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Abstract
Photoacoustic tomography (PAT) is an emerging biomedical imaging from
coupled physics technique, in which the image contrast is due to optical
absorption, but the information is carried to the surface of the tissue as
ultrasound pulses. Many algorithms and formulae for PAT image recon-
struction have been proposed for the case when a complete data set is avail-
able. In many practical imaging scenarios, however, it is not possible to obtain
the full data, or the data may be sub-sampled for faster data acquisition. In
such cases, image reconstruction algorithms that can incorporate prior
knowledge to ameliorate the loss of data are required. Hence, recently there
has been an increased interest in using variational image reconstruction. A
crucial ingredient for the application of these techniques is the adjoint of the
PAT forward operator, which is described in this article from physical,
theoretical and numerical perspectives. First, a simple mathematical derivation
of the adjoint of the PAT forward operator in the continuous framework is
presented. Then, an efficient numerical implementation of the adjoint using a
k-space time domain wave propagation model is described and illustrated in
the context of variational PAT image reconstruction, on both 2D and 3D
examples including inhomogeneous sound speed. The principal advantage of
this analytical adjoint over an algebraic adjoint (obtained by taking the direct
adjoint of the particular numerical forward scheme used) is that it can be
implemented using currently available fast wave propagation solvers.
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1. Introduction

Photoacoustic tomography (PAT) is a biomedical imaging modality that has come to pro-
minence over the past two decades due to its ability to provide images of soft tissue based on
optical absorption with high spatial resolution. Optical absorption contrast is desirable
because imaging at multiple wavelengths can in principle provide spectroscopic (chemical)
information on the absorbing molecules (chromophores). However, due to the highly scat-
tering nature of most biological tissues, imaging purely with light—light in, light out—can
only be achieved with high spatial resolution in the vicinity of the tissue surface; beyond that
the achievable image resolution falls off quickly with depth. PAT overcomes this problem by
generating broadband ultrasonic pulses at the regions of optical absorption which then carry
the information about the optical contrast to the tissue surface without being scattered sig-
nificantly. PAT is increasingly widely used in preclinical studies to image small animal
anatomy, pathology and physiology [36, 37, 40] and PAT’s potential as a clinical technique is
also being actively explored [20, 30, 41]. The spectroscopic information PAT provides (ie.
differentiating endogenous chromophores or contrast agents based on their absorption
spectra) opens up the possibility of molecular and genomic imaging, and even for functional
imaging by monitoring changes in blood oxygenation and flow. For further references on the
experimental aspects and applications of PAT see the review papers [3, 26, 35].

1.1. The physics of photoacoustic tomography

PAT is based on the principle that acoustic waves can be generated by the absorption of
modulated electromagnetic radiation. When the radiation is in the visible to near-infrared
spectrum this is known as the photoacoustic or optoacoustic effect. The term thermoacoustic
is used when the radiation is in the microwave region. In PAT experiments, it is common to
use pulses of a few nanoseconds duration, such as are generated by a Q-switched laser, to
illuminate the tissue. The light will be scattered within the tissue and absorbed by any
chromophores present. For the photoacoustic effect to take place, the energy must be sub-
sequently thermalised (as opposed to emitted radiatively) and, if it occurs fast enough, this
will give rise to a pressure increase localised to the regions of absorption. These regions of
raised pressure and temperature will initiate acoustic and thermal waves as the tissue is elastic
and thermally conducting. There are two relevant timescales to be considered. First, for the
pressure and temperature fluctuations to be decoupled, the thermal relaxation time must be
much longer than the characteristic timescale for the acoustic propagation. This condition is
known as thermal confinement, and it must be satisfied if the acoustic pressure is to be
modelled using a wave equation, rather than a set of coupled equations in temperature and
pressure. The second condition, known as stress or pressure confinement, is that the char-
acteristic timescale for the acoustic propagation, which will depend on the sound speed and
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the size of the absorbing regions, must be much slower than the time taken to deposit the
optical energy as heat. This is essentially an isochoric condition requiring there to be no
change is density of the tissue during heat deposition. When this condition is satisfied, the
acoustic propagation can be modelled as an initial value problem with the initial (acoustic)
pressure distribution as the initial condition. The second initial condition—that the time rate
of the change of the pressure is zero—derives from the isochoric condition through the
assumption of zero initial particle velocity.

In PAT, measurements of the induced broadband acoustic pulses are recorded at the
surface of the tissue by an array of ultrasound sensors. In order to form a PAT image, it is
necessary to solve an inverse initial value problem by inferring an initial acoustic pressure
distribution from measured acoustic time series. This image reconstruction step is the subject
of this paper. A possible subsequent image reconstruction step, not considered here, is to
recover images of the optical properties of the tissue. This requires a model of light transport
and is sometimes known as quantitative PAT [10]. The solution of the acoustic inversion
examined here provides the data for this optical inversion.

1.2. Challenges of photoacoustic tomography

Image reconstruction in PAT calls for the robust inversion of the linear system

 e= +f p , 10 ( )

where p0 represents the initial pressure distribution we wish to recover, f represents the
measured acoustic pressure time series, ε an additional measurement error, and the linear
operator A models both the ultrasonic wave propagation in the tissue and the measurement
process (we will discuss the details of this modeling in section 2.1). Solving (1) can be done
in several ways:

i. Assuming homogeneous acoustic properties and the absence of acoustic absorption, the
measured time series can be related to the initial pressure distribution via the spherical
mean Radon transform. In this case, the methods of integral geometry can be used to
derive direct, explicit inversion formulae for certain sensor geometries, such as e.g.
spherical arrays. See [21] and the references therein for an overview of such methods.

ii. In more general scenarios, a direct inverse operator corresponding to a forward model of
the wave equation can be used. One commonly used example is given by time reversal
(TR) approaches [12, 15, 38, 39]: The measured time series at the boundary is used in
reversed temporal order as a time dependent Dirichlet boundary condition for the
backward wave equation and the pressure field at t=0 is used as an estimate of the
initial pressure distribution. With the development of fast numerical methods that are
capable of computing full 3D wave propagation with high spatial and temporal
resolution, TR and its enhanced variants [27, 28] became an attractive choice in
applications [16, 18, 23].

iii. In particular in scenarios with incomplete or sub-sampled data, numerical models of
wave propagation can be used within the variational image reconstruction framework to
find a regularized least-squares solution of (1) by solving the optimization problem

 l= - + p p f pargmin . 2
p

rec
1
2 0 2

2
0

0

{ }( ) ( )

