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a b s t r a c t 

Segmentation of the placenta from fetal MRI is challenging due to sparse acquisition, inter-slice motion, 

and the widely varying position and shape of the placenta between pregnant women. We propose a min- 

imally interactive framework that combines multiple volumes acquired in different views to obtain accu- 

rate segmentation of the placenta. In the first phase, a minimally interactive slice-by-slice propagation 

method called Slic-Seg is used to obtain an initial segmentation from a single motion-corrupted sparse 

volume image. It combines high-level features, online Random Forests and Conditional Random Fields, 

and only needs user interactions in a single slice. In the second phase, to take advantage of the com- 

plementary resolution in multiple volumes acquired in different views, we further propose a probability- 

based 4D Graph Cuts method to refine the initial segmentations using inter-slice and inter-image consis- 

tency. We used our minimally interactive framework to examine the placentas of 16 mid-gestation pa- 

tients from MRI acquired in axial and sagittal views respectively. The results show the proposed method 

has 1) a good performance even in cases where sparse scribbles provided by the user lead to poor re- 

sults with the competitive propagation approaches; 2) a good interactivity with low intra- and inter- 

operator variability; 3) higher accuracy than state-of-the-art interactive segmentation methods; and 4) 

an improved accuracy due to the co-segmentation based refinement, which outperforms single volume 

or intensity-based Graph Cuts. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

The placenta plays a critical role in the growth and develop-

ent of the fetus during pregnancy. Placental abnormalities are

 cause of poor maternal and fetal outcome. Placental attach-

ent disorders ( Mazouni et al., 2007 ) such as placenta accreta

re due to an abnormally adherent placenta invading the my-

metrium, and are associated with life-threatening postpartum

emorrhage. Image-based diagnosis of placenta accreta allows for

ultidisciplinary planning in an attempt to minimize risks dur-

ng the delivery. In monochorionic multiple pregnancy, twin-to-

win transfusion syndrome (TTTS) ( Deprest et al., 2010 ) can re-

ult in unequal blood distribution and severe birth defects for one

r both twins. Furthermore, selective intrauterine growth restric-
∗ Corresponding author. 

E-mail address: guotai.wang.14@ucl.ac.uk (G. Wang). 

s  

t  

a  

ttp://dx.doi.org/10.1016/j.media.2016.04.009 

361-8415/© 2016 Elsevier B.V. All rights reserved. 
ion (sIUGR) ( Chalouhi et al., 2013 ) leads to poor growth in the

win with insufficient nourishment from the placenta. Minimally-

nvasive fetoscopic surgery provides an effective treatment for TTTS

nd sIUGR, and surgical planning ( Pratt et al., 2015 ) can poten-

ially reduce treatment-related morbidity and mortality. Most com-

only, placental insufficiency due to poor placentation is a major

ause of fetal growth restriction which can result in cerebral palsy

 Spencer et al., 2014 ). Better placental imaging may allow predic-

ion of placental insufficiency and targeted interventions. 

An image-based diagnosis and surgical planning system re-

uires accurate and robust extraction of the placenta from imag-

ng modalities with a high spatial resolution, good soft tissue con-

rast, and large field of view such as magnetic resonance imaging

MRI). However, high-quality 3D fetal MRI is difficult to achieve,

ince the free movement of the fetus can cause severe motion ar-

ifacts ( Kainz et al., 2014 ). The Single Shot Fast Spin Echo (SSFSE)

llows the motion artifacts to be nearly absent in each slice, but

http://dx.doi.org/10.1016/j.media.2016.04.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2016.04.009&domain=pdf
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(a) axial view (b) sagittal view (c) coronal view (d) axial view

Fig. 1. Examples of fetal MRI. (a), (b) and (c) are from one patient while (d) is from another. Note the motions and different appearance between slices in (b) and (c). The 

placenta is anterior in (a), but posterior in (d). 
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a  
inter-slice motions still corrupt the volumetric data. The slices are

acquired in an interleaved spatial order, which leads to inhomo-

geneous appearance between slices. In addition, fetal MRI is usu-

ally sparsely acquired with a large inter-slice spacing for a good

contrast-to-noise ratio. Although some novel reconstruction tech-

niques ( Gholipour et al., 2010; Kainz et al., 2015 ) can get super-

resolution volume data of fetal brain, they have yet to demon-

strate their utility for placental imaging and require a dedicated

non-standard acquisition protocol. Fig. 1 shows some examples of

placental MRI demonstrating the current challenges for image seg-

mentation in fetal MRI. 

To address this problem, some recent methods, all dedicated to

the developing fetal brain, have relied on prior knowledge learned

from a group of patients or a large population to enhance the ac-

curacy and robustness of the segmentation. For example, a shape

prior model was used to extract head structures from fetal MRI

( Anquez et al., 2009 ), and propagated atlases were used to ob-

tain a robust segmentation of the fetal brain ( Habas et al., 2010;

Gholipour et al., 2012 ). These methods assume that the variances

of the target organ’s shape and position are moderate or small

across different individuals. However, the position and shape of

the placenta within the uterus vary greatly during gestation and

between pregnancies ( Fig. 1 ). This makes it more challenging to

model such statistical prior knowledge, and also brings difficulties

to automatic segmentation of the placenta. 

