
Empir Software Eng
DOI 10.1007/s10664-016-9427-7

An experimental search-based approach to cohesion
metric evaluation

Mel Ó Cinnéide1 · Iman Hemati Moghadam2 ·
Mark Harman2 ·Steve Counsell3 ·Laurence Tratt4

© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract In spite of several decades of software metrics research and practice, there is lit-
tle understanding of how software metrics relate to one another, nor is there any established
methodology for comparing them. We propose a novel experimental technique, based on
search-based refactoring, to ‘animate’ metrics and observe their behaviour in a practical set-
ting. Our aim is to promote metrics to the level of active, opinionated objects that can be
compared experimentally to uncover where they conflict, and to understand better the under-
lying cause of the conflict. Our experimental approaches include semi-random refactoring,
refactoring for increased metric agreement/disagreement, refactoring to increase/decrease
the gap between a pair of metrics, and targeted hypothesis testing. We apply our approach to

Communicated by: Massimiliano Di Penta

� Mel Ó Cinnéide
mel.ocinneide@ucd.ie

Iman Hemati Moghadam
i.moghadam@ucl.ac.uk

Mark Harman
mark.harman@ucl.ac.uk

Steve Counsell
Steve.Counsell@brunel.ac.uk

Laurence Tratt
laurie@tratt.net

1 School of Computer Science, University College Dublin, Dublin, Ireland

2 Department of Computer Science, University College London, London, England

3 Department of Computer Science, Brunel University, London, UK

4 Department of Informatics, King’s College London, London, England

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10664-016-9427-7-x&domain=pdf
mailto:mel.ocinneide@ucd.ie
mailto:i.moghadam@ucl.ac.uk
mailto:mark.harman@ucl.ac.uk
mailto:Steve.Counsell@brunel.ac.uk
mailto:laurie@tratt.net


Empir Software Eng

five popular cohesion metrics using ten real-world Java systems, involving 330,000 lines of
code and the application of over 78,000 refactorings. Our results demonstrate that cohesion
metrics disagree with each other in a remarkable 55 % of cases, that Low-level Similarity-
based Class Cohesion (LSCC) is the best representative of the set of metrics we investigate
while Sensitive Class Cohesion (SCOM) is the least representative, and we discover several
hitherto unknown differences between the examined metrics. We also use our approach to
investigate the impact of including inheritance in a cohesion metric definition and find that
doing so dramatically changes the metric.

Keywords Refactoring · Software metrics · Empirical studies

1 Introduction

Like all engineers, software engineers want to measure the materials they engineer, lead-
ing to many proposals for ways to measure software using so-called ‘software metrics’
(Shepperd 1995). How do we know that our software metrics really do report numbers that
reflect the true values of the property they claim to measure? This question may appear to
be inherently unanswerable, but we believe it is possible to approach a partial answer from
the angle of disciplined experimental metric cross validation. Previous work on metric val-
idation has focussed on formal analysis (Weyuker 1988; Fenton 1994; Hitz and Montazeri
1996; Al Dallal 2010), empirical evaluation (Kemerer 1995; Counsell et al. 2005; Meyers
and Binkley 2007; Beck and Diehl 2011) or user studies (Counsell et al. 2006; Bouwers
et al. 2013; Simons et al. 2015). However, although these approaches can establish for-
mal metric properties and assess their applicability and usability, they cannot determine if a
metric actually measures the property it purports to measure.

In this paper we seek to approach this apparently unanswerable question through the
concept of metric agreement and disagreement. That is, while we cannot ask whether a par-
ticular metric captures the true property it seeks to capture, we can ask whether it agrees
with another metric that also claims to capture this property. Although this cannot tell us
whether the metrics capture the elusive ‘ground truth’, it can increase or decrease our confi-
dence in a disciplined manner. Our approach can be thought of as a form of cross validation
that seeks to assess the degree to which metrics that ought to agree in theory, because they
all purport to measure cohesion, really do agree in practice when applied to real-world
software applications.

Many metrics purport to measure the same software property; our approach allows us
to more rigorously investigate these claims. For example, many metrics have been intro-
duced in the literature that aim to measure software cohesion (Lakhotia 1993; Bieman and
Ott 1994; Harman et al. 1995; Fenton and Pfleeger 1996; Briand et al. 1996). If these
metrics were measuring the same property, then they ought to produce, in some sense, sim-
ilar results. This poses some important but uncomfortable questions: how do the results of
metrics that purport to measure the same software property compare to one another? Can
metrics that measure the same property disagree, and how strongly can they disagree? These
questions are important, because we cannot rely on a suite of metrics to assess properties
of software if we can neither determine the extent to which they agree, nor have any way to
determine a likely worst case disagreement. They are also uncomfortable questions because,
despite several decades of software metrics research and practice, there remains no answer,
nor even an accepted approach to tackling them.



Empir Software Eng

In this paper we address this problem by introducing a systematic experimental
technique to assess software metrics. Our approach applies automated refactoring to a pro-
gram, repeatedly measuring the values of a number of metrics before and after applying
each refactoring. In this way we can make empirical observations about the relationships
between the metrics. When a pair of metrics do not agree on the change brought about by
a refactoring, we examine the causes of the conflict so as to gain a further (and more qual-
itative) insight into the differences between the metrics. Our focus is on metric conflict,
because when two metrics agree they may or may not be measuring the same property, but
when they are in conflict, we can conclude with confidence that they are not measuring
the same property.

Note that we purposely do not attempt to define cohesion in this work. It is a commonly-
used term in software development, and it is the cohesion metric definition themselves that
attempt to provide a definition for the term. The fundamental goal in this work is to inves-
tigate these cohesion metric definitions and determine if they provide a consistent view of
this software property.

We evaluate our approach on five widely-used metrics for cohesion, namely Tight
Class Cohesion (TCC) (Bieman and Kang 1995), Lack of Cohesion between Meth-
ods (LCOM5) (Briand et al. 1998), Class Cohesion (CC) (Bonja and Kidanmariam
2006), Sensitive Class Cohesion (SCOM) (Fernández and Peña 2006) and Low-level
Similarity-based Class Cohesion (LSCC) (Al-Dallal and Briand 2012). We perform
these experiments using a search-based, metric-guided refactoring platform, Code-Imp
(Hemati Moghadam and Ó Cinnéide 2011), that can apply a large number of refactorings
without user intervention. Using Code-Imp, over 78,000 refactorings were applied to ten
non-trivial, real-world Java programs comprising in total over 330,000 lines of code.

This paper is an extension of an earlier conference paper by the same authors
(Ó Cinnéide et al. 2012). Its primary contributions are as follows:

1. We introduce a new approach to metric analysis at the source code level, implement-
ing the approach to metric investigation using search-based refactoring first mooted by
Harman and Clark (2004), but which has hitherto remained unimplemented. We intro-
duce the concept of metric volatility, which measures the degree to which metrics are
sensitive to syntactic program alterations achieved using automated refactoring. Using
experimentally observed metric volatility, we develop an approach to systematic metric
validation.

2. We demonstrate how our approach reveals that seemingly similar metrics can be in
conflict with one another, and can pinpoint the source of the conflict thus providing
new insight into the differences between the metrics.

3. We introduce a technique for iterative refactoring agreement and disagreement. Overall,
we find that it is easier to force metric agreement than disagreement, which is expected
since we study metrics that claim to measure the same program property: cohesion.
Nevertheless, we also find that Sensitive Class Cohesion (SCOM) (Fernández and Peña
2006), defined in Fig. 3, is unusual because it is easier to force SCOM to disagree
with the other metrics, providing evidence to suggest that this metric may be measuring
something with which the others disagree.

4. We note that there may be a numeric gap in the values reported for two different
cohesion metrics applied to the same system. We introduce techniques for gap open-
ing and closing, using refactoring, which seek to widen (respectively reduce) the gap
between metric values. This approach searches a metric’s ‘volatility space’ to provide
the decision maker with an informal ‘confidence interval’ for the ‘true’ metric value.



Empir Software Eng

5. We present the results of a study on the impact of inheritance which yielded surprising
results considering the current literature. Previous authors have argued that inheritance
may optionally be considered in cohesion measurement, but attach little significance to
the decision. Our experimental results refute this; including/excluding inheritance can
have a large impact on the values reported by the metric.

6. We identify a number of undocumented anomalies in established cohesion metrics,
thereby demonstrating the utility of our approach as a means of investigating metrics.

This paper extends our earlier conference paper (Ó Cinnéide et al. 2012) in several ways.
We introduce two completely new techniques for comparing metrics in Section 5 and inves-
tigate them experimentally. Our earlier paper contained a preliminary investigation into the
effect of including inheritance in a cohesion metric definition. In this journal paper this
investigation is extended from considering four metric pairs to considering ninety metric
pairs. Overall, the evidence base upon which our conclusions rest has been extended from
approximately 3,000 refactorings to over 78,000 refactorings.

The remainder of this paper is structured as follows. In Section 2 we describe our
experimental approach in more detail while in Section 3 we outline the platform we use
in this paper to perform search-based refactoring. In Section 4 we describe our initial
investigation into how a suite of software cohesion metrics changes in response to refac-
toring, which allows us to make general observations about the metrics. In Section 5 we
perform focussed, pairwise metric comparisons involving refactoring to either iteratively
increase/decrease metric agreement or to open/close the gap between metrics. In Section 6
we use our experimental approach to investigate a claim made in the metrics literature that
including inheritance in a metric definition is optional and of little consequence. Section 7
describes related work while Section 8 discusses threats to the validity of our study. Finally,
in Section 9, we summarise our conclusions and describe future work.

2 Motivation and Approach

The fundamental motivation for this work stems from a desire to ‘animate’ metrics and
observe their behaviour in relation to each other in a practical setting. Rather than view them
simply as passive measures to be extracted from source code, we aim to promote them to
the level of active objects that have an opinion on what software quality is. We then want
to play them off against each other, to ask their opinion on many software examples and to
actively uncover where these metrics conflict with each other, and to explore these areas of
conflict further to understand better why the metrics conflict.

In the coming subsections we motivate our choice of (1) refactorings to employ, (2)
metrics to study and (3) software applications to employ in our experiments. Finally we
provide a high-level overall summary of the experiments that are detailed later in the paper.

2.1 Motivation for the Choice of Refactorings

A single software application allows only one set of metric measurements to be made. This
is clearly not enough to make meaningful comparisons. A Source Code Management sys-
tem such as Subversion or Git provides multiple commits of a software application and
so serves as a better basis for comparison, and many studies have taken this approach
(Succi et al. 2005; Counsell et al. 2006; Al-Dallal and Briand 2012). However, a sequence
of commits of a software application may vary dramatically in terms of how great the



Empir Software Eng

gap is between each commit. This lack of control over the differences between the com-
mits is a significant confounding factor in studies that use software repositories to compare
software metrics.

Our approach to this problem begins with the observation that individual refactorings
in the style of Fowler et al. (1999) involve small behaviour-preserving program changes
that typically have an impact on the values of software metrics that would be calculated
for the program. However, whether a refactoring will improve or disimprove a metric
is not, in general, knowable a priori. For example, in applying the Push Down Method
refactoring, a method is moved from a superclass to those subclasses that require it. The
superclass may become more cohesive if the method moved was weakly connected with
the rest of the class. It may instead become less cohesive, if the moved method served to
glue other methods and fields of the superclass together. It is impossible to state that the
Push Down Method refactoring leads to an improvement or a deterioration in cohesion
without examining the context in which it is being applied. Furthermore, the impact the
refactoring will have on the metric will depend on the precise notion of cohesion that the
metric embodies.

There are two other reasons why we chose to use refactorings. Firstly, using refactorings
means that all versions analysed are the same program in terms of input/output map-
ping and hence have the same domain complexity. The difference in complexity between
the versions is thus completely due to the complexity of the software implementation.
It is of course trivial and uninteresting to improve software metric values by removing
functionality from the program. By using refactorings, we ensure that this does not hap-
pen. Secondly, using refactorings gives us control over what is measured. Rather than
measure commits to a source code repository, we can apply refactorings that actively
take us to areas of metric conflict and shun less interesting refactorings upon which all
metrics agree.

Turning now to the set of refactorings we employ, these are described in com-
plete detail in Section 3.3. They represent a broad set of refactorings that can move
methods and fields around a class hierarchy as well as create new classes and merge
existing ones. The ‘change visibility’ refactorings do not change cohesion directly, but
may enable other refactorings that do change cohesion, e.g. increasing the visibility of
a field may permit a method that uses this field to be pushed down to a subclass.
We choose not to use refactorings that split methods, as such refactorings have many
options and the search space is rich enough already. We omitted the general MoveMethod
refactoring as its preconditions are quite strict and involve much source code detail.
It is worth noting in this context that bugs exist in commercial implementations of even
‘simple’ refactorings like Rename (Schäfer et al. 2012; Gligoric et al. 2013), and as we need
to apply thousands of refactorings without programmer intervention, it was important that
our refactorings work correctly.