Here, l > 0 is a regularization parameter and  p0( ) is a suitable regularization
functional that aims to encode a priori knowledge about the true solution, p0.
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While variational image reconstruction in PAT has recently been shown to yield superior
results compared to TR solutions [5, 17], a potential challenge to its application is that solving
(2) by first order optimization methods (see, e.g., [8] for an overview) requires an efficient
numerical scheme for the application of the adjoint PAT operator, * . One approach is to first
discretise the forward operator and then to find its algebraic adjoint, for example by explicit
reversal of the computational steps of the forward scheme [17]. The adjoint obtained by this
discretise-then-adjoint approach however is not the adjoint of the continuous operator but of
the particular numerical scheme. Therefore, in this paper we revisit the mathematical mod-
elling of PAT to derive the general analytical form of the PAT adjoint. The explicit analytical
form of the adjoint allows us new theoretical insights, in particular, it clarifies the relation
between the adjoint and TR. The analytical adjoint is independent of discretization, i.e., both
the forward and adjoint equations can be discretised with any suitable discretization scheme
and pre-existing high performance codes can be used to apply the forward and adjoint
operators. The remainder of the paper is structured as follows: In section 2, we revisit the
mathematical modelling of the forward problem in PAT and derive an explicit form of the
adjoint PAT operator. Section 3 recapitulates how the adjoint operator can be used within a
variational scheme. The utility of adjoint-then-discretise paradigm is evaluated in section 4:
after a direct comparison to the discretise-then-adjoint paradigm in [17], variational methods
are compared to approaches based on TR for two image reconstruction problems including
sound-speed inhomogeneity. In section 5, we summarize our work and discuss its relations to
other approaches. An efficient implementation of the adjoint operator using a k-space
pseudospectral wave propagation model is given in appendix B.

2. Theory

2.1. Mathematical modeling

Wave propagation. Acoustic wave propagation through a compressible fluid is usually
modelled mathematically by linearising the equations of fluid dynamics derived from con-
servation laws and an equation of state. Under the condition that the acoustic particle velocity
is much slower than the sound speed, an acoustic wave in tissue can then be modelled by the
system of first order equations [33]:

r
¶
¶

= -  a3
t

t p tu x
x

x,
1

, momentumconservation
0

( )( )
( )

( ) ( )

r r r¶
¶

= -  -  + b3
t

t t t s tx x u x u x x x, , , , mass conservation0 0 ( )( ) ( ) · ( ) ( ) · ( ) ( ) ( )

r r= +  c3p t c tx x x d x, , , pressure density relation0
2

0 ( )( ) ( )( ( ) · ( )) ( — )

where p and ρ are the acoustic pressure and acoustic density fluctuations, u is the acoustic
particle velocity (the time derivative of the acoustic displacement d), s is a mass source term,
and r0 and c0 are the ambient density and sound speed respectively. Both r0 and c0 are
positive and bounded from above and below. The system (3a)–(3c) can be combined into the
second-order wave equation for a heterogeneous medium:

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟ r

r
¶
¶

-   =
¶
¶

p t
c t

p t
t
s tx

x
x

x
x x,

1 1
, , , 42

0
2

2

2 0
0

( ) ≔
( )

( ) ·
( )

( ) ( ) ( )

where we introduced the inhomogenous d’Alembert operator ,2.
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Initial and boundary conditions. As described in section 1.1, p0 can be introduced as the
initial value of the pressure rather than as a source term. Also, assuming the particle velocity u
at t=0 vanishes, (3a)–(3c) suggests that the time derivative of p should be initialized with
zero. With these assumptions, the forward problem of PAT in d dimensions is stated as

 = ´ ¥p t ax, 0, in 0, , 5d2 ( ) ( ) ( )

=p p bx x, 0 , in , 5d
0( ) ( ) ( )


¶
¶

=
p

t
cx, 0 0, in . 5d( ) ( )

Because in practice it is possible to time-gate out any reflections from the experimental
equipment, the propagation can be modelled as though it occurs in an unbounded domain i.e.,
no explicit boundary conditions are required.

Measurement. We deliberately model the measurement of the pressure field p tx,( ) in
two steps: Firstly, each element of the acoustic sensor array has only limited access to the
pressure field: It only detects the field over a small, but finite, volume of space, and the
measurement continues only for a finite time T. To signify this, we introduce the window
function w Î G ´¥t C Tx, 0,0( ) ( ( )), which maps p tx,( ) to the field accessible by the sensor
array: w=g t t p tx x x, , ,( ) ( ) ( ). Here, Γ is a d-dim, open, bounded set with non-zero measure
that contains the cumulated volume of all sensor elements. The sound speed on Γ is assumed
to be constant. In a second step, each sensor element transforms the accessible spatio-
temporal part of the pressure field into a sequence of measured values. This process can be
modelled by a measurement operator which maps Î G ´¥g t C Tx, 0,0( ) ( ( )) to the data

Îf L, ÎL . Each type of ultrasonic detector elements commonly used for PAT (see
[3, 24] for comprehensive reviews) leads to a different particular form of. For this work,
we only assume that have access to the adjoint operator * .

2.2. Derivation of the adjoint PAT operator

In this section, we derive the adjoint operator * to the forward operator

  ¥C a: 6d L
0 ( ) ( )

  w=p t t p t bx x x, , , , 60[ ]( ) ( ) ( ) ( )

where p tx,( ) is the time dependent solution of the PAT forward problem (5a)–(5c). The
assumption Î ¥p C d

0 0 ( ), is justified by the short heat diffusion always present in the
thermalisation process generating the initial pressure (see section 1.1). As we assume that *
is given, * * *  = , where * G ´ ¥ ¥C T C: 0, d

0 0( ( )) ( ) is the adjoint of

   G ´¥ ¥C C T a: 0, 7d
0 0( ) ( ( )) ( )

 w= G ´p t t p t T bx x x, , , , in 0, , 70[ ]( ) ( ) ( ) ( ) ( )

with respect to the generic L2 bilinear form in G ´¥C T0,0 ( ( )) and ¥C d
0 ( ), respectively. By

definition, this adjoint * has to satisfy the equality

* 
ò ò ò=

G

à
  

g t p t t p gx x x x x x, , d d d 8
T

0
0 0d

( ) [ ]( ) ( ) [ ]( ) ( )

( )

for any Î ¥p C d
0 0 ( ), Î G ´¥g C T0,0 ( ( )). Therefore, we start with the left hand side à( )

of (8) and we seek to reformulate it in terms of an operator acting on the function g. The
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solution of the initial value problem on an unbounded domain (5a)–(5c) can be written as

ò=
¶
¶

¢ ¢ ¢p t
t

G t px x x x x, , , 0 d , 90d
( ) ( ∣ ) ( ) ( )

where ¢ ¢G t tx x, ,( ∣ ) is the causal Green’s function of the homogeneous problem
corresponding to (4) [2]:

 d d¢ ¢ = - ¢ - ¢G t t t tx x x x, , . 102
d( ∣ ) ( ) ( ) ( )

Substituting  , (7b), and p tx,( ), (9) into à( ) we obtain

ò ò òwà =
¶
¶

¢ ¢ ¢
G

g t t
t

G t p tx x x x x x x, , , , 0 d d d . 11
T

0
0d

( ) ( ) ( ) ( ∣ ) ( ) ( )

Shifting the time derivative of G into the integral and rearranging the order of integration, (11)
becomes



ò ò ò wà = ¢
¶
¶

¢ ¢
G   

p g t t
t
G t tx x x x x x x, , , , 0 d d d . 12

T

0
0d

( ) ( ) ( ) ( ) ( ∣ ) ( )

( )

Performing integration by parts in t on (å), we further obtain

ò ò ò wà = - ¢ ¢
¶
¶

¢
G

p G t
t

g t t t ax x x x x x x, , 0 , , d d d 13
T

0
0d

( ) ( ) ( ∣ ) ( ( ) ( )) ( )

ò ò w w+ ¢ ¢ - ¢ ¢
G

p G T g T T G g

b

x x x x x x x x x x x, , 0 , , , 0 , 0 , 0 , 0 d d .