Interactive segmentation methods have been widely used ( Gao

et al., 2012; Zhao and Xie, 2013 ). They provide a balance between

manual delineation, which gives accurate and robust results with

long segmentation time, and automatic segmentation, which saves

time for user interactions but often lacks in robustness. In practical

applications, an interactive segmentation method should achieve

a high accuracy, minimize user interactions with a low variabil-

ity among users and be computationally fast. The way in which

the user inputs are used and the number of user interactions

have a great impact on the segmentation accuracy. User-guided

3D active contour segmentation ( Yushkevich et al., 2006; Xu and

Prince, 1998 ) employs the user inputs as seeds or initial contours

of the target organ. Graph Cuts ( Boykov and Jolly, 2001 ) takes user-

provided scribbles as hard constraints and uses them to estimate

the probabilistic model of foreground and background, which is of-

ten based on intensity distributions ( Boykov and Jolly, 2001; Freed-

man and Zhang, 2005; Shi et al., 2012 ). Geodesic Framework ( Bai

and Sapiro, 2009 ) and GeoS ( Criminisi et al., 2008 ) classify a pixel

based on its weighted geodesic distance to the scribbles. Random

Walks ( Grady et al., 2005 ) assigns a pixel with the label for which

a random walker is most likely to reach first. GrowCut ( Vezhnevets

and Konouchine, 2005 ) uses the scribbles to set the initial state of

a cellular automation for the pixel labeling task. Despite their suc-

cess in many applications, most of these methods rely on low di-

mensional features and need a large number of user interactions

to deal with images with low contrast and weak boundaries. To

tackle with this problem, machine learning based methods have

been proposed to learn the user intention and get an accurate seg-

s  
entation with fewer user interactions ( Santner et al., 2009; Veer-

raghavan and Miller, 2011; Park et al., 2014 ). For example, the 4D

ctive Cut proposed by Wang et al. (2014) actively selects candi-

ate regions for querying the user, without the need to refine the

egmentation slice by slice. However, its ability to deal with im-

ges with a low resolution and motion corruptions has not been

nvestigated. 

In recent years, co-segmentation methods, which combine mul-

iple images that provide complementary information, have been

emonstrated to be able to achieve better segmentation results

han methods working on a single image ( Guo et al., 2015; Shi

t al., 2012; Wang et al., 2012; Batra et al., 2010 ). For fetal MRI,

he high intra-slice resolution and low inter-slice resolution make

t difficult to get a good segmentation result from a single 3D vol-

me. Fortunately, fetal MRI can be acquired from different views.

lthough volumes acquired from different views are not com-

letely aligned due to motion, they can be used simultaneously

ith their complementary resolution in different directions. There-

ore, co-segmentation of fetal MRI from multiple views has the po-

ential to provide a better accuracy and robustness. 

To the best of our knowledge, there have been no previous

orks reported on automatic or semi-automatic segmentation of

he placenta from fetal MRI. Recently we proposed a machine

earning based method called Slic-Seg ( Wang et al., 2015 ) which is

esigned to interactively segment the placenta from a single vol-

me. This method minimizes the user interactions by only requir-

ng user-provided scribbles in a single start slice. It learns from

ixels that are labeled by the scribbles and infers the labels for all

he remaining pixels by employing a combination of online Ran-

om Forests (RF) ( Breiman, 2001 ) using high-level features and

onditional Random Fields (CRF) ( Boykov and Jolly, 2001 ). Good

egmentation results were achieved in our initial evaluation stud-

es ( Wang et al., 2015 ). However, it only worked on a single vol-

me image, thus the performance might be negatively affected by

he sparsely acquired data. In addition, its interactivity in practice

nd impact of high-level features and CRF were not investigated in

etail. 

In this paper, we extend the work of Wang et al. (2015) by

sing co-segmentation of multiple motion-corrupted volumes to

vercome the low inter-slice resolution in a single sparsely-

cquired and motion-corrupted volume. We propose a refinement

tep after the Slic-Seg-based single volume segmentation. The re-

nement takes advantage of complementary resolution in different

olumes for a higher accuracy. We also validate the interactivity of

lic-Seg by analyzing how its performance is affected by the num-

er of user interactions and measuring the operator variability. 

. Method 

The workflow of our proposed method is shown in Fig. 2 . It

onsists of two main phases. In the first phase, a single sparsely-

cquired and motion-corrupted volume is initially segmented by

ingle volume Slic-Seg with minimal user interactions. In the
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Fig. 2. The workflow of our proposed segmentation method. In the first phase, Slic-Seg is used to segment a single volume image with minimal user interactions. In the 

second phase, initial segmentations of single volume Slic-Seg are refined by combining volumes acquired in different views of the same patient for an improved accuracy. 
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econd phase, a probability-based 4D Graph Cuts framework is

sed to refine the initial segmentation by combining two or more

olumes acquired in different views. 

.1. Segmentation of a single volume image with minimal 

ser-interactions 

The single volume Slic-Seg requires that a user selects a start

lice and draws a few scribbles in that slice to indicate the fore-

round and the background. Online RF efficiently learns from these

nputs and predicts the probability that an unlabeled pixel belongs

o the foreground or the background. To take into account spatial

onsistency, that probability is incorporated into a CRF. New train-

ng data is automatically obtained from the output of the CRF and

dded to the training set of a RF predictor on the fly. The segmen-

ation is propagated to other slices sequentially and automatically

ithout the need for more user interactions. After the propagation,

 volumetric probability image and an initial segmentation are ob-

ained by stacking the output of the combined RF and CRF in all

he slices respectively. 