2.2 Motivation for the Choice of Metrics

The methodology we use in this paper can be applied to any metrics set. We decided
to study cohesion metrics as they are generally regarded as more challenging than cou-
pling metrics and a generally accepted informal definition of cohesion continues to elude
the object-oriented software engineering community (Counsell et al. 2006). There remains
many cohesion metrics to choose from. Our primary guiding principle in choosing cohesion
metrics to study was to select a range of metrics that reflects the broad field of cohesion
metrics research. Accordingly the metrics we study are as follows:



Empir Software Eng

1. Tight Class Cohesion (TCC) (Bieman and Kang 1995) is the ‘elder’ of the metrics we
study. It is one of the first object-oriented cohesion metrics proposed and can be taken
as a traditional view of cohesion.

2. Low-level Similarity-based Class Cohesion (LSCC) (Al-Dallal and Briand 2012) is by
contrast one of the newest cohesion metrics that was available at the time of writing.

3. Lack of Cohesion between Methods (LCOM) is a member of the best-known object-
oriented metrics suites, that of Chidamber and Kemerer (1994). This metric was the
object of much criticism (Kitchenham 2010), so we chose to use a more refined form
of this metric, namely LCOM5 (Briand et al. 1998).

4. Sensitive Class Cohesion (SCOM) (Fernández and Peña 2006) is a cohesion metric that
the authors claimed to be more sensitive than those previously reported in the literature.
This made it an interesting choice to use in our comparisons.

5. Class Cohesion (CC) (Bonja and Kidanmariam 2006) is a well-cited cohesion metric
that was developed around the same time as SCOM and is similarly claimed to improve
on previous cohesion metrics.

The formulae for these metrics are presented in Section 3.4. It is worth nothing that
for TCC, LSCC, SCOM and CC, an increase in value means an improvement in cohesion.
However LCOM5 measures lack of cohesion and so an increase in value means a disim-
provement in cohesion. While we could have used (1 − LCOM5) in place of LCOM5
to circumvent this anomaly, this could also have led to confusion. Where necessary in the
subsequent analysis, we restate this fact about LCOM5.

2.3 Motivation for the Choice of Software Applications

Table 1 provides an overview of the software applications that are used in the experiments in
this paper. They are all open source systems, as closed source systems are harder to obtain
and subject to licensing limitations. Our main aim in choosing these applications is to select
as broad a range as possible. Thus the application domains of the chosen applications are
very diverse and the application sizes range from 12K to 87K. JHotDraw was purposely
chosen as it often features in this type of study, but the remaining choices were semi-random.
In particular, we did not apply any pre-test to determine how cohesive the applications were
initially or how many refactorings could be applied to them.

Table 1 Software applications studied in this paper

System Description LOC #Classes

JHotDraw 5.3 Graphical GUI framework 14,577 208

XOM 1.1 XML object model API 28,723 212

ArtofIllusion 2.8.1 3D modelling 87,352 459

GanttProject 2.0.9 Project scheduling 43,913 547

JabRef 2.4.2 Bibliography manager 61,966 675

JRDF 0.4.1.1 API for RDF 12,773 206

JTar 1.2 Compression library 9,010 59

mxGraph 1.5.0.2 Interactive graphing 48,810 229

HTMLUnit 1.4 Unit testing 12,297 194

JSMPP 2.1.0 SMPP protocol 10,923 144



Empir Software Eng

2.4 Overview of Experiments

The general approach taken in this paper is to measure a set of metric values on a program,
and then apply a sequence of refactorings to the program, measuring the metrics again after
each refactoring is applied. Each refactoring represents a small, controlled change to the
software, so it is possible to identify patterns in how the metric values change, and how they
change in relation to each other. For N refactorings and M metrics, this approach yields
a matrix of (N + 1) × M metric values, which we term the refactoring/metric matrix. As
will be demonstrated in Sections 4, 5 and 6, this matrix can be used to make a comparative,
empirical assessment of the metrics and to detect areas of metric disagreement that can be
subjected to closer examination. In the coming paragraphs we provide a very high-level
overview of the three investigations we perform in this work.

In Investigation I in Section 4 we throw all the metrics in together and take the subject
software application on a long ‘refactoring walk’, observing how the metrics change after
every applied refactoring. We do this to obtain an overview of how volatile the metrics are
under refactoring and to assess how much the metrics conflict. The search is not strongly-
directed: if a proposed refactoring improves at least one of the metrics being studied, it is
accepted. Such refactorings prove easy to find, so we obtain long refactoring sequences that
suit our purposes well.

In Investigation II in Section 5 we turn our focus to pairwise comparison of metrics.
Here we take a pair of metrics and play them against each other to actively determine
to what extent they agree and disagree. The search for refactorings here is, in contrast to
Investigation I, very strongly directed. The four experiments we perform are:

1. Iterative Refactoring Agreement (IRA). Find as long a refactoring sequence as possible
where both metrics agree that each refactoring improves cohesion.

2. Iterative Refactoring Disagreement (IRD). Find as long a refactoring sequence as pos-
sible where, on each refactoring, both metrics disagree on whether or not it improves
cohesion.

3. Gap Opening (GOR). Find as long a refactoring sequence as possible where the gap
between the two metric values increases with each refactoring.

4. Gap Closing (GCR). Find as long a refactoring sequence as possible where the gap
between the two metric values decreases with each refactoring.

IRA and IRD provide a more incisive view of the similarity between the two metrics. Sim-
ilar metrics will exhibit high values of IRA and low values of IRD; dissimilar metrics the
opposite. The combined values of IRA and IRD for a metric pair provide a sense of the
extent to which the two metrics embody a similar notion of cohesion. On the other hand,
GOR and GCR say more about how ‘bendy’ the two metrics are for a particular application,
i.e. to what extent they can be forced by refactoring to agree or disagree. This provides an
insight into how fundamental the difference between the two metrics is for the application
being investigated.

In Investigation III in Section 6, we illustrate another use case for our approach to metrics
assessment, i.e. to investigate unverified hypotheses in the metrics literature that hitherto
could not be experimentally tested. The example we use is the the issue of whether or not
inherited attributes should be considered in a metric definition. Thus we create ‘inherited’
versions of the employed metrics and experimentally compare them with their ‘normal’ ver-
sions. The search for refactorings here is, again, very strongly directed. We seek refactorings
that improve one metric, and then measure the effect on the other metric. This enables us



Empir Software Eng

to conclude that including inherited attributes in a metric definition has a significant impact
on a cohesion metric. More importantly, it demonstrates that this methodology can be used
to investigate other such hypotheses about metrics.

3 The Code-Imp Platform

Code-Imp is an extensible platform for metrics-driven search-based refactoring that has
been previously used for automated design improvement (O’Keeffe and Ó Cinnéide 2008a,
b; Hemati Moghadam and Ó Cinnéide 2011, 2015). It provides design-level refactor-
ings such as moving methods around the class hierarchy, splitting classes and changing
inheritance and delegation relationships, but does not support low-level refactorings that
split or merge methods. Code-Imp was developed on the RECODER platform (Gutzmann
et al. 2013). In the following subsections we describe further the architecture of Code-Imp
(Section 3.1), the search algorithm employed on this work (Section 3.2), the refactorings
employed (Section 3.3), and finally the software metrics used in the creation of the fitness
function that guides the search (Section 3.4).

3.1 Code-Imp Architecture

The overall architecture of the Code-Imp framework as it is used in this work is depicted
in Fig. 1. Code-Imp first parses the program to be refactored to produce a set of Abstract
Syntax Trees (ASTs). It then repeatedly chooses a refactoring and attempts to apply this
refactoring to the ASTs. If the precondition of the refactoring fails, then the refactoring is
not applied. If all is well and the refactoring is applied successfully, then the new values
for the cohesion metrics under investigation are measured. If these metric values comply
with the type of investigation that is being performed, then they are recorded; if not, then

Fig. 1 Architecture of the Code-Imp search-based refactoring framework



Empir Software Eng

the refactoring is rolled back. Code-Imp then chooses another refactoring to apply and the
process is repeated.

The process whereby a refactoring is chosen is a variant on hill climbing and is described
in Section 3.2. Determining if the metric values comply with the type of investigation that
is being performed is defined in the context of each different investigation; see Sections 4,
5 and 6. When the process completes, either because a long enough refactoring sequence
has been generated or because no more applicable refactorings can be found, Code-Imp
pretty-prints the source code and the entire refactoring process stops.

3.2 Search Algorithm

The search-based algorithm we employ to perform the refactoring is defined in Fig. 2. It is
stochastic, as the pick operation makes a random choice of the class to be refactored, the
refactoring type to be used and the actual refactoring to be applied. It is only necessary to
run this search once on each software application, as each refactoring applied is a complete
experiment in itself. The purpose of this algorithm is to give each class an equal chance of

Fig. 2 The search-based refactoring algorithm used to explore software metrics



Empir Software Eng

being refactored and to give each refactoring type (Pull Up Method, Collapse Hierarchy,
etc.) an equal chance of being applied. This is important in order to reduce the risk that
bias in the refactoring process affects the observed behaviour of the metrics. The output of
this algorithm is the refactoring/metric matrix as described in Section 2.4. The details of the
fitness function are not defined in this algorithm, as they depend on the exact nature of what
is being investigated. The fitness functions will be defined in Sections 4, 5 and 6 where the
experiments are described in more detail.

3.3 Refactorings Employed

Code-Imp currently implements the following refactorings (Fowler et al. 1999):

Method-level Refactorings

Push Down Method Moves a method from a class to those subclasses
that require it.

Pull Up Method Moves a method from a class(es) to its immedi-
ate superclass.

Decrease/Increase Method Accessibility Changes the accessibility of a method by one
level, e.g. public to protected or private to pack-
age.

Field-level Refactorings

Push Down Field Moves a field from a class to those subclasses that
require it.

Pull Up Field Moves a field from a class(es) to their immediate
superclass.

Decrease/Increase Field Accessibility Changes the accessibility of a field by one level,
e.g. public to protected or private to package.

Class-level Refactorings

Extract Hierarchy Adds a new subclass to a non-leaf class C in an
inheritance hierarchy. A subset of the subclasses of
C will inherit from the new class.

Collapse Hierarchy Removes a non-leaf class from an inheritance hier-
archy.

Make Superclass Abstract Declares a constructorless class explicitly abstract.
Make Superclass Concrete Removes the explicit ‘abstract’ declaration of an

abstract class without abstract methods.
Replace Inheritance with Delegation Replaces an inheritance relationship between two

classes with a delegation relationship; the former
subclass will have a field of the type of the former
superclass.

Replace Delegation with Inheritance Replaces a delegation relationship between two
classes with an inheritance relationship; the delegat-
ing class becomes a subclass of the former delegate
class.



Empir Software Eng

3.4 Software Metrics and Fitness Function

In Section 3.2 above we describe how our search process tries to create a random refactoring
sequence. However, randomly-chosen refactorings are likely to cause all software metrics
to deteriorate, which is not of interest. In order to address this, we use the software metrics
that are being studied to guide and control the refactoring process itself. The precise for-
mulation of the fitness function depends on the investigation taking place. For example, in
Investigation I we apply a refactoring only if it improves at least one of the metrics being
studied. This ensures that each accepted refactoring will improve the cohesion of the pro-
gram in terms of at least one of the metrics, though it may, in the extreme case, worsen it
for all the other metrics.

The fitness function that guides the search thus is a computation based on one or more
software metrics. Code-Imp provides two implementations for each metric related to the
inclusion or exclusion of inheritance in the definition of the metric (we return to this issue
in Section 6). Five cohesion metrics are used in this paper, namely Tight Class Cohesion
(TCC) (Bieman and Kang 1995), Lack of Cohesion between Methods (LCOM5) (Briand
et al. 1998), Class Cohesion (CC) (Bonja and Kidanmariam 2006), Sensitive Class Cohe-
sion (SCOM) (Fernández and Peña 2006) and Low-level Similarity-based Class Cohesion
(LSCC) (Al-Dallal and Briand 2012). The definitions of these metrics are presented in
Fig. 3.

As with all automated approaches, the refactoring sequence generated by Code-Imp may
not resemble the refactorings that a programmer would be inclined to undertake in practice.
This issue is not relevant here as our focus is on the changes in the metric values, rather
than the design changes brought about by the refactorings themselves.