13

0d
( ) ( ∣ ) ( ) ( ) ( ∣ ) ( ) ( )

( )

The window function w Î G ´¥C T0,0 ( ( )) models which spatio-temporal domain is
accessible to the sensor array (see section 2.1). As the detection time is restricted,
w w= =T, 0 , 0(· ) (· ) , and the second term (13b) vanishes. The next important step is to use
the basic physical invariances of the Green’s function [2],

¢ ¢ = ¢ - ¢ -G t t G t t ax x x x, , , , , time reversal invariance 14( ∣ ) ( ∣ ) ( ) ( )

¢ ¢ = + ¢ ¢ +G t t G t T t T bx x x x, , , , , time translation invariance 14( ∣ ) ( ∣ ) ( ) ( )

to rewrite (13a) as

ò ò ò wà = - ¢ ¢ -
¶
¶

¢
G

p G T T t
t

g t t tx x x x x x x, , , , d d d . 15
T

0
0d

( ) ( ) ( ∣ ) ( ( ) ( )) ( )

Applying a transformation of variables ¬ -t T t, (15) becomes

ò ò ò wà = ¢ ¢
¶
¶

- - ¢
G

p G T t
t

g T t T t tx x x x x x x, , , , d d d .
T

0
0d

( ) ( ) ( ∣ ) ( ( ) ( )

If we define

* ò ò w¢ = ¢
¶
¶

- -
G

g G T t
t

g T t T t tx x x x x x, , , , d d , 16
T

0
[ ]( ) ( ∣ ) ( ( ) ( )) ( )

and compare with (8), we found the adjoint operator * G ´ ¥ ¥C T C: 0, d
0 0( ( )) ( ) (note

that * ¢g x[ ]( ) is compactly supported due to the compact spatial support of ω, the finite
propagation time and the upper bound on c x0 ( )). With the above derivation we can see that
the adjoint can be defined through * ¢ ¢g q Tx x ,[ ]( ) ≔ ( ), i.e. * maps g to the function

¢q tx ,( ) evaluated at t=T, where q is given by the following wave equation:
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⎧
⎨⎪
⎩⎪


w

¢ =
¶
¶

¢ - ¢ - G ´
q t t

g T t T t T
ax

x x
,

, , in 0,

0 everywhere else
172 ( ) ( ( ) ( )) ( ) ( )

¢ =q bx , 0 0 in , 17d( ) ( )


¶
¶

¢ =
q

t
cx , 0 0 in . 17d( ) ( )

One way to compare the adjoint operator defined by the above system (17a)–(17c) to time
reversal approaches (see section 1.2), is to choose a closed, sufficiently smooth -d 1
dimensional surface Θ inside the sensor volume Γ, on which we can impose a boundary
condition. ◃ can then be expressed as mapping g to the solution ¢q tx ,( ) of the following
wave equation,

 ¢ = ´ ¥ Q ´q t T ax , 0 in 0, 0, , 18d2 ( ) ( )⧹ ( ) ( )

w¢ = ¢ - ¢ - Q ´q t g T t T t T bx x x, , , on 0, , 18( ) ( ) ( ) ( ) ( )

¢ = Qq cx , 0 0 in , 18d( ) ⧹ ( )


¶
¶

¢ =
q

t
dx , 0 0 in , 18d( ) ( )

again, evaluated at t=T:  ¢ ¢g q Tx x ,[ ]( ) ≔ ( )◃ . The main difference between time reversal
and the adjoint is therefore given by how the time reversed pressure in the sensor element,

w¢ - ¢ -g T t T tx x, ,( ) ( ), is introduced into the wave equation (4): In the adjoint (17a)–
(17c), it enters as the mass source term s tx,( ) while in time reversal (18a)–(18d), it enters as
an explicit constraint on a sub-set.

3. Methods and implementation

3.1. Numerical wave propagation model

The adjoint model derived above could be implemented numerically using any of the standard
techniques for modelling wave propagation in the time domain, so long as they allow to
include a time-varying mass source term. One possible realization of such a scheme is given
by the k-space time domain method [11, 25, 34], which is already widely used for forward
modelling in photoacoustics, e.g. in the k-Wave Matlab Toolbox [31]. In appendix A, we
give a full technical description of how to use k-Wave to implement discretised versions of
the forward operator  = (6a)–(6b), the adjoint operator * * *  = (16) and the
time reversal operator *  =◃ ◃ (18a)–(18d), which we will denote by Î ´A L N ,
* Î ´A N L and Î ´A N L◃ , respectively. Note that for the discretisation, we restrict the

spatial domain to a d-orthotope Ω (bounding box) with G Ì W, which is enclosed by a
Perfectly Matched Layer (PML) to model wave propagation on an unbounded domain.

3.2. Image reconstruction methods

We will now recapitulate some image reconstruction methods that rely on the discrete PAT
operators described in the previous section. The first two elementary methods are obtained by
directly applying the time reversal and the adjoint operator to the data:
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p A fTR 19TR( ) ≔ ( )◃

*p A fBP . 20BP( ) ≔ ( )

In [27, 28], an enhancement of standard time reversal was proposed that takes the form of a
Neumann series approach: The k-th iterate is obtained as

å= = -
=

p K A f K I A AiTR , with , 21k

j

k
j

NiTR
0

( ) ( )◃ ◃

where IN is the identity in N . A simple reformulation of (21) leads to an iterative image
reconstruction algorithm:

å å= = + = + = - +

= - -

+

=

+

=

+

p K A f K K A f A f Kp A f I A A p A f

p p A Ap f . 22

k

j

k
j

j

k
j k

N
k

k k k

iTR
1

0

1

0
iTR iTR

iTR
1

iTR iTR

( )

⟹ ( ) ( )

◃ ◃ ◃ ◃ ◃ ◃

◃

Note that in [28], a modified time reversal operator is used that replaces (18c) by a harmonic
extension of the pressure field ¢g Tx ,( ) to d , which is particularly important if not all waves
have left the domain, i.e., ¹p Tx, 0( ) for Î Gx . However, in the scenarios we consider in
the numerical simulations, T is chosen large enough so that the power of the residual waves is
well below the noise level of the sensors. We therefore neglect the harmonic extension in this
study.