.1.1. Preprocess and feature extraction 

To correct the motion between slices, a block-matching al-

orithm was implemented using the NiftyReg package ( Ourselin

t al., 2001 ). Feature extraction is implemented after the regis-

ration. For each pixel, features are extracted from a 9 × 9 pixel

egion of interest (ROI) centered on it. In each ROI, we extract

ray level features including mean and standard deviation of inten-

ity, texture features acquired by gray level co-occurrence matrix

GLCM) and wavelet coefficient features based on Haar wavelet. 

.1.2. Online random forests training 

A Random Forest ( Breiman, 2001 ) is a collection of binary de-

ision trees composed of split nodes and leaf nodes. Each tree has

 maximum depth of D . The training set of each tree is randomly

ampled from the entire labeled training set (label 1 for the pla-

enta and label 0 for the background). At a split node, a binary

est is executed to minimize the uncertainty of the class label in

he subsets based on Information Gain. At a leaf node, labels of

ll the training samples that have been propagated to that node

re averaged, and the average label is interpreted as the posterior
robability of a sample belonging to the placenta, given that the

ample has fallen into that leaf node. 

The training data in our application is obtained in one of two

ays according to the segmentation stage. For the start slice, train-

ng data comes from the scribbles provided by the user. During the

ropagation, after one slice S i is segmented, skeletonization of the

lacenta is implemented by morphological operators to get new

ositive training data, and the background is eroded by a kernel

ith a given radius (i.e., 10 pixels) to get new negative training

ata. The new training data obtained in S i are added to the exist-

ng training set of RF on the fly. The RF is updated and used to

est the next slice S i +1 . This results in a probability map, which is

ombined with a CRF to get the label of S i +1 . 

We use the online Bagging ( Saffari et al., 2009 ) method to

odel the sequential arrival of training data as a Poisson distri-

ution Pois( λ), where λ is set to a constant number. As each new

raining sample arrives, each tree is updated by choosing that sam-

le k times where k is a random number generated by Pois( λ).

ach sample is expected to be used λ times by each tree since the

xpectation of k is E(k ) = λ. 

.1.3. Online random forests testing 

During the testing, each pixel sample x i in a slice ˜ I is prop-

gated through all trees. For the n th tree, a posterior probability

p n (c i | x i , ̃  I ) is obtained from the leaf that the test sample falls into,

here c i is the label of x i . The final posterior is achieved as the

verage across all the N trees. 

p(c i | x i , ̃  I ) = 

1 

N 

N ∑ 

n =1 

p n (c i | x i , ̃  I ) (1) 

.1.4. Inference using conditional random fields 

In the testing stage of RF, the posterior probability for each

ixel is obtained independently, thus the result is sensitive to noise

nd lacks spatial consistency. To address this problem and infer the

abel set for all the pixels in a slice, a CRF is used for global spatial

egularization. The label set ˜ C of a slice is determined by minimiz-

ng the following energy function: 

( ̃  C ) = 

∑ 

i ∈ ̃ I 
�(c i | x i , ̃  I ) + λ1 

∑ 

{ i, j}∈ N 1 
�(c i , c j | ̃ I ) (2) 

(c i | x i , ̃  I ) = − log p(c i | x i , ̃  I ) (3) 
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�(c i , c j | ̃ I ) = B i, j · δi, j (4)

where λ1 is a coefficient to adjust the weight between two poten-

tials. The unary potential �(c i | x i , ̃  I ) measures the cost for assign-

ing a class label c i to the i th pixel in a slice ˜ I , and p comes from

the output of RF. N 1 is the set of all unordered pairs of { i, j } of

neighboring pixels in the slice. The pairwise potential �(c i , c j | ̃ I ) is

defined as a contrast sensitive Potts model. δi, j equals to 1 if c i � =
c j and 0 otherwise. B i, j measures the energy due to the difference

in intensity between two neighboring pixels: 

B i, j = 

1 

d ist(i, j ) 
· exp 

(
− ( ̃ I (i ) − ˜ I ( j)) 2 

2 σ 2 
1 

)
(5)

where ˜ I (·) denotes the intensity of one pixel. dist ( i, j ) is the spa-

tial distance between two neighboring pixels, and σ 1 controls the

sensitivity of difference between 

˜ I (i ) and 

˜ I ( j) . The energy mini-

mization in Eq. (2) is solved by a max flow algorithm ( Boykov and

Jolly, 2001 ). A CRF is used in every slice of the volumetric image.

After the propagation, we stack the segmentation of all slices to

construct the volumetric segmentation result. 

2.1.5. Variations of single volume Slic-Seg 

In order to analyze how each component of the above described

method affects the segmentation, we consider three of its varia-

tions for comparison: 

Offline Slic-Seg: this counterpart only uses user inputs in the

start slice as training data for the RF. The RF is not updated when

a label image is obtained for a new slice during the propagation.

It uses the same high-level features and CRF as in the proposed

Slic-Seg. 

Slic-Seg using low-level features: this variation is the same as

our proposed Slic-Seg except that it employs only intensity-based

features rather than high dimensional features including GLCM and

Haar wavelet. 

Slic-Seg without CRF: this method uses the same high-level fea-

tures and online RF as in the proposed Slic-Seg, but omits CRF. To

get the binary segmentation label, the output of RF is thresholded

(threshold probability is 0.5) and then the largest connected com-

ponent is selected. After that morphological opening and closing

operations are used to get a smoothed result. 