4 Investigation I: General Assessment of Cohesion Metrics

In this investigation we take a ‘refactoring walk’ through the landscape of the range of
cohesion metrics under consideration. Our goal is to gain an overall understanding of how
the metrics change, and to seek out possible anomalous behaviour that can be investigated
further.

As explained in Section 2, random application of refactorings will usually cause dete-
rioration in all cohesion metrics. We therefore use a search that cycles through the classes
of the program under investigation as described in Fig. 2, and tries to find a refactoring on
the class that improves at least one of the metrics being studied. The search will apply the
first refactoring it finds that improves any metric. The other metrics may improve, stay the
same, or deteriorate. Because this fitness function is easy to improve, we obtain the long
refactoring sequences that are required to draw conclusions about relationships between
metrics.

The metrics formulae presented in Fig. 3 show how to calculate the metric value for a
single class. How to measure the cohesion of an entire program is not so clear. One can
simply take the average cohesion of all the classes in the program, but this can create anoma-
lies because each class carries the same weight regardless of its size. Al-Dallal and Briand
(2012) address this issue by weighting each class according to its size, using a size measure
that corresponds to the metric. For the LSCC metric, they use a weight of l ∗ k ∗ (k − 1)
where l is the number of attributes in the class, and k is the number of methods in the class.
As the LSCC metric measures the number of shared attributes between each pair of metrics,
this weighting is appropriate. This weighting also makes sense for SCOM and CC, as these



Empir Software Eng

Fig. 3 Formal and informal definitions of the cohesion metrics evaluated in this paper

metrics are also based on attribute access by methods. TCC does not care about the number
of attributes two methods access, so we use a simpler weighting of k ∗ (k −1). The LCOM5
metric is concerned with the number of attributes each method accesses (shared accesses
are irrelevant), so in this case k ∗ l is a suitable weight.

Most software metrics are ordinal in nature, so computing the difference between two
metric values or the the average of several metric values are theoretically dubious opera-
tions. However, our experience suggests that these metrics are not far from being on an
interval scale and so the risk in treating them as interval scale metrics is slight in relation to
the advantages that accrue. Briand et al. make a similar argument for the use of parametric
methods for ordinal scale data (Briand et al. 1996).



Empir Software Eng

4.1 Results and Analysis

We applied this refactoring process to the first eight open source Java projects presented
earlier in Table 1. In each case, the experiment was allowed to run for five days, or until a
sequence of over 1000 refactorings was reached. In total, 3,451 refactorings were applied,
as shown in Table 2 (note that in later experiments in Sections 5 and 6, we use more
applications and larger numbers of refactorings).

The applications were of high quality initially, so improvements to cohesion were time-
consuming to find. To elaborate this point, in the space of all possible implementations of
a program, we can expect any human-implemented solution to be of relatively high quality.
For example, a monolithic system implemented as class with a thousand methods would
no doubt permit many refactorings that improve the employed cohesion metrics, but such
enormous and poorly-designed classes do not occur in practice.

JHotDraw proved the easiest program to refactor because it has a rich inheritance hier-
archy that provided plenty of opportunities to refactor. Note that in this work we are using
the refactoring process only to investigate the properties of the metrics and the potential for
those metrics to measure program quality. We make no claim that the refactored program
has a better design than the original program.

4.1.1 Volatility

One aspect of a metric that this investigation allows us to see is its volatility. A volatile
metric is one that is changed frequently by refactorings, whereas an inert metric is one that
is changed infrequently by refactorings. Thus metric M1 is more volatile than metric M2
if, over the course of a refactoring sequence, M1 is more frequently changed by a refactor-
ing than M2. Our approach exploits this observation to develop experimental techniques to
investigate the agreement and disagreement between software metrics as a means of sys-
tematically cross-validating metrics. Our approach provides a way to gather experimental
evidence that enables observations such as these:

1. ‘These two metrics do not appear to be measuring the same thing’;
2. ‘Metric M1 appears to be measuring something additional to that measured by metrics

M2, M3, M4 and M5’;
3. ‘The apparent disagreement between these two metrics for program P appears to be

largely superficial’;

Table 2 Metric volatility as a percentage

JHotDraw JTar XOM JRDF JabRef JGraph ArtOfIllusion Gantt All

(1005) (115) (193) (13) (257) (525) (593) (750) (3451)

LSCC 96 99 100 92 99 100 99 96 98

TCC 86 53 97 46 61 72 84 71 78

SCOM 79 70 93 92 79 89 77 80 81

CC 100 98 100 92 99 100 100 99 100

LCOM5 100 100 100 100 100 100 100 99 100

This shows the percentage of refactorings that caused a change in a metric. The number in parentheses is the
total number of refactorings that were performed on this application.



Empir Software Eng

4. ‘Metric M1 is least sensitive to superficial syntactic changes in the program being
measured’;

5. ‘Of all the metrics in a metrics suite, M1 is the metric that appears to be most consistent
with the others’.

Volatility is an important factor in determining the usefulness of a metric. For example, in
search-based refactoring, a highly volatile metric will have a very strong impact on how
the refactoring proceeds while a relatively inert metric may simply be pointless to compute.
In a software quality context, measuring the improvement in a system’s design using a set
of inert metrics is likely to be futile, as they are, by definition, crude measures that do not
detect subtle changes in the property they measure. Furthermore, an inert software metric
does not, by definition, have the desirable property of actionability (Fenton 1994), so that
when it yields a poor value, it cannot easily be improved by refactoring. Table 2 shows the
volatility of the five metrics in each individual system under investigation, and averaged
across all systems. Note that we only present the direction of change in a metric and not the
amount of change, as calculating the arithmetic difference between ordinal scale metrics is
not a meaningful operation.

The first observation is that LSCC, CC and LCOM5 are all highly volatile metrics. In 99
% of the refactorings applied across all applications, each these metrics either increased or
decreased. The relative lack of volatility of the TCCmetric is largely due to the cau relation
(see Fig. 3), which holds relatively rarely for any given pair of methods.

The results for the JRDF application are notable. All metrics except TCC are highly
volatile for this application. Although JRDF is one of the larger applications, a total of only
13 refactorings could be applied to it, compared to the 1000+ refactorings that could be
applied to JHotDraw, a similarly-sized application. The explanation for this lies in the nature
of the applications. In JHotDraw, 86 % of the classes are subclasses, whereas in JRDF this
figure is only 6 %. Since most of the refactorings Code-Imp applies relate to inheritance, an
application that makes little use of inheritance provides few opportunities to refactor.

While there is some consistency across the different applications, the JRDF example
illustrates that, given an individual metric, volatility can vary substantially between systems.
We attempted normalising the volatilities against the overall volatility of each application,
and, while this improved the consistency somewhat, a large variance remained. We thus con-
clude that volatility is dependent on a combination of a metric and the application to which
it is applied. To what extent the nature of the application or metric determines volatility is
beyond the scope of this paper, but is an interesting avenue for further exploration.

Table 3 Of those refactorings that change a metric, the percentage that are improvements and disimprove-
ments, i.e., an up-arrow indicates an improvement in cohesion, a down-arrow indicates a disimprovement in
cohesion

JHotDraw JTar XOM JRDF JabRef JGraph ArtIllusn Gantt Avg

LSCC ↑50 , 46↓ ↑50 , 49↓ ↑57 , 43↓ ↑46 , 46↓ ↑54 , 46↓ ↑51 , 48↓ ↑57 , 42↓ ↑53 , 43↓ ↑53 , 45↓
TCC ↑45 , 41↓ ↑30 , 23↓ ↑51 , 46↓ ↑23 , 23↓ ↑34 , 27↓ ↑37 , 35↓ ↑52 , 35↓ ↑39 , 31↓ ↑43 , 35↓
SCOM ↑38 , 40↓ ↑34 , 36↓ ↑50 , 44↓ ↑46 , 46↓ ↑37 , 42↓ ↑36 , 53↓ ↑44 , 33↓ ↑40 , 40↓ ↑40 , 41↓
CC ↑53 , 47↓ ↑52 , 46↓ ↑51 , 49↓ ↑46 , 46↓ ↑54 , 44↓ ↑61 , 39↓ ↑58 , 42↓ ↑57 , 42↓ ↑56 , 44↓
LCOM5 ↑51 , 49↓ ↑50 , 50↓ ↑48 , 52↓ ↑54 , 46↓ ↑49 , 50↓ ↑41 , 59↓ ↑56 , 43↓ ↑50 , 50↓ ↑50 , 50↓



Empir Software Eng

4.1.2 Probability of Positive Change

Table 2 shows how volatile the metrics are, but it does not show whether the volatility is
in a positive or negative sense. In Table 3 we present this view of the metrics. Recall that
every refactoring applied in this investigation improves at least one of the cohesion metrics.
It is remarkable then to note how often an improvement in one cohesion metric leads to a
deterioration in another. Taking LSCC and ArtOfIllusion as an example, LSCC decreases in
42 % of the refactorings (593 in total). So for ArtOfIllusion, 249 refactorings that improved
at least one of TCC, SCOM, CC or LCOM5, as guaranteed by the refactoring process,
caused LSCC to worsen.

This pattern of conflict is repeated across Table 3. As summarised in Table 4, TCC,
LSCC and SCOM exhibit collective moderate positive correlation, while CC and LCOM5
show mixed correlation ranging from moderate positive correlation (LCOM5 and SCOM)
to strong negative correlation (LCOM5 and CC).

In order to summarise the level of disagreement across the set of metrics, we also con-
sidered each pairwise comparison between each pair of metrics for each refactoring. For
five metrics we have (5 ∗ 4)/2 = 10 pairwise comparisons per refactoring. For 3,451
refactorings, this yields a total of 34,510 pairwise comparisons. Each pair is categorised as
follows:

Agreement: Both metric values improve, both deteriorate, or both stay the same.
Dissonant: One value improves or deteriorates, while the other stays the same.
Conflicted: One value improves, while the other deteriorates.

Across the entire set of refactorings, we found the levels to be as follows: 45 % agree-
ment, 17 % dissonant and 38 % conflicted. The figure of 38 % conflicted is remarkable
and indicates that, in a significant number of cases, what one cohesion metric regards as an
improvement in cohesion, another cohesion metric regards as a decrease in cohesion. This
has a practical impact on how cohesion metrics are used. Trying to improve a software sys-
tem using a combination of conflicted cohesion metrics is impossible — an improvement in
terms of one cohesion metric is likely to cause a deterioration in terms of another metric.

4.2 Summary

This investigation has served to show the variance between software cohesion metrics
in terms of their volatility and their propensity to agree or disagree with each other. Of
course a cohesion metric that completely agrees with another makes no contribution to the

Table 4 Spearman rank correlation between the metrics across all refactorings and all applications

LSCC TCC SCOM CC

TCC 0.60

SCOM 0.70 0.58

CC 0.10 0.01 −0.28

LCOM5 −0.17 −0.21 −0.46 0.72

Note that LCOM5 measures lack of cohesion, so a negative value indicates positive correlation.



Empir Software Eng

cohesion debate. However, the conflict between the metrics indicates that the suite of cohe-
sion metrics do not simply reflect different aspects of cohesion, they reflect contradictory
interpretations of cohesion.

Note that the conflict observed is also a function of the types of refactorings employed.
A different pattern of conflict/agreement would be expected if other refactoring types were
added to the refactorings used in the experiments. However, the refactoring types we use
are standard ones, and, while the addition of other refactoring types would provide a more
accurate picture of the extent of the metric disagreement, the metric conflict engendered by
the refactoring types we employ would remain.

In order to investigate this conflict further, we conduct detailed analyses on pairs of
metrics to further explore how they conflict during search-based refactoring. The results of
this are presented in the following section.

5 Investigation II: Pairwise Comparison of Cohesion Metrics

In this section we use our experimental approach to compare and contrast pairs of metrics
in a focussed way. The goal is to find areas of anomaly that will enable us to gain insight
into the metrics themselves. We investigated each of the five metrics presented in Fig. 3,
comparing each one against each of the other metrics. The 10 software applications we
analysed are as presented in Table 1.

