] is shown for comparison (short

dashed lines; dimensionless).

Figure 6.1 shows the variation of the local entanglemengsued by the von Neumann
entropysS, (computed numerically), with the region size. Note how theal entanglement sat-
urates to the full entanglement given in equation 5.11 fiydaegions, while for small regions
it reduces to the value predicted by equation 6.40. To oletaianglements of a substantial frac-
tion of one ebit, it is necessary to choose a region size caabjmto the fundamental length
unit of the oscillator; around this point the two-qubit apgmation is just starting to break
down. Calculation details and full results are presentgdhapter 5.

For mixed Gaussian states, we find that the concurrencetdemsl negativity density are
again independent of position. In Figure 6.2 we plot bothntjtias as a function of tempera-
ture for thermal states of the two-oscillator system wifffedént coupling strengthsy= 2 and

o = 20). The concurrence density is exactly twice the negativéysity as we would expect

may argue that since moving those centres correspondsitg agth local displacements in phase space, which
amount to local unitary operations on the Hilbert spacegregiement is preserved by definition. This is not, in fact,

correct for general states. The argument would hold onlgafttanslation operation were applied to the projected
state - i.e. if both the initial state and the measuremeribregere displaced by the same amount. In general a
displacement of the measurement region alone will alteetitanglement. That it does not is a special feature of

Gaussian states.
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from Section 6.4.1. We also show the conventional (globadativity for these states (given
in equation 3.45 and [AEPWO02)). Interestingly, both localamglement densities vanish at the
same temperature as the global negativity, showing thathi®set of states, those which are en-
tangled from the global point of view are also entangled bylocal measurés Unfortunately,
this property is not universal as can be seen from a courgengle in Section 4.3.2.1.

Other counter-examples are also easy to set up. Considataméed composite quantum

state shared by Alice and Bob

W) 45 = a]00)4]00) 5 + = (]01)4]01) 5 + |10>A|10>B>, (6.41)

Al
V2
the a-part of the wavefunction is separable whereasdpart is entangled. If after the prelim-
inary measurements, the st&lie) 4 5 is projected onto the staf@0) 4]00) 5, the entanglement
in the discarding ensemble is zero whereas the entangleshéim original state is not. Take
another example, the composite stabe 45 is entangled but the component stafés;) } are
non-overlapping:

D) an = > v/ Aildi)aloi) s, (6.42)

where
(Pilpj) = 0ij. (6.43)

After measurements, the staf@) 5 could be localised to a product state, for example,
|p1)a|¢1)B. Once localised, the entanglement in the discarding enseisltagain zero de-
spite the original state being entangled . Therefore, nangiément in the discarding ensemble

does not necessarily imply that the original state is definiinentangled.

6.5 Non-Gaussian States

Although the quantification of quantum entanglement of @@aussian states is in general ex-
tremely difficult, our local approach provides a systemafy to analyse aspects of entangle-
ment in such systems since the local entanglement is easilytifiable, once the exact state is
known. We show an example here to demonstrate the appitgadtfilour local approach to the
analysis of entanglement of non-Gaussian states.

This example is also based on the density maggixdefined in equation 5.31, that is a

mixture of Bell states characterised by a probabilityBy choosing|0) and|1) as the ground

8Some may find it strange to see in Figure 6.2 that the negatieitsity sometimes exceeds the global negativity.
The suspicion is correct: the entanglement cannot incrgader the local projective measurements (a point made
explicitly in Section 4.2.6). The confusion arises becauselot in Figure 6.2 quantities with different dimensions
on the same scale: the negativity density and concurrensitgéave dimensions, (lengtrd, and therefore depend

on the choice of length units, while the global negativitgisiensionless.
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state and the first excited state of a simple harmonic osmil[det01],

2

1 —q

0 = = e (6.44)
T™qo
1 oz

) = V2qe®i (6.45)

3

0

whereqy = +/h/(mw) is a constant that sets the length scale of the oscillatorigsét to
qo = 1 here,p. will describe non-Gaussian continuous-variable statde |T) and|1) basis
states used here should not be confused with the ones usedtinrg5.5; those are eigenstates

of a symmetric potential well instead of a harmonic osallat

6.5.1 Results
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(b) ga = —0.2, gz = 0.1

Figure 6.3: The variations af; (the red line) and’; (the black line) with the probability in
equation 5.31. (a) The centres of the measured regions Hrédben to be at the origifiy = 0
andgg = 0. (b) The centres are not at the origin = —0.2 andgg = 0.1. The two graphs of

(b) are the same plots, but plotted with different rangesifore detalils.

Fist we plot in Figure 6.3 the variations 6f; (the red line) and’; (the black line) with
the probabilityp for two cases: (a) the centres of the measured regions dnddi@n to be at

the originGga = 0 andgp = 0; (b) the centres are not at the origin = —0.2 andgp = 0.1.
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Figure 6.4: The distributions of various quantities: () (b) C; (c) \V of the statep. described
in Section 6.5 are plotted by varying the centres of the nreastegionsj, = 0 andgg = 0.

The widths of the measured regions are taken te beb = 0.0001.
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We find that when both centres are at the origih,= C> andC; only crosses the horizontal
axis (C; = 0) at the pointp = 0.5, exactly where the staie. becomes separable. However,
when the centres are away from the origifh,andC, are no longer equal to each other, and
becomes zero at the poipt= 0.021 as well as the point = 0.5. The two graphs in Figure 6.3
(b) are the same plots, but with different plotting ranges. aléo see in both Figure 6.3 (a) and
(b) thatC; andC, are of the same sign so that at these two positions we considelocal
entanglement is only zero whery = 0; that is, we can not mak€; < 0 andCs > 0 by
varyingp. There is another interesting feature of Figure 6.3; nanfehthe same state (i.e.

is fixed), it is possible to change the leading order of thalloegativity in the quantityab)
simply by moving from(g4, gg) = (0,0) to (Ga,ds) = (—0.2,0.1). For the position chosen,
this happens betwegn= 0 andp = 0.021. Within this range,C; andC, are both negative
when the measurement centres are at the origin so the logativigy is proportional tqab)?.

In contrast,C; and Cy become positive when the centres are not at the origin, andehine
local negativity in this case is in the second ordet @indb.

Next, we fix the probabilityp = 0.2 to find the entanglement distributions. The widths
of the measured regions are taken tadbe b = 0.0001. We plot the distributions of various
quantities: (a)Cy; (b) C; (c) NV by varying the centres of the measured regignsand 7.
All the graphs do not show the whole range of values to makastee to see the features.
Both C and ' are computed numerically from the effective two-qubit dgnsatrix directly
(after substituting appropriate values into it) for comgan with our analytical formulae in
Section 6.3.1. We find that for regions whetg is negative (black areas in the right graph
of Figure 6.4 (a)), the local concurrenc@gplotted in Figure 6.4 (b)) are not zero and are of
the orderl0—® over the whole region (wher€; # 0). In comparison, the values of the local
negativity V" (plotted in Figure 6.4 (c)) in the regions, whefe < 0, are roughlyl0—® times
smaller than in the regions, whefg > 0. But note thatz(b) = 10~8 in this example so that
the local negativities vary greatly by up to a factor(ab) from place to place, depending on
the sign ofC;. The region sizes are very small and the numerically obtevadues of the local
negativity agree with the values given by the closed-formpression (equation 6.20). These
findings are consistent with the earlier analytical analysi

The corresponding probability-density distributip(G4, gz) of the statep, with p = 0.2
is also shown in Figure 6.5 for comparison. The distributibprobability densities is obtained

from

P(qa,dB) = (Ga,dB|pelda, aB)- (6.46)

We see that the entanglement distributions are very diffedrem the probability-density dis-
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Figure 6.5: The distribution of probability densitig&74, Gz) of the statep. described in Sec-
tion 6.5.

tribution. Notably, the local entanglements are concémtralong the diagonaly = —gg

whereas the probability densities are higher along ther aliagonalg 4 = 5.

6.6 Extraction of the Local Entanglement.

Methods of extracting the entanglement from a squeezedcmnis-variable state into a pair of
two-level system were previously studied in [SKLA02, PSK, KC04] Using our mapping to
an effective two-qubit system, we can swap the entanglemergmall region of the continuous
wavefunction to local qubits (i.e. true two-level systemREmembering that the stateg and
¢1 drop to zero outside the regidr-a, a] we find that the Pauli operatotk andY of the
effective qubit can be represented in terms of the canopisition and momentum operators
g andp by (Appendix D)

\/3 2a

X=X2% Y=-——"0p 6.47
i \/ghp (6.47)

The experiment could be performed as follows: first, loeatise continuous degree of freedom
(for example, through a homodyne measurement in the caseaéetromagnetic field mode),
then perform a SWAP operation by composing three controfleghtes [NCO0O0]:

1 \/§ ]

Uswap = exp [Z(ay — 1)(7(; -1)
i 2a
cexp | F(on = (- Zp - 1)
i \/g ]

X exp [Z(ay ~ (G- 1) (6.48)

where(o,, 0,) are Pauli operators for a local qubit. Using this procedure could therefore

extract the full two-level entanglement shown in the dastiewes of Figure 6.1(a) provided
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the swap operation is successful.

6.7 Summary

The literature on entanglement in continuous-variableéesys has so far concentrated almost
exclusively on Gaussian states. Such states can be prepasiyl in quantum optics, but are
exceptional in other systems (such as solids and moleculgs)far as we know this work
provides the first systematic approach to characterisipgcs of the entanglement in such

arbitrary non-Gaussian states.

After preliminary measurements to localise the subsysieside certain portions of con-
figuration space, it is simple to characterise the entangihénm a continuous-variable system.
In the case where the subsystem is localised to very smadinggeach mode of the system is
isomorphic to a single qubit. We derive simple expressiamste local concurrence in pure
states and for the negativity in mixed states. Even thougtdawnot offer analytical expressions
for the local concurrence (except for rank-2 mixed stat@sgcipe to numerically compute it
for arbitrary two-mode states with ease is provided, anslfiviind that the local concurrence is
always proportional to the product of region sizes). The local negativity in contrast depends
not only on the “area’b) but also on the “shape®(a), and can sometimes be proportional to
(ab)? subject to the parameté€r, in equation 6.23. Provided; > 0, we can define the max-
imised negativity, which is always proportional (@), and then go on to define the negativity
density, together with the concurrence density. Howelerconcurrence and negativity are not
extensive, in the sense that the sum of these quantitiesatitbe sub-regions of configuration

space does not yield the full entanglement of the originaiesy.

For Gaussian states, we find a closed-form formula for thallooncurrence in terms
of elements of the density matrix of the state and show th#étiscase it is always equal to
two times the maximised negativity. However, this is notessarily true for non-Gaussian
states. We show that as region sizes become larger, thedotzaiglement as quantified by the
von Neumann entropy saturates to the full global entanghtrokthe Gaussian ground state,
and also shows that by making the region sizes very smalkdheurrence density converges
to the value given by equation 6.18. Thermal states are tbasidered, and this example
shows that the states which are entangled from the globat pbview are also entangled by
our local measures, i.e. global entanglement of the irstiale vanishes at the same point as
the entanglement remaining in the discarding ensemble thiéepreliminary measurements to
locate the system in a chosen subspace. However, thisstitgréoehaviour is not a universal

phenomenon. Consequently, the absence of any local eataagt does not guarantee that the
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original state is unentangled.

The strength of our local approach lies on its applicationan-Gaussian state, we demon-
strate this by analysing the entanglement of a non-Gaussée. \We map its local-negativity
distribution and show how it varies with the coordinatesh@ system, in comparison to the
local-entanglement distribution of Gaussian states, lwidcindependent of position coordi-
nates.