2.2. Refinement based on co-segmentation of volumes acquired from 

different views 

Since the single volume Slic-Seg implements spatial regulariza-

tion by using CRF in each 2D slice, the consistency between neigh-

boring slices is not explicitly modeled. In addition, it deals with

each single volume image independently, and the large inter-slice

spacing may corrupt segmentation results during the propagation.

To address this problem, we refine the segmentation results of Slic-

Seg by using the complementary resolution of volumes acquired

from different views in a probability-based 4D Graph Cuts frame-

work. A Fast Free-Form Deformation algorithm ( Rueckert et al.,

1999; Modat et al., 2010 ) is used to register the sagittal view vol-

ume of one patient to the axial view volume of the same patient

(performed at 3 levels with final grid spacing: 6 mm × 6 mm ×
12 mm), but mis-alignment of placenta between them may not

be perfectly addressed due to the motion and deformation. Thus,

we do not impose the use of a single underlying segmentation

(i.e. hard constraint) for all volumes, but rather penalize discrep-

ancies between the segmentation of different volumes after regis-

tration(i.e, soft constraint). 

Corresponding to ˜ I and 

˜ C used in Section 2.1 to represent a 2D

slice and its label respectively, we use I and C ′ to represent a 3D
olume image and a 3D labeling result given by single volume Slic-

eg, respectively. Considering K motion-corrupted volumetric im-

ges I 1 , I 2 , ... I K of the same patient sparsely acquired from different

iews, the user provides scribbles in a start slice of each volume

espectively for the single volume Slic-Seg. The outputs of Slic-Seg

or them are P 1 , C 
′ 
1 
, P 2 , C 

′ 
2 
, ..., P K , C 

′ 
K 

respectively, where P k denotes

 probability image and each of the resulting labeled images C ′ 
k 

s assigned with temporary values. To refine these temporary seg-

entations and get the final labels C 1 , ..., C K , Eq. (2) is extended by

ncorporating inter-slice and inter-image consistency: 

(C 1 , . . . , C K ) = 

K ∑ 

k 

∑ 

i ∈ I k 
�(c i | x i , I k ) + λ1 

∑ 

{ i, j}∈ N 1 
B i, j · δi, j 

+ λ2 

∑ 

{ i, j}∈ N 2 
B 

′ 
i, j · δi, j + λ3 

∑ 

{ i, j}∈ N 3 
B 

′′ 
i, j · δi, j (6)

here � and B i, j are defined in Eqs. (3) and (5) respectively. B ′ 
i, j 

nd B ′′ 
i, j 

are the inter-slice and inter-image binary energy term, re-

pectively. λ2 and λ3 are coefficients to adjust the weight of their

orresponding terms. N 2 and N 3 are the set of all unordered pairs

 i, j } of corresponding pixels from two neighboring slices and two

olume images, respectively. 

The three different types of neighboring pixels are shown in

ig. 3 . {a, b}, {a, c}, {a, d} and {a, e} show intra-slice neighboring

ixels that belong to N 1 . {d, f} shows inter-slice neighboring pix-

ls in a single volume that belong to N 2 . {a, g} shows inter-volume

eighboring pixels that belong to N 3 . To get the inter-image pixel

airs from two volumes I 1 and I 2 , for one pixel i in a volume I k 1
 k 1 = 1 , 2 ), its nearest pixel j in I 1 and I 2 is found, and { i, j } is

dded to N 3 if j ∈ I k 2 ( k 2 = 1 , 2 ) and k 1 � = k 2. 

To overcome the inhomogeneous appearance between different

lices and between different images, the inter-slice term and inter-

mage term are defined based on the probability image obtained by

he RF prediction in the first phase, i.e., single volume Slic-Seg: 

 

′ 
i, j = 

1 

d ist(i, j ) 
· exp 

(
− (P k (i ) − P k ( j)) 2 

2 σ 2 
2 

)
(7)

here P k (i ) = p(c i = 1 | x i , I k ) , and { i, j } ∈ N 2 . 

 

′′ 
i, j = exp 

(
− (P k 1 (i ) − P k 2 ( j)) 2 

2 σ 2 
3 

)
(8)

here i ∈ I k 1 , j ∈ I k 2 , and { i, j } ∈ N 3 . σ 2 and σ 3 control the sensi-

ivity of probability difference. Since the last term in Eq. (6) deals

ith corresponding pixels from different volumes, we do not use

he distance between such corresponding pixels to weight the en-

rgy in Eq. (8) . Instead, we set the weight to a constant value and

t has been incorporated into λ3 . The energy minimization prob-

em in Eq. (6) is solved by Max flow ( Boykov and Jolly, 2001 ), after

hich the final segmentation of I 1 , I 2 , ..., I K are obtained simulta-

eously. 

. Experiments and results 

.1. Experiment data and evaluation method 

We collected MRI scans of 16 fetuses in the second trimester

n two different views: 1), axial view with slice dimension 512 ×
48, voxel spacing 0.7422 mm × 0.7422 mm, slice thickness 3 mm.

