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Abstract. A transmission X-ray diffraction system has been developed using a

pixellated, energy-resolving detector (HEXITEC) and a small-scale, mains operated

X-ray source (Amptek Mini-X). HEXITEC enables diffraction to be measured without

the requirement of incident spectrum filtration, or collimation of the scatter from

the sample, preserving a large proportion of the useful signal compared with other

diffraction techniques. Due to this efficiency, sufficient molecular information for

material identification can be obtained within five seconds despite the relatively low X-

ray source power. Diffraction data are presented from caffeine, hexamine, paracetamol,

plastic explosives and narcotics. The capability to determine molecular information

from aspirin tablets inside their packaging is demonstrated. Material selectivity and

the potential for a sample classification model is shown with principal component

analysis, through which each different material can be clearly resolved.
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1. Introduction

X-ray diffraction (XRD) is a technique which gives detailed information on the molecular

structure of a material, arising due to the constructive interference of coherently

scattered X-rays from different atomic planes. XRD is a powerful tool for sample

identification, giving very high material specificity and sensitivity [1, 2, 3]. A large

advantage of XRD over Raman imaging, another molecular fingerprinting technique, is

the penetrating nature of X-rays compared with laser light. With transmission XRD,

objects can be probed whilst inside packaging, which is of particular use in the cases of

suspicious powders or pharmaceuticals, since samples can be kept intact and preparation

time is reduced. By comparison with X-ray imaging methods, greater sample sensitivity

and specificity can be achieved with XRD due to the molecular information provided.

The relation describing the conditions for an increase in observed intensity due to XRD

is summarised by Bragg’s law: nλ = 2d sin θ, where λ is the X-ray wavelength, θ is the

angle between the incident X-rays and the crystallographic planes in the sample and d

gives the spacing between these planes.

Standard experimental approaches to XRD can be divided into two broad

categories: angular dispersive (ADXRD) and energy dispersive (EDXRD). The former

approach requires a close-to-monochromatic X-ray source, and Bragg’s law is probed by

detecting the X-ray intensity as a function of scattering angle. This can be performed

by a mechanical rotation of the X-ray source and detector about the sample, or by

the use of a pixellated X-ray detector with an area large enough to capture a sufficient

range of angles. With EDXRD, the scattering angle is kept fixed, and diffraction from

a broad spectrum of X-ray energies is measured by the use of a single element energy-

resolving detector (or an array of detectors) [4]. EDXRD is typically performed in

transmission mode (with the detector placed on the opposite side of the sample to the

X-ray source), and ADXRD is measured in either reflection or transmission. A lower

incident X-ray energy is generally used in reflection geometries (for example, Cu Kα

radiation: 8.06 keV), since this gives a wide spread of diffraction angles for a given set

of sample d-spacings, making peaks easier to resolve. In transmission, the X-ray energy

needs to be greater (of the order of 10-100keV) in order for photons to pass through

the sample; alternatively, the sample thickness needs to be on the sub-millimetre scale.

In order to perform real-world materials identification with XRD, there is a

requirement to overcome limitations in efficiency and/or practicality of both angular

dispersive and energy dispersive techniques. The need for a rotation of source and

detector for ADXRD in diffractometers results in equipment which is large and unwieldy,

and scanning inside packaging is not possible with the low X-ray energies used.

Transmission ADXRD is limited by the need for a narrow energy window at an energy

high enough for reasonable sample penetration - without the use of a synchrotron it is

difficult to achieve such a small range of energies - and there is a trade-off between energy

resolution and X-ray flux when using spectral filtration methods. EDXRD requires the

diffracted beam to be very strongly collimated in order to reduce the broadening of the
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diffraction peaks due to low angular resolution. Such collimation means that the vast

majority of the diffracted signal is not utilised. Each technique has inherent issues with

counting statistics since they discard a lot of useful information from the scattered X-rays

- either spatial, spectral, or both. Pixellated diffraction (PixD) is a method of combining

transmission ADXRD and EDXRD, utilising the benefits of both approaches - i.e.

simultaneous measurements over a range of scattering angles and X-ray energies [5, 6].