One could generalise our results to multimode pure statesdiing multivariate Taylor
expansions op so our focus in the next chapter will be turned to the locaheglement in
pure states of multidimensional continuous-variableesyst Our experience tells that it is not
straightforward to extend our results to multi-mode mixedes. However, local entanglements
of mixed states of higher-dimensional systems can stilldslye computed numerically, pro-
vided the state is exactly known and the negativity (or ldggaric negativity) is the chosen
entanglement measure. It will be interesting to charasgdtirther the relationship between the
local and global views of continuous-variable entangletyierany case our results open a wide

range of non-Gaussian states to further study.
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Chapter 7

Local Entanglement of Multimode

Continuous-Variable Systems

7.1 Introduction

In Chapter 6, we demonstrated that, by using our local agpr¢see Section 4.2) to quantify
guantum entanglement, simple formulae exist for the longrglement of any (mixed) two-
mode continuous-variable states in the limit where theoregd which the system is confined
after the preliminary measurement becomes very small\{iteere the measurement becomes
more and more accurate). Here we will generalise thesetsdsudeneral smooth bipartite pure
state$, and in particular show that correspondingly simple clefcth formulae exist for the
entanglement in the multimode case. Our results therefoable the local entanglement to
be computed directly and explicitly, without the time-comsng numerical evaluation of the

global entanglement in a high-dimensional system, oncsttte of the system is known.

We first re-derive the results for two-mode states in Sectiégnin a way that makes it
easier to generalise to multi-mode states in Section 7r&lllyiin Section 7.4 we show exam-
ples of our approach applied to some systems (semiclad¥i€8 systems, multi-dimensional
harmonic oscillators, and a hydrogen atom as three exajriplegich analytical expressions

for the energy eigenfunctions are easily obtained, befanensarising in Section 7.5.

*Our choice of concentrating here only on pure states to detraie the power of our local approach for quan-
tifying general (non-Gaussian) multimode continuousalale states may be questionable since entanglement of a
pure state can be fully characterised by the von Neumanomntro matter whether the given state is Gaussian or
not. This fact is indeed at the heart of our approach. Howélercalculation of this entropy for a high-dimensional
system is in general an extremely difficult problem, sindevblves computing the logarithm of the reduced den-
sity operator and tracing over all the degrees of freedone citiculation will almost always have to be performed

numerically, and it is generally intractable.



7.2. Two-Mode States 95

7.2 Two-Mode States

The case where only Alice makes a preliminary measuremduliystreated in Section 6.2.1.
Now suppose both parties restrict their measurementse’ljgarticle must lie in regiom :=
{Ga—a < qa <G4+a},and Bob'sinregioB := {Gg — b < qp < G +b}. In Section 6.2.2
we attacked this problem by reducing it to an effective twabitjone, for which exact results
are available. However this approach does not generalisatsoally to the multi-mode case,
so we give here an alternative approach by utilising thetfaadtthe entropy of entanglemesit

or negativity /' can be computed directly via the density matrix. From theiptes argument
we know we can compute the entanglement from Alice’s redubsusity matrixp” in the
coordinate representation. Our first task, therefore, sviduate this quantity once Bob has
made the measurement of his particle.

We do this by making a further Taylor expansion involving Bolariables. We define

o g g gm
Prinangns = i3 —P(4, 48544, 4) . (7))
dqa™ 0q'y'"? Oqp™s g 4A=q',=04,98=405=0p

As we will see, to obtain the first nontrivial term in the sadmt we need all terms to first order

in Alice’s coordinates and to second order in Bob’s:

p(qa,q8:d0,d5) = p(Ga+xa,q8 + 2854 + 24,38 + 25)
= poo0o + P1000T4 + P0100T4 + P0010TB + Po001 T

1 2
+§(000209€32 + poo022s”)
+p110033A£L"/A + pro0rATp + P100133ACU33
+P0110$f433B + P010133/A$39 + poonﬂﬁBﬂCjB

1 2 / ;7 2
+§(P1020$AZEB + 2p1011TATBT R + P1002TAT R

/ 2 / ;o2
+0012024CB” + 200111 T AT BT R + 0102242 )

+O(xA2,xi42,wB?’,w'BS). (7.2)

Alice’s reduced density matrix is then found by writing

1 b
pA(:L'A; ac;‘) = ]—9 / dzp p(za,75; x;xaifB)
—b
20 , v
= D [Poooo + T ap1o00 + SﬂApowo] + £ [00020 + 2poo11 + Pooo2

+(p1020 + 2p1011 + P1002)T A + (Po120 + 2p0111 + Po102)T'4

+O®O, 242, 247). (7.3)

wherep is a normalisation constant. By comparison with equatidna®d equating powers

of z4 andz’, we can immediately identify the terms which appear in theresgion fore (as
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defined in equation 6.7), and therefore determine the elstiamnt:

2b 1 i ]

p‘é‘o = N P0000 + E(Poozo + 2poo11 + poooz) | + O(b°);
A 2b [ i ] 5
plo = n p1o00 + 5(01020 + 2p1011 + p1ooz) | + O(b);
A 2b [ i ] 5
P01 = D Po100 + E(szo + 2po111 + potoz) | + O(b);
A 2b [ i ] 5
N + g(Pnzo + 2p1111 + prio2) | + O(b°).

(7.4)

The leading ordert) terms in the numerator of the expression éarancel—this is the
reason why we need the density matrix to quadratic order bisBmordinates. The cancellation

occurs because Alice and Bob (by hypothesis) share a pues atal so

p(qa,48;dad5) = ¥(qa,48)Y" (¢4, dB)

g s

WWTP(QAQB)
oz gna |

= Pninanzng da=ida,q5=]
A=qA,9B=0B

(7.5)

d4y=04,95=0B

We can thus re-arrange the indices in a product of AW@,,nn, terms as

PabcdPefgh = PebgdPafchs (76)

so in particular

£1100£0000 = £0100£1000- (7.7)

Hence the leading term in the numeratoreds of orderb?, and the overall expression

becomes
a2b?
= 5— [ P1100(P0020 + 2p0011 + Pooo2) + Poooo (1120 + 2p1111 + P1102)
1805000
—p1000(po120 + 2po111 + Po102) — Poioo(p1020 + 2p1011 + P1002) |- (7.8)

Using equation 7.6 we can simplify this to obtain

€ 1
219 2 [P1100P0011 + PO000L1IIT — P1000P0111 — LO100P1011] (7.9)
azb 905000
= 72[%1100/)0011 + 2p0000£1111 — £1000£0111
185000
—p0100£1011 — £0010L1101 — P0001P1110]- (7.10)

The first form (7.9) is slightly more compact, while the setdorm (7.10) makes it clear that

the coordinates of Alice’s and Bob’s subsystems are treagedalently, as required. The von
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Neumann entropy, and hence the entanglement (since thitasmire state), is thef, = h(e)
in equation 3.29 as before.

We know, from the arguments leading to equation 6.12, treataading correction to this
result isO(a*), and we should expect from the symmetry between Alice’s apldisBsystems
that it is alsoO(b*). We have explicitly computed the correction and this is euithe case: the
result is given in Appendix E. The third eigenvalNgmeasures the extent of the breakdown of
our approach. We note that it is of ordetb?, and therefore does not affect the expression for

¢, which is of ordera2b2.

7.3 Multimode Systems
7.3.1 General approach

Consider first the case in which only Alice makes preliminagasurements. If Alice’s system
is two-dimensional (not to be mistaken for a qubit) and skallees the particle sea; < z; <
+a;,i € {1,2}, one can find the eigenvalues pf (q4,q’4), whereqs = (ga1,q42) and
similarly gz = (¢B,1, ¢B,2), by a straightforward generalisation of the methods iniSe&.2.1.
Once again we find that there are only two non-zero eigensdtuerdera?:

2
woo s (B et ot
P 3(ﬁA)2 OQA,iadaLi 0qa,i 8‘]1472'

X = 1—X\ +HT. (7.11)

where: goes over the two spatial dimensions of Alice’s subsystdis, stands for higher-
order term$ and bothp and its derivatives are to be evaluated with both argumesittosthe

reference coordinategs = (Ga.1,Ga,2) (@and similarlygs = (4.1, B 2)):
p"t = pt@a@n). (7.12)

We now argue that this property, of effectively having onyotnon-zero eigenvalues in
the limit of very small measured regions, holds irrespectif the dimensionality of Alice’s
system, as follows. The entanglement must be invariantrusdghange of the axis labels, and
under all transformations of the formy — —a;. The only possibilities consistent with these

requirements are

M=1-) tal; do=)» tal; Az M...=0, (7.13)

or

M=1-) ta}; d=tal; X3=toa3,..., (7.14)

2Typically different\’s have different higher-order terms. The notation H.T duatsimply that the higher-order

terms concerned are the same.
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where thet; are arbitrary constants. Furthermore the eigenvalues redste to the known
forms for one- and two-dimensional systems if all otheare set to zero. If we keepy andas
non-zero, sending all others to zero, only the first form 4sl@onsistent with equation 7.11.

Therefore, the form of the non-zero eigenvalues must be

a; _A o2 p” op* opt
A= 23(*‘)2 <p +H.T.

p 004i0d;  0qa; 0d),
Ay = 1—M\ +HT. (7.15)
A3 = 0+H.T.

wherei now goes over all the dimensions of Alice’s subsystems.

Define

o g2 o o
OQA,im aq;unz (9QB,jn3 aqlBJ'n4

P(i,jin1nznsng)

p(quq;quvq/B) . (716)

q4=d),=04,dp=Adz=04B
wherei (j) represents one of available dimensions of Alice’s (Bobigsystem. If the state
p(aa,d’s,qs,q}) is pure, by following the same reasoning, we can generatjsat®n (7.6)
to become

(7.17)

P(i,5nimanang) P(i,jmsnening) = P(i,jmsnanyng) Pi,jininensng)-:

From the previous analysis that led to equation 7.4 for a pueemode state, we know
we can extend equation 7.15 to a pure multi-dimensionalrtiipastatep(q 4, d’y, as, dj3) for
the case where both parties make preliminary measuremeriteo particles by making the

following substitutions:
Pl = D (Hj/ ij,>
p
oo = 2 (F57)
Pé;m) = Z (Hj/ 2bj/> _p(ij;0100) + %?(P(ij;mm) + 2p(ij;0111) + p(ij;OlOZ))_ +H.T.;
(=5)

Pé;n) = Z
j

b2
P(i§;0000) T %(P(ij;OOQO) + 2p3i5:0011) + P(ijz0002)) | + H.T

b2
P(ij;1000) T Ej(p(ij;1020) + 2p(j:1011) + Pjii002)) | + H T

- 2 -
P(ij;1100) T EJ(P(ij;HQO) +2p3j1111) + Pjiin02)) |+ HT

(7.18)

where; and;’ go over all the dimensions of Bob’s subsystem arislan appropriate normali-

sation constant.
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Therefore, to the lowest order inandb, A\ in equation 7.15 becomes

22

a; b3

A\ = E tJ
5 18P(i.5:0000)

+(i,5;:0000)[P(3,5;1120) T 20(i;1111) T P(ij:1102)]

5 {P(z’,j;noo) [0(i,5:0020) + 20 j:0011) + P(i,5:0002)]

—P(i,5;1000) [P(i,5:0120) T 20(i,j:0111) T P(i,5:0102)]
—P(i,:0100) [P(i,:1020) + 20(i ji1011) + P(z’,j;1002)]}-

This can be further simplified by using equation 7.17 to abtai
a?bz
A= Z ﬁ[ﬂ(m’;noo)ﬂ(i,g‘;oon) + 0(4,5;0000)P(i,5;1111) — P(4,5;1000)L(i,5;0111)
i P(4,5;0000)

—P(i,§:0100)P(i,:1011)) (7.19)
Again the entanglement is completely determinedshy= h(€), wheree = \; as before.

7.3.2 Concurrence and negativity for general bipartite muti-mode pure states
In a similar way, we can generalise our previous expresgfdastion 6.2.2) for the concurrence
and negativity of the system after the preliminary measergrhas been made.