) sagittal view with slice dimension 256 × 256, voxel spacing

.484 mm × 1.484 mm, slice thickness 4 mm. The slice number

anges from 50 to 70 among different volumes. For single volume

lic-Seg, a start slice in the middle region of the placenta was se-

ected, and scribbles were provided in the start slice. The algorithm

as implemented in C++ with a MATLAB GUI interface. Feature ex-

raction was implemented in CUDA for a faster speed. The exper-

ments were performed on a Mac laptop (OS X 10.9.5) with 16 G
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Fig. 3. Three different kinds of neighboring pixels used in Eq. (6) . {a,b}, {a,c}, {a,d}, {a,e} are intra-slice neighboring pixels ( N 1 ). {d,f} are inter-slice neighboring pixels ( N 2 ). 

{a,g} are inter-volume neighboring pixels ( N 3 ). 

Fig. 4. The effect of parameter change on the segmentation performance. The ranges of λ1 , λ2 , λ3 , σ 2 and σ 3 are denoted by logarithms. The dashed lines indicate the 

parameter setting in the experiments. 
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AM and an Intel Core i7 CPU running at 2.5 GHz and an NVIDIA

eForce GT 750 M GPU. Parameter setting was: λ = 1, D = 10,

 = 20, K = 2, λ1 = 40, λ2 = 10, λ3 = 3, σ 1 = 2.5, σ 2 = 0.005,

3 = 0.08. The effect of parameter change on the segmentation

erformance is presented in Fig. 4 , which shows stable segmenta-

ion performance was achieved with the change of each parameter

ver a large range. 

The segmentation results were compared with manual ground

ruth which was annotated by an experienced radiologist. For

uantitative evaluation, we measured the Dice similarity coefficient

nd the average symmetric surface distance (ASSD). 

ice = 

2 |R s ∩ R g | 
|R s | + |R g | (9) 
b  
here R s and R g represent the region segmented by the algo-

ithms and manual delineation of the same image, respectively. 

SSD = 

1 

|S s | + |S g | 

( ∑ 

i ∈S s 
d(i, S g ) + 

∑ 

i ∈S g 
d(i, S s ) 

) 

(10) 

here S s and S g represent the set of surface points of the pla-

enta segmented by algorithms and manual delineation respec-

ively. d(i, S g ) is the shortest Euclidean distance between the point

 and the surface S g . 
To evaluate the intra- and inter-user variability, we asked eight

sers to perform the segmentation task independently. Each user

rovided the scribbles for segmentation twice. The agreement

etween different segmentations was measured by Fleiss’ kappa
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Slic-Seg 

Slic-Seg with 
Low Level 
Features 

Slic-Seg 
without CRF

Geodesic 
Framework 

ID-GC 

User 
Interactions 

User-provided Foreground User-provided Background Segmentation Result Ground Truth 

(a) Effects of  different scribble positions (b) Effects of different scribble lengths 

Fig. 5. Segmentation of the placenta by different methods in the start slice. (a) shows the effects of different scribble positions. (b) shows the effects of different scribble 

lengths. Note the better segmentation of Slic-Seg compared to other methods. 
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coefficient ( Fleiss, 1971 ): 

κ = 

P̄ a − P̄ e 

1 − P̄ e 
(11)

where P̄ a is the relative observed agreement, and P̄ e is the hypo-

thetical probability of chance agreement. P̄ a and P̄ e are averaged

results across all the pixels. 

3.2. Single volume segmentation using Slic-Seg 

We compared Slic-Seg with two other slice-by-slice propagation

implementations which used an intensity distribution based Graph

Cuts ( Boykov and Jolly, 2001 ) (ID-GC Propagation) and a Geodesic

Framework 1 ( Bai and Sapiro, 2009 ) (Geo-Propagation) respectively.

For ID-GC, the parameter λ mentioned in ( Boykov and Jolly, 2001 )

was set as 10. For Geodesic Framework, there was no parameter

tuned by the user. During the propagation, they implemented the

same morphological operations as in Section 2.1.2 on the obtained

label of one slice to generate hard constraint for the next slice au-

tomatically. Comparisons are also made between Slic-Seg and its

three variations: offline Slic-Seg, Slic-Seg using low-level features

and Slic-Seg without CRF. All these methods used the same user-

provided scribbles in the start slices. 

3.2.1. Segmentation in the start slice 

Fig. 5 shows examples of interactive segmentation in the start

slice from two patients. Since Slic-Seg and offline Slic-Seg are the

same in the start slice, we omit the offline Slic-Seg here. Fig. 5 (a)

shows the results with different scribble positions. It can be ob-

served that with the given scribbles, Slic-Seg has the best seg-

mentation accuracy. In addition, it is less sensitive to the posi-

tion of scribbles than other methods. Fig. 5 (b) shows the effects

of different scribble lengths. Scribbles in the second column are
1 Implementation from: http://www.robots.ox.ac.uk/ ∼vgg/software/iseg/ 

p  

t  

b

xtended from that in the first column. Slic-Seg continues to pro-

ide the best accuracy. Other methods have an improved perfor-

ance with the extended scribbles, but they still have some mis-

egmentations, which require more user interactions to be cor-

ected. This illustrates that Slic-Seg requires less scribbles to get

ood segmentation in the start slice than other compared meth-

ds. 