The two areas we explored were Iterative Refactoring Agreement/Disagreement (IRA
and IRD) and Gap Opening/Closing Refactoring (GOR and GCR). To define these pre-
cisely, let us assume that we are comparing metrics A and B. When a refactoring is applied
to a program P it may either increase (↑), decrease (↓) or not affect (=) each of A and B

for the program P . A metric profile is a set of pairs that define when a refactoring will
be accepted during an experiment. For example {(A ↑, B =), (A ↓, B ↓)} denotes that we
accept refactorings that increase A and do not affect B, and refactorings that cause both A

and B to decrease.
The metric profiles for the experiments in this section are presented in Table 5. Intu-

itively, IRA seeks refactorings that cause both metrics to increase. We elected not to include
in IRA cases where neither metric changes, as we anticipated that many such metric pairs
would be found, thus obscuring the more interesting cases where both metrics improve. IRD
seeks to increase metric A while B decreases or remains the same. GOR seeks to increase
the arithmetic gap between metric A and B, while GCR seeks to reduce this gap. This
metric profile is transformed into a fitness function and used in the search algorithm

Table 5 Metric profiles

Metric Profile

IRA {(A ↑, B ↑)}
IRD {(A ↑, B ↓), (A ↑, B =)}
GOR {(A =, B ↓), (A ↑, B ↓), (A ↑, B =), (A ↑, B ↑)∗, (A ↓, B ↓)∗}
GCR {(A =, B ↑), (A ↓, B ↑), (A ↓, B =), (A ↓, B ↓)∗, (A ↑, B ↑)∗}

For GOR and GCR we assume that A is greater than B prior to refactoring application. ∗A refactoring is
accepted only if it increases the gap between A and B (for GOR) or reduces the gap (for GCR).



Empir Software Eng

presented in Fig. 2. We provide experimental results and analysis in the subsequent
subsections.

5.1 Iterative Refactoring Agreement and Disagreement (IRA and IRD)

We compared each pair of metrics from the set of five metrics defined in Fig. 3; 10
comparisons were therefore required. Each experiment was performed on the 10 software
applications described in Table 1. To investigate IRA therefore required 100 experiments.
Note that IRA is defined as a refactoring sequence where both metrics improve for each
refactoring, and therefore it must thus be performed separately for each refactoring pair.
Also, since LCOM5 measures lack of cohesion, IRA accepts refactorings that decrease
LCOM5 and increase the other metric; IRD is similarly amended to take this idiosyncrasy
of LCOM5 into account.

In the case of IRD, each metric pair (A,B) has to be analysed twice, once using
{(A ↑, B ↓), (A ↑, B =)} to lead the search and then using {(B ↑, A ↓), (B ↑, A =)}
to lead the search. If we attempted to merge these into a single experiment, the refactoring
process would be inclined to perform and undo the same refactoring multiple times. In total
therefore the data presented in this subsection is derived from 300 experiments, involving
the application of a total of 19,473 refactorings.

Figure 4 presents an overall view of the results of the IRA and IRD experiments. A
number of general observations can be made from this data. For every metric, increasing its
agreement with the other metrics overall proved easier than increasing disagreement overall.
Nevertheless, a considerable amount of disagreement appears in every case. LSCC is the
metric that other metrics most agreed with, as seen in the LSCC ‘+’ column, and is the
metric that most agreed with other metrics, as evidenced by the shaded component at the
bottom of the ‘+’ column for each of the other metrics. In some sense then, LSCC is the
best single representative of this set of metrics.

We now turn our attention to the most inert metric, SCOM. For every metric, distinctly
more refactorings were found to increase disagreement with SCOM than were found to
increase agreement (as evidenced by the green bars in the ‘+’ and ‘−’ columns and the bars
in the SCOM ‘−’ column), and SCOM stands alone in this regard. So it is easy to make
SCOM disagree with the other metrics, and hard to make it agree with them. We explored

Fig. 4 An overall view of the number of refactorings applied in measuring IRA and IRD. Agreement is
depicted by ‘+’ while disagreement is depicted with a ‘−’. The ‘−’ column for a metric depicts the disagree-
ment that occurred while that metric was being improved. Agreement between each two metrics is measured
once and the result appears in the ‘+’ column for both metrics



Empir Software Eng

this disagreement further and found that in 81 % of cases where SCOM improved, the other
metric actually disimproved rather than simply remaining the same (19 % of cases). The
pattern of low agreement and high conflict between SCOM and the other metrics indicates
that SCOM detects aspects of cohesion that the other metrics largely disagree with, and vice
versa. In a sense then, SCOM is the least representative of this set of metrics.

Looking in more detail at the refactorings that involve SCOM, the following observations
can be made:

– SCOM prefers fields to reside in the class where they are used, so whenever another
metric approved a refactoring that e.g. pulled up a field to a superclass, SCOM would
deteriorate as the field is now separated from the methods that access it.

– CC prefers fields to be in superclasses and accessed from subclasses, thus conflicting
directly with SCOM in many cases.

– TCC is happy if two methods share a single field, and does not improve further if the
number of shared fields increases. Hence pulling up a field to a superclass can cause
SCOM to deteriorate, while TCC remains unaffected.

– If a method does not access any fields, SCOM is impervious to it being moved to
another class.

Figure 5 presents a heat map of the amount of metric change that occurs during IRD
across all applications. It is apparent that TCC and SCOM have the smallest impact on the
other metrics. For TCC this happens as the majority of refactorings that improved this metric
had no effect on the other metrics. On the other hand, this happens for SCOM because it is
a highly inert metric as shown in Fig. 4.

A striking feature of this heat map is that CC has the maximum effect on reducing the
value of the other metrics, especially TCC. A closer look at the results for IRD(CC, TCC)
showed that in spite of this strong negative effect that CC has on TCC, the number of refac-
torings that decreased TCC were about half the number of refactorings that decreased the
other metrics. To find the reason behind this apparent anomaly, the refactorings themselves
were investigated in more detail.

A closer look at the results shows that the most common refactoring type applied in
IRD(CC, TCC) was Pull Up Field. We observe from Fig. 3 that in both CC and TCC the
number of fields in the class is not included in the denominator part of these metric, while
it has a direct negative effect on the other metrics. Therefore, when an unrelated or less
cohesive field is pulled up to a superclass, it has no effect on the CC or the TCC value of the
superclass. However, while CC measures only direct field usage, TCC measures both direct

Fig. 5 The amount of change in metric value during IRD across all applications. The metric on the left is
leading and so can only increase, while the metric along the top decreases or remains the same. The value in
each cell indicates the total amount of metric difference aggregated across all applications



Empir Software Eng

and indirect field usage. Consider a case where the only source of cohesion between a set
of methods m1...mn is their shared indirect access to a field f . To CC, the methods lack
cohesion entirely while TCC acknowledges their cohesion through f . In this case, moving
the field f to the superclass will not affect CC but will dramatically reduce the value of
TCC for the class and hence has a negative overall effect on the cohesion of the program.
From this analysis we can make the following observations about the CC and TCC metrics:

– Both CC and TCC ignore the number of fields in a class.
– CC does not take indirect access to a field into account in calculating cohesion.
– The number of attributes two methods share is not taken into account in calculating

TCC

The authors regard these issues as contentious and worthy of debate. Adding unrelated and
unused fields to a class is likely to be viewed by some software developers as weaken-
ing the cohesion of the class. With regard to the second point, some developers prefer to
access fields through accessor methods even from within the class itself, as this promotes
encapsulation, and indeed the property feature of the C# language specifically promotes
this practice. Code that was written to follow this guideline would be regarded as extremely
uncohesive by the CC metric. Finally, it appears intuitive to the authors that the more fields
two methods share, the more cohesive the methods are, but TCC does not embody this intu-
ition. Note that our experimental approach can highlight these anomalies; we are not trying
to resolve them in this work.

Overall IRA and IRD provide another perspective on how the cohesion metrics compare
and enable us to pinpoint further areas of conflict that can be analysed qualitatively to better
understand the causes of this conflict.We now continue to consider another set of pairwise
metric experiments, Gap Opening Refactoring (GOR) and Gap Closing Refactoring (GCR).

5.2 Gap Opening Refactoring (GOR) and Gap Closing Refactoring (GCR)

Software engineering decision makers are typically advised to record the values of sev-
eral metrics in making decisions about interventions in software engineering processes
(Shepperd 1995). If the initial values reported by two metrics differ significantly this might
potentially be confusing or provide little information of value to the decision maker. For
example, if one metric reports the cohesion of the system as 0.2, while another reports 0.9,
the decision maker may conclude that no information can be gained from either metric.

In such situations, it may be useful to know how much the two metrics can be forced to
agree about the value for the software system under investigation. That is, it would be inter-
esting attempt to close the gap between the two metrics using automated refactoring. Since
refactoring is behaviour preserving, it does not reduce the complexity of the software in a
fundamental way1; rather the before and after versions represent slightly different designs
for the essentially the same program. If the refactoring reduces the gap between the two met-
rics, we can assume that this difference represents metric imprecision; the unwanted ‘noise
sensitivity’ produced by syntactic differences in the two versions of the program. We can

1By ‘complexity’ we mean the complexity of the design of the software. This complexity is a combination of
the complexity of the domain that the software is modelling and the additional complexity of the implemen-
tation itself. The domain complexity cannot be changed by refactoring, but the implementation complexity
can be increased arbitrarily or reduced to some degree.



Empir Software Eng

also perform the dual operation (gap opening) of course. Both opening and closing opera-
tions seek to exploit disagreements between metrics that are due to apparently superficial
syntactic details.

To give a concrete example of such superficial details, we discovered in Section 5.1 that
TCC and CC are unaffected by the addition of unused fields to a class, whereas LCOM5,
LSCC and SCOM view this as detrimental to the cohesion of the class. Thus the superficial
detail of adding or removing an unused field to a class will change the gap between TCC/CC
and LCOM5/LSCC/SCOM.

Through these two approaches of opening and closing metric gaps we can assess the
extent to which the metrics could have produced different values for programs that share the
same behaviour. Loosely speaking, we can think of this as an informal ‘confidence interval’
for the possible range of values that the metrics might realistically be expected to take for
the program under investigation; they represent the extreme points of values that could be
achieved for programs with identical behaviour but different syntax.

Perhaps, after gap opening and closing, we still find that the two metrics exhibit wide
disagreement; that there is no overlap between the two ‘confidence intervals’. In this
case we conclude that the two metrics represent irreconcilable views of the cohesion of
the program. However, should we find that the two intervals overlap non-trivially, then
we may conclude that the apparent extreme disagreement we initially observed between
the metric values is not of any consequence. This gap analysis may thereby help the
decision maker to decide whether the apparent disagreement between metrics is ger-
mane and inherent to the system under investigation or whether it is merely the result of
superficial noise.

It may appear mathematically suspect to compute the difference between two different
metrics. However the pair of metrics in question are both cohesion metrics that purport to
measure the same property, and the entity that is being measured is the same in both cases.
Thus, although the difference in metric values is not meaningful in itself, the extent to which
it can be manipulated by refactoring does yield insight into the metrics.

In Section 4.1.2 we stated that two metrics agree with each other after a refactoring
if either both metric values increase, both decrease, or both stay the same. From this it
can seen that disagreement occurs when one metric increases or decreases, while the other
does the opposite or stays the same. In this section we are investigating disagreement fur-
ther, but take a broader view of disagreement by considering how the gap between the two
metrics changes as a result of refactoring. When two metrics disagree, the gap between
them widens. However the gap can also widen when they agree or disagree. This occurs
when both increase, and the metric with the higher value increases more, or when the both
decrease, and the metric with the lower value decreases more. In a similar way, the gap
can also narrow when they agree. Therefore the notion of gap opening and closing actually
crosscuts the notions of agreement and disagreement as defined in Section 4.

In this section we investigate, for a pair of metrics, to what extent the gap between them
can be widened by refactoring (Gap Opening Refactoring (GOR)) and to what extent the
gap between them can be narrowed by refactoring (Gap Closing Refactoring (GCR)).

While GOR and GCR are, in a sense, opposites of one another, they are both measures
of a type of difference between the metrics. If two cohesion metrics represent very similar
interpretations of cohesion, it would be hard to either increase or decrease the gap between
them by refactoring. In fact, GOR and GCR measure the same aspect of the relationship
between two metrics as can be seen from the following example. Let P be a program and
P ′ the program that results from the application of the refactoring sequence R1...Rn, where



Empir Software Eng

each Rk, k ∈ [1..n] increases the gap between the metrics m1 and m2, thus yielding a large
value for GOR. All refactorings can be reversed, and the reversal is itself a refactoring.
Assuming R′

k to be the reverse refactoring of Rk , we see that starting from program P ′, each
refactoring in the sequence R′

n...R
′
1 will decrease the gap between the two metrics m1 and

m2, thus yielding a large value for GCR. Thus we see that the summation of GOR and GCR
tells us something about the metrics, but the exact distribution of this value between GOR
and GCR depends on the starting program, and not on the metrics themselves.