For anH,,, ® H,, (n1 < ng) bipartite system, where; andn, are the Hilbert space
dimension for the two subsystems respectively, the geisethtoncurrence of a pure quantum
statey is defined by [CAFO05]

CP () =4 > Amdn, (7.20)
m<n
where/\,,, (m = 1,...,n;) are the eigenvalues of the reduced density matrceand p=.

Additionally, the trace norm of the partial transposed dgn®:atrix with respect to Alice’s

subsystem turns out to be
™1 = D VAm)* (7.21)

From this we can determine the negativity, which is defineglgjnation 3.34.
As we argued earlier, the reduced density matrix in the diieg ensemble has only two
non-zero eigenvalues\{ and \;) to the lowest order; even though in general the expressions

for negativity and concurrence are different, to or(:té%?) they are closely related because

4ZA1>\2 = A\ Do+ 4N A3+ ...

1%

and

((Z \/ﬂ)z—l)2 = (2\/>\1A2+2\/A1/\3+...>2

A\, (7.23)

12



7.3. Multimode Systems 100

where we have usell, . \,, = 1. Therefore, we have proved that in the limit of smglland

b;, for any multi-mode bipartite pure state

C(y) =2N(9) = 2v/e. (7.24)

Specifically, the squared concurrence is

2a;b;\ 2 9% oy o |?
c? = < Z]> ‘ — 7.25
%.: 3|2 waqfl,iaqfe,j 0qa,i 0qB,j (7.25)

2
>_Ch
i

wherei goes over all dimensions of Alice’s subsystem gnaf Bob’s subsystemej is the
squared concurrence associated with the degrees of freedowhj.® Note thatC;; o< a;b;,
consistent with the existence of a well-defined local corenge density for two-mode systems
(equation 6.18).

Note also that the concurrence is made particularly simpheriting
W =e", (7.26)

where normalisation can be ensured by adding a constafititowhich case

232 2
4a;b;

=) 5

v

928
0q4,:09B.;

(7.27)

From this, we see that 8 is quadratic in the coordinates (i.e. the state is a Gaussfanlocal
entanglement is constant; on the other hand whengv&a linear function of the coordinates,
the local entanglement is zero.

7.3.3 “No-force no-entanglement” theorem

As long as there is no external force acting on the system anebways find a solution of the

eigenstate of a quantum system with a poteritiah the free-particle form:

W~ el i ki (7.28)

30ne may think that it is natural, in some sense, to have ling@reased entanglement as the other mode of the
entangled state is taken into account, and hence mistalaieq .25 for implying that concurrence for the multi-
dimensional bipartite systems is the simple addition oflegtement for each dimension of the systems. This is not
correct. Even though it is not surprising that the entanglenincreases as further coordinates of the system are
considered. However, the effect is not linear because eaglice’s coordinates is entangled witil of Bob’s, and
this is exactly why equation 7.25 is written out in terms af sijuaredconcurrence so that each mode contributes
non-linearly to the total concurrence. This non-lineauatre of the local concurrence and negativity is also the

main reason why it is difficult to extend our analytical arsédyto multi-mode mixed states.
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where{k;} can be real or complex and; k? /2 = E—V (E is energy), such that the boundary
conditions are also satisfied. Since in this case the teriti@iaxponential are a linear function
of the coordinates, equation 7.27 tells that there will bdamal entanglement. However, if
the Schrodinger equation and the boundary conditions medhat the eigenstate to be in a
superposition of linearly independent free-particle wWametions, the eigenstate can still be
written in terms of a single exponential but the terms in tkgoaential will no longer be linear
in coordinates, and the local entanglement is then not sadgszero.

Consider a simple case, a superposition ofitleedentandreflectedwaves in one dimen-
sion:

U = & e (kagathpas) 4 ¢, cilkagatkpas) (7.29)

where&; and§, are some constants. The local concurrence in this caseewill b

_ 8&1&kakp ab
3(&2 + €2 + 261&5 cos[2k aqa + 2kpgp])’

Therefore, we conclude that by excluding the effects of thgegposition of wavefunctions,

C

(7.30)

the non-superposed eigenstate for the force-free Sclyédequation, such that the boundary
conditions are satisfied, can always be written in the forequfation 7.26 witkt being a linear

function of coordinates so that there is no local entangigme

7.3.4 Nodes in the wavefunction

Evidently S in equation 7.26 diverges near nodes of the wavefunctiothegdor a fixeds; and

b, the concurrence given by equation 7.27 also diverges (Jike|? as|)| — 0). Itis important

to realize that this diverging quantity refers to the entamgnt in the discarding ensemble (i.e.,
in the sub-ensemble conditional on finding the particlehédthosen measurement region—see
equation 4.19), and that even in this ensemble our expressgiplies only in the limit of very
small measurement regions. We now show that the discarditamglement always remains
finite provided we keep within the domain of validity of ourpapach.

The extent of the domain of validity follows inevitably froour Taylor-series approxima-
tions for the wavefunctions (or density operators—see tamu.5), which are valid only close
to the chosen reference poiiat4, gz ). The requirement that the second term in this expansion
should be small compared with the first is

oY

994,ilg,,a5

_ v
aw/anvi 44,98

and similarly forb;; therefore, the domain of validity shrinks to zero near aenwd). Equiv-

a; < Y(Qa,q8) = ;< (7.31)

alently, if this condition is not satisfied it leads to the dkdown of the isomorphism of each

mode to one qubit described in Section 6.2.2.
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One way to understand the behaviour of the entanglemenpo@as where the wavefunc-

tion vanishes is to satisfy equation 7.31 by writing the mraxin valid region size as

aMAX — o—Y , 7.32
aw/anvi q4,9B ( )

wheres < 1is a small parameter, and similarly fb%YIAX. (We assume here that the derivatives

are not also zero near the nodes.) We further define threditesh;, k;, andk;; by

82
Y = ki¥(qa,49B);
aq,A,iaQB,j qa,ds
19}
8 w - kiw(dAa(_lB);
9Ailga,a5
19} _
3 1!)‘ = k;j¥(Qa.an), (7.33)
9B,j lga,ap

soaMAXE; = b?AAij = 0. From equation 7.25, if we choogg = a}4X, b, = bg/[AX near a

node where the conditiok;k; >> k;; is met, the expression ferreduces to

0,4
EMAX = NANB?a (7.34)
where N4 and Np are the number of degrees of freedom in Alice’s and Bob’s ysibms
respectively. Therefore (and hence also the local concurrence and entanglement} @ffc

near the node at a finite value that depends on the choige of

7.3.5 Transformation of coordinates

We now discuss the behaviour of our expressions for the lestnglement under various

coordinate transformations.

7.3.5.1 Invariance under local transformations

We would expect that the definitions of our local entanglemeould remain unchanged if
we made a local redefinition of our coordinate axes (posgibompanied by changes in the
measurement region). To see that this is the case, considdpltowing transformation of

Alice’s coordinates:

Qi 4

— = O;;— 7.35

= z 52 (7.35)
whereO is an orthogonal matrix@O” = 1) and the sum goes only over the other coordinates
of Alice’s particle. A; is to determine the length of the measurement region for remalve
Q;. Note that ifa; = A; = a Vi, j (i.e. both measurement volumes are hypercubes with the

same dimension$then equation 7.35 reduces to a simple orthogonal transfiwsmof Alice’s

coordinates.

*Equation 7.35 does not assumg = A; = a Vi, 7; this condition is only introduced to explain that the

transformations considered are a generalisation of siompf@gonal transformations on the individual coordinates
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Now
0 0Q; 0
aza—qi ZJ: J d4; OQ] XJ:OU JaQ (7.36)
We then have
op 0?p
a? = 0,0 A; A
=" ;04 ZJ,; TTE0Q,0Q7
9?p
_ 2
= ZAJ 50,0 (7.37)
and similarly
dp Op dp Op
a? =) A? : 7.38
’8q aq; Z L 0Q; 0Q; ( )

Therefore, equation 7.15 is invariant under the generhlisthogonal transformation 7.35. It
follows that equation 7.19, and hence the local entanglénasg also invariant under these
local transformations.

7.3.5.2 Non-local transformations

We now consider some transformations which mix Alice’s ath’B coordinates—specifically,

those that make the system separable. That is to say we loak®w set of coordinates
X = ZTzkwi (7.39)
such that the wavefunction factors as
o =] er(Xn). (7.40)
k

Note that the sum overin equation 7.39 runs over all coordinates of the systenmh(dite’s
and Bob’s). In this situation it does not make sense to censidy accompanying change in the
shape or size of the measurement region, which we contindefioe in terms of the original

coordinates and to describe by; } and{b;}.

Therefore,
82¢ 82¢
TR Y o e
_ Y 0%y, v Ovy Oty
= ZTZ’“TJ’“ r OX7 i ;;;/ fitow Vb 0X, 0 X
and similarly
oy 0y P* Oy, My

Tt Tk . 7.42
o0, 0a; ~ 2 K g 0, 0 742
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It follows from equation 7.25 that

2
_ ( 82% 1 (9

where the second term inside the modulus signs comes froipettief equation 7.42 having

) (7.43)

k = K. In terms of the logarithms of the separable wavefunctisips= — log[v, (X% )]), we

have

2

al 028,

- § AN Ty 7.44
‘ FRoxZ (7.44)

One important special case of this result is the transfaomab normal coordinates in a

harmonic system: if the potential can be quadratically aged about an energy minimum, the

transformation to normal coordinates takes the form of tgn&.39 with

Tir = vVm;Ojg, (7.45)

whereO is an orthogonal matrix.

7.3.5.3 Relative coordinates

A closely related example is the transformation to cenfrarass and relative coordinates.
(Here we assume that the particles live in the same physpeades and hence that the di-
mensionsN4 and Np are equal.) If Alice’s particle and Bob’s particle have nesss: 4
andmp respectively, we define; = ¢ — ¢” andR; = (u/mgp)q* + (u/ma)q? where
uw = mamp/(my + mp) is the reduced mass andjoes over all dimensions of the system

({x,y, z} in three-dimensional system, for example).

:Z a;b; 2_(L61/)+61/1)(L5_¢_6_¢))
ij 3ly? mp OR;  Or;" maOR;  Or;
mp OR; +(97‘Z- ma aRj arj)w ’ (7.46)

+1b(

wherei andj run over all the dimensions of the system.
In many cases, including most importantly the case where ikéo external potential, the

wave function)(R, r) can be decoupled into a centre-of-mass @R ) and a relative-motion
parto(r):
(R, 1) = x(R)ep(r). (7.47)

If we write

p(r) =e 50 y(R) = e B (7.48)



7.4. Examples 105

(with normalisation once again enforced by appropriatetagdconstants inS, andS,) then

the entanglement takes the particularly simple form

R i S,
9 87’@87‘j mamp aRlaRj

ij

2
(7.49)

For example, ify(R) is a free-particle plane wavg(R) = ¢’*oR its contribution to the
entanglement, is zero; if y(R) is a Gaussian wave packet with wave numkgrand real-
space widthR:
2 ,
Y(R,1) = (=) e o), (7.50)
TR
the expression for becomes

2,2
a;b;

e:Z 5
ij

9%S,(r) 212 2

0ij 7.51
87’@87‘j mAmBRg J ( )

7.4 Examples

In this section we apply our method to some easily solublengkas: first to wavefunctions that
(while remaining pure states) are semiclassical in theestret the potential varies slowly on
the scale of the de Broglie wavelength, so WKB methods arécate, then to energy eigen-
states of harmonically-interacting particles in arbigraimensionality, and finally to bound
states of an electron and proton (i.e. to the hydrogen atom).

7.4.1 The semiclassical case: one-dimensional WKB wavefttions

Consider two particles moving in one dimension with an etéon potential/ () that depends
only on the relative coordinate. Neglecting centre-ofsnaantributions, the entanglement can
then be calculated from the relative wavefunctiam) using equation 7.49. I (r) is a slowly
varying function ofr, we can use the WKB method to figgr).