Next, we discuss iterative image reconstruction methods based on a variational model
(2). The simplest case is given by omitting p( ), i.e., we are just looking for the least-squares
solution

- p Ap fLS argmin . 23
p

LS
1
2 2

2{ }( ) ≔ ( )

In principle, pLS is given as the solution of the normal equations, which we could iteratively
solve with customized variants of the conjugate gradient scheme, such as the conjugate
gradient least-squares (CGLS) algorithm [6]. Equipped with a suitable stopping criterion, it
yields a well known and understood regularization strategy for solving (1), i.e., a scheme that
is robust to noise and ill-conditioning (see [9, 14] and the references in [1]). However, for a
better comparison to the previously presented iTR, we solve (23) by a first order method [8].
We only use the gradient of the cost function at p,

* - = - Ap f A Ap f , 241
2 2

2 ( ) ( )

in a simple gradient descent algorithm: For a given initialization p0, the iteration is given as

*h= - -+p p A Ap f , 25k k k
LS

1
LS LS( ) ( )

which is very similar to (22): A◃ has been replaced by *A and we introduced a step size η.
As a slight modification of the above, we can incorporate the a-priori knowledge p 00

and solve the positivity-constrained least-squares problem


+ -+  p Ap fLS argmin , 26

p
LS

0

1
2 2

2{ }( ) ≔ ( )

by modifying (25) to a gradient descent re-projection algorithm:

*h= P - -+
+

+
+ +

p p A Ap f , 27k k k
LS

1
LS LS( ( )) ( )

where P+ is a projection onto +
N .
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Given the similarity between (22) and (25), it seems natural to define a positivity-
constrained version of iterative time reversal as

= P - -+
+

+ ++
p p A Ap f . 28k k k

iTR
1

iTR iTR( ( )) ( )◃

The next variational method employs the total variation (TV ) energy [7] as a regularizing
functional:


l+ - ++  p Ap f pTV argmin TV , 29

p
TV

0

1
2 2

2{ }( ) ≔ ( ) ( )

where l > 0 is the regularization parameter and pTV( ) is the ℓ1 norm of the amplitude of the
gradient field of p (the details of the implementation are given in the appendix). We can solve
(29), by modifying (27) from a projected to a proximal gradient descent:

*h= - -hl+
+

+ ++
p p A Ap fprox , 30k k k

TV
1

,TV TV TV( ( )) ( )

where the proximal operator


a- +a +  y x y xprox argmin

1

2
TV 31

x
,TV

0
2
2{ }( ) ≔ ( ) ( )

is given as a positivity-constrained total variation denoising problem. For our purposes,
solving (31) by the algorithm described in [4] is sufficiently fast.

We chose the schemes (25), (27) and (30) because they are easy and intuitive to explain
and provide an interesting connection to iterative time-reversal. In all the above algorithms,
h qÎ 0, 2( ) with θ being the largest singular value of *A A, ensures the convergence to a

Figure 1. 2D PAT scenario (II) used in numerical studies. The spatial resolution is
=N 5122 plus 24 pixels of PML layer in all directions. (a) The scenario cosists of three

materials: material A (covering the top part of the domain): c=1500, r = 10000 ,
material B (parabolic-like part): c=1400, r = 12000 , material C (vessel-like part):
c=1560, r = 8000 . (b) Ground truth p0 and sensor configuration (white pixels, 200
sensors at the interface between materials A and B.)
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minimizer of the corresponding optimization problems, see [8]. For a given experimental
PAT setting, θ only has to be computed once, which can be done by a simple power iteration.

4. Computational studies

4.1. Computational scenarios

To illustrate our results, we use two simple settings:

I. A 3D scenario:W = 0, 1 3[ ] discretised by =N Nx
3 isotropic voxels. The sound speed and

ambient density are assumed to be homogeneous with =c 1500 m s( ),
r = -1000 kg m0

3( ) and we add NPML voxels of PML at all sides of the cube. The
pressure is measured in the plane x=0, which corresponds to the top layer of voxels.
This situation is, e.g., encountered in planar Fabry-Pérot (FP) photoacoustic scanners
[18, 22, 23, 42].

II. A 2D scenario: W = 0, 1 2[ ] with inhomogeneous medium properties and an irregular
sensor geometry, see figure 1. The medium properties vary in the range encountered, e.g.,
in the human breast [19].

As our derivation in section 2 is independent of the concrete model for, we use simple
point-sampling in space and time in both scenarios.

4.2. Precision assessment

The discretised operators A and *A are not fully adjoint to each other anymore, which means
that if we define

c - Î Î Î Î´ ´A B x y Ax y x By A R B R x R y R, , , , , , , , , 32L N N L N L[ ]( ) ≔ ∣⟨ ⟩ ⟨ ⟩∣ ( )

then *c >A A x y, , 0[ ]( ) for most x y, . In this section, we investigate this error by relating it
to other sources of error such as the modeling error caused by the PML or numerical errors
due to limited precision and examine its influence on inverse reconstructions. As a ’baseline’
to validate the adjoint-then-discretize approach described in this work, we will use the
discretize-then-adjoint approach described in [17], which relies on the explicit adjoining of all
the steps in the k-Wave iteration (see appendix A). Hence, for the algebraic adjoint operator
*Ā obtained this way, *c A A,[ ¯ ] should be 0 up to the numerical precision.

To test this, we computed (32) for 100 random realizations of x and y in scenario (I). The
results are summarized in table 1. To interpret the results correctly, one has to bear in mind
that the PML is known to be the largest limitation of numerical accuracy of the k-Wave
iteration [11], effectively preventing the use of double precision to improve numerical acc-
uracy. Therefore, the most relevant results in table 1 are the ones for n=128, PML=16 and
single precision. In this setting, the statistics of the error (32) are comparable for *A and *Ā .
The results for double precision have to be regarded as a sanity check: While the error (32) for
*Ā is, as expected, smaller than for *A , double precision is not used in practical computations.

Nonetheless, we investigated the effects of this higher numerical precision in more detail in a
second study using scenario (II). For this, we compare the iterates of scheme (27) to compute
(26): In the first case, we use *Ā as the adjoint operator, and in the second case, we use *A .
The corresponding iterates will be denoted by palg

k and pana
k , respectively. Figure 2 shows how

the relative error between palg
k and pana

k develops with k. While the relative ℓ2 error remains
almost constant, the relative ¥ℓ error grows slowly but does not indicate any instability.

Inverse Problems 32 (2016) 115012 S R Arridge et al

10



Table 2 completes our accuracy studies with the statistics of the ℓ2 and ¥ℓ norm of the
distance * *-A y A y¯ for 100 random realizations of y. We can see that in both norms the
maximum/median discrepancy slightly decreases with decreasing N. However, we also see
that this decrease can be compensated for by increasing the PML size. Furthermore, we
cannot observe a difference between single and double precision in this measure anymore.

Summarising, the studies indicate that the proposed implementation of the analytical
adjoint *A is sufficiently close to the algebraic adjoint to be confidently used in variational
reconstruction schemes.