PixD was developed with the use of the HEXITEC pixellated energy-resolving detector

[7, 8, 9]. HEXITEC is made up of a 20× 20× 1 mm cadmium telluride (CdTe) crystal

bump bonded to an application-specific integrated circuit (ASIC) to give an 80 × 80

pixel array with 250µm pitch. Unlike germanium-based energy resolving detectors,

CdTe does not need to be operated at cryogenic temperatures. With HEXITEC, the

crystal is peltier cooled, and typical operating temperatures are between 0-10 ◦C. The

ASIC detects the charge created by each photon interaction, and converts this into an

energy value. Therefore, each pixel outputs an individual energy spectrum for a single

acquisition. This is in contrast to other pixellated, energy-resolving detectors in which

a number of energy thresholds (typically four or less) can be set by the user, above

which all photon interactions are counted indistinguishably [10, 11, 12, 13, 14]. The

energy-resolving capability of HEXITEC allows an unfiltered incident X-ray beam to be

used for XRD. The pixellation of the detector means that the angular distribution of the

diffracted X-rays can be observed without the need for a collimator positioned between

the sample and the detector, provided the incident beam is sufficiently collimated and

the sample is thin enough to reduce the uncertainty in the origin of the diffracted X-rays

along the incident beam axis [6]. The combination of pixellation and energy resolution

gives a greatly enhanced measurable diffraction signal intensity compared with ADXRD

and EDXRD. A previous report has demonstrated accurate material specificity with the

PixD technique - particularly that of plastic explosive samples - with sufficient counting

statistics for identification obtained in one second using a high power (420W) X-ray

source [5].

In moving towards more practical applications of the pixellated diffraction system,

this report presents results from performing the PixD technique using a small,

lightweight, mains/battery operated X-ray source. The effects of this source on the

observed diffraction spectra of a range of materials are discussed, covering plastic

explosives, illicit drugs and pharmaceuticals. The potential of the system for classifying

materials within packaging is demonstrated for aspirin tablets. This capability is of

particular relevance to the pharmaceutical industry, where counterfeiting is a serious

global problem [15, 16].

2. Experimental detail

The X-ray source utilised for this study was an Amptek Mini-X, with dimensions of

185× 58× 47mm. The Mini-X had an Au target and a maximum tube voltage of 50 kV

and power output of 4W. The X-ray beam was collimated at the source by a 12mm
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Figure 1. (a) Schematic plan view of the experimental setup (b) The Amptek Mini-X

source

S
c
a
tt
e
ri
n
g
 a

n
g
le

 (
d
e
g
re

e
s
)

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14
0

50

100

150

200

250

300

350

400

Scattering angle (degrees)

N
u

m
b

e
r 

o
f 

p
ix

e
ls

Figure 2. (a) The scattering angles measured by the pixels across the detector, due

to sample and detector positioning. (b) The number of pixels which are represented

as a function of scattering angle (pixels covered by the beam stop are omitted).

long brass collimator insert with a 1mm pinhole, and by an additional 0.5mm lead

pinhole before the sample. The HEXITEC detector was placed behind the sample, with

the collimated X-ray beam aligned with the bottom-left corner of the detector. A lead

beam stop covering the primary beam was put in place during diffraction measurements,

and pixels covered by the beam stop were not included in the data analysis. A schematic

plan view of the experimental setup and image of the Mini-X source are shown in Figure

1. The source was operated at 50 kV, and the maximum tube current at this voltage

of 80 µA. The scattering angle as a function of pixel position across the detector given

by this geometry is shown in Figure 2. Due to the radial nature of the diffraction and

the positioning of the detector, some scattering angles were sampled more frequently

than others (Figure 2 (b)). For example, there are over 6 times the number of pixels

positioned at a scattering angle of 9◦ than at 12◦. In combination with the energy

spectra of the pixels, this introduced a bias into the overall momentum transfer plot,

which was corrected for in the data analysis.

The diffraction profiles of a range of different polycrystalline materials were taken

with the small-scale pixellated diffraction setup for this work. For comparison with

the large-scale system, caffeine, hexamine and three different explosive materials were
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tested. In order to demonstrate the potential of this system for material identification of

illicit/counterfeit drugs, diffraction data was also taken for three diamorphine (heroin)

and two cocaine samples seized by the UK Border Force, aspirin tablets (Tesco

Dispersible Aspirin, 300mg) and a crushed paracetamol tablet. Diffraction profiles for

the aspirin were measured both inside and outside the blister pack to demonstrate the

ability of the technique to identify materials without the need to open the packaging.