We consider an interaction with a single potential well (h@chematically in Figure 7.1),
so the system moving in a bound state with endfglyas just two classical turning points. For
the classically allowed region with > V' (region 2 of Figure 7.1), the classical momentum at
risp(r) = /2m(E — V(r)) and the corresponding wavefunction of thié bound state can

be expressed as either one of [Zet01]

2(-1"Z 1 /"
Y EB(r) = %sin {E / p(r) dr + ﬂ L om<r<ry (152
T1
27 1 [
— 7}9(7“) sin [ﬁ/ p(r')dr’ + %] , i <r<ry (7.53)

whereZ is a normalisation constant, so that the local concurresice i

2o [ [ w5t + np(r) 22 b <a§f))2

1 N m 20p(r)
+2h cot [h/r p(r)dr’ + 4} p(r) o |

Ca

(7.54)
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Figure 7.1: Diagram of a potential well illustrating thefdient regions discussed in the text.

The oscillatory structure of the wavefunction, arisingnfirthe interference between right- and
left-moving travelling waves, produces nodes at which thmglement in the discarding en-
semble for fixedz andb diverges (but remains finite provided we remain within thendom of

validity of equation 7.54—see Section 7.3.4).

Note also that the entanglement contribution from the festhtin equation 7.54 is non-

zero even wher& (r) (and hence(r)) is constant.

For E < V (region 1 and region 3 of Figure 7.1), we express the wavéifumén terms
of the local momentum on the inverted potential surfage = /2m(V (r) — E). The wave-

functions are respectively

—1)"A [ 1™
sy = Sl e |5 M|, v
o LR,
(7.55)
A 1 ("
AB(r) = exp |~ [ iar| v,
p(r)] L T2

(7.56)



7.4. Examples 107

wheren is the number of nodes in Region 2. Correspondingly, the wwances are

| [y @l (2@ el |

¢ = '3h|p<r>|2{2’p( ) 2 (220 ey Z2] | s
S - 20l (AN, P Ip(r)

G = '371]1)(7“)]2 [2“’(7")' or h< B ) +hlp(r)| =5 H (7.58)

Note that in this case (by contrast to the behaviour in regjaifthere is noforce p(r) is con-
stant, and hence there is no entanglement. This is a nicepd@frthe “no-force, no entangle-
ment” theorem (Section 7.3.3). Furthermore, the first tamexjuation 7.57 and equation 7.58
are simply proportional to the force on the particle(r)| /Or). Later, we will show another
example which demonstrates this intriguing relationshépseen the local entanglement and
the force.

Itis interesting that the boundaries between these diftdyehaviours of the entanglement
correspond to the classical turning points—the WKB sohdithemselves are no longer valid
close to these turning points, and must be joined according ¢onnection formula derived

from an exact solution to a linearised equation [Zet01].

7.4.2 Multi-dimensional harmonic oscillators

Consider first a system of two one-dimensional harmonicllasmis of masses:4 andmp,

having identical frequencies, and coupled by a spring constdkt the Hamiltonian is

. . . 1. . ;

H=Ha+ Hp+ 5K(Xa - Xp)2. (7.59)
Transforming to centre-of-mass and relative coordindateseigenstates are simply

¢nR,nr (R’ T) = Tzz)m‘c (R)Zf)m (T)
1 o~ R°/2R3
\/ﬁ2nR2nrnR!nr!R0ro
R r

2 (ZVH, (— 7.60
€ 0 nR(RO) nr(ro)v ( )

where ng and n, label the excitations of each coordinat®, = +/h/(Mw), 19 =
\/h/(u w? 4+ K/u), andH,(z) is the Hermite polynomial.

If Alice and Bob each possess an oscillator, the entanglelmetveen their subsystems
given byh(e) can be determined from equation 7.46; for example, for tbemyp state:

a?b?(mampré — M?R2)?
IM*ri R}

a’b? K
— m(mAmb—M,uﬂﬁ—i—w%z, (7.61)

whereM = my4 + mp. Note that the ground state is Gaussian¢ 8bconstant, as expected.
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@
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Figure 7.2: Probability density (left plot), local entaagientEp in the discarding ensemble
(centre plot) and local entanglemefyyp in the nondiscarding ensemble (right plot) for three
pure states of the two-oscillator system: (&) = 0,n, =0; (B)ng = 1,n, = 1; (C)ng =1,

n, = 3. The characteristic lengths of the problem age= 2 and Ry = 4 in all plots, and all
plots are fora = b = 0.1. The cut-off points for plots ofp and&xp are determined from
emax in equation 7.34 witlr = 0.1; specifically, EMAX = pMa¥h(emax), whereh is defined

in equation 3.29.
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In Figure 7.2, we plot the probability distributions andarglement (in the discarding
ensemble—centre column, and nondiscarding ensemblet+e@bmn) for the ground state
and some excited states. Note that the ground state (a) izissi@a state so the discarding
entanglement is constant and the left and right plots anegotional to one another; this is no
longer true for the other (non-Gaussian) states, for whiehet are also nodes in the wavefunc-
tions. We therefore show the entanglement in both ensenchlesff at the maximum value
determined by equation 7.34.

For general multi-dimensional oscillators, the wavefiorcfbecomes a product over the
normal modesX;, of one-dimensional harmonic oscillator wavefunctions.e Bmtanglement
is determined by these normal-mode wavefunctions througfateon 7.44. (Note that in the
one-dimensional example considered above, the normallicztes are the same as the relative

and centre-of-mass coordinates.)

7.4.3 The hydrogen atom

We next consider the entanglement between the electroic€’alparticle’) and the proton
(‘Bob’s particle’) in a hydrogen atom. For simplicity, theess of the measured regions are
assumed to be the same for all dimensionsyf, 2}, i.e. a; = a andb; = b. First, consider the
case where there is no centre-of-mass motion. Instead edtlirapplying equation 7.49, we

transform the coordinates and the equation into to spHeraadinates:

0 Sinecos¢g+cosﬁcos¢g_csc@sirubg

ors or r 00 r ¢

a . . .0 cosfsing O cscBcosg O

ory SH]QSH1¢8T-+ 89-+ r o

0 0 sinf 0

o COS 95 TS (7.62)

By substituting the most general form of the relative wavection ¢,,;,,, (r, 6, ¢) of a hydrogen
atom into equation 7.49 after it has been transformed torgathecoordinates, we havein
terms of polar derivatives. The full expression is given ppa&ndix F.

The ground state is

1 —r/a
e100(r,0,8) = (—5) 27/, (7.63)
7TCLO
whereqy is the Bohr radius. In this case,
ab
=2 2, 7.64
¢ (3a07“) ( )

Interestingly, this expression indicates that the entemght&p for the ground state of a hy-

drogen atom falls off with distance in exactly the same wathaselectrostatic force between
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@

Figure 7.3: Probability density (left plot), local entaagientEp in the discarding ensemble
(centre plot) and local entanglemefit; 5 in the nondiscarding ensemble (right plot) for the
relative wavefunctionpq1o(r, 8, ¢) of a hydrogen atom. All plots are far= b = 0.1. The cut-
off points for plots of€p and&y p are determined fromyax in equation 7.34 witle = 0.1;

specifically,ENBX = pMAXh(emax), whereh is defined in equation 3.29.

the electron and the nucleus. Again, this is an example diitrdorce, no entanglement” the-
orem, and note the similarity between this example and thé@qus WKB example. The WKB
approximation is valid in this limit, and it is not surprigitthen that in both cases, the dominant

terms in the local entanglements are proportional to theefor

If we include a centre-of-mass part to the wave function witBaussian form as in equa-
tion 7.50, we obtain
2a°b?

_ R 4 7.65
‘ IR3aZ(ma + mp)ir? < o(ma +ms) ( )

—4R2agmamp(ma + mp)*r + 6a(2)m?4m23r2).

The first term is the component noted previously, decayinthinsame way as the atom'’s
internal electrostatic force; in addition there are two mewtributions from the localisation of
the free-particle wave function. Of these the third ternregponds to the spatially constant

entanglement of the gaussian centre-of-mass state.

Excited states of the atom can also be analysed, by subsiittite appropriate energy
eigenfunction into the expression ferin Appendix F. The excited states have nodes in the
wavefunction, which have to be treated as discussed eateishow the corresponding prob-
ability distribution, and entangleme#t (in the discarding and nondiscarding ensembles) in

Figure 7.3.
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7.5 Summary

Our approach allows us to analyse the distribution of eri¢amgnt after imperfect local position
measurements in any smooth bipartite pure state. Equati@bsand 7.27 are the main results
in this chapter, allowing us to calculate the concurrencieims of simple derivatives of the
wavefunction. Equation 7.43 allows us to express the efgargnt in the same local region
in terms of an arbitrary linear transformation of the conates, and equation 7.49 treats the
important case where the motion separates into centreastrand relative coordinates.

The three examples of exactly integrable systems that wediaeussed show a number of
common features. First, there is generic behaviour neasiodthe wavefunction. There is an
apparent divergence in the entanglement in the discardiagnable for a fixed region size, but
this does not mean that large amounts of entanglement caxttaeted from the continuous-
variable wavefunction once the system has been localis#tisregion. Our expressions for
entanglement are always true only in the limit of small regézes, and their domain of validity
shrinks as we approach a node; the discarding entanglemmiains finite so long as we take
care always to remain within this domain. Furthermore, wivermeasure the locations of the
particles we are unlikely to find them near a node in the wanetfan, so the probability factor
in equation 4.19 further suppresses the nondiscardinggietaent relative to the discarding
entanglement.

As the size of the measurement regions increases, our appsterts to break down be-
cause more than two eigenvalues of the reduced densityxnegciome important. We have
explicitly computed the extent of this breakdown, giving tlewest-order corrections to our
main results in Appendix E.

As pointed out in Section 7.3.3 and Section 7.3.5.3, fredgba wavefunctions do not
give rise to any local entanglement, but there may be sona itanglement if the state is
in a superposition of linearly independent plain waves. \&ehshown how our entanglement
expressions are transformed when moving to other cooesin@.g. centre-of-mass and rela-
tive coordinates); however, it is important to realize ttiet entanglement we quantify is still
between the original subsystems. The transformation i dmhe for the convenience of the
calculations.

Our results for the WKB wavefunctions and for the hydrogemrasuggest an intrigu-
ing link between the interaction force and the local entamgint, but the exact details of the
relationship and its generality need to be further explored

For any bipartite multi-mode pure states, the local cormnee equals twice the corre-

sponding local negativity in the limit of very small sizes,andb;, of measurement regions.
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In addititon, each mode of the entangled state contributeslinearly to the total concurrence,
Cc? = Zij ij It is therefore not straightforward to extend the previcesults for two-mode
mixed states to multi-mode ones. Much more work is requiredrder to gain significant

insights in this direction.
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Chapter 8

Indistinguishable Particles

8.1 Introduction

So far we have ignored the problem of indistinguishability.quantum systems, particles are
usually indistinguishable (for example, photons) and imynsituations, the effects of their
quantum statistics will be too significant to be neglectedis therefore important to extend
our analysis to take this into account. and we will apply quuraach in this chapter to study
the local entanglement of identical particles. We will shitvat once the identical particles are
localised, the localised particles effectively behave iasmgjuishable particles, and the local
entanglement between them can then be analysed as before.

Our local approach described in Chapter 4 involves Alice Bod each making prelimi-
nary measurements on their own interacting particles talike the particles within regiod
and regionB respectively but the Hilbert space of each particle neecordhe same, that is,
particles can be separately localised in different spdiiakensions. However, identical parti-
cles, by definition, cannot have distinct state spaces salmeiwspatial dimensions must be the
same and regiopl and region3 have to be part of the same Hilbert space. This is an impor-
tant distinction from our previous formulation worth bewyiin mind throughout the rest of the

analysis.