4.3. Inverse reconstructions

Figure 3 shows the results of the different inverse methods applied to scenario (I) using
=N 2563 voxels and a sphere as the ground truth for p0. Figure 4 shows the corresponding

results for scenario (II), see, figure 1. The peak-signal-to-noise ratio (PSNR) of the recon-
structed solutions was computed as:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟=

-
=

¥   
p q

N

p q
p

p

p
PSNR , 10 log , where thres , 0.01 , 3310

2
2

( )
˜ ˜

˜ ( )

a a=q x x xaccordingly, and thres , if
0 else

34{˜ ( ) ( )

All computations have been performed with single precision on a GPU. For all iterative
methods, K=100 iterations have been used and h q= 1.8 was used as a step size. All
results have been projected to +

N as a post-processing step.
In line with the theoretical prediction (see (17a)–(17c) and (18a)–(18d)) and the num-

erical implementation (see appendix B), the differences between BP and TR are rather subtle.
A particular reason for this is that the measurement time T was chosen large enough, see [5].
However, figure 3 shows that the limited-view geometry of scenario (I) leads to differences in
the decay of intensity with depth and the appearance of the well-known circular limited-view
artefacts [13]. The differences between the iterative approaches based on time reversal or

Figure 2. Relative ℓ2 and ¥ℓ errors between the iterates of scheme (27) to compute (26)
using either *A or *Ā as the adjoint operator. The corresponding iterates are denoted by
pana
k and palg

k , respectively.
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least-squares minimization are even more subtle than between plain TR and BP. The results
rather show that including a priori information such as positivity or total variation constraints
leads to a far more substantial improvement in terms of reconstruction quality.

Table 1. Statistics of the error c A B x y, ,[ ]( ), *=B A (adjoint-then-discretize) and
*=B Ā (discretize-then-adjoint), for 100 random realization of x and y. Displayed are

maximum/median of log10 applied to the data.

single precision

*A (adjoint-then-discretize) *Ā (discretize-then-adjoint)

PML = 8 PML = 16 PML = 8 PML = 16

=N 323 −2.86/−4.55 −3.45/−4.99 =N 323 −3.45/−5.14 −3.29/−5.14
=N 643 −3.12/−4.44 −2.92/−4.60 =N 643 −3.30/−4.68 −2.98/−4.63
=N 1283 −2.00/−4.20 −1.78/−4.26 =N 1283 −2.15/−4.22 −1.82/−4.24

double precision

*A (adjoint-then-discretize) *Ā (discretize-then-adjoint)

PML = 8 PML = 16 PML = 8 PML = 16

=N 323 −2.79/−4.58 −3.44/−5.15 =N 323 −12.44/−13.69 −12.12/−13.87
=N 643 −3.02/−4.72 −3.56/−5.28 =N 643 −11.41/−13.47 −11.75/−13.40
=N 1283 −2.44/−4.77 −2.79/−5.46 =N 1283 −10.72/−12.92 −10.97/−12.90

Figure 3. 2D slices at y=128 through the 3D phantom p0 and reconstructions thereof
within scenario (I). The colorbar in each figure is scaled individually.
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5. Discussion, conclusions and outlook

In this work, we examined the adjoint of the continuous PAT operator (6a)–(6b) from
different perspectives. We first described how the adjoint is connected to the solution of a
wave equation with a time-varying mass source term (17a)–(17c) (see section 2). The simple
proof was based on two main concepts:

• Our mathematical model (see section 2.1) of the measurement process explicitly accounts
for the fact that the sensor array can only access the pressure field within a finite spatial
volume and within a finite time interval. This was modelled by the introduction of a
window function, which causes the boundary terms arising from the integration by parts
in time to vanish in a central step in the proof, see(13b).

• The use of the Green’s function representation of the solution of the wave equation (4),
which reflects the temporal invariances of the underlying physical system, see
(14a)–(14b).

We would like to remark that our setting is more general in terms of choice of Γ and T
than the standard one, which assumes measurements on the boundary of the domain. In this
standard setting, the boundary terms arising from the integration by parts in (13b) only vanish
under the assumption that the support of p0 is contained in the interior of the domain enclosed
by the measurement surface and that the time T is large enough for all waves to leave this
domain.

The explicit form of the continuous adjoint not only allows for an easy theoretical
comparison to time-reversal (18a)–(18d), it also enables its numerical implementation with
any existing wave propagation code that is able to include a time-varying mass source. As a
particular example thereof, we examined an implementation based on the k-space pseudos-
pectral time domain method (see sections 3 and 4):

• We demonstrated that our adjoint-then-discretize approach is sufficiently precise
compared to the discretize-then-adjoint approach [17] that has to be derived for each
specific wave propagation code separately and yields a discrete, purely algebraic,
characterization of the adjoint only.

Table 2. Statistics of the ℓ2 and ¥ℓ norm of * *-A y A y¯ for 100 random realization of y
(adjoint-then-discretize versus discretize-then-adjoint). Displayed are maximum/
median of log10 applied to the data.

single precision

ℓ2 PML = 8 PML = 16 ¥ℓ PML = 8 PML = 16

=N 323 −3.10/−3.13 −3.79/−3.84 =N 323 −4.21/−4.37 −4.91/−5.03
=N 643 −2.74/−2.76 −3.48/−3.50 =N 643 −4.20/−4.32 −4.83/−4.97
=N 1283 −2.35/−2.36 −3.12/−3.13 =N 1283 −4.14/−4.26 −4.78/−4.89

double precision

ℓ2 PML = 8 PML = 16 ¥ℓ PML = 8 PML = 16

=N 323 −3.10/−3.13 −3.79/−3.84 =N 323 −4.21/−4.37 −4.90/−5.04
=N 643 −2.74/−2.77 −3.49/−3.51 =N 643 −4.20/−4.32 −4.83/−4.97
=N 1283 −2.35/−2.36 −3.17/−3.18 =N 1283 −4.14/−4.26 −4.79/−4.89
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• We illustrated how the adjoint can be used to solve variational image reconstruction
problems (2) that incorporate a-priori constraints on the initial pressure.

An alternative description and implementation of the adjoint operator for PAT was
recently presented in [5]: in comparison to our approach, the forward problem is modelled in
a more restrictive way and with a different motivation, which, by using the weak formulation
approach (as opposed to the integral formulation approach we take here) leads to the char-
acterization of the adjoint as a wave transmission problem. The latter was solved by a specific

Figure 4. Results of the different image reconstruction techniques applied to scenario
(II), see figure 1. The colorbar in each figure is scaled individually.
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BEM-FEM approach, which is computationally intensive and the numerical studies focus on
short recording times T with full boundary measurements.

Finally, these future directions of research are directly related to this work:

• The inverse reconstructions (see section 3.2 and 4.3) revealed interesting connections and
differences between iterative methods based on time reversal and the adjoint operator.
This topic has to be examined in more detail, both from theoretical and numerical
perspectives: As (17a)–(17c) and (18a)–(18d) differ in the way the time-reversed pressure
is introduced at the sensor elements, the effect of different sensor geometries, targets in
close proximity to the sensors, artefacts caused by limited sensor coverage [13] and short
recording times, T, need to be examined. Ultimately, this is not only a mathematical
question: The different artefacts caused by time reversal and adjoint operator lead to
different deficiencies in in-vivo images, each causing problems for the interpretation of
those images.