.2.2. Segmentation during propagation 

Fig. 6 shows an example of the propagation of different meth-

ds with the same user inputs(scribble length: 495 mm) in the

tart slice ( S 0 ). S i represents the i th slice following the start slice.

n Fig. 6 , though a good segmentation is obtained in the start slice

ue to an extensive set of scribbles, the errors of offline Slic-Seg,

eo-Propagation and ID-GC Propagation become increasingly large

uring the propagation. For Slic-Seg with low-level features, in a

lice that is close to the start slice (e.g. i ≤ 6), it can obtain good

esults. When a new slice is further away (e.g. i ≥ 12) from the

tart slice, it fails to track the placenta with high accuracy. For

lic-Seg without CRF, the performance fluctuates during the prop-

gation. In contrast, Slic-Seg has a more stable and higher perfor-

ance. 

Fig. 7 shows the Dice coefficient and ASSD for each slice in one

olumetric image which was segmented by all the users. For each

lice, we use error bars to show the first quartile, median and the

hird quartile of the Dice coefficient and ASSD. Fig. 7 shows that

lic-Seg and its variations have a better performance in the start

lice and during the propagation than Geo-Propagation and ID-GC

ropagation. Offline Slic-Seg and Slic-Seg with low-level features

ave a decreased accuracy in remote slices. The fluctuating perfor-

ance of Slic-Seg without CRF is also obvious in Fig. 7 . The com-

arison shows that Slic-Seg outperforms other methods. In addi-

ion, the lower dispersion of Slic-Seg indicates reduced variability

etween users. 

http://www.robots.ox.ac.uk/~vgg/software/iseg/
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Slic-Seg Slic-Seg with Low-level 
Features

Slic-Seg without CRF Geo-Propagation ID-GC Propagation Offline Slic-Seg

S0 

S3

S6 

S9 

S12 

S15 

User-provided Foreground User-provided Background Segmentation Result Ground Truth 

Fig. 6. Propagation in a single volume segmentation of different methods with the same start slice and scribbles. S i represents the i th slice following the start slice ( S 0 ). 

Scribbles in S 0 are extensive and all methods have a good segmentation in S 0 . During the propagation, only Slic-Seg keeps a high performance. 

Fig. 7. Evaluation on segmentation of a single volume with scribbles given by 8 users in terms of Dice (left) and ASSD (right) in each slice. Slice index 0 indicates the start 

slice. 
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.2.3. Interactivity and user variability 

We also measured the effects of scribble length on the accuracy

or segmentation of the total volume. During the user’s drawing

cribbles, the order of points on the scribbles for foreground and

ackground was recorded, and these recorded scribbles were used

equentially and incrementally for segmentation, with the length

hanging from 50 mm to 550 mm. The result is shown in Fig. 8 . It

an be seen that Slic-Seg achieved a higher accuracy than others,

ith its Dice and ASSD plateauing when the length of scribbles

as extended to around 20 0–30 0 mm. Fig. 8 also shows the use

f online training of RF, high-level features and CRF improved the

ccuracy. 

Since the number of slices containing the placenta varies

mong different volume images, we measured runtime of the

ropagation-based segmentation in terms of the average runtime

or propagation per slice, which is defined as the ratio of the total

ropagation time for the volume to the number of slices contain-

ng the placenta in that volume. The time consumption by differ-

nt algorithms is listed in Table 1 . Note that the feature extrac-

ions for Slic-Seg and its variations are implemented on a GPU,

4  
nd the propagations of all the methods are implemented on a

PU. Table 1 shows ID-GC Propagation has the smallest runtime

nd Slic-Seg has a larger runtime which is 1.05 ± 0.13 s per slice

ut still acceptable. 

The mean value and standard deviation of Dice and ASSD, as

ell as the intra- and inter-user Fleiss’ kappa coefficient are pre-

ented in Table 2 , which shows a low intra- and inter-user vari-

bility. The quantitative measurement across all the users was 0.82

0.02 in terms of Dice, and 2.67 ± 0.63 mm in terms of ASSD.

n addition, the intra-user κ ranged from 0.931 to 0.949, and the

nter-user κ was 0.932, which indicates our interactive segmenta-

ion method has a high intra- and inter-user agreement with a low

ariability. 

.3. Refinement based on co-segmentation of multiple images 

After the two volume images acquired in axial and sagit-

al views of one patient were segmented by single volume

lic-Seg respectively, they were co-segmented by our proposed

D probability-based refinement (4D PR) using Graph Cuts. We
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Fig. 8. The change of Dice (left) and ASSD (right) with increasing length of scribbles that were provided in the start slice. The performance was evaluated for the segmen- 

tation of a single volume with scribbles given by 8 users. 

Table 1 

Average runtime per slice (in seconds) for the propagation using different methods. The feature extractions for Slic-Seg and its variations 

are GPU-based, and the propagations of all the methods are CPU-based. 

Slic-Seg Offline Slic-Seg Slic-Seg with low-level features Slic-Seg without CRF ID-GC Propagation Geo-Propagation 

1.05 ± 0.13 0.84 ± 0.06 0.55 ± 0.10 0.93 ± 0.08 0.12 ± 0.04 0.61 ± 0.07 

Table 2 

Intra- and inter-operator variability of Slic-Seg for 

segmentation of volume images. κ is the Fleiss’s 

kappa coefficient in Eq. (11) . 