8.2 The Density Operator in the Discarding Ensemble

Let Alice and Bob share a state of two identical particles imgvn one-dimension. To ex-
tend our analysis to systems of indistinguishable pagjchee first need to modify the previous
definition of the discarding ensemble. Alice makes a prelany measurement on a region of
configuration space arourig, to determine whether she can fiady particle, and similarly
Bob makes a measurement to see whether he carafipgharticle in the region aroungs.
This process only grants them knowledge of the number ofgiestin their possession after

measurements but nothing more. Any entanglement betweien'?Abind Bob’s subsystems
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must come from the interaction or quantum statistics of theigles. For a given density of
particles, the probability of finding more than one in a clmosagion can always be made neg-
ligibly small by choosing smaller regions so it is reasorabl consider onlghe entanglement
between Alice’s and Bob’s subsystems after each sucdgdsids exactly one patrticle in their
chosen non-overlapping region§Ve therefore define the appropriate discarding ensemble to
consider in the case of indistinguishable particles to leeréisulting subensemble after all the
other instances are discarded.

The projector corresponding to Alice’'s measurement of figaixactly one particle (coor-

dinateq) in a chosen regioml aroundg 4 with width 2a of configuration space is

Ex=0a(q1)[1 — 0a(q2)] + 0a(q2)[1 — 0a(qn)], (8.1)

where

1 fga—a<qg<qatoa
0a(q) = : (8.2)
0 otherwise

The first part in equation (8.1) represents that Alice susfodlg finds only Particle 1 (coordinate
q1) in the measured regiad whereas the second part represents that Particle 2 (catedir)

is found; either one can be the outcome but she is unabld théatlentity of the found particle.
Similarly, the projector corresponding to Bob’s measunenud finding exactly one particle in

a chosen regiof8 aroundgp with width 2b of configuration space is

Ep = 0p(q1)[1 — 05(q)] + 05(a2)[1 — 05(q1))- (8.3)

It is essential that Alice’s measured regidns mutually exclusive to Bob’®, otherwise
it becomes meaningless to talk about the entanglement beti@th parties’ subsystems. The

density matrix in the discarding ensemble is therefore

_ EAEppEpEa
pp = ———2E
D
1
= B[HA(ql)GB(qz)+93(q1)9A(q2)]p[ﬂA(qi)HB(QQ)+93(Q’1)9A(qé)] (8.4)
1
=  op(q,02: 91, ¢5) = ]—Qp(qleA,qzeB;qQEA,qQEB)

1

+5/7(Q1 €A q e B;q € B,q5 € A)
1

+5p(q1 eB,gpe Ajq € Aqy € B)

1
+];p(ql €B,q2 € A;qy € B, gy € A), (8.5)

wherep is the probability for Alice to find exactly one particle #nand Bob to find exactly one
particle inB. Now we need to consider quantum statistics of identicaiglas before we can

go on to deduce the final form pf5.
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8.3 Effects of Quantum Particle Statistics

Quantum particle statistics between an indistinguishphbhticle and another indistinguishable
particle in another “remote” location does not give rise ny measurable consequences with
respect tdocal measurements, and hence there is no usable entanglemess tim particles
are also interacting in some other way [Per95]. The “remegshdepends on the quantum mea-
surement concerned, and generally speaking is determintiek bength scale of the measuring
equipment for that particular measurement. In this conteetause the measured regiohand

B are mutually exclusive, the localised states resultingfbmth Alice’s and Bob’s preliminary
measurements are “remote” with respect to each other.

However, it is worth noting that if localised indistinguégble particles’ wave functions are
allowed to overlap spatially, it is no longer necessary teehan interaction in order to pro-
duce entanglement. For example, two non-interacting relestwith an inter-electron distance
roughly below the inverse Fermi momentum in a Fermi sea aengled in the spin degrees of
freedom simply due to the effects of the Pauli exclusiongipile [Ved03, Git05].

Since there should be no spatial overlap between Alice'sBwtuls subsystems in the
discarding ensemble, it is essential to ensure that oumntiesd does not make it possible for
these “non-interacting” correlations to give rise to anghle entanglement.

The symmetrisation postulatstipulates that the state of quantum systems contaihing
identical particles are either totally symmetric or totalhtisymmetric under the interchange of

any pairs of particles and that states with mixed symmetrgatcexist:

w(ghg%"'7£i7"'7£j7"'7£N) :iw(glvg%"'>£j7"'7gi7"'>£N)' (86)

Furthermore, particles with integral spins (bosons) hgwensetric states whereas particles with
half-odd-integer spins (fermions) have antisymmetritestao that the plus sign is for bosons
and the minus sign for fermions in equation 8.6. To satiséydhmmetrisation postulate, we

write the overall density matrix(q1, ¢2; ¢}, ¢5) as

1
plqr,q2; 41, 45) = 5[9((11, 42: 91, 93) £ 0(q2, 91541, 43)

+0(q2, 413 - 41) £ 0(q1, @23 5> 41)] (8.7)

wherep is an auxiliary asymmetric density matrix. Any local measuent that Alice (Bob)
can carry out on her (his) unidentified particle in the didoag ensemble is represented by an
arbitrary one-particle operatot (B):

A1,2) = a()+a2)=a01+1®45; (8.8)

B(1,2) = b(1)+b2)=b@1+1®b (8.9)
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such that
a(1)os(q1) = 0; (8.10)
a(2)0p(q2) = 0; (8.11)
b(1)0a(q1) = O; (8.12)
b(2)0a(g2) = 0, (8.13)

wherea(1) andb(1) are for Particle 1 whereag2) andb(2) are for Particle 2.
The expectation value of Alice’s and Bob’s local operationgheir respective subsystems

is therefore

p
5(@)b(1) 05(q1)04(q2)p(q1, qjg; a1 QQ)QB(QE)HA((]&)}

T(ABpp| — TT[é(l)l;)@)9A(L]1)9B(t]2)ﬂ(¢]1,t]z;(117(15)9,41(¢]/1)9B(¢J§)
+

= T [s(0B@0a(an)0n () B 1 )0n(ap) | 10

By substituting equation (8.7) into this, we obtain

< 1 .
TABpp] = T [a(1)b(2)0(0)05(e) olar, 02101, 65)  oa2, 03}, ab)

+o(q2, 413 ¢5, 41) £ o(a1, 423 45, 1) }04(d1) 05 (q5)] - (8.15)

Note that we can start from any asymmetric density madfi, ¢2; ¢}, ¢5) to con-
struct a (anti)symmetrised on€qi, ¢2; ¢}, q5) SO we can always choose @qi, g2; ¢, ¢5)
such that it is nonzero only whepn € A, ¢» € B, ¢ € Aandg, € B. For example,
suppose the particles are fermions, and hence the overaitdamatrix p(q1, ¢2; ¢}, ¢5) =
U(q1,q92)¥*(q}, ¢4) is antisymmetric. It follows thab(q1, g2; ¢}, d5) = P(q1,q2)P* (), ¢b) if

U(q1,42) = [®(q1. 42) — ®(q2,q1)]/v/2. By choosing the asymmetric wave functidty: , ¢»)

to be

U(q1,q2) + S(q1,q2)
2

P(q1,q2) = (8.16)

whereS(q1, ¢2) is an arbitrary symmetric function such that

V(gi1,q2) ifqreAgpeB
S(Q1>Q2) . ) (817)
—V(q1,q2) ifqueB,ae A

we have the desired(q1, ¢2; ¢}, ¢5) that is perfectly valid without any additional assumption

or restriction (apart from the symmetrisation postulate}lwe form of the joint wave function

U(q1,q2).
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It now becomes clear that we can write equation (8.15) as

Tr[ABpp] = %ﬁ[é(l)f)@)@/x(q1)93(q2)9(q1,qz;qi,qé)HA(q’l)GB(qé)] (8.18)

without losing generality in(q1, ¢2; ¢}, ¢5) so that in the discarding ensemble the expectation
value of both Alice’s observabld and Bob’s observablé is not affected by the fact that the
joint state of the two indistinguishable particles is (yinmetrised. It is now clear that once

localised, the density matrix in the discarding ensembjean be written as

1
pp = EP(CH eAqpeBq €Aqgeb)

= pp(qa,a8; 94, q5)- (8.19)

8.4 Local Entanglement in the Discarding Ensembl&,

We have seen that despite the indistinguishability of pladi the localising measurements
make both Alice’s and Bob’s subsystems in the discardingmabte behave exactly as distin-
guishable particles so that starting frem (¢4, gs; ¢4, 453), our previous method, described in
Chapter 6, to quantify local entanglement in a system of tistrdyuishable interacting parti-

cles is again applicable here.

8.5 Generalisation to Many-Particle Systems

Now consider the system to have many identical particles Adice and Bob each try to localise
oneparticle in mutually exclusive regions so that we are onlgliested in the entanglement
between the localised particlesAgain, the discarding ensemble will only consist of cases
where each party finds exactly one identical particle inhgisthosen region, and all the other
cases will be discarded. Therefore, we can start from thep@vticle reduced density matrix
p? instead of the full ong™):

N(N —1)

2 2 N A
5 /d r3...d er( )(7“1,7“2,...,TN,TI,TZ,...,T‘N).

(8.20)

PP (r1, ;7 mh) =

Then, replace(q1, ¢2; ¢}, ¢3) in equation 8.5, equation 8.7 and equation 8.14BY(r, ;1 , 1),
the rest of the argument proceeds exactly the same a&’the 2 case. Note that the sym-
metry properties of the two-particle reduced density mapf?) are the same as those of

p(q1,92; ¢}, ¢5) inthe N = 2 case, even though their traces will be different.

8.6 Summary

In contrast to the case of distinguishable particles, tHbddi space of each identical particle

must be the same and entanglement between particles cafransquantum particle statistics.
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By considering the discarding ensemble, where only thesoafsélice and Bob each localising

exactly one particle in non-overlapping regions are ket alhthe others are thrown away,
we can overcome these problems and quantify the usablegietaent between the localised
particles. The localisation process effectively makesldicalised identical particles “distin-

guishable” so once localised, the quantification of thermgitanent between two localised par-
ticles, possibly in a many-particle system, are easily donéllowing the methods described
for the case of distinguishable particles. Consequently|azal approach is equally applicable

to systems of either identical or distinguishable particle
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Chapter 9

Conclusions

Quantum entanglement is not just a profound feature of guamechanics but itis also a valu-
able physical resource with massive potential for techyiold applications, such as quantum
computation. However, our understanding of entangleneestili far from complete despite
current intense research activities. Like other physieaburces, for example, energy, the first
step towards exploiting them fully is to know how to quantifyrrectly. It is therefore not sur-
prising that there has been growing interest in the quaatifin of entanglement in quantum
systems.

There are many reasons to focus on the entanglement of nonsrvariable states since
the underlying degrees of freedom of physical systems iceyryuantum information are fre-
quently continuous, rather than discrete. Much of the efias been concentrated on Gaussian
states, because these are common (especially in quantios)@st the ground or thermal states
of optical modes. Within this framework, many interestingits have been studied and some
significant progress made. However one should remembendinaGaussian states are also ex-
tremely important; this is especially so in condensed-plsystems, where harmonic behaviour
in any degree of freedom is likely to be only an approximati8o far, there is little knowledge
about how to quantify entanglement in these non-Gaussiesst

This thesis aims to contribute to the active field of reseamajuantum entanglement by
opening up a new direction to study the entanglement of géstates, especially continuous-
variable, and shows particularly that this leads to thediystematic quantification of the (local)
entanglement in arbitrary non-Gaussian states.

The local entanglements, the entanglement in the disa@aatisembl&, and the (useful)
entanglement in the nondiscarding ensentijlg,, are simply related (equation 4.19) so the
attention is concentrated &fp. For any convex entanglement measure with an operational
definition, the entanglement in the nondiscarding ensensoémply £p, the average of the

entanglement in the discarding ensemble over all posséntipns. £p can never exceed the
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original full entanglement of the system.

We first apply our local approach, whose formalism is descriln Chapter 4, to the study
of quantum entanglement in the discrete-variable systgnusing a simple spin system, where
Alice and Bob share two pairs of spin-1/2 particles, as ammg@. Both pure and mixed
states are analysed, and the results of our local approdbisinase are examples of quantum
distillation and concentration.