• The optimization schemes (25), (27) and (30) were only used in this work because they
are easy to describe and directly relate to iterative time-reversal. However, we note here
that they are computationally rather inefficient and were not tuned for optimal
performance. Therefore, the number of iterations used in the numerical examples does
not provide a good indicator of the expected computational cost. More sophisticated
algorithms for solving the corresponding optimization problems [8] will be examined in
forthcoming work, in particular in the context of more challenging large-scale models
encountered in many experimental data scenarios.

• Code to reproduce the results of this article will be provided as example scripts for a PAT
image reconstruction toolbox that will be released to complement the k-Wave toolbox
(see appendix A).

Acknowledgments

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the
Tesla K40 GPU used for this research. FL and MB acknowledge financial support from
Engineering and Physical Sciences Research Council, UK (EP/K009745/1).

Appendix A. k-space time domain method

This appendix gives a technical overview of the k-space time domain scheme used for
solution of the system of equations (3a)–(3c), as it is implemented in k-Wave3 [31], as well as
a description of how to discretise the continuous operators defined in section 2. The k-space
time domain method is a collocation scheme that interpolates between the collocation points
using a truncated Fourier series. This allows field gradients to be calculated efficiently using
the fast Fourier transform (FFT). The ‘k-space’ in the name refers to a correction κ applied in
the wavenumber domain to account for the finite difference approximation made to the time
derivative. In the case of a homogeneous medium, this correction is exact, and no error arises
from the temporal discretisation scheme [29]. For acoustically heterogeneous media, the k-
space correction still reduces the errors, e.g., those due to numerical dispersion. To solve the
system (3a)–(3c) using this scheme, it is first necessary to embed the spatial domain Ω (for
simplicity, we assume for the spatial dimension d = 3 in the following description) into a

3 For more details, see the k-Wave manual on www.k-Wave.org.
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rectangular volume, which is then discretised by a regular grid of N collocation points. Then,
a Perfectly Matched Layer (PML) absorbing boundary is wrapped around the box to damp
outgoing waves without reflecting them, mimicking free-space propagation. The measure-
ment time interval T0,[ ] is discretised by = Dt n tn , = ¼n N0, , t , D =t T Nt . The discrete
pressure at iteration step n is denoted by pn and the ξ-component of the discrete particle
velocity by xu n. Here, ξ stands for one of the spatial components x y z, , of these vector fields.
The terms containing r x0 ( ) in (3a)–(3c) cancel out, and are therefore not included in the
discrete scheme, to save unnecessary calculations [33]. The scalar ‘density’ is split, unphy-
sically, into three parts, rx

n, to allow anisotropic absorption to be included within the PML.

The ambient density will be denoted by r0˜ and the sound speed by c0
2. The k-space derivative

and the k-space operator κ are defined as

⎛
⎝⎜

⎞
⎠⎟ 

x
k k

¶
¶

=
D

+ +x
-g ik g

c t
k k k; sinc

2
, A.1x y z

1 ref 2 2 2≔ { { }} ( )

where Îxk N is a the discrete wavevector in ξ direction and all multiplications between N-
dimensional vectors are understood as componentwise. cref is a homogeneous reference sound
speed, chosen to ensure stability, e.g., =c c xmaxref 0 ( ). Staggering in time is included by
interleaving the gradient and updates steps, as shown below. Grid-staggering is incorporated
into the calculation of the gradients; a spatial translation of xD is included as

 
x

k
¶
¶

x
x


-  Dxg ik e g . A.2ik1 2≔ { { }} ( )

The PML is implemented by multiplication operators Lx and Lx
s on the normal and staggered

grid, respectively. Finally, we define   GW : N N⟶ to discretise the window function ω

(see section 2.1).
k-Wave Iteration Set -p 1, x

-u 3 2 and rx
-1 to zero (for all x Î x y z, ,[ ]). Start the iteration

at = -n 1, and iterate until -N 1t ( =t 00 and =t TNt ):

⎛
⎝⎜

⎞
⎠⎟r x

= L L -
D ¶

¶x x x x
+ -

+
u u

t
p momentum conservation A.3n s s n n1 2 1 2

0˜
( ) ( )

⎛
⎝⎜

⎞
⎠⎟r r r

x
= L L - D

¶
¶

+ Dx x x x x
+

-
+ +t u t s mass conservation A.4n n n n1

0
1 2 1 2˜ ( ) ( )

r r r= + ++ + + +p c pressure density relation A.5n
x
n

y
n

z
n1

0
2 1 1 1( ) ( – ) ( )

=+ +g Wp extract pressure A.6n n1 1 ( ) ( )

Note that equations (A.3) and (A.4) are really each three equations, for x Î x y z, ,[ ]
separately.

Appendix B. Pseudospectral implementation of the PAT operators

Using the k-Wave iteration, the forward operator  (7a)–(7b) and the adjoint operator *
(17a)–(17c) can be implemented as follows:
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 is implemented by setting

⎧⎨⎩=
D

= -+s
c d t

Qp n1

2

for 1, 0

0 else
B.1n 1 2

0
2

0 ( )

and the result is given by =f Mg. Here, M is a discrete implementation of the measurement
operator, i.e., it maps the discrete pressure time series in the sensor elements, Î Gg N Nt , to
the data Îf L. In the simulation studies, M is just an identity matrix. In (B.1), Q is a
smoothing operator introduced to eliminate the high spatial frequencies of p0 to avoid
unintended oscillations in the field being introduced by the band-limited interpolant (see
section 2.8 in the k-Wave manual and [32]).

* is implemented by setting

⎧
⎨⎪

⎩⎪
*

r
=

D

= -
+ = ¼ -

+ = -

+ - + -s
d t

W

g n

g g n N

g g n N
2

for 1

for 0, , 2

2 for 1

B.2n

N

N n N n
t

t

1 2 0 1

1 0

t

t t
˜

˜
˜ ˜
˜ ˜

( )

with *g M f˜ ≔ and omitting (A.6). The result is given by rQp cN
0
2

0
t ( ˜ ), where the smoothing

by the self-adjoint Q has to be included to obtain adjointness with the forward
implementation. The rescaling of pN

t and g̃ by c0
2 and r0˜ is necessary since we are actually

solving the adjoint of the first order system (3a)–(3c) instead of the second order system (4): p
and ρ are essentially the same variables up to a scaling by c0

2. In the first order adjoint system,
the scaling is transferred from ρ to p. The same holds for r x0 ( ), which is absent from the
second order system.

It is interesting to compare the implementation of the adjoint with the implementation of
TR where the time-reversed pressure field in the sensor elements, - +gN n 1t˜ , is introduced as a
Dirichlet source: In the k-Wave iteration, (A.4) is replaced by

⎛
⎝⎜

⎞
⎠⎟* *r r r

x
= - L L - D

¶
¶

+x x x x
+

-
+ -I WW t u

dc
W g

1
, B.3n

N
n n N n1

0
1 2

0
2

t( ) ˜ ˜ ˜ ( )

and step (A.6) is omitted. The result is given by QpT . In (B.3), the multiplication with
*-I WWN( ) sets the density at the sensor locations to 0.