User Dice ASSD(mm) κ

1 0.81 ± 0.02 2.73 ± 0.62 0 .931 

2 0.82 ± 0.03 2.57 ± 0.60 0 .936 

3 0.81 ± 0.03 2.75 ± 0.61 0 .949 

4 0.80 ± 0.03 2.81 ± 0.73 0 .941 

5 0.82 ± 0.02 2.58 ± 0.61 0 .948 

6 0.82 ± 0.02 2.63 ± 0.61 0 .945 

7 0.82 ± 0.02 2.61 ± 0.74 0 .941 

8 0.81 ± 0.03 2.76 ± 0.67 0 .936 

All 0.82 ± 0.02 2.67 ± 0.63 0 .932 
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compare it with three variations: 3D probability-based refinement

(3D PR) using Graph Cuts, 3D intensity-based refinement (3D IR)

and 4D intensity-based refinement (4D IR) using Graph Cuts. The

3D methods only consider a single volume for refinement, and the

intensity-based methods define the inter-slice and inter-image bi-

nary term based on pixel intensity rather than probability. 

3.3.1. Refinement results 

Fig. 9 shows an example of the initial segmentation by Slic-Seg

and its refined results by 3D/4D IR/PR respectively. Image I 1 and I 2 
are acquired in two views from the same patient. I 1 has a high res-

olution in axial view with a low resolution in sagittal view. I 2 has

a low resolution in axial view with a high resolution in sagittal

view. The first column shows the initial segmentation of I 1 and I 2 ,

both of which have some errors compared with the ground truth.

The following columns show the refined segmentation results. The

dark orange arrows in each row indicate the difference between

the initial segmentation and the refined results. For the intensity-

based methods, although some errors in the initial segmentation

were corrected (the dark orange arrows in the last row), additional

mis-segmentations were introduced (highlighted by the cyan ar-

rows). Thus these two methods failed to improve the segmentation

accuracy. In contrast, the probability-based methods improved the
egmentation without causing extra errors. The last two columns

how 4D PR outperforms 3D PR in the refinement. 

We compared the above mentioned refinement methods, as

ell as four additional popular interactive segmentation meth-

ds for single volume segmentation: ITK-SNAP ( Yushkevich et al.,

0 06 ), GeoS ( Criminisi et al., 20 08 ), 3D ID-GC ( Boykov and Jolly,

001 ) and GrowCut ( Kikinis and Pieper, 2011 ). For these four meth-

ds that are not designed to accept scribbles only in a single slice,

cribbles are provided in 3D, and after the segmentation the user

an provide more scribbles and execute the algorithm again to cor-

ect the result. We take the results after several rounds of correc-

ion when the user confirms they are acceptable. 

Quantitative evaluation are shown in Table 3 , which lists the

valuation results of images acquired in axial and sagittal views

espectively. The result shows Slic-Seg with 4D PR has a better per-

ormance than other interactive segmentation algorithms. In terms

f the refinement, 3D IR and 4D IR achieved lower Dice values

nd higher ASSD values compared with the initial segmentation

iven by single volume Slic-Seg, which indicates that they failed

o improve the segmentation accuracy. In contrast, higher accura-

ies than single volume Slic-Seg were achieved by the probability-

ased refinement methods, and 4D PR had a better performance

han 3D PR. The p value between them is 6.9 e −11 in terms of Dice

nd 1.1 e −10 in terms of ASSD. 

. Discussion 

In terms of the interactive segmentation with propagation, the

xperiments show that Slic-Seg achieved higher accuracy than

eodesic Framework and Graph Cuts based on intensity distribu-

ions when scribbles were given only in a single slice. The latter

wo methods rely on gradient or intensity information to model

he placenta and background, which may not be accurate enough

n fetal MRI images with poor 3D quality. Slic-Seg uses high-

evel features of multiple aspects including intensity, texture and

avelet coefficients. This provides a better description of the dif-

erences between the placenta and background, which is further

alidated by the comparison with Slic-Seg with low-level features.
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Axial View of I1

Sagittal View of I1

Axial View of I2

Sagittal View of I2

Slic-Seg Slic-Seg + 3D IR Slic-Seg + 4D IR Slic-Seg + 3D PR Slic-Seg + 4D PR 

Segmentation Result Ground Truth Difference between Methods Mis-segmentation Introduced by Intensity-based Refinement

Fig. 9. Comparison of initial segmentation by single volume Slic-Seg and refinement by 3D/4D Graph Cuts using intensity/probability respectively. I 1 and I 2 are acquired in 

two views from the same patient with complementary resolution. IR(PR) refers to intensity(probability)-based refinement. 

Table 3 

Quantitative evaluation of refinement methods based on co-segmentation and comparison between popular interactive segmen- 

tation algorithms. The axial view images have a high axial-view resolution and a low sagittal-view resolution. The sagittal view 

images have a low axial-view resolution and a high sagittal-view resolution. The best value in each column is highlighted by bold. 

Methods Axial view Sagittal view 

Dice ASSD(mm) Time(s) Dice ASSD(mm) Time(s) 

ITK-SNAP 0.79 ± 0.03 2.94 ± 0.72 118.83 ± 15.35 0.81 ± 0.02 2.73 ± 0.48 106.94 ± 16.23 

GeoS 0.81 ± 0.03 2.68 ± 0.67 166.72 ± 49.37 0.79 ± 0.03 3.40 ± 0.76 101.83 ± 38.84 

3D ID-GC 0.79 ± 0.02 3.19 ± 0.61 188.05 ± 30.19 0.79 ± 0.03 3.57 ± 0.96 97.58 ± 10.78 

Grow Cut 0.80 ± 0.03 2.78 ± 0.66 170.56 ± 23.18 0.78 ± 0.03 2.99 ± 0.85 120.38 ± 11.67 