The caffeine, hexamine, paracetamol and explosive samples were each 3mm thick, and

held in place between layers of Mylar film. The drug samples were contained inside

clear polythene bags which could not be opened for security reasons; these bags were

lightly compressed between two flat plastic plates (with large holes for the incident and

diffracted X-rays to pass through unobstructed) to give sample thicknesses of 4± 1mm.

The aspirin tablets were kept in their standard form, and were 3.5mm thick.

A common issue with pixellated, energy-resolving detectors is the presence of charge

sharing, i.e. when the charge cloud generated in the CdTe from a single photon

interaction is spread across more than one detector pixel. This, in turn, causes the

energy contribution from the photon to be divided across these pixels. Charge-sharing

effects are mitigated in HEXITEC due to the relatively large pixel size, although they

remain significant. Charge-sharing discrimination was applied for this work, i.e. when

events were detected in neighbouring pixels in the same frame, these events were removed

from the final data. The counting rate used was 5520 frames per second.

The spread of X-ray energies up to 50 keV from the Mini-X source defined the

momentum transfer range able to be probed in this work (for a given range of angles).

The effect of acquisition times on the counting statistics with the maximum X-ray flux

of 80 µA was observed by taking multiple diffraction profiles for each sample over a range

of times from 1-600 seconds.

3. Results and discussion

3.1. Energy-angle space in pixellated diffraction

The background subtracted pixellated diffraction data for caffeine at three discrete

energies, acquired over 600 seconds, are shown in Figure 3. The two arcs visible represent

diffraction from four different atomic spacings of caffeine (7.53 Å, 7.40 Å, 3.37 Å and

3.30 Å) - the respective first two and latter two spacings are close enough so as to be

unresolvable with this technique. It can be seen that approximately one-quarter of the

diffraction “cones” emitted from the sample are intersected by the detector. Moving to

higher X-ray energy windows, the arcs gradually decrease in radius - this behaviour is

as described by Bragg’s law, and is also represented by an energy-angle map in Figure

4.

The pixellated diffraction information was converted into a plot of momentum

transfer space utilising the unique energy spectra and scattering angle of each detector
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Figure 3. Pixellated X-ray diffraction from caffeine, with X-rays generated at 50 kV

and 80µA, and an acquisition time of 600 s. The energy windows shown have a width

of 2 keV. The region of low intensity in the bottom-left corner of the detector is due

to the lead beam stop.
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Figure 4. An energy-angle map of the pixellated X-ray diffraction signal from caffeine.

pixel, and the relationship:

x =
E

hc
sin θ (1)

where x is the momentum transfer for a photon of energy E scattered through an angle

2θ. When the pixel spectra are converted into the generic momentum transfer space,

they can be summed together to fully utilise the counting statistics of the diffraction

data [5]. The peaks seen at momentum transfer values of 0.68 and 1.48 nm−1 (from
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)

Caffeine

Figure 5. X-ray diffraction patterns for caffeine obtained by converting the pixellated

diffraction data into momentum transfer space. Both datasets are background

subtracted and corrected for momentum transfer weighting, and the effect of correcting

for the X-ray spectrum is shown.

here referred to as peak A and peak B, respectively) are in agreement with those seen

in previously published ADXRD data for caffeine [17, 18]. Peak A has a full width at

half maximum (FWHM) of 0.09nm−1, and peak B has a FWHM of 0.17nm−1. This

difference in peak widths is likely due to the larger separation of the unresolved peaks

at peak B compared with those at peak A.

The diffraction data for caffeine corrected for background contributions and

momentum transfer weighting is shown in Figure 5. Also shown is the result of a

normalisation for the X-ray spectrum emitted from the Mini-X source. The output

spectrum at 50 kV was directly measured using HEXITEC. When applying the spectral

correction, the relative intensities at higher momentum transfer are increased markedly,

albeit with an associated increase in statistical noise - due to the drop off of incident

photons at the higher energy end of the Bremsstrahlung spectrum. Figure 6 shows

the contributions to the overall momentum transfer plot from different energy windows

across the range of incident energies. These data illustrate the need to go to energies

greater than 15 keV with this detector geometry setup in order to scan a sufficient region

of momentum transfer space.