Appendix C. Discrete total variation functional

If we index the pixels of a 2D image Îp N , with = ´N N Nx y by (i, j), = ¼i N1, , x,
= ¼j N1, , y, a commonly used discretization of the total variation seminorm with Neumann

boundary conditions relying on forward finite differences is given by

å= - + -+ +p p p p pTV , C.1
i j

N

i j i j i j i j
,

1, ,
2

, 1 ,
2( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

where +p pN j N j1, ,x x
≔( ) ( ), +p pi N i N, 1 ,y y

≔( ) ( ). The implementation in 3D works in the same way.

References

[1] Arridge S R, Betcke M M and Harhanen L 2014 Iterated preconditioned lsqr method for inverse
problems on unstructured grids Inverse Problems 30 075009

[2] Barton G 1989 Elements of Green’s functions and propagation Potentials, Diffusion, and Waves
(Oxford: Oxford University Press)

[3] Beard P 2011 Biomedical photoacoustic imaging Interface Focus 1 602–31

Inverse Problems 32 (2016) 115012 S R Arridge et al

17

http://dx.doi.org/10.1088/0266-5611/30/7/075009
http://dx.doi.org/10.1098/rsfs.2011.0028
http://dx.doi.org/10.1098/rsfs.2011.0028
http://dx.doi.org/10.1098/rsfs.2011.0028


[4] Beck A and Teboulle M 2009 Fast gradient-based algorithms for constrained total variation image
denoising and deblurring problems IEEE Trans. Image Process. 18 2419–34

[5] Belhachmi Z, Glatz T and Scherzer O 2016 A direct method for photoacoustic tomography with
inhomogeneous sound speed Inverse Problems 32 045005

[6] Björck Å 1996 Numerical Methods for Least Squares Problems (Philadelphia, PA: SIAM)
[7] Burger M and Osher S 2013 A Guide to the TV Zoo Level Set and PDE Based Reconstruction

Methods in Imaging (Lecture Notes in Mathematics) (Berlin: Springer) 1–70
[8] Burger M, Sawatzky A and Steidl G 2014 First order algorithms in variational image processing

(arXiv:1412.4237)
[9] Calvetti D, Reichel L and Shuibi A 2003 Enriched Krylov subspace methods for ill-posed

problems Linear Algebr. Appl. 362 257–73
[10] Cox B, Laufer J G, Arridge S R and Beard P C 2012 Quantitative spectroscopic photoacoustic

imaging: a review J. Biomed. Opt. 17 061202
[11] Cox B T, Kara S, Arridge S R and Beard P C 2007 k-space propagation models for acoustically

heterogeneous media: application to biomedical photoacoustics J. Acoust. Soc. Am. 121
3453–64

[12] Finch D and Patch S K 2004 Determining a function from its mean values over a family of spheres
SIAM J. Math. Anal. 35 1213–40

[13] Frikel J and Quinto E T 2015 Artifacts in incomplete data tomography with applications to
photoacoustic tomography and sonar SIAM J. Appl. Math. 75 703–25

[14] Hanke-Bourgeois M 1995 Conjugate Gradient Type Methods for Ill-Posed Problems (Research
Notes in Mathematics Series) (Essex: Longman Scientific & Technical)

[15] Hristova Y, Kuchment P and Nguyen L 2008 Reconstruction and time reversal in thermoacoustic
tomography in acoustically homogeneous and inhomogeneous media Inverse Problems 24
055006

[16] Huang C, Nie L, Schoonover R W, Guo Z, Schirra C O, Anastasio M A and Wang L V 2012
Aberration correction for transcranial photoacoustic tomography of primates employing adjunct
image data J. Biomed.Opt. 17 066016

[17] Huang C, Wang K, Nie L, Wang L and Anastasio M 2013 Full-wave iterative image
reconstruction in photoacoustic tomography with acoustically inhomogeneous media IEEE
Trans. Med. Imaging 32 1097–110

[18] Jathoul A P et al 2015 Deep in vivo photoacoustic imaging of mammalian tissues using a
tyrosinase-based genetic reporter Nat. Photon. 9 239–46

[19] Jin X and Wang L V 2006 Thermoacoustic tomography with correction for acoustic speed
variations Phys. Med. Biol. 51 6437

[20] Kruger R A, Lam R B, Reinecke D R, Del Rio S P and Doyle R P 2010 Photoacoustic
angiography of the breast Med. Phys. 37 6096–100

[21] Kuchment P and Kunyansky L 2011 Mathematics of photoacoustic and thermoacoustic
tomography Handbook of Mathematical Methods in Imaging ed O Scherzer (New York:
Springer) pp 817–65

[22] Laufer J, Johnson P, Zhang E, Treeby B, Cox B, Pedley B and Beard P 2012 In vivo preclinical
photoacoustic imaging of tumor vasculature development and therapy J. Biomed. Opt. 17
056016

[23] Laufer J, Norris F, Cleary J, Zhang E, Treeby B, Cox B, Johnson P, Scambler P, Lythgoe M and
Beard P 2012 In vivo photoacoustic imaging of mouse embryos J. Biomed. Opt. 17 061220

[24] Lutzweiler C and Razansky D 2013 Optoacoustic imaging and tomography: reconstruction
approaches and outstanding challenges in image performance and quantification Sensors
13 7345

[25] Mast T, Souriau L, Liu D- L, Tabei M, Nachman A and Waag R 2001 A k-space method for large-
scale models of wave propagation in tissue IEEE Trans. Ultrasonics, Ferroelectrics, and
Frequency Control 48 341–54

[26] Nie L and Chen X 2014 Structural and functional photoacoustic molecular tomography aided by
emerging contrast agents Chem. Soc. Rev. 43 7132–70

[27] Qian J, Stefanov P, Uhlmann G and Zhao H 2011 An efficient neumann series—based algorithm
for thermoacoustic and photoacoustic tomography with variable sound speed SIAM J. Imaging
Sci. 4 850–83

[28] Stefanov P and Uhlmann G 2009 Thermoacoustic tomography with variable sound speed Inverse
Problems 25 075011