Slic-Seg 0.82 ± 0.02 2.35 ± 0.47 81 .61 ± 17.22 0.81 ± 0.03 2.84 ± 0.54 47 .78 ± 13.59 

Slic-Seg + 3D IR 0.80 ± 0.03 3.28 ± 0.62 109.96 ± 21.48 0.80 ± 0.04 3.29 ± 0.72 64.84 ± 14.94 

Slic-Seg + 4D IR 0.81 ± 0.03 3.00 ± 0.46 121.94 ± 23.74 0.81 ± 0.03 2.95 ± 0.58 88.11 ± 16.61 

Slic-Seg + 3D PR 0.87 ± 0.03 2.16 ± 0.26 107.14 ± 23.07 0.86 ± 0.02 2.41 ± 0.45 61.82 ± 15.85 

Slic-Seg + 4D PR 0 .89 ± 0.02 1 .89 ± 0.39 117.82 ± 25.53 0 .88 ± 0.02 1 .99 ± 0.38 83.98 ± 17.70 
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n addition, the online training of RF overcomes the potential ap-

earance change when the slice-by-slice segmentation propagates

o a remote slice, and the employment of CRF addresses the dis-

onnectivity of labels resulting from RF prediction by spatial regu-

arization. These factors allow Slic-Seg to have a good performance

uring the propagation. Although the use of high-level features in-

reases the computational time, the average runtime of Slic-Seg on

ne slice is 1.05 s, which is acceptable for interactive segmenta-

ion. In addition, it is possible to pre-compute the features so that

untime can be reduced during the propagation. In this paper, the

igh-level features are designed manually, and they are not guar-

nteed to be the most effective features for distinguishing the pla-

enta and the background. To improve the segmentation further,

sing deep learning ( Sermanet et al., 2013; Roth et al., 2015 ) as a

eature extraction method might be helpful since it can learn fea-

ures automatically with large amount of training data. 

The experiments show that with the increase of scribble length,

etter segmentations were achieved by all the compared methods,

ut Slic-Seg requires fewer user interactions to reach the plateau

ccuracy. This results in the minimization of user interactions, con-

idering it only needs user-provided scribbles in the start slice. Be-
ides, Table 2 shows high intra- and inter- operator agreements,

hich indicates a low variability within and between users. 

There are three reasons to refine the segmentation results of

ingle volume Slic-Seg in our application. First, the large inter-slice

pacing and inhomogeneous appearance between slices make the

ccurate segmentation hard to achieve from a single volume im-

ge data. Second, Slic-Seg does not take into account the inter-slice

onnectivity by applying CRF only in 2D slices, which may lead to

agged surfaces in 3D space. In addition, post-segmentation refine-

ent can be helpful considering errors in the automatic propaga-

ion. We just used the skeleton of the foreground and eroded back-

round in one segmented slice to guide the segmentation of a fol-

owing slice, which makes the error in one slice is less likely to be

ropagated to a following slice. As is shown in Fig. 7 , the propaga-

ion of Slic-Seg is robust in most slices, and the accumulated error

ecomes large only in terminal slices due to a large change of the

hape of the placenta between two slices. We have shown that our

utomatic refinement leveraging multiple volumes and relying on

D Graph Cuts can reduce errors related to the initial propagation.

o further correct the segmentations, user feedback guided refine-

ent will be considered in future work. 
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The refinement method combined the complementary resolu-

tion of images acquired in different views, and reduced the seg-

mentation errors by incorporating inter-slice and inter-image con-

sistency. The experiment shows intensity-based 3D and 4D Graph

Cuts did not improve the segmentation accuracy, indicating sole

intensity information is not sufficient for good segmentation. In

contrast, by defining the inter-slice and inter-image binary en-

ergy based on probability learned from RF using high-level fea-

tures, large improvement of accuracy was achieved as shown in

Table 3 . In addition, the 4D PR achieved a better improvement

in the refinement step than 3D PR, which demonstrates the co-

segmentation of two images lead to higher accuracy than using a

single volume image. In our current co-segmentation implementa-

tion, the N 3 neighborhood is defined based on the nearest voxels

from different volumes. Considering the potential alignment error,

the method might be improved by defining the inter-image neigh-

borhood based on the voxels in a local area weighted by the dis-

tance or similarity, thus mutual information or patch-based analy-

sis ( Bai et al., 2013 ) might be helpful for a more robust result. Note

that although two images are co-segmented in the experiment, the

proposed method is formulated ( Eq. (6) ) so that it can deal with

more image volumes. 

5. Conclusion 

We presented an interactive, learning-based method for the

segmentation of the placenta from motion corrupted fetal MRI in

multiple views. To deal with poor image quality caused by sparse

acquisition and inter-slice motion, the proposed Slic-Seg com-

bines high-level features, Random Forests and Conditional Random

Fields, which requires minimal user interactions to get good seg-

mentation results. The segmentation was further refined by co-

segmentation of images from different views using a probability-

based 4D Graph Cuts method. The results demonstrated the whole

segmentation framework has a good interactivity with stable per-

formance between and within users, and large improvement of

accuracy benefiting from the co-segmentation. Therefore, our ap-

proach might be suitable for segmentation of the placenta in plan-

ning systems for fetal and maternal surgery, and for rapid charac-

terization of the placenta by MRI. Its first clinical application might

be fetoscopic placement optimization in the treatment of twin-to-

twin transfusion syndrome. 
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