3.2. Hexamine

Diffraction patterns in the form of spots rather than rings indicate the presence of a

preferred crystallographic orientation within the sample, or grain sizes which are large
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Figure 6. The contribution to the overall momentum transfer spectrum from

different energy windows across the range of the incident X-ray spectrum, corrected

for background and momentum transfer weighting.

enough such that the incident X-ray beam effectively passes through a limited number of

single crystals within the sample. The pixellated diffraction pattern of hexamine shown

in Figure 7 is due to the grain size of the sample being comparable with the width

of the intersecting X-ray beam (∼1mm). The ability to detect the diffraction spots

from samples such as hexamine over a relatively large area shows a clear advantage of

using HEXITEC over small, single element energy-resolving detectors - in the latter

case these spots may not be detected due to the detector positioning. The nature of the

diffraction images obtained from hexamine in comparison with caffeine demonstrates

the potential for grain size determination of an unknown material, which could also

be a useful identification metric. In the case of the plastic explosive materials, the

pixellated diffraction data show evidence of preferred orientations and/or large grain

powders (RDX and/or PETN) being present inside the plastic binding materials for the

Semtex and C4 samples (Figure 8).
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Hexamine

Figure 7. Pixellated X-ray diffraction from hexamine, with X-rays generated at 50 kV

and 80µA, and an acquisition time of 600 s. The energy windows shown have a width

of 3 keV.

Semtex 1ASemtex H C4

Figure 8. Pixellated diffraction patterns for plastic explosive compounds, summed

over all energies.

3.3. Illicit drugs

The compositions of the illicit drug samples are given in Table 1. Note that since

the materials with which the drugs were cut had unknown quantities, it is difficult

to infer any impact these may have on these diffraction data. There is limited XRD

information available on cocaine and diamorphine in the literature, although previous

EDXRD studies by Cook et al. [19, 20] were used to make a comparison with the data

shown here. The diffraction spectrum for diamorphine obtained with the PixD method

shows three peaks in intensity at momentum transfers of 0.7, 0.9 and 1.15nm−1 (Figure

9). This result correlates with that found for freebase heroin (of which diamorphine is

the active ingredient) by Cook et al.

Cocaine in two different forms was also studied using EDXRD by Cook et al., where

it was found that the freebase form had a markedly different diffraction spectrum to

that of cocaine hydrochloride. The cocaine samples provided for this study were in an

unknown form, but by comparison of their diffraction profiles with those shown in the

previous EDXRD work they appear to be cocaine hydrochloride, which contains a series
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Figure 9. Pixellated diffraction spectra for illicit drug materials, background

subtracted and normalised for the momentum transfer weighting in the detector.

of peaks in the momentum transfer range 0.9-1.6nm−1.

3.4. Aspirin and paracetamol

The observed diffraction profiles for aspirin tablets inside and outside of the blister

packaging are given in Figure 10. The features seen in both profiles are similar, with

a slightly higher background seen for the aspirin in package data, thought to be due

to extra X-ray scatter from the packaging. In order to better understand the nature

of the PixD results obtained for aspirin, they were compared with previously acquired

high resolution diffraction data of a ground up aspirin tablet taken on synchrotron

beamline ID31 at the ESRF, France [21]. The synchrotron data were taken in angular

dispersive mode with an X-ray energy of 15.60 keV (wavelength of 0.794 83 Å). An

agreement between the PixD and synchrotron data is seen. In particular, the single

peak at 0.88 nm−1, the multiple peaks between 1.16 and 1.30 nm−1 and the double peak

at 1.51 nm−1 in the synchrotron data correspond with the three respective main peaks

in the pixellated diffraction data.

Paracetamol commonly forms in one of two distinct polymorphs in its

pharmaceutical form [22, 23]. A pixellated diffraction measurement was taken on a

crushed paracetamol tablet, and the resultant diffraction pattern is shown in Figure 11.

These data correspond with previously published ADXRD diffractometer data for the

monoclinic Form I polymorph of paracetamol [24, 25].