In the experiments in this section we again compare each pair of metrics from the set of
five metrics defined in Fig. 3, thus requiring 10 comparisons in all. Each experiment was
performed on the 10 software applications described in Table 1. In each case, we start with
the initial application and apply the algorithm depicted in Fig. 2. In the case of GOR, the
fitness function accepts a refactoring if and only if it increases the gap between the metrics
being compared; likewise for GCR the fitness function accepts a refactoring if and only if
it decreases the gap between the metrics being compared. A single run was performed in
each case. The refactoring process was usually allowed to run until no further refactorings
could be found to open/close the gap, though in the cases of mxGraph, ArtofIllusion, and
HTMLUnit the process was terminated after one week.

The results are presented in Fig. 6. In all, 25,682 refactorings were performed that
increased the gap, while 19,739 were found that closed the gap. On average then, 4,542
refactorings were found per application that opened or closed the gap between the metrics.

The results for LCOM5 appear striking, but this is not in fact significant. An LCOM5
value of 1 reflects the worst cohesion, while for the other metrics a value of 1 reflects perfect
cohesion. Hence the gap between LCOM5 and any other metric is increased by a refactoring
that decreases cohesion for both metrics. Such refactorings are easy to find, and this results
in the large number of refactorings whenever LCOM5 is involved. Furthermore, the nature
of LCOM5 is such that the average initial LCOM5 value for the software applications stud-
ied was 0.93, whereas the average value across all the other metrics was 0.14. So the initial
gap between LCOM5 and the other metrics tends to be large, and only a small percentage
increase/decrease is achieved in spite of the large number of refactorings applied.

Returning to Fig. 6, for some metric pairs it is clear that the gap between the metrics can
be opened/closed considerably. In five particular instances, GCR completely removed the
gap between the metrics, namely:

– LSCC and CC for XOM and JHotDraw;
– CC and SCOM for mxGraph and HTMLUnit;
– LSCC and SCOM for HTMLUnit.

Fig. 6 GCR and GOR for all applications. The percentage above each bar shows the extent to which the gap
was closed/opened by GCR/GOR respectively; the y-axis shows the total number of refactorings applied; the
standard deviation is shown at the base of each bar



Empir Software Eng

So, for example, a software engineer using cohesion metrics to assess the quality of JHot-
Draw could safely ignore the difference in metric values between LSCC and CC and
attribute this difference to inconsequential differences. On the other hand, the gap between
LSCC and TCC for JHotDraw could be reduced by 57 %, which suggests that these two
metrics are telling a different story about the cohesion of the JHotDraw application. It is
notable that the most obdurate metric difference was found between LSCC and CC on the
JRDF application, where GCR could achieve only 0.008 % gap closure. So the same two
metrics (LSCC and TCC) can produce a gap for one application (JHotDraw) that GCR can
refactor away to zero, while on another application (JRDF) they produce a gap that is highly
resistant to GCR.

The results in this section confirm the high level of metric conflict that was already
observed in previous experiments. More importantly, GOR/GCR also provide a practical
technique for software engineer to determine if the difference between metric values on a
particular application are of significance or not.

6 Investigation III: to Inherit or Not to Inherit

Another application of our framework is to investigate various claims and beliefs that exist
about metrics but that hitherto could not be experimentally tested. In this section, we test
one particular example, the issue of whether or not inherited attributes should be considered
in a metric definition. This section illustrates the way in which other researchers can use our
search-based exploration of metric volatility spaces to systematically and experimentally
investigate open questions in the software metric literature.

In the paper that introduces the TCC metric, Bieman and Kang (1995), the authors
observe that inherited methods and fields may or may not be included in calculating a met-
ric value, but make no further observation on whether or not they should be included. In
Al-Dallal and Briand (2012) where the LSCC metric is introduced, the authors evaluate
whether or not inherited methods should be considered in calculating cohesion in terms of
how well it serves as a predictor of a fault existing in a class, but do not consider further the
impact of including inheritance in the definition of a cohesion metric. If inheritance is taken
into account, then the cohesion of a class is calculated as if all inherited methods and fields
were part of the class as well. In the view of the authors of this present paper, this may be
a critical issue. Two methods in a class might appear to be unrelated when inheritance is
omitted, but if they both access the same inherited methods or fields they might in fact be
very cohesive2 Hence we consider two forms of each of the metrics under consideration, the

normal, ‘local’ form and the ‘inherited’ form, which we denote by appending the subscript
‘i’, e.g. LSCCi .

To investigate the effect of inheritance on the metric definitions, we performed an exper-
iment to compare 10 metrics: the five we have already considered CC, LCOM5, LSCC,
SCOM, TCC and their ‘inherited’ counterparts, CCi , LCOM5i , LSCCi , SCOMi and TCCi .
Each metric pair (90 in all) was evaluated on one software application, namely JHotDraw.
We use only one application for these 90 experiments, so as to make the results manageable.
We chose JHotDraw as it proved in Section 4 to be the application that Code-Imp found

2The Template Method design pattern (Gamma et al. 1995) is an example of this. The subclasses contain
several apparently unrelated methods. However, it is the inherited template method itself that provides the
glue that makes these methods cohesive.



Empir Software Eng

easiest to refactor, and because its rich inheritance hierarchy makes it suitable for this type
of investigation.

For each metric pair (m1,m2), two experiments were performed, one where a refac-
toring is accepted only when it leads to an increase in m1 and the other where a
refactoring is accepted only when it leads to an increase in m2. In each case, the value
of the dependent metric is measured after each refactoring and what is of interest is
how the changes in the two metrics correlate with each other during the refactoring
sequence.

This experiments in this section involved a total of 10,505 refactorings, broken down as
depicted in Fig. 7. The results of these experiments are presented in Fig. 8. If the regular
form of a metric and its ‘inherited’ form embodied similar interpretations of cohesion, we
would expect each odd-numbered row (the regular form) in the figure to be similar to the
one below it (the ‘inherited’ form) and we would expect to see strong positive correlation
when the normal metric form is played against its ‘inherited’ counterpart. However, it is
evident from the data that in fact the normal and ‘inherited’ forms behave in very different
ways and appear to be completely different metrics. For example, when TCC leads the
search, LSCC correlates strongly with it, but when TCCi leads the search, LSCCi exhibits
a strong negative correlation; when SCOM leads, LCOM5i correlates strongly but when
SCOMi leads, LCOM5i exhibits strong negative correlation. There are many examples of
these anomalies across Fig. 8. Formal statistical analysis is unnecessary to reject the popular
notion that the inclusion or non-inclusion of inheritance in a metric definition is a matter of
small import.

6.1 Qualitative Analysis

In this section we examine some of the refactorings that caused the normal and ‘inherited’
forms of the metrics to exhibit such different behaviour, in an effort to gain further insight
into the differences between the metrics themselves. For reasons of space, we limit ourselves
to considering three metric pairs, namely (LSCC, LSCCi), (TCCi , LSCCi) and (LSCC,
TCC).

Fig. 7 Breakdown of the refactorings applied to JHotDraw during investigation III



Empir Software Eng

Fig. 8 Spearman rank correlation between all metrics across all refactorings applied to JHotDraw. Only
cases where a significance value of <= 0.05 was found are shown

6.1.1 Comparing LSCC and LSCCi

When LSCC leads the search, LSCCi , exhibits strong negative correlation (−0.871). On
examining the refactorings, we see that this negative correlation can be attributed mainly to
Pull Up Method and especially Pull Up Field refactorings. Moving a less cohesive method,
or especially a less cohesive field, from a subclass to its superclass can improve the LSCC
cohesion value of the subclass. While these refactorings typically reduce the cohesion of
the superclass, overall they can improve the cohesion of the program if the subclass is more
highly weighted than the superclass. However, for LSCCi , these refactorings reduce the
cohesion of the superclass but have no effect on LSCCi for the subclass as the moved fields
and methods are still accessible in the subclass. In addition, if the Increase Accessibility
refactoring is also called on the moved field and method, e.g. to change the accessibility
from private to protected3, then it can also result in a reduction in cohesion for all children
of the subclass. This explains why this type of refactoring can improve LSCC while causing
a reduction in LSCCi .

On the other hand, it was observed that in the LSCC versus LSCCi experiments, certain
refactorings such as Push Down Method have a positive effect on both metrics. Moving an
uncohesive method to a subclass where it is used improves the cohesion of the superclass
for both metrics, and improves the cohesion of the subclass for LSCC, but does not change
LSCCi for the subclass.

6.1.2 Comparing TCCi and LSCCi

When TCCi leads the search, LSCCi exhibits strong negative correlation (-0.894). The most
striking feature here is that the Pull Up Field refactoring has a negative impact on LSCCi in

3In this case the moved element is weakly cohesive within the subclass, but it is used by at least one method.
Therefore its accessibility in the superclass must be changed to non-private to remain accessible in the
subclass.



Empir Software Eng

every case. The negative impact occurs because a field is moved to a superclass where it has
no interaction which reduces LSCCi for that class. TCCi favours this refactoring because as
part of pulling a private field up to a superclass, it must be made protected, and this causes
more interaction between protected methods that use the field in the hierarchy structure.
This use of Pull Up Field in this case does not truly improve cohesion, so it is a strength of
LSCCi that it would not recommend it.

Another area of conflict is the negative effect Push Down Method has on LSCCi in a
number of refactorings. On inspecting these refactorings, we learn that TCCi always prefers
a method to reside in a class where it is used and access the fields it needs in its superclass
(where they cannot be private of course), rather than reside in the superclass. However,
LSCCi places more emphasis on keeping fields private, so it frequently prefers a method
to stay in the class of the fields it uses except where the method is used by majority of the
subclasses.

6.1.3 Comparing LSCC and TCC

It is striking how closely LSCC and TCC correlate with each other in these experiments.
A closer look at the refactorings involved shows that the main refactoring with a positive
effect on both TCC and LSCC is Pull Up Method. A method that is weakly cohesive in its
own class is pulled up to its direct superclass where it is more cohesive, hence improving
the overall cohesion of the program for both TCC and LSCC. This is likely to be a good
refactoring if the superclass has only one child. However, if the superclass has more than
one child then the negative impact of this refactoring on the other children may be a factor.
Note that the normal forms of the metrics do not register the negative effects of this refactor-
ing, but LSCCi and SCOMi can indeed detect it, which illustrates the benefit of including
inherited attributes in a metrics definition.

In spite of the close correlation between LSCC and TCC, some conflict is observed and,
given its rarity, this is interesting to examine further. One period of disagreement occurs
during a sequence of Pull Up Field refactorings where the target class has no fields. TCC
is undefined for a class with no fields, so moving a field to such a class appears to reduce
cohesion by adding a class with zero cohesion to the program. On the other hand, we learn
from this example that LSCC prefers to move a field that is loosely associated with a class
(e.g. used directly or indirectly by only one method) to its superclass, if that superclass has
a zero LSCC measure (no two methods access the same field). In practice, this would be
viewed as a detrimental refactoring, so we have uncovered a issue with the LSCC metric
that it would reward such a refactoring.

6.2 Summary

In this section we explored the popular notion that including inherited methods and fields
in the computation of a metric for a class is largely a matter of taste, and found the con-
trary to be true: when inherited methods and fields are included in the computation of
a metric, the metric is liable to yield very different values even to the extent of exhibit-
ing strong negative correlation with the original metric. While this is an interesting result
in itself, the goal of this section is broader than just this issue. Other claims of a simi-
lar nature that are made about software metrics, e.g. that improving cohesion should also
decrease coupling, can be evaluated experimentally using search-based refactoring as we
have done here.



Empir Software Eng

7 Related Work

In this section we review related work in Search-Based Refactoring (Section 7.1) and
Software Metrics (Section 7.2).

7.1 Search-Based Refactoring

Search-based refactoring is fully automated refactoring driven by metaheuristic search and
guided by software quality metrics, as introduced by O’Keeffe and Ó Cinnéide (2003).
Existing work in this area uses either a ‘direct’ or an ‘indirect’ approach. In the direct
approach the refactoring steps are applied directly to the program, denoting moves from
the current program to a near neighbour in the search space. Early examples of the direct
approach are the works by Williams (1998) and Nisbet (1998) who addressed the paral-
lelization problem. More recently, O’Keeffe and Ó Cinnéide (2008a, b) applied the direct
approach to the problem of automating design improvement. They used a collection of 12
metrics to measure the improvements achieved when methods are moved between classes,
new classes created and associations between classes changed.