An interesting question “where in continuous configurapace is the entanglement lo-
cated?” is tackled by applying our local approach to ingagé the location dependence of
the ground-state entanglement between a pair of coupleddméc oscillators, one oscillator
to each of the two communicating parties Alice and Bob. Bwylging the variations of the
entanglement properties with the size of the preliminarasaeement region, we argue that the
shared entanglement remaining to Alice and Bob (the lodalinrglement ) provides a natu-
ral measure of where in configuration space the entangleimemiginally located. The local
entanglement saturates to the full (global) entanglemetttemeasured regions become large,
and tends to zero as the regions become small. For a fixechregie, the configuration-space
location can be varied in order to give a variable-resotutivap of the entanglement distribu-
tion. It is shown that the distribution of the entanglementjualitatively different from the
classical correlations between the oscillators, beingidenably more extended in configura-
tion space than the joint probability and becoming more awdendiffuse as the size of the
regions decreases.

In the limiting cases where the sizes of the preliminary mesment regions are extremely
small, our local approach provides a straightforward sehémat results in simple expressions
for quantification of the local entanglements in generalticolwus-variable states. Many in-
teresting systems can therefore be investigated and aspequantum entanglement charac-
terised. We have thoroughly studied general smooth (imudon-Gaussian) bipartite two-
mode (mixed) continuous-variable states and multi-mode pantinuous-variable states. Sur-
prisingly, in this limit the description of each mode of a tinnous-variable state becomes
isomorphic to a single qubit.

Our local approach is particularly simple to implement fargstates, since in this case
the state in the discarding ensemble is also a pure statehemzk its entanglement can be
simply characterised by the entropy of the reduced densitlyioes. For pure bipartite states,
the expressions for the entropy of entanglement and caerocerare explicitly derived, and the

local concurrence is simply twice the local negativity.

For two-mode mixed states, a recipe for numerically conmguthe local concurrence is
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given, and in addition we show that the exact expressiorhtacbncurrence can be analytically
derived for Gaussian states. We do not succeed in obtainahgsad-form expression for the
concurrence of general two-mode states (apart from puressasd rank-2 mixed states); how-
ever, the difficulty can be bypassed by using the negatieityHe logarithmic negativity) as the
measure of entanglement instead. The local negativity pft@an-mode continuous-variable
states can be directly computed from equation 6.20; baségeosign ofC', the negativity can
be either proportional téab)? or depends on the “areaitf) and also on the “shapeb/(a). In
comparison, the concurrence is always proportiongktd. ProvidedC; > 0, we can define
the maximised negativity, which is also always proportldogab). This naturally leads to the
definitions of the concurrence density and the negativitysdg The two local-entanglement
densities are plotted as a function of temperature for thestates of two harmonic oscillators
with different coupling strengths to show that for this sestates, those which are entangled
from the global point of view are also entangled by our locabsures. This is a very interesting

feature, which unfortunately is not true in general.

Even though quantum entanglement of a pure state can bechdhacterised via the von
Neumann entropy, the calculation of this entropy for a hiifhensional system is generally
very difficult and will almost always have to be performed muimally. Our results (equa-
tions 7.25 and 7.27) enable the local entanglement to be amdglirectly and explicitly, with-
out the time-consuming numerical evaluation of the gloinéheglement in a high-dimensional
system, once the state of the system is known. As the size ofifasurement regions increases,
this approach will start to break down; the lowest-orderections to our main results are given

in Appendix E.

Equation 7.43 allows us to express the entanglement in the $acal region in terms of
an arbitrary linear transformation of the coordinates, emaation 7.49 treats the important case
where the motion separates into centre-of-mass and melediordinates. The transformation of
the entanglement expressions to other coordinates canngefdothe convenience of the cal-
culations; however, it is important to note that the locdabeglement quantified is still between

the original subsystems.

The “no-force, no-entanglement” theorem in Section 7.3a8es that by excluding the
effects of the superposition of wavefunctions, the noregppsed eigenstate for the force-free
Schrédinger equation, such that the boundary conditioessatisfied, can always be written
in the form of equation 7.26 witly' being a linear function of coordinates so that there is no
local entanglement. Consequently, a free-particle wanetion does not give rise to any local

entanglement.
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Three examples of pure continuous-variable states aréedtudemiclassical WKB sys-
tems, multi-dimensional harmonic oscillators, and a hgdroatom. We find that generic be-
haviour occurs near nodes in the wavefunction. There is parapt divergence in the entan-
glement in the discarding ensemiglg for a fixed region size, but this does not imply that large
amounts of entanglement can be extracted once the systebeladocalised in this region.
Our expressions for the local entanglement are always tnheio the limit of small region
sizes, and their domain of validity shrinks as we approacbdenthe entanglement in the dis-
carding ensemblé&p remains finite within this domain of validity. In additiorhe particles are
unlikely to be found near a node in the wavefunction, so tlebability factor in equation 4.19
further suppresses the entanglement in the nondiscardse®leS v p relative to€p. The re-
sults for the WKB wavefunctions and for the hydrogen atongssgan intriguing link between
the interaction force and the local entanglement, but tlaetedetails of the relationship and its

generality need to be further explored.

Quantum particle statistics between an indistinguishalleicle and another remote in-
distinguishable particle does not give rise to any measei@msequences with respect to lo-
cal measurements so there is no usable entanglement umepsarticles are also interacting
in some other way. In the case of two interacting indistisgable particles, by consider-
ing the case where Alice and Bob each successfully finds lgxaiwe particle in their chosen
non-overlapping measurement regions and defining therdisggensemble to be the resulting
subensemble after all the other possible measurementmatcare discarded, we show that
once the particles are localised, the entanglement in goadling ensemble can then be quan-
tified in the same way as for distinguishable particles. Hl# possible to extend our local
approach to a system of many indistinguishable particlesyigled that we only consider the

entanglement after the particles are localised and residen-overlapping regions.

Our local approach to quantum entanglement suffers frordigslvantage that there is no
sum rule on the entanglements in the discarding ensemldesutim of the entanglements from
all the sub-regions defined by a given decomposition of cardigpn space does not yield the
full entanglement of the system. Instead, the entanglesnfenin the sub-regions satisfy the
inequality in equation 4.25. Further studies will thereftve needed in order to understand in

more detail the relationship between the local entangl¢rueth the global entanglement.

It is not straightforward to extend our results analytigatl multi-mode mixed-states, not
least because the difficulty to derive the closed expredsiotwo-mode mixed states. Despite
this failure, our approach should open up a new directionvestigate aspects of quantum en-

tanglement in general bipartite continuous-variableestatspecially non-Gaussian ones. Local
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entanglement of systems with smooth wavefunctions ang éhlhracterised by our expressions,
provided the wavefunction of the system is known. In any casepproach provides a scheme
that permits much simpler numerical computation for qugimy entanglement of mixed states
via the (logarithmic) negativity than is generally possifiom directly computing the full en-
tanglement of the system. We hope our local approach to goeahtanglement will be adopted
and explored further by the research community, and hentgilsate to the important field of

quantum entanglement and its applications.
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Appendix A

Entanglement of Formation of a Two-Mode

Gaussian Ground State

In the case of only two harmonic oscillatord’ (= 2), the V matrix for the ground state is

simply [AEPWO02]
14+2a0 2«
V= (A.1)
—2a 142«
so that
Vi 1 1+vV1+4a 1—+V1+4a (A.2)
2 = — .

2mw \ 1 - \T1da 1+/17+4a

and
L omw [ 1+ A= 1
V72 = - Vit+da Vitda | (A.3)
1 1
7w 1t a=
The covariance matrix of a thermal state with some tempezgatu> 0, is
1 (7(8)

1B) = 5( 2= o mun(8) |, (A-4)

wheres = 1/T and
1/2 -1
(@) = V{1 e(M T 1) )
1/2 -1
() = v1/2{]12 n 2<eV C ]12) } (A.5)
We then have
v(B) (A.6)
2 [eoth(20) + i coth(%2)] L[ coth(%52) — o coth(%2)]
2
0
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0 0
0 0
mw [coth(%) + MCoth(%)] mw [coth(ﬁzﬂ) - MCoth(%)]
mw [coth(%) - MCoth(%)] mw [coth(ﬁzﬂ) + MCoth(%)]
wherew; = w,/1;, 1 < j < N, andr; are the eigenvalues &f. It follows from equation 5.4
that
L lmw tanh(%) + Mtanh(%) tanh(%) - Mtanh(%ﬂ)
tanh(2L) — 1+ datanh(22)  tanh(282) + /T + 4a tanh(22)
(A7)
and
o~ L ( coth(Z1) + /T + dacoth(22) — tanh(ZL) — /1 + datanh(22)
coth(%) - MCoth(%ﬂ) - tanh(ﬁ—‘;l) + mmnh(%)
coth(Z1) — /T + 4o coth(Ze2) — tanh(%) + V1 + 4a tanh(2£2) (A8)

2
V1+da tanh(%)

For the pure state]’ = 0 so 5 — oo. With tanh(co) = 1 andcoth(co) = 1, theM matrix

(5 2
coth(%4) 4+ /T + darcoth(242) — tanh(Z2)
becomes zero and thematrix is therefore written as in equation 5.6.

From Section 5.2, the density matrix of this two-oscillatgstem can be expressed as

(det L)Y2exp| — (q1L11q1 + q1L12g2 + qaLorqr + gaLloaga)

9
p(a1,q2; 41, 45) = -

—(1L1¢y + q1Liiay + @5 L1 dh + apLa1gs)

1 1
—§(Q1 —q)Mun (g — ) — 5((]1 — ) Mia(q2 — q3)
1 1
—§(Q2 - QQ)M21(Q1 - qi) - §(Q2 - QQ)M22(Q2 - qé)], (A.9)

normalised to unity. Since only the pure-state entangléroem be quantified by the von Neu-
mann entropy, we will ignore thiel matrix (M = 0) from now on but note that the non-zevb
matrix is used to produce Figure 6.2. The one-particle redulensity matrix can be computed

easily; as an example, for Particle 1.

o0
p1(q1;q1) :/ dg2 p(q1,62; 41+ 42)

— 00

2v1 — 2v
= 4/ %exp[—vl(q% + ) + 202q14}], (A.10)

also normalised to unity and where

(A.11)
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and
(L1g + La1)?
8L99 ’

In deriving equation A.10, we have used the technique of ‘@etmg the square” (with respect

vy = (A.12)

to g9) so the first-line integration obtains the form of #reor function such that terms involving
g2 in the exponential are absorbed into the normalisation teohs&fter integration. This is

possible because the error function is defined by

erfx] = % /x e " du, (A.13)
T Jo

anderf[oco] = 1.
We can diagonalise the one-particle reduced density miayrixtilising Mehler's Hermite

polynomial formula,

o9 _ (2 2Y,,,2
Z Hn('m?)lfln(y)(%)nexp[ _ %(12 + y2):| — exp[%cyw - (_mw_; Y )w _ %(12 + y2):|
n=0 ’

(1—w?) "2 (A.14)

x exp[ — Ul(q2 + q'2) + 2U2qq']

whereH,,(x) is a Hermite polynomial. This is done by introducing a newapaeters so that

@1 = zs andg] = ys. Also

2
9 W 1
v1S = 1_7102 + 5 (A15)
and
2 w
vast = o (A.16)
By solving forw (0 < w < 1):
_ 2 _ .2
w=PL= VU~ ) (A.17)
U2

as well as remembering that for diagonalisation we require

P d) =D Aadn(@)d5(d) (A.18)
with
/ |6n(q)]” dg = (A.19)
such that
> a=1, (A.20)

we thus obtain

dn(q) 03 (q) = mexp[— T) Hn(g)Hn(q;) (A.21)
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and then-th eigenvalue is