3.5. Principal component analysis

Principal component analysis (PCA) is a data analysis technique which determines the

largest variances between datasets, and can vastly reduce large quantities of data by

transforming them into a new space [26, 27]. In this principal component (PC) space,

datasets which are similar are grouped in nearby regions, and sets which are different are
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Illicit drug quantity Other materials

Diamorphine 1 73% Phenobarbitone

Diamorphine 2 69% Phenobarbitone

Caffeine

Diazepam

Diamorphine 3 42% Phenobarbitone

Caffeine

Diazepam

Paracetamol

Cocaine 1 75% Unknown

Cocaine 2 69% Unknown

Table 1. Compositions of the illicit drug samples provided by the UK Home Office.

easily separated, making PCA ideal for pattern matching algorithms. The first principal

component axis (PC1) describes the largest variance between the datasets. The second

axis (PC2) describes the largest variance constrained to be orthogonal to PC1, and so

on.

PCA has been shown to work with noisy data [28], and thus it is a useful tool for

determining the minimum acceptable acquisition time for the PixD technique using the

Mini-X source. PCA was performed on the data after grouping all diffraction spectra

into one matrix (different samples in each row, the time normalised intensity at each

momentum transfer value in the columns). The result of the analysis was a series of

scores for each sample, which can be visualised as their coordinates in PC space. The

result of the PCA on the data presented in the previous section, with acquisition times

of 5, 10, 60 and 600 seconds is shown in Figure 12. For acquisition times greater than

five seconds, there is a clustering of the data points representing each sample. This

clustering breaks down when including the data collected for less than five seconds,

with points representing these datasets beginning to overlap with other clusters. This

can be explained by the noise in these datasets being large enough so as to mask the

features which are used by the PCA to differentiate the spectra. In the case of data

collected for five or more seconds, the different materials are clearly separable using the

first three principal components, and the acquisition times have no significant bearing on

the overall position in PC space of each material. For materials identification purposes,

this is a very useful result, since discriminant analysis can be used to classify regions in

PC space; unidentified materials can then be classified based on which region they fall

in to as defined by the discriminant analysis. This approach requires prior knowledge

in the form of a library of diffraction spectra of materials to be tested against.
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4. Conclusion

It has been demonstrated that the pixellated diffraction technique can be performed

with a small-scale X-ray source, showing the potential for translation of the system

from a laboratory environment to a portable materials identification system. The

ability of X-rays to penetrate through packages - especially the aluminium foil in blister

packaging for pharmaceutical tablets - is a clear advantage over existing techniques, and

the ability of XRD to probe molecular structure gives a high degree of sample specificity.

The HEXITEC detector allows photons of a wide range of energies, and scattered

over a range of angles, to be collected simultaneously, giving high counting statistics

and allowing as much of the incident and scattered X-rays to be used as possible,

without excessive filtration or collimation. The ability to take diffraction images is

particularly useful in the case of larger grain crystalline materials or materials with

preferred orientations, which give diffraction patterns composed of spots rather than

Debye-Scherrer rings. Pixellated diffraction can therefore provide information on the

grain size or crystallographic nature of a material, giving further potential identification

metrics. If required, the effects due to large grains or preferred orientations can be

mitigated by sampling over many different positions of the sample.

For this study, absorption of the X-ray beam was kept to a minimum by using

samples thinner than 5mm. This choice was made for two reasons: to limit the effect

of beam attenuation over the energy range available (up to 50 keV), and also to reduce
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the loss of angular resolution due to scatter from different depths within the sample [6].

The relatively low maximum current output for the Mini-X tube of 80 µA (at 50 kV)

affected the counting statistics of the experiment, and so the minimum counting time

required in order to successfully distinguish between different samples. The acquisition

time of five seconds reported here is still relatively fast for illicit materials identification,

especially when minimal sample preparation is required. The technique of principal

component analysis demonstrates that material identification can be achieved through

pattern recognition - although a prior library of materials to test for is needed.
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[4] Kämpfe B, Luczak F and Michel B 2005 Particle & Particle Systems Characterization 22 391–396

ISSN 1521-4117

[5] O’Flynn D, Reid C B, Christodoulou C, Wilson M D, Veale M C, Seller P, Hills D, Desai H, Wong