In the indirect approach, the program is indirectly optimised through the optimisation
of the sequence of transformations to apply to the program. In this approach fitness is
computed by applying the sequence of transformations to the program in question and mea-
suring the improvement in the metrics of interest. The first authors to use search in this way
were Cooper et al. (1999), who used biased random sampling to search a space of high-
level whole-program transformations for compiler optimisation. Also following the indirect
approach, Fatiregun et al. (2004, 2005) showed how search-based transformations could be
used to reduce code size and construct amorphous program slices. The work of Kessentini
et al. also uses the indirect approach extensively to improve a software system by improving
software quality metrics and reducing instances of code smells (Ouni et al. 2012, 2013a,;
Mkaouer et al. 2014). The same authors also use optimisation techniques and code devel-
opment history to guide a search towards an optimal refactoring sequence for minimisation
of code smell instances (Ouni et al. 2013b).

Ghaith and Ó Cinnéide (2012) used search-based refactoring to improve the security of
code. An empirical study of a banking system showed improvements of over 15 % in pro-
gram security. The fitness function used was based on a set of security metrics, although the
authors point to certain weaknesses in the security metrics themselves as a drawback of the
study. Mahouachi et al. (2013) describe an approach to automate detection of refactorings in
source code using structural information. Open-source systems were used as the empirical
basis and 90 % precision and recall were observed. Ghannem et al. (2013) use an Interactive
Genetic Algorithm (GA) which interacts with users while allowing feedback to a normal
GA. The implemented tool was used to suggest sequences of refactorings which could be
applied to models in the form of class diagrams. The extent to which an interactive approach
could be applied and validation of the correctness of suggested refactorings were explored
and both showed promise. Hemati Moghadam and Ó Cinnéide (2012) present an approach
which refactored a program based on its desired design and source code. Open-source Java
was used as an empirical basis and results from the study showed that the original program
could be refactored to that design with 90 % accuracy.

Seng et al. (2006) propose an indirect search-based technique that uses a genetic algo-
rithm over refactoring sequences. In contrast to O’Keeffe M and Ó Cinnéide M (2006),



Empir Software Eng

their fitness function is based on well-known measures of coupling between program
components. Both these approaches used weighted-sum to combine metrics into a fitness
function, which is of practical value but is a questionable operation on ordinal metric values.
A solution to the problem of combining ordinal metrics was presented by Harman and Tratt
(2007), who introduced the concept of Pareto optimality to search-based refactoring. They
used it to combine two metrics into a fitness function and demonstrated that it has several
advantages over the weighted-sum approach.

The work of Sahraoui et al. (2000) has some similarities to ours, notably their premise
that semi-automated refactoring can improve metrics. Their approach attempts to gain
insight into the refactorings that are chosen to improve a chosen metric. Our approach is the
reverse of this: we use refactorings to gain insights into several metrics. A similar approach
is that of Chaparro et al. (2014), who developed a technique called RIPE (Refactoring
Impact Prediction) that tries to support the developer by predicting what impact a refac-
toring will have on the metric values for a given software application. They achieve some
success with this, but the fact that the metric change cannot be exactly calculated lends
support to the approach we have taken in this paper.

Otero et al. (2010) use search-based refactoring to refactor a program as it is being
evolved using genetic programming in an attempt to find a different design which may
admit a useful transformation as part of the genetic programming algorithm. Jensen and
Cheng (2010) use genetic programming to drive a search-based refactoring process that
aims to introduce design patterns. Ó Cinnéide et al. (2011) use a search-based refactor-
ing approach to try to improve program testability. Kilic et al. (2011) explore the use of
a variety of population-based approaches to search-based parallel refactoring, finding that
local beam search could find the best solutions. Oliveira Barros de and Almeida Farzat de
(2013) suggest that while current search-based approaches may produce complex structures
in the design process, they nonetheless allow a critique of software metrics and lead to new
avenues of research, in particular that of refactoring. Finally, Tsantalis and Chatzigeorgiou
(2011) used a semi-automated process for identifying refactoring opportunities based on
code smells; the system’s history was used as a basis for the study.

7.2 Analysis of Software Metrics

One criticism that is levelled at the use of software metrics is that they often fail to measure
what they purport to measure (Fenton and Pfleeger 1996). This has led to a proliferation
of software metrics (Fenton and Neil 2000), many of which attempt to measure the same
aspect(s) of code. It is not surprising then that several studies have attempted to compare
software metrics to better understand their similarities and differences. Work by Stuckman
et al. (2013) for example, used synthetic defect datasets to assess the performance of metrics,
complemented by a formal mathematical model. One of the results of the study was that a
relatively small set of source code metrics conveyed the same information as a larger set.

In this section, we focus on studies that have analysed cohesion metrics. The overriding
problem with cohesion (and its measurement) has been that, unlike coupling, any metric
claiming to measure cohesion is relatively subjective and open to interpretation (Counsell
et al. 2005). Most cohesion measures have focussed on the distribution of attributes in the
methods of a class (and variations thereof). However, nuances of different object-oriented
languages and the fact that the distribution of attributes can make it impossible to calculate
cohesion metrics, means that no single, agreed cohesion metric exists.



Empir Software Eng

The LCOM metric has been subject to detailed scrutiny (Briand et al. 1998) and revised
several times to account for idiosyncrasies in its calculation. Comparisons between LCOM
and other proposed cohesion metrics are a common feature of empirical studies (Bieman and
Kang 1995; Bansiya et al. 1999; Counsell et al. 2006; Al Dallal 2010; Al-Dallal and Briand
2010, 2012). Most newly-proposed cohesion-based metrics have attempted to improve upon
previous metrics by forming a link between low cohesion and high fault-proneness (Al-
Dallal and Briand 2010, 2012) or intuitive notions of high cohesion and subjective developer
views of what constitutes high cohesion (Bansiya et al. 1999); others have tried to demon-
strate a theoretical improvement (Counsell et al. 2006; Al Dallal 2010). Comparison of
cohesion metrics has been a consistent topic for research (Succi et al. 2005; Joshi and Joshi
2010; Kaur and Singh 2010). For example, the Cohesion Amongst the Methods of a Class
(CAMC) metric (Bansiya et al. 1999) extends the LCOM metric by including the self
property in C++ in its calculation, and has been validated against developer opinion.

Al Dallal (2010) investigated the relationship between their proposed metric, Low-Level
Similarity-Based Class Cohesion (LSCC), and eleven other low-level cohesion metrics in
terms of correlation and ability to predict faults. Based on correlation studies they concluded
that LSCC captures a cohesion measurement dimension of its own. Four open source Java
applications consisting of 2,035 classes and over 200KLOC were used as a basis of their
study.

The same authors also propose a high-level design class cohesion metric - the Similarity-
Based Class Cohesion Metric (SCC) (Al-Dallal and Briand 2010). They explored correla-
tions among SCC and ten other cohesion metrics. The result showed a moderate correlation
between SCC and the other metrics scrutinised, while some much stronger correlations
between the SCC and other previously defined cohesion metrics including LCOM were
observed (Bansiya et al. 1999; Chidamber and Kemerer 1994; Counsell et al. 2006).
At the very least, the SCC metric could be used as a surrogate for LCOM. Al-Dallal
(2013) explored cohesion metrics from the perspective of transitive relationships between
attributes; a method is related to the attributes it references, but also to the attributes ref-
erenced by the methods that it invokes. Current cohesion metrics fail to consider these
relationships and do not therefore capture cohesion in its true sense.

Counsell et al. (2006) proposed a new metric, the Normalized Hamming Distance met-
ric (NHD), and found evidence that NHD is a better cohesion metric than CAMC. Their
empirical data, obtained from three C++ applications, showed a strong negative correla-
tion between NHD and other metrics. This contrasts with a more recent study by Kaur and
Singh (2010) who explored the relationship between NHD, SNHD (Counsell et al. 2006)
and CAMC. They observed that class size was a confounding factor in the computation of
both CAMC and NHD.

Alshayeb (2009b) observed that refactoring had a positive effect on several cohesion met-
rics in his study of open source software. However, in later work he reported that this effect
was not necessarily positive on other external software quality attributes such as reusabil-
ity, understandability, maintainability, testability and adaptability (Alshayeb 2009a). An
information-theoretic approach to measuring cohesion was proposed by Allen et al. (2001)
and while this represented a fresh approach to cohesion measurement, their metric is subject
to the same criticisms as previous metrics.

Veerappa and Harrison (2013) used automated refactoring techniques to investigate the
behaviour of coupling metrics during refactorings. Eight open source Java projects were
used as the empirical basis. Results showed that in contrast to cohesion metrics, coupling
metrics were less likely to conflict with each other.



Empir Software Eng

In terms of metrics for uncovering new facets of cohesion and as a basis for fault predic-
tion, several studies have made a contribution. Marcus et al. (2008) proposed a new metric
for measuring cohesion using information in source code such as comments; the study drew
heavily on the areas of psychology and linguistics. The Conceptual Cohesion of Classes
metric (C3) highlighted properties of code orthogonal to that previously shown by cohesion
metrics; when combined with existing structural cohesion metrics, C3 gave better defect
prediction capability vis-a-vis structural cohesion metrics on their own (three open-source
systems were used as the empirical basis). In a similar way, Liu et al. (2009) also investi-
gate a new measure for cohesion using information theory concepts (the Maximal Weighted
Entropy metric) based on topics embedded in code (i.e., comments and identifiers). The
measure was shown to highlight new facets of cohesion and its effectiveness as a fault
prediction mechanism demonstrated; open-source (Mozilla) was used as a basis of the study.
Two new cohesion and coupling metrics for fault prediction were proposed by Ujhazi et al.
(2010). The Mozilla open-source system was again used a basis of their empirical study and
machine learning techniques used to assess predictive capability of these metrics. Combin-
ing these two new metrics with other metrics (from a code quality framework) showed an
improvement in defect prediction capability.

In recent work, Meneely et al. (2013) performed a meta-analysis of software metric lit-
erature to uncover the validation criteria that authors use in evaluating a new metric. In
all, they identified a very diverse set of 47 such criteria. A number of these criteria can be
assessed using our search-based refactoring approach, e.g.

– Actionability: A metric that is found to be highly inert (see Section 4.1.1) will not be
actionable, i.e. it will be hard to refactor the program to improve it for this metric;

– Construct validity: While search-based refactoring cannot assess construct valid-
ity directly, by showing that several cohesion metrics conflict heavily it has been
demonstrated that they cannot all have good construct validity.

– Nonexploitability: A metric exhibits nonexploitability if developers cannot manipulate
a metric to obtain desired results (Cavano and McCall 1978). A metric that is found to
be highly volatile using search-based refactoring is likely to be easily exploitable by
developers.

However the cross-validation that our approach can achieve is not represented in any of the
validation criteria defined in this work.

A study by Kitchenham (2010) also involved a meta-analysis of software metrics liter-
ature to identify trends in influential software metrics papers and assess the possibility of
using secondary studies to integrate research results. Her investigations did not uncover any
papers that use an experimental approach to metrics assessment, as we do. One of her crit-
icisms is that some authors have empirically studied metrics that are already known to be
theoretically unsound. We avoided this by choosing a revised version of the original and
unsound metric LCOM, namely LCOM5, to use in our experiments.

These studies have created a deeper understanding of software metrics and have shown
that metrics with a similar intent do not necessarily provide similar results. However, under-
standing the underlying characteristics of a metric is just a first step in determining their
usefulness. When metrics are applied to real-world programs, they can yield results that
were not obvious from their definitions, in the same way that a program under test can pro-
duce results the developer never intended or even imagined. The approach detailed in this
paper takes the next step by quantifying the extent of conflict between metrics to understand
them better and to pinpoint the root cause of the conflict.



Empir Software Eng

8 Threats to Validity

There are four principal types of threat that can affect the validity of our experiments,
namely internal validity, construct validity, external validity and conclusion validity (Wohlin
et al. 2012). We consider each of these in the following paragraphs.

Internal validity in concerned with the relationship between the treatment and its out-
come. This must be a causal relationship, i.e. the outcome must be as a result of the
applied treatment and must not be as a result of some other factor that we have not taken
into account. In our experiments, the treatment is the application of a refactoring and the
outcome is the change in metric values for the program being refactored. As the software is
not being changed in any other way, and software is not open to the myriad of biases that
affect studies with human subjects, it is trivial to establish that the changes we observe in
the metric values are attributable to the refactoring that has been applied to the program.

Another concern here is the correctness of refactoring transformations themselves. It
has been established that many current refactoring tools contain bugs (Schäfer et al. 2012;
Gligoric et al. 2013) and our refactoring implementations, although heavily tested, cannot
be expected to be perfect. However, for the purposes of this paper, refactoring correctness
is not of paramount importance. Even if a refactoring is erroneously implemented and fails
to preserve program behaviour in some circumstances, it is still a program transformation
and how the metrics change is response to this transformation is of interest.