Inverse Problems 32 (2016) 115012 S R Arridge et al

18

http://dx.doi.org/10.1109/TIP.2009.2028250
http://dx.doi.org/10.1109/TIP.2009.2028250
http://dx.doi.org/10.1109/TIP.2009.2028250
http://dx.doi.org/10.1088/0266-5611/32/4/045005
http://arxiv.org/abs/1412.4237
http://dx.doi.org/10.1016/S0024-3795(02)00533-5
http://dx.doi.org/10.1016/S0024-3795(02)00533-5
http://dx.doi.org/10.1016/S0024-3795(02)00533-5
http://dx.doi.org/10.1117/1.JBO.17.6.061202
http://dx.doi.org/10.1121/1.2717409
http://dx.doi.org/10.1121/1.2717409
http://dx.doi.org/10.1121/1.2717409
http://dx.doi.org/10.1121/1.2717409
http://dx.doi.org/10.1137/S0036141002417814
http://dx.doi.org/10.1137/S0036141002417814
http://dx.doi.org/10.1137/S0036141002417814
http://dx.doi.org/10.1137/140977709
http://dx.doi.org/10.1137/140977709
http://dx.doi.org/10.1137/140977709
http://dx.doi.org/10.1088/0266-5611/24/5/055006
http://dx.doi.org/10.1088/0266-5611/24/5/055006
http://dx.doi.org/10.1117/1.JBO.17.6.066016
http://dx.doi.org/10.1109/TMI.2013.2254496
http://dx.doi.org/10.1109/TMI.2013.2254496
http://dx.doi.org/10.1109/TMI.2013.2254496
http://dx.doi.org/10.1038/nphoton.2015.22
http://dx.doi.org/10.1038/nphoton.2015.22
http://dx.doi.org/10.1038/nphoton.2015.22
http://dx.doi.org/10.1088/0031-9155/51/24/010
http://dx.doi.org/10.1118/1.3497677
http://dx.doi.org/10.1118/1.3497677
http://dx.doi.org/10.1118/1.3497677
http://dx.doi.org/10.1117/1.JBO.17.5.056016
http://dx.doi.org/10.1117/1.JBO.17.5.056016
http://dx.doi.org/10.1117/1.JBO.17.6.061220
http://dx.doi.org/10.3390/s130607345
http://dx.doi.org/10.1109/58.911717
http://dx.doi.org/10.1109/58.911717
http://dx.doi.org/10.1109/58.911717
http://dx.doi.org/10.1039/C4CS00086B
http://dx.doi.org/10.1039/C4CS00086B
http://dx.doi.org/10.1039/C4CS00086B
http://dx.doi.org/10.1137/100817280
http://dx.doi.org/10.1137/100817280
http://dx.doi.org/10.1137/100817280
http://dx.doi.org/10.1088/0266-5611/25/7/075011


[29] Tabei M, Mast T D and Waag R C 2002 A k-space method for coupled first-order acoustic
propagation equations J. Acoust. Soc. Am. 111 53–63

[30] Taruttis A and Ntziachristos V 2015 Advances in real-time multispectral optoacoustic imaging and
its applications Nat. Photon. 9 219–27

[31] Treeby B E and Cox B T 2010 k-Wave: MATLAB toolbox for the simulation and reconstruction
of photoacoustic wave fields J. Biomed. Opt. 15 021314

[32] Treeby B E and Cox B T 2011 A k-space Green’s function solution for acoustic initial value
problems in homogeneous media with power law absorption J. Acoust. Soc. Am. 129 3652–60

[33] Treeby B E, Jaros J, Rendell A P and Cox B T 2012 Modeling nonlinear ultrasound propagation in
heterogeneous media with power law absorption using a k-space pseudospectral method
J. Acoust. Soc. Am. 131 4324–36

[34] Treeby B E, Zhang E Z and Cox B T 2010 Photoacoustic tomography in absorbing acoustic media
using time reversal Inverse Problems 26 115003

[35] Wang L V 2009 Multiscale photoacoustic microscopy and computed tomography Nat. Photon. 3
503–9

[36] Wang X, Pang Y, Ku G, Xie X, Stoica G and Wang L V 2003 Noninvasive laser-induced
photoacoustic tomography for structural and functional in vivo imaging of the brain Nat.
Biotechnol. 21 803–6

[37] Xia J and Wang L V 2014 Small-animal whole-body photoacoustic tomography: a review IEEE
Trans. Biomed. Eng. 61 1380–9

[38] Xu Y and Wang L V 2004 Application of time reversal to thermoacoustic tomography Proc. SPIE
5320 257

[39] Xu Y and Wang L V 2004 Time reversal and its application to tomography with diffracting
sources Phys. Rev. Lett. 92 033902

[40] Yao J and Wang L V 2014 Photoacoustic Brain Imaging: from Microscopic to Macroscopic Scales
Neurophotonics 1 011003

[41] Zackrisson S, van de Ven S M W Y and Gambhir S S 2014 Light in and sound out: emerging
translational strategies for photoacoustic imaging Cancer Res. 74 979–1004

[42] Zhang E Z, Laufer J G, Pedley R B and Beard P C 2009 In vivo high-resolution 3D photoacoustic
imaging of superficial vascular anatomy Phys. Med. Biol. 54 1035

Inverse Problems 32 (2016) 115012 S R Arridge et al

19

http://dx.doi.org/10.1121/1.1421344
http://dx.doi.org/10.1121/1.1421344
http://dx.doi.org/10.1121/1.1421344
http://dx.doi.org/10.1038/nphoton.2015.29
http://dx.doi.org/10.1038/nphoton.2015.29
http://dx.doi.org/10.1038/nphoton.2015.29
http://dx.doi.org/10.1117/1.3360308
http://dx.doi.org/10.1121/1.3583537
http://dx.doi.org/10.1121/1.3583537
http://dx.doi.org/10.1121/1.3583537
http://dx.doi.org/10.1121/1.4712021
http://dx.doi.org/10.1121/1.4712021
http://dx.doi.org/10.1121/1.4712021
http://dx.doi.org/10.1088/0266-5611/26/11/115003
http://dx.doi.org/10.1038/nphoton.2009.157
http://dx.doi.org/10.1038/nphoton.2009.157
http://dx.doi.org/10.1038/nphoton.2009.157
http://dx.doi.org/10.1038/nphoton.2009.157
http://dx.doi.org/10.1038/nbt839
http://dx.doi.org/10.1038/nbt839
http://dx.doi.org/10.1038/nbt839
http://dx.doi.org/10.1109/TBME.2013.2283507
http://dx.doi.org/10.1109/TBME.2013.2283507
http://dx.doi.org/10.1109/TBME.2013.2283507
http://dx.doi.org/10.1117/12.532395
http://dx.doi.org/10.1103/PhysRevLett.92.033902
http://dx.doi.org/10.1117/1.NPh.1.1.011003
http://dx.doi.org/10.1158/0008-5472.CAN-13-2387
http://dx.doi.org/10.1158/0008-5472.CAN-13-2387
http://dx.doi.org/10.1158/0008-5472.CAN-13-2387
http://dx.doi.org/10.1088/0031-9155/54/4/014

	1. Introduction
	1.1. The physics of photoacoustic tomography
	1.2. Challenges of photoacoustic tomography

	2. Theory
	2.1. Mathematical modeling
	2.2. Derivation of the adjoint PAT operator

	3. Methods and implementation
	3.1. Numerical wave propagation model
	3.2. Image reconstruction methods

	4. Computational studies
	4.1. Computational scenarios
	4.2. Precision assessment
	4.3. Inverse reconstructions

	5. Discussion, conclusions and outlook
	Acknowledgments
	Appendix A.
	Appendix B.
	Appendix C.
	References