B and Speller R 2013 Journal of Instrumentation 8 P03007

[6] O’Flynn D, Desai H, Reid C B, Christodoulou C, Wilson M D, Veale M C, Seller P, Hills D, Wong

B and Speller R D 2013 Crime Science 2 4

[7] Jones L, Seller P, Wilson M and Hardie A 2009 Nuclear Instruments and Methods in Physics

Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 604 34

– 37 ISSN 0168-9002 Proceedings of the 8th International Conference on Position Sensitive

Detectors

[8] Seller P, Bell S, Cernik R J, Christodoulou C, Egan C K, Gaskin J A, Jacques S, Pani S, Ramsey

B D, Reid C, Sellin P J, Scuffham J W, Speller R D, Wilson M D and Veale M C 2011 Journal

of Instrumentation 6 C12009

[9] Veale M C, Kalliopuska J, Pohjonen H, Andersson H, Nenonen S, Seller P and Wilson M D 2012

Journal of Instrumentation 7 C01035

[10] Llopart X, Campbell M, Dinapoli R, San Segundo D and Pernigotti E 2002 Nuclear Science, IEEE

Transactions on 49 2279–2283 ISSN 0018-9499

[11] Ballabriga R, Campbell M, Heijne E, Llopart X and Tlustos L 2007 Nuclear Science, IEEE

Transactions on 54 1824–1829 ISSN 0018-9499

[12] Bellazzini R, Spandre G, Brez A, Minuti M, Pinchera M and Mozzo P 2013 Journal of

Instrumentation 8 C02028

[13] Romano A, Pacella D, Claps G, Causa F and Gabellieri L 2015 Journal of Instrumentation 10

C02046



Materials identification using a small-scale pixellated X-ray diffraction system 15

[14] Vincenzi A, de Ruvo P, Delogu P, Bellazzini R, Brez A, Minuti M, Pinchera M and Spandre G

2015 Journal of Instrumentation 10 C04010

[15] Newton P N, Green M D, Fernndez F M, Day N P and White N J 2006 The Lancet Infectious

Diseases 6 602 – 613 ISSN 1473-3099

[16] Dégardin K, Roggo Y and Margot P 2014 Journal of Pharmaceutical and Biomedical Analysis 87

167 – 175 ISSN 0731-7085 review Papers on Pharmaceutical and Biomedical Analysis 2013

[17] Phadnis N V, Cavatur R K and Suryanarayanan R 1997 Journal of Pharmaceutical and Biomedical

Analysis 15 929 – 943 ISSN 0731-7085

[18] Lehmann C and Stowasser F 2007 Chemistry A European Journal 13 2908–2911 ISSN 1521-3765

[19] Cook E, Fong R, Horrocks J, Wilkinson D and Speller R 2007 Applied Radiation and Isotopes 65

959 – 967 ISSN 0969-8043

[20] Cook E, Pani S, George L, Hardwick S, Horrocks J and Speller R 2009 IEEE Transactions on

Nuclear Science 56 1459 –1464 ISSN 0018-9499

[21] Reproduced with permission from A. Fitch at the ESRF

http://www.iucr.org/resources/commissions/powder-diffraction/projects/organic-datasets

[22] Nichols G and Frampton C S 1998 Journal of Pharmaceutical Sciences 87 684–693 ISSN 1520-6017

[23] Espeau P, Colin R, Tamarit J L, Perrin M A, Gauchi J P and Leveiller F 2005 Journal of

Pharmaceutical Sciences 94 524–539 ISSN 1520-6017

[24] Pecharsky V K and Zavalij P Y 2009 Fundamentals of Powder Diffraction and Structural

Characterization of Materials (Springer US) ISBN 978-0-387-09578-3

[25] Perrin M A, Neumann M A, Elmaleh H and Zaske L 2009 Chem. Commun. (22) 3181–3183

[26] Lee D D and Seung H S 1999 Nature 401 788–791 ISSN 0028-0836

[27] Theodorakou C and Farquharson M J 2009 Physics in Medicine and Biology 54 4945

[28] Luggar R D, Farquharson M J, Horrocks J A and Lacey R J 1998 X-Ray Spectrometry 27 87–94

ISSN 1097-4539