An = V201 — 2u9w" (1 — w2)1/2s. (A.22)
Note that
1 —
$vV2v1 — 2v9 = - (A.23)
1+w

from equation A.15 and equation A.16.
The ground state is a pure state so we can directly quantfgrtbund-state entanglement
between the two oscillators by the von Neumann entr8py By substituting equation A.22

into equation 2.31, we obtain:

wlogy w

Sy(p1) = —logy(1 —w) — T—w)

(A.24)

This expression is actually true for a harmonic ring congjsof any number of harmonic os-
cillators, provided that we only consider the ground-s&atanglement betweameoscillator

and the rest in the systetn

Quantifying Entanglement between a Harmonic Oscillator am

other (N — 1) Oscillators

We can extend the previous argument to consider entangtememeen a harmonic oscillator
and the othetV — 1 harmonic oscillators in a harmonic ring. As before, we neefirtd the
one-patrticle reduced density matrix. This can be done biyagpthe technique of completing
the square to terms in the exponential of the full densityrixatith respect to the othefV —

1) coordinates{qs,g3 . ..,qn} all at once. That is, starting from equation 5.3, we have the

following equation:
N
Z [(q1 + a1)L1jq; + g5 L (ar + ¢1)] Z 2¢;Ljkqk
j>2 7,k>2
N
Z (@5 + @) Ljn(ar + Qi) — a1 + ¢1)*. (A.25)
k>2

The vectorQ is found to be

Q2

1 _
= _LNl_l(QI + q{)A (A.26)

Q= 4

Qn

LAlternatively, the von Neumann entropy can be evaluatedfiyr Gaussian state of any number of modes by

computing the symplectic eigenvalues.
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whereL y_; is the appropriate part of tHe matrix with (N — 1) x (N — 1) elements (i.e.

excluding the first row and the first column) and

Lia+ Loy
Lis+ L
A= 18 sl (A.27)
Liny + Ln
The last term in equation A.25 must satisfy
gt +1)* =2 Y QiLinQx (A.28)
Jk=>2
so that
1
Q= gATL]‘Vl_lA. (A.29)

Similar to equation A.10, the; and vy in the one-particle reduced density matrix of\a

oscillator system are then found to be
v = LH - Q (A30)

and

By following the previous argument in th€ = 2 casew in equation A.14 and the correspond-

ing von Neumann entropy, as given in equation A.24, can teusoimputed.
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Appendix B

Local Concurrence of Rank-2 Mixed States

For rank-2 mixed states, there are only two non-zero eigeesafp to order(ab)?. They are

2z

and

K3

900000

"~ 9poooo

(ab)®

1 < — po11191000(P0000)* + Po110p1001 (Po00o)” + po101p1010(P0000)” —

P01oop1011(p0000)2 + /’001101100(00000)2 - Poo1001101(ﬂ0000)2 -
/70001/71110(/)0000)2 + /71111(/)0000)3 +V2 ‘ (P00004(2/)0011/70110/71001/71100 -
2p0010£0111P1001£1100 + L0001 £0111£1010£1100 — 20001 £0110P1011P1100 —
2p0011£0110£1000P1101 + 200010£0111 10001101 + £0001£0110£1010P1101 —
£0001£0111£1000£1110 — £0001£0010£1101P1110 T+ £0001£0110£1000£1111 +
£00010010£1100P1111 + P0100(L0111£100121010 — P0111L100001011 +
£0011£1010P1101 — L0010£1011£1101 — 2000111001 L1110 + 200011011 L1110 +
0011010000111 + £0010£1001£1111 — 2P0001£1010P1111) + P0111P10111100£0000 —
2p0111£1010£1101£0000 + P01101011£1101£0000 + L0111£1001P1110£0000 +
£0011£1101P1110£0000 — £0110£1001P1111£0000 — L0011L1100£1111£0000 +

0101 (—P0110£1001 21010 + A0110£10001011 — F0011L£10101100 + A0010£1011P1100 +

£0011£1000P1110 + £0010£1001£1110 — 2£0010£100001111 —

) (B.1)

1 (po111p1000(ﬂ0000)2 — po110P1001(P0000)” — po101p1010(P0000)” +

1/2
201011P1110P0000 + 2/71010/)1111/?0000)))

(ab)®

010021011 (P0000) — Poo11p1100(P0000)> + Poo10p1101 (Poooo)? +

2 3 \/5 4 2 —
/70001/71110(/)0000) /71111(/)0000) + £0000 ( £0011£0110£1001 1100
20001000111 £1001£1100 + £00010111£1010£1100 — 2£0001£0110£10111100 —

200011P0110£1000£1101 1+ 20001020111 10001101 + L0001 £0110£101001101 —
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£0001P01111000£1110 — £0001£0010£1101£1110 + L0001 £0110£100001111 +
£0001£0010P1100£1111 + 90100(00111P1001P1010 — p0111P1000£1011 +
£0011£1010£1101 — L0010£1011£1101 — 200011£1001£1110 T 2P0001£1011P1110 +
£0011P1000P1111 + £0010£1001P1111 — 2£0001£1010P1111) + LO111£1011P1100£0000 —
200111£1010£1101£0000 + £0110£1011 11010000 + L0111£1001 11100000 +
£0011£1101P1110£0000 — £0110£1001£1111£0000 — £0011£1100£1111£0000 +
POIOI(_POIIOPIOOIPIOIO =+ P0110£1000P1011 — P0011£1010P1100 + L0010£1011 L1100 +

£0011£1000P1110 + £0010£1001£1110 — 2£0010£100001111 —

). (B.2)

C = max{0, /114 — /13}. (B.3)

1/2
2p1011£1110P0000 + 20101001111%000)))

The local concurrence is then
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Appendix C

D, and D, in the Expression of the Local

Negativity

Here we want to prove thdD; in equation 6.21 and- in equation 6.22 are always positive.
Let ¢ be a sub-normalized state and suppd3gy’ (/) is a decomposition for the stage

not necessarily an optimal one, equation 6.21 becomes:

Dy = 3p0000 <Z¢o1 W61) Z%O ) —Z%o(%ﬂ*;%l(%o)*)
- 3p00002 Z Dby — V1) W) (Whg)”
- 3p00002 Z (Pr o — W Bbo) W1 Py — Wh1b0)” (C.1)
but
(Db — Vh1bo) (WD Py — By dhe)* > 0 (C.2)
SO
Dy > 0. (C3)
Similarly,
1 o .
Dy = 3000002 ;(%o%o I oWho) Wigdy — Plodi)* (C.4)
= 0 (C.5)
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Appendix D

Pauli Operators for the Effective Two-Qubit

System

We wish to find appropriate Pauli operators for the effectwe-qubit system in the represen-

tation:

a

¢0($):\/;; @)=\ e (ca<z<a) (0.1)

From Section 3.1.6, we know the PaiXit andY -matrices have elements

) (0 1) ) (0 i)
X= LY = (D.2)
10 i 0

Since these matrices need to connect the stgtasd¢,, which have opposite parity, they must
be odd spatially. Natural choices will be the position opmra and the momentum operator
P, but it is essential to make sure that the operators are attyrnepresented by Hermitian
matrices.

First, define another functioms(x), correctly normalized from-a to +a and Gram-

Schmidt orthogonalised to bothy and¢; :

2
Pa(x) =4/ % <x2 - %) . (D.3)

These basis functiongpg, ¢1, ¢2} are implicitly assumed to vanish outside the regiom <
x < a. Itis useful to invert these definitions to obtain the firselhpowers of in terms of the

orthonormal basis functions:

2a3 8ab V2a®
L=V2agy; z=\/Z-01; o=/ ot

0. (D.4)

Consider the action of the position operatoon the basis states. We find

. 1 a )
z]0) = \/%x = EHL (D.5)

o [3 5 |3 8ad V2ad _a
1) =1/ 557 —\/2—&< E¢2+T¢O> —%¢0+0¢2. (D.6)
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Hence, the matrix representationiofenerated by the sétyy, ¢} is

O _a_
&= ( V3 ) , (D.7)
& 0

from which we deduce that the Pai-operator is represented by

X = ?m (D.8)

Next, we turn our attention to the momentum opergtor he basis functions vanish out-
side the measurement region, this leads to dicontinuitighé functions and hence the delta-
function contributions to their derivatives. The actiofigh® operator in the position represen-

tation are then

plo) = —1h —b0 = lh\/7[5($ —a) = 6(z+a); (D.9)

pl1) = —1h (;51 1h\/2 3 —1—171\/7 Sz +a)+d(xz —a) (D.10)

The matrix elements are found by integrating over the rarga £« to +a, remembering that
the delta-functions contribute exactly one half each tankegral since they are centred at the

end points:

aploy = —ih/a dz ¢>{8%¢0 _ ih\/z\/E - +ih£; (D.11)
Op[1) = —ih/_a e i ¢1 —lh— + h\/;\/7 —lh—?’, (D.12)

with (0|p|0) = (1|p|1) = 0 by symmetry. It follows the matrix representation is
0 =3
h=ih 2a (D.13)
p=1 V3 0 )
2a

V=—"p (D.14)

and
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Appendix E

Corrections to the Local Entanglement after

Two-Party Preliminary Measurements

The third eigenvalue of Alice’s reduced density matrix ie tiscarding ensemble when both
parties make preliminary measurements can be found by makafollowing additional sub-

stitutions in equation 6.12;

A br 2 -
Péo) = » £2000 + 5(02020 + 2p2011 + paoo2) | + O(b°);
w _ by ? ‘ N
Py’ = » P0200 + E(Pomo + 2po211 + po202) | + O(b°);
@ _ by ’ ‘ N
Po1 = ]; p2100 + E(p2120 + 2p2111 + p2102) | + O(b”);
A br b2 -
ng) = ]; P1200 + E(p1220 + 2p1211 + p12o2) | + 0(55);
A b b2
Péz) = 3 p2200 + 5(02220 + 2p2211 + P2202)] +0(b°).
E.1)
This gives
5%
A3 = \de (ab) ) (E.2)
3
where the denominator is
Ae = 120(pooo2po100P1000 + 20011 010021000

~+£0020£0100£1000 T £0000£0102£1000
+200000£0111 1000 + £0000£0120£1000
+0000£0100£1002 + 2£0000£0100£1011
+P0000£0100£1020 — 2000000002110
—40000£0011P1100 — 2£0000£0020£1100

— 000000001102 — 2£0000£0000£1111
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—£0000£0000£1120) 5 (E.3)

and the numerator is

1
A?“ = 5(0021101120112002 — P012001211 02002
—P0111P1220£2002 + £02200111102002
+00202P112002011 — £0120P120202011
—001020122002011 + £02200110202011
—P022001011£2102 — 0211102002102
+0002001211 02102 + L0011 £122002102
—P022001002£2111 — 0202102002111
+000200120202111 + L00020122002111
—P0211P1002P2120 + £00020121102120
+00211P100002122 — £0000L1211 02122
+012001011 02202 + L0111 0102002202
—P0020£1111£2202 — L0011£1120£2202
+001200100202211 + £01020102002211
—P002001102£2211 — L00020112002211
+00111100202220 + £0102£1011P2220
—P00110110202220 — L0002L111102220
—P0111£100002222 — 0100101102222

+00011 0110002222 + L0000L111102222), (E.4)

where equation (7.6) is applied to obtain the final form.
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Appendix F

The Expression ofe in Terms of Polar

Derivatives

Define o

ViR g, ] = %\P[r, 8, ¢) (F.1)
for any three-dimensional complex wavefunctigtyr,,r,, | in relative coordinates (Sec-
tion 7.3.5.3), expressed in spherical coordinate¥ s, ¢] (Section 7.4.3) with its complex
conjugate beingl*[r, 0, ¢]. Its local entanglement between Alice’s and Bob’s subsgsten
the limit of small region sizes is determined by the von NemmantropysS, = h(e). Assume
the region sizes are the same for all dimensions,d;e= a andb; = b fori € {z,y, 2}, eis

simply: (the Mathematica output is given to avoid introchgctypographical errors.)

a?b?