Construct validity is concerned with the relationship between theory and observation,
both in the treatment and the outcome. In terms of the treatment, we wish to apply small,
controlled changes to a program that do not change it radically and in some sense leave
it ‘the same’. Refactorings fit this description well. In a sequence of programs linked by
individual refactorings, each program exhibits the same external behaviour, and, as each
program is similar to its neighbour it also has a similar internal complexity in some sense
(Section 5.2 elaborates on what we mean by ‘complexity’ in this context). Other non-
refactoring program transformations may be suitable for this purpose as well, but this does
not threaten the suitability of refactorings for this purpose.

The issue of construct validity regarding the outcome is a different matter. The outcome
in our experiments is the changes to the cohesion metrics under study. Formally speak-
ing, we have achieved construct validity if the cohesion metrics we employ truly represent
cohesion. Each cohesion metric we study has been used in software practice and has been
the subject of other research studies, and so can be claimed to represent well the cohe-
sion construct. However, that is to beg the very question we are investigating, because in
our experiments we are in fact testing the construct validity of the cohesion metrics under
study. It is precisely by seeking areas where these metrics conflict that we are able to argue
that they do not represent the same construct and hence represent different, and indeed
conflicting, theoretical notions of cohesion.

External validity refers to the generalisability of our findings, and in this context there
are a number of limitations to this work that should be clarified. We analyse a broad range
of software systems, but they are all open source systems and it may be the case that closed
source systems would yield different results. It is also possible that the open source appli-
cations and the set of cohesion metrics we chose for our experiments happen by chance to
display considerable conflict, and that this would not generalise to other combinations of
applications and metrics. To ameliorate these threats, the 10 software applications we used
were chosen at random and the five metrics we used were selected randomly from popular



Empir Software Eng

cohesion metrics and we had no prior knowledge that any conflict would occur, i.e. we did
not in any sense ‘fish’ for conflicting examples.

Our results are also affected by the choice of refactoring types that we made. For exam-
ple, refactorings that break up methods (Extract Method etc.) could well lead to very
different results. However, this cannot of course reduce the amount of conflict observed
using the set of refactorings we employed, and there is currently no agreed complete set of
refactoring types. In this paper, we used a hill-climbing variant as the metaheurstic search
mechanism. We could be criticised for not applying other search-based techniques, such
as simulated annealing or genetic algorithms. However, the focus of this paper is primar-
ily a comparison of metrics and an analysis thereof, rather than a comparison of search
techniques. It is possible that application of these techniques would lead to new insights
into the results. However, this would be a largely orthogonal study and, as such, is a topic
for future work.

Our study has explored a subset of metrics designed to measure program cohesion and
has cross-compared those metrics. Many other cohesion metrics exist and there is the possi-
bility that other class features, if incorporated into a metric, may provide new insights into
cohesion measurement that our study has not revealed. However, the approach adopted in
this paper provides a rigorous means of comparing and contrasting any set of metrics (e.g.
for coupling (Veerappa and Harrison 2013)) and this is of value to the metrics community
in understanding inter-metric relationships and, ultimately, their true value to practitioners.

Finally, conclusion validity is concerned with the statistical relationship between the
treatment and the outcome. We used Spearman rank correlation to measure the relationship
between the metric changes in Investigations I and III. This test makes no assumption that
the data is normally distributed and is suitable for ordinal data, so it is safe to use in this
context.

9 Conclusions and Future Work

In this paper we use search-based refactoring for a novel purpose: to discover rela-
tionships between software metrics. By using a variety of search techniques (semi-
random search, refactoring for increased metric agreement/disagreement and refactoring
to increase/decrease the gap between a pair of metrics) guided by a number of cohesion
metrics, we were able to make experimental assessments of the metrics. In areas of direct
conflict between metrics, we examined further the refactorings that caused the conflict in
order to learn more about nature of the conflict and gain further qualitative insight into the
differences between the metrics. The new information gained about software metrics could
not be gleaned using any of the existing approaches to metrics assessment.

In our initial study of 300KLOC of open source software we found that the cohesion
metrics LSCC, TCC, CC, SCOM and LCOM5 agreed with each other in only 45 % of the
refactorings applied. In 17 % of cases dissonance was observed (one metric changing while
the other remains static) and in 38 % of cases the metrics were found to be in direct conflict
(one metric improving while the other disimproves). This high percentage of conflict reveals
an important and surprising feature of cohesion metrics: they not only embody different
notions of cohesion, they embody conflicting notions of cohesion. This key result means that
the notion of combining current cohesion metrics into a single, unifying cohesion metric is
an impossibility.



Empir Software Eng

Through the use of Iterative Refactoring Agreement/Disagreement (IRA and IRD)
we found that LSCC is the best representative of the set of metrics we investigated
while SCOM is the least representative. A closer examination of CC and TCC revealed
problems with both metrics in terms of how field access within the class affects the
metric value.

To address the practical problem where a software engineer has to interpret several
metrics with widely-varying values, we introduced the idea of Gap Opening Refactoring
(GOR) and Gap Closing Refactoring (GCR). Using these techniques we can estimate if
the difference between two metric values is due to an inherent difference between the met-
rics, or something more superficial. In experiments we found extreme cases where GCR
could reduce the gap between metrics to zero (indicating metrics that are only superficially
different) and cases where the reduction achievable was as little as 0.008 % (indicating
fundamental metric difference).

The refactoring approach proposed in this paper can also be used to investigate claims
that are made regarding software metrics. To illustrate this, we explored the decision
as to whether or not inheritance should be included in the definition of a cohesion
metric given that several sources have discussed this issue but found it to be not of
major import (Bieman and Kang 1995; Al-Dallal and Briand 2012). Our findings were
that, in general, a metric behaves completely differently when inherited attributes are
taken into account. In three areas of conflict between LSCC and TCC our analysis
of the refactorings led to detailed insights into the differences between these metrics
(see Sections 6.1.2 and 6.1.3).

Our goal in this work is not to resolve these issues, but to provide a methodology whereby
they can be detected and analysed in order to aid further metrics research. In some cases,
software design principles indicate which metric is best in which context. In other cases,
the developer can choose which metric best suits their needs. In any given context, GCR
and GOR can be used to as an aid to assessing if a given metric conflict is superficial or
fundamental.

We claim that our approach can contribute significantly to the ongoing metrics
debate. It provides an automated platform upon which metrics can be animated and
their areas of agreement and disagreement brought into clear focus, in a way that is
not achievable using existing approaches to evaluation. Future work in this area involves
a number of themes. Firstly, we have focused on cohesion metrics and their inter-
play. It would be interesting to examine the trade-offs between changes in these metrics
and for example, those that attempt to measure coupling, particularly since low cou-
pling and high cohesion are desirable system features and could be considered as joint
goals of system designers and maintainers. Similarly it would be interesting to study
how semantic cohesion (measured using e.g. WordNet) compares with structural cohe-
sion under this type of experimentation. Secondly, our refactoring-based experimental
approach can be developed further to create a practical, easy-to-use tool that permits
metrics researchers and practitioners to experimentally evaluate new or existing metrics.
Thirdly, while our work has highlighted metric conflict, we have not attempted to resolve
this conflict and determine which metric is the most suitable under which circumstances.
Further work to address this issue will have to involve studies that elicit developer opin-
ion. Finally, we have used open source systems in this study; it would be valuable to
apply the same analysis to proprietary systems and to compare the results obtained in
each case.



Empir Software Eng

Acknowledgments This work was supported, in part, by grants from the Engineering and Physical Sci-
ences Research Council of the UK (EPSRC) - Grant references: EP/E055141/1 and EP/J017515/1, and by
Science Foundation Ireland (SFI) grant 10/CE/I1855 to Lero - the Irish Software Engineering Research
Centre.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Al Dallal J (2010) Validating object-oriented class cohesion metrics mathematically. In: Proceedings of the
9th international conference on Software engineering, parallel and distributed systems, SEPADS’10,
pp 73–77

Al-Dallal J (2013) Incorporating transitive relations in low-level design-based class cohesion measurement.
Software: Practice and Experience 43(6):685–704

Al-Dallal J, Briand LC (2010) An object-oriented high-level design-based class cohesion metric. Inf Softw
Technol 52(12):1346–1361

Al-Dallal J, Briand LC (2012) A precise method-method interaction-based cohesion metric for object-
oriented classes. ACM Trans Softw Eng Methodol (TOSEM) 21(2):8:1–8:34

Allen E, Khoshgoftaar T, Chen Y (2001) Measuring coupling and cohesion of software modules: an
information-theory approach. In: Proceedings of the 7th International Software Metrics Symposium,
pp 124–134

Alshayeb M (2009a) Empirical investigation of refactoring effect on software quality. Inf Softw Technol
51(9):1319–1326

Alshayeb M (2009b) Refactoring effect on cohesion metrics. In: Proceedings of the International Conference
on Computing, Engineering and Information, ICC ’09, pp 3–7

Bansiya J, Etzkorn L, Davis C, Li W (1999) A class cohesion metric for object-oriented designs. Journal of
Object-Oriented Programming 11(08):47–52

Beck F, Diehl S (2011) On the congruence of modularity and code coupling. In: Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering,
ACM, New York, NY, USA, ESEC/FSE ’11, pp 354–364

Bieman JM, Kang BK (1995) Cohesion and reuse in an object-oriented system. In: Proceedings of the
symposium on software reusability, Seattle, Washington, pp 259–262

Bieman JM, Ott LM (1994) Measuring functional cohesion. IEEE Trans Softw Eng 20(8):644–657
Bonja C, Kidanmariam E (2006) Metrics for class cohesion and similarity between methods. In: Proceedings

of the 44th annual southeast regional conference. ACM, Florida, pp 91-95
Bouwers E, Deursen Av, Visser J (2013) Evaluating usefulness of software metrics: An industrial experi-

ence report. In: Proceedings of the 35th International Conference on Software Engineering, IEEE Press,
Piscataway, NJ, USA, ICSE ’13, pp 921–930

Briand L, Emam KE, Morasca S (1996) On the application of measurement theory in software engineering.
Empir Softw Eng 1:61–88

Briand LC, Daly JW, Wüst J (1998) A unified framework for cohesion measurement in object-oriented
systems. Empir Softw Eng 3(1):65–117

Cavano JP, McCall JA (1978) A framework for the measurement of software quality. ACM SIGSOFT
Software Engineering Notes 3(5):133–139

Chaparro O, Bavota G, Marcus A, Penta MD (2014) On the impact of refactoring operations on code quality
metrics. In: IEEE International Conference on Software Maintenance and Evolution (ICSME), pp 456–
460

Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design. IEEE Trans Softw Eng
20(6):476–493

Cooper KD, Schielke PJ, Subramanian D (1999) Optimizing for reduced code space using genetic algorithms.
In: Proceedings of the ACM workshop on languages, compilers and tools for embedded systems, NY,
LCTES ’99, vol 34.7, pp 1–9

http://creativecommons.org/licenses/by/4.0/


Empir Software Eng

Counsell S, Swift S, Tucker A (2005) Object-oriented cohesion as a surrogate of software comprehension:
an empirical study. In: Proceedings of the 5th IEEE international workshop on source code analysis and
manipulation, Washington DC, USA, pp 161-172

Counsell S, Swift S, Crampton J (2006) The interpretation and utility of three cohesion metrics for object-
oriented design. ACM Trans Softw Eng Methodol (TOSEM) 15(2):123–149

Fatiregun D, Harman M, Hierons R (2004) Evolving transformation sequences using genetic algorithms. In:
Proceedings of the 4th IEEE international workshop on source code analysis and manipulation. IEEE
computer society press, los alamitos, pp 65–74

Fatiregun D, Harman M, Hierons R (2005) Search-based amorphous slicing. In: Proceedings of the 12th
International Working Conference on Reverse Engineering, Carnegie Mellon University, Pittsburgh,
Pennsylvania, USA, WCRE ’05, pp 3–12

Fenton NE (1994) Software measurement: a necessary scientific basis. IEEE Trans Softw Eng 20(3):199–206
Fenton NE, Neil M (2000) Software metrics: Roadmap. In: Proceedings of the 22nd Con-

ference on The Future of Software Engineering, ACM, New York, NY, USA, ICSE ’00,
pp 357–370

Fenton NE, Pfleeger SL (1996) Software metrics - a practical and rigorous approach (2nd. ed.). International
Thomson

Fernández L, Peña R (2006) A sensitive metric of class cohesion. Information Theories and Applications
13(1):82–91

Fowler M, Beck K, Brant J, Opdyke W, Roberts D (1999) Refactoring: improving the design of existing
code. Addison-Wesley

Gamma E, Helm R, Johnson RE, Vlissides J (1995) Design patterns: elements of reusable object-oriented
software. Addison-Wesley, Reading