9 (z[r, 6, ¢] T*[r, 6, ¢])? r*

€=

[2 (-Csc[6] (Sin[e] 8(°'*9[r, 6, ¢] -rCos[e] T* %O [r, 6, ¢])

(-sin[¢] 2° %V [r, B, ¢] +

Cos[¢] Sin[6] (Cos[6] 81O [r, 6, ¢] +rSin[e] 8% [r, 6, ¢])) +

T[r, 6, ¢] (Cos[26] Cos[¢p] 2D [r, 0, ¢] -Sin[¢] %2V [r, 0, ¢] +
Cos[6] Cos[¢] Sin[e] 2(°'2:9 [r, @, ¢] + r Cos[6] Cos[¢] Sin[6] 1O [r, 6, ¢] +
r Cot[6] Sin[¢] 8* %V [r, @, ¢] - rCos[6]%Cos[¢p] 211 [r, 6, ¢] +
rCos[¢] Sin[6]? &% [r, @, ¢] - r? Cos[6] Cos[4] Sin[6] 2200 [r, 6, ¢]))

(-Csc[6] (sin[6] @*° ¥ [r, 6, ¢] -rcos[e] D[, 6, ¢])
(-sin[¢] @*® P [r, 6, ¢] +

Cos[¢] Sin[6] (Cos[o] *°*'?[r, 6, ¢] +rSin[e] ** %% [r, 6, ¢])) +

@*[r, 6, ¢] (Cos[26] Cos[¢] T*® 1D [r 6, ¢] -Sin[¢] 2V [r, 6, ¢] +
Cos[6] Cos[¢] Sin[e] 2*°2:%[r, @, ¢] + r Cos[6] Cos[¢] Sin[e] ** %O [r, 6, ¢] +
rcot[6] Sin[¢] &* PP [r, 6, ¢] - rCos[6]? Cos[¢] &* * O [r, 6, ¢] +
rCos[¢] Sin[e]?@* 119 [r, 0, ¢] - r? Cos[6] Cos[¢] Sin[6] * 2% [r, 6, ¢])) +

((cscre] sin[¢] 2° %V [x, 6, 6] -

Cos[¢] (Cos[0] 8°*% [r, 6, ¢] +rSin[e] %O [r, 6, ¢]))> -

@[r, 8, ¢] (Csc[O0]128Sin[2 ¢] 8> %D [r, 6, ¢] +Csc[0]2Sin[¢]%2 &% %2 [r, 6, ¢] -
Cos[¢]?sin[26] 8(®1% [r, 6, ¢] + Cot[6] Sin[¢]2&® O [r, 6, ¢] -
Cot[6] Sin[2 ¢] ©(®1 V) [r, ©, ¢] + Cos[6]?Cos[¢]%2 &(*2:% [r, 6, ¢] +
rCos[6]%Cos[¢]2 8% [r, 0, ¢] +rSin[¢]2 82D [r, 6, ¢] -
rsSin[2¢] 2%V [r, 6, ¢] + rCos[¢]%Sin[26] X1 O [r, 6, ¢] +
r? Cos[¢]% Sin[6]? 2% [z, 6, ¢]))

((cscre] sin[¢] &*® >V [r, 6, ¢] -

Cos[¢] (Cos[e] & [r, 6, ¢] +rSin[6] TV [r, 6, ¢1))” -
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@*[z, 6, ¢] (Csc[6]1%28Sin[2¢] ©*® %D [r o, ¢] +Csc[0]28in[¢]22** D [r, 6, ¢] -
Cos[¢12Sin[20] ©* 2O [r, o, ¢] + Cot[6] Sin[¢]12a* 1D [r, 6, ¢] -
cot[e] sin[2¢] z*® 'V [z, 6, ¢] + Cos[6]% Cos[¢]2T** %V [z, 0, ¢] +
rCos[6]?Cos[¢]22* 9 [r, 0, ¢] +rSin[¢]2e*** [, 6, ¢] -
rsin[2¢] &%V [r, 6, ¢] + rCos[¢]12Sin[26] * 1D [r, 6, ¢] +
r? Cos[¢]2 sin[6]? &***% [z, 6, ¢])) +

2 (-Csc[®6] (Sin[e] 2°'*% [r, 6, ¢] -rCos[6] T* %D [r, 6, ¢])
(Cos[¢] 2°°Y) [r, 6, ¢] + Sin[6] Sin[¢]
(Cos[o] 2% 2D [r, 6, ¢] +rSin[e] 2120 [r, 6, ¢])) +

Z[r, 6, ¢] (Cos[286] Sin[¢] 2 [r, 6, ¢] +Cos[¢] 2%V [r, 6, ¢] +
Cos[6] Sin[6] Sin[¢] 229 [r, @, ¢] + r Cos[6] Sin[6] Sin[¢] X%V [r, 6, ¢] -
r Cos[¢] Cot[0] %V [r, @, ¢] - rCos[0]1%2Sin[¢] TV [r, 6, ¢] +
rSin[e]?sin[¢] 8?19 [r, 6, ¢] - r2 Cos[6] Sin[6] Sin[¢] 8?2 % [r, 6, ¢]))

(-Csc[6] (sin[6] &*° ¥ [r, 6, ¢] -rCos[e] T [, 6, ¢])
(Cos[¢] z*®°V[r, 6, ¢] +

sin[e] Sin[¢] (Cos[o] 2*® > [r, 6, ¢] +rSin[e] &+ %[z, 6, ¢])) +

z*[r, 6, ¢] (Cos[26] Sin[¢] *° 1D [r, 6, ¢] +Cos[¢] %V [r, 6, ¢] +
Cos[6] Sin[6] Sin[¢] ©*(®2'9 [r, 6, ¢] + r Cos[6] Sin[6] Sin[¢] &+ >V [r, 6, ¢] -
r Cos[¢] Cot[6] T %V [r, 6, ¢] - rCos[0]12Sin[¢] T** 1O [r, 6, ¢] +
rsin[6]?sin[¢] &* 1O [r, 6, ¢] - r2Cos[6] Sin[6] Sin[¢] &% %D [r, 6, ¢])) +

2 [—Cos[d)] Csc[6]2Sin[¢] 2%V [r, 0, ¢]° +
Cos[2 ¢] Csc[6] 8%V [r, &, ¢] (Cos[O] %1% [r, 8, ¢] +rSin[6] T %O [r, 6, ¢]) +
1
- Sin[29] (Cos[e] 2010 r g, ¢] +rSin[e] €% [, 6, ¢])>+

@[r, 6, ¢] (Cos[2¢] Csc[0]22° %D [r, O, ¢] + Cos[¢] Csc[6]2 Sin[¢] 2° %2 [r, 6, ¢] +
Cos[¢] Cot[6] Sin[¢] 21O [r, 6, ¢] +
2 Cos[6] Cos[¢] Sin[e] Sin[¢] 2°'*/% [r, 6, ¢] - Cos[p]%Cot[e] 1V [r, 6, ¢] +
Cot[6] Sin[¢]2 &%V [r, 6, ¢] - Cos[0]2 Cos[¢] Sin[¢] 8(*2/% [z, 6, ¢] +
r Cos[¢] Sin[¢] 81%% [r, 6, ¢] - r Cos[6]% Cos[¢] Sin[¢] 21O [r, ©, ¢] -
rcCos[¢]2a®* %V [r, 6, ¢] +rSin[¢]2 2 %D [r, B, ¢] -
2 rCos[6] Cos[¢] Sin[6] Sin[¢] e+ O [r 6, ¢] -

£? Cos[¢] Sin[6]2 Sin[4] 2% [, o, ¢1))

[—Cos[d:] cscle12sin[¢] T %V [x, 6, ¢1° +
Cos[2 ¢] Csc[e] ©*® %V [r o, ¢] (Cos[e] 2*®*[r, 6, ¢] +rSin[e] ** 2D [r o, ¢]) +
1
5 Sin[2 ¢] (Cos[6] 2*®2® [r, @, ¢] + rSin[e] &% [r, 0, ¢])° +

g*[r, 6, ¢] (Cos[2¢] Csc[0]12a*° %V [r, 6, ¢] + Cos[¢] Csc[6]?Sin[¢] *° %P [r, o, ¢] +
Cos[¢] Cot[O] Sin[¢] &*® 1O [r, 6, ¢] +
2 Cos[6] Cos[¢] Sin[6] Sin[¢] T+ [r, 6, ¢] - Cos[p]?Cot[o] *° 'V [r, 0, ¢] +
Cot[6] Sin[¢]? @*® 1V [r, 0, ¢] - Cos[6]1? Cos[¢] Sin[¢] 2** 2V [r, 6, ¢] +
rCos[¢] Sin[¢] @ X% [r, 6, ¢] - r Cos[6]% Cos[¢] Sin[¢] T %% [r, 6, ¢] -
rcCos[¢]2a* 1%V r, o, ¢] +rSin[¢]?e* PV [r, 6, ¢] -
2 rCos[6] Cos[¢] Sin[6] Sin[¢] * 'V [r, 6, ¢] -

r? Cos[¢] Sin[6]? Sin[¢] &*?° % [, o, ¢])) +

((cos[s] csclo] 2° %V [x, 6, 6] +
Sin[¢] (Cos[0] (%19 [r, 6, ¢] + r Sin[6] 219 [r, 6, ¢]))° -
@[r, 8, ¢] (-Csc[6]12Sin[2 ¢] 8% [r, 6, ¢] +Cos[p]2Csc[6]%28(° %2 [r, 6, ¢] +
Cos[¢]?Cot[O] %19 [r, 6, ¢] - Sin[26] Sin[¢]2&* O [r, 6, ¢] +
Cot[6] Sin[2 ¢] ©(®1V [r, 6, ¢] +Cos[0]?Sin[¢]2&(®2% [r, 6, ¢] +
rCos[¢]2a* %% [r, 6, ¢] + rCos[6]128in[¢p]%2 21 %O [r, 6, ¢] +
rsSin[2¢] ©* %V [r, 6, ¢] +rSin[26] Sin[¢]2 11O [r, 6, ¢] +
r? sin[6]%Sin[¢]? 2% % [z, 6, ¢]))
((cos[e] cscle] @ ® V) [r, o, ¢] +

Sin[¢] (Cos[e] &% [, o, ¢] +rSin[6] ¥ * % [, 6, ¢]))" -
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@* [z, 6, ¢] (-Csc[6]?sin[2¢] *° %Y [r, 6, ¢] + Cos[¢]?Csc[0]22** %2 [r, 6, ¢] +
Cos[¢]12 cot[e] @ ° 1D [r o, ¢] -Sin[26] Sin[¢]2a* 1D [r, 6, ¢] +
Cot[6] Sin[2¢] &*®1 V) [r, 6, ¢] + Cos[6]%28in[¢]22* 2O [z, 6, ¢] +
rcos[¢]22***%[r, 6, ¢] + rCos[0]? Sin[¢]2&*** ) [r, 6, ¢] +
rsin[2¢] &%V [r, 6, ¢] +rSin[26] Sin[¢]2z* 1D [r, 6, ¢] +
r? sin[e]® sin[¢]2 &*** % [z, 6, ¢])) +

((sin[e] 2> [r, 6, ¢] -rCos[e] ' * % [r, o, #1)° -

@[r, 6, ¢] (Sin[20] 2%+ O [r, 6, ¢] +Sin[6]%2°2/% [r,6 B, ¢] +

r (sin[e]*2* %% [r, 6, ¢] -Sin[26] ** ¥ [r, 6, ¢] + rCos[6]’2? %% [z, 6, ¢]1)))
((sin[e] @+ [r, 6, ¢] -rCos[e] &*°* % [r, o, 617 -

z*[r, 6, ¢] (Sin[26] T*® 2O [r, 6, ¢] +Sin[6]2 *(® 2 [r, 6, ¢] +

r (Sin[6]122** %9 [r, 0, ¢] -Sin[26] T** 1V [r, 6, ¢] +

rcos[e]2z* %%z, o, ¢]))))

This can then be used for the analysis of the local entanglemea hydrogen atom in
Section 7.4.3.
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