Ghaith S, Ó Cinnéide M (2012) Improving software security using search-based refactoring. In: Proceed-
ings of the 4th International Symposium on Search Based Software Engineering, Riva del Garda, Italy,
SSBSE’12, pp 121–135

Ghannem A, El-Boussaidi G, Kessentini M (2013) Model refactoring using interactive genetic algorithm. In:
Proceedings of the 5th International Symposium on Search Based Software Engineering, St. Petersburg,
Russia, SSBSE ’13, pp 96–110

Gligoric M, Behrang F, Li Y, Overbey J, Hafiz M, Marinov D (2013) Systematic testing of refactoring
engines on real software projects. In: Proceedings of 27th European Conference on Object-Oriented
Programming, Montpellier, France, July, 2013, pp 629–653

Gutzmann T et al. (2013) RECODER: a framework for java program analysis and source code transformation.
http://sourceforge.net/projects/recoder

Harman M, Clark J (2004) Metrics are fitness functions too. In: Proceedings of the 10th international
symposium on metrics. IEEE Computer Society, USA, pp 58–69

Harman M, Tratt L (2007) Pareto optimal search based refactoring at the design level. In: Proceedings of the
9th Conference on Genetic and Evolutionary Computation, GECCO ’07, pp 1106–1113

Harman M, Danicic S, Sivagurunathan B, Jones B, Sivagurunathan Y (1995) Cohesion metrics. In:
Proceedings of the 8th international quality week, San Francisco, USA, pp 1–14

Hemati Moghadam I, Ó Cinnéide M (2011) Code-Imp: A tool for automated search-based refactoring.
In: Proceedings of the 4th Workshop on Refactoring Tools, ACM, New York, NY, USA, WRT ’11,
pp 41–44

Hemati Moghadam I, Ó CinnéideM (2012) Automated refactoring using design differencing. In: Proceedings
of the 16th European Conference on SoftwareMaintenance and Reengineering, Szeged, Hungary, CSMR
’12, pp 43–52

Hemati Moghadam I, Ó Cinnéide M (2015) Resolving conflict and dependency in refactoring to a desired
design. e-Informatica Softw Eng J 9(1):37–56

Hitz M, Montazeri B (1996) Chidamber and kemerer’s metrics suite: a measurement theory perspective.
IEEE Trans Softw Eng 22(4):267 –271

Jensen A, Cheng B (2010) On the use of genetic programming for automated refactoring and the introduction
of design patterns. In: Proceedings of the 12th conference on genetic and evolutionary computation.
ACM, New York, pp 1341–1348

Joshi P, Joshi RK (2010) Quality analysis of object oriented cohesion metrics. In: Proceedings of the
7th International Conference on the Quality of Information and Communications Technology, IEEE
Computer Society, pp 319–324

Kaur K, Singh H (2010) Exploring design level class cohesion metrics. J Softw Eng Appl 03(04):384–390
Kemerer C (1995) Software complexity and software maintenance: a survey of empirical research. Ann Softw

Eng 1(1):1–22

http://sourceforge.net/projects/recoder


Empir Software Eng

Kilic H, Koc E, Cereci I (2011) Search-based parallel refactoring using population-based direct approaches.
In: Proceedings of the 3rd International Conference on Search Based Software Engineering, Springer-
Verlag, Berlin, Heidelberg, SSBSE’11, pp 271–272

Kitchenham B (2010) What’s up with software metrics? - a preliminary mapping study. J Syst Softw
83(1):37–51

Lakhotia A (1993) Rule-based approach to computing module cohesion. In: Proceedings of the 15th
International Conference on Software Engineering, ICSE’10, pp 35–44

Liu Y, Poshyvanyk D, Ferenc R, Gyimóthy T, Chrisochoides N (2009) Modeling class cohesion as mixtures
of latent topics. In: Proceedings of the 25th IEEE International Conference on Software Maintenance,
ICSM ’00, pp 233–242

Mahouachi R, Kessentini M, Ó Cinnéide M (2013) Search-based refactoring detection using software metrics
variation. In: Proceedings of the 5th International Symposium on Search Based Software Engineering,
St. Petersburg, Russia, SSBSE ’13, pp 126–140

Marcus A, Poshyvanyk D, Ferenc R (2008) Using the conceptual cohesion of classes for fault prediction in
object-oriented systems. IEEE Trans Softw Eng 34(2):287–300

Meneely A, Smith B, Williams L (2013) Validating software metrics: a spectrum of philosophies. ACM Trans
Softw Eng Methodol (TOSEM) 21(4):24:1–24:28

Meyers TM, Binkley D (2007) An empirical study of slice-based cohesion and coupling metrics. ACM Trans
Softw Eng Methodol (TOSEM) 17(1):1–27

Mkaouer W, Kessentini M, Bechikh S, Deb K, Ó Cinnéide M (2014) Recommendation system for software
refactoring using innovization and interactive dynamic optimization. In: Proceedings of the 29th IEEE
International Conference on Automated Software Engineering, IEEE Press, ASE’14, pp 331–336

Nisbet A (1998) GAPS: A compiler framework for genetic algorithm (GA) optimised parallelisation.
In: Sloot PMA, Bubak M, Hertzberger LO (eds) Proceedings of the international conference on
high-performance computing and networking, vol LNCS 1401. Springer, pp 987–989

Ó Cinnéide M, Boyle D, Hemati Moghadam I (2011) Automated refactoring for testability. In: Proceedings
of the 4th International Conference on Software Testing, Verification and Validation Workshops, Berlin,
ICSTW ’11, pp 437–443

Ó Cinnéide M, Tratt L, Harman M, Counsell S, Hemati Moghadam I (2012) Experimental assessment of
software metrics using automated refactoring. In: Proceedings of the 6th ACM-IEEE ACM-IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement, ACM, New York, NY, USA,
ESEM ’12, pp 49–58

O’Keeffe M, Ó Cinnéide M (2003) A stochastic approach to automated design improvement. In: Proceedings
of the 2nd international conference on principles and practice of programming in java. Computer Science
Press Inc., pp 59–62

O’Keeffe M, Ó Cinnéide M (2006) Search-based software maintenance. In: Proceedings of the 10th
Conference on Software Maintenance and Reengineering, IEEE, Italy, CSMR ’06, pp 249–260

O’Keeffe M, Ó Cinnéide M (2008a) Search-based refactoring: an empirical study. Journal of Software
Maintenance and Evolution 20(5):345–364

O’Keeffe M, Ó Cinnéide M (2008b) Search-based refactoring for software maintenance. Journal of Systems
and Software 81(4):502–516

Oliveira Barros de M, Almeida Farzat de F (2013) What can a big program teach us about optimization?
In: Proceedings of the 5th International Symposium Search Based Software Engineering, SSBSE’13,
pp 275–281

Otero FEB, Johnson CG, Freitas AA, Thompson SJ (2010) Refactoring in automatically generated programs.
In: Proceedings of the 2nd International Conference on Search Based Software Engineering, SSBSE’10.
Springer, Berlin, Heidelberg, pp 1–2

Ouni A, Kessentini M, Sahraoui H, Hamdi MS (2012) Search-based refactoring: Towards semantics preser-
vation. In: Proceedings of the 28th IEEE International Conference on Software Maintenance, IEEE,
ICSM ’12, pp 347–356

Ouni A, Kessentini M, Sahraoui H, Boukadoum M (2013a) Maintainability defects detection and correction:
a multi-objective approach. Autom Softw Eng 20(1):47–79

Ouni A, Kessentini M, Sahraoui H, Hamdi MS (2013b) The use of development history in software refactor-
ing using a multi-objective evolutionary algorithm. In: Proceedings of the 15th Genetic and Evolutionary
Computation Conference, Amsterdam, The Netherlands, GECCO ’13, pp 1461–1468

Sahraoui H, Godin R, Miceli T (2000) Can metrics help to bridge the gap between the improvement of
OO design quality and its automation? In: Proceedings of the International Conference on Software
Maintenance, ICSM ’00, pp 154–162

Schäfer M, Thies A, Steimann F, Tip F (2012) A comprehensive approach to naming and accessibility in
refactoring java programs. IEEE Trans Softw Eng 38(6):1233–1257



Empir Software Eng

Seng O, Stammel J, Burkhart D (2006) Search-based determination of refactorings for improving the class
structure of object-oriented systems. In: Proceedings of the 8th conference on Genetic and Evolutionary
Computation, ACM, Seattle, Washington, USA, GECCO ’06, pp 1909–1916

Shepperd MJ (1995) Foundations of software measurement. Prentice Hall
Simons C, Singer J, White D (2015) Search-based refactoring: Metrics are not enough. In: Proceedings of

the 7th conference on Search-Based Software Engineering, SSBSE ’15, vol 9275. Springer International
Publishing, pp 47–61

Stuckman J, Wills K, Purtilo J (2013) Evaluating software product metrics with synthetic defect data. In:
Proceedings of the 7th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, Baltimore, Maryland, ESEM ’13, pp 259–262

Succi G, Pedrycz W, Djokic S, Zuliani P, Russo B (2005) An empirical exploration of the distributions of
the chidamber and kemerer object-oriented metrics suite. Empir Softw Eng 10(1):81–104

Tsantalis N, Chatzigeorgiou A (2011) Ranking refactoring suggestions based on historical volatility. In:
Proceedings of the 15th European Conference on Software Maintenance and Reengineering, Oldenburg,
Germany, CSMR ’11, pp 25–34

Ujhazi B, Ferenc R, Poshyvanyk D, Gyimóthy T (2010) New conceptual coupling and cohesion metrics for
object-oriented systems. In: Proceedings of the 10th IEEE International Working Conference on Source
Code Analysis and Manipulation, SCAM’10, pp 33–42

Veerappa V, Harrison R (2013) An empirical validation of coupling metrics using automated refactoring
Weyuker EJ (1988) Evaluating software complexity measures. IEEE Trans Softw Eng 14(9):1357–

1365
Williams KP (1998) Evolutionary algorithms for automatic parallelization PhD thesis. University of Reading,

UK
Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software

engineering, 2nd edn. Springer

Mel Ó Cinnéide holds a PhD in Computer Science from Trinity College Dublin, Ireland (2001). He is
currently a Lecturer in the School of Computer Science at University College Dublin, Ireland. His main
research interests are refactoring, search-based software engineering and software quality. He is a member of
the ACM and is a chartered engineer.



Empir Software Eng

Iman Hemati Moghadam holds a PhD in Software Engineering from University College Dublin, Ireland
(2014). He is currently assistant professor in the Department of Computer Engineering at Vali-Asr University,
Iran. Prior to this, he was a research associate in the Centre for Research on Evolution Search and Testing
(CREST) in the Computer Science Department at University College London. His primary research interests
are software refactoring, software quality, search-based software engineering and model-driven development.

Mark Harman holds a PhD in Computer Science from the Polytechnic of North London (1992). He is
currently Professor of Software Engineering in the Department of Computer Science at University College
London, where he directs the CREST centre. His primary research interests are software testing and search
based software engineering, a field he co-founded in 2001.



Empir Software Eng

Steve Counsell obtained his PhD in Computer Science from Birkbeck, University of London in 2002. He
is currently a Reader in the Department of Computer Science at Brunel University. His research interests
relate to empirical software engineering; in particular, refactoring, software metrics and the study of software
evolution. He worked as an industrial developer before his PhD and is a Fellow of the British Computer
Society.

Laurence Tratt is a Reader in Software Development at King’s College London.


	An experimental search-based approach to cohesion metric evaluation
	Abstract
	Introduction
	Motivation and Approach
	Motivation for the Choice of Refactorings
	Motivation for the Choice of Metrics
	Motivation for the Choice of Software Applications
	Overview of Experiments

	The Code-Imp Platform
	Code-Imp Architecture
	Search Algorithm
	Refactorings Employed
	Method-level Refactorings
	Field-level Refactorings
	Class-level Refactorings


	Software Metrics and Fitness Function

	Investigation I: General Assessment of Cohesion Metrics
	Results and Analysis
	Volatility
	Probability of Positive Change

	Summary

	Investigation II: Pairwise Comparison of Cohesion Metrics
	Iterative Refactoring Agreement and Disagreement (IRA and IRD)
	Gap Opening Refactoring (GOR) and Gap Closing Refactoring (GCR)

	Investigation III: to Inherit or Not to Inherit
	Qualitative Analysis
	Comparing LSCC and LSCCi
	Comparing TCCi and LSCCi
	Comparing LSCC and TCC

	Summary

	Related Work
	Search-Based Refactoring
	Analysis of Software Metrics

	Threats to Validity
	Conclusions and Future Work
	Acknowledgments
	Open Access
	References


