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Abstract

Triple-negative breast cancer (TNBC) represents the most aggres-
sive breast tumor subtype. However, the molecular determinants
responsible for the metastatic TNBC phenotype are only partially
understood. We here show that expression of the mitochondrial
calcium uniporter (MCU), the selective channel responsible for
mitochondrial Ca2+ uptake, correlates with tumor size and lymph
node infiltration, suggesting that mitochondrial Ca2+ uptake might
be instrumental for tumor growth and metastatic formation.
Accordingly, MCU downregulation hampered cell motility and inva-
siveness and reduced tumor growth, lymph node infiltration, and
lung metastasis in TNBC xenografts. In MCU-silenced cells, produc-
tion of mitochondrial reactive oxygen species (mROS) is blunted
and expression of the hypoxia-inducible factor-1a (HIF-1a) is
reduced, suggesting a signaling role for mROS and HIF-1a, down-
stream of mitochondrial Ca2+. Finally, in breast cancer mRNA
samples, a positive correlation of MCU expression with HIF-1a
signaling route is present. Our results indicate that MCU plays a
central role in TNBC growth and metastasis formation and suggest
that mitochondrial Ca2+ uptake is a potential novel therapeutic
target for clinical intervention.
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Introduction

Mitochondrial Ca2+ uptake regulates cellular energetics by trigger-

ing ATP synthesis. At the same time, mitochondrial Ca2+ acts as a

key controller of both cell metabolism and fate. Indeed, a decrease

in ATP production induces autophagy, while Ca2+ overload causes

organelle dysfunction and release of caspase cofactors (Rizzuto

et al, 2012). Several pathological conditions, including tumor forma-

tion and progression, are directly related to mitochondrial dysfunc-

tions, and reprogramming of mitochondrial metabolism is now

considered as an emerging hallmark of cancer (Hanahan &

Weinberg, 2011). Indeed, even in the presence of oxygen, cancer

cells limit their energy supply largely to glycolysis, leading to the

so-called aerobic glycolysis phenotype (Sciacovelli et al, 2014). Of

note, the dependence on glycolytic fueling is further potentiated by

hypoxia, a condition that characterizes most tumor microenviron-

ments. In response to oxygen deprivation, the hypoxia-inducible

factor-1a (HIF-1a) is stabilized and transcription of glucose trans-

porters and glycolysis-related enzymes, which are HIF-1a target

genes, is induced (Semenza, 2010). In addition, in specific settings,

altered mitochondrial metabolism represents a primary trigger for

cancer progression, as demonstrated by several hereditary tumors

associated with mutations in key mitochondrial enzymes (Gottlieb &

Tomlinson, 2005). Consistent with these observations, among the

most aggressive human breast tumors, triple-negative breast cancers

(TNBCs), a clinically heterogeneous category of breast tumors that

lack expression of estrogen receptor, progesterone receptor, and

human epidermal growth factor receptor 2 (HER2), show profound

metabolic alterations with impaired mitochondrial oxidative meta-

bolism (Elias, 2010; Owens et al, 2011). In these complex tumori-

genic settings, mitochondrial reactive oxygen species (mROS), as

by-products of mitochondrial respiratory chain electron flux, play a

fundamental role (Roesch et al, 2013). mROS are essential mole-

cules for intracellular communication, preserving cell homeostasis

and triggering adaptation to stress (Wu, 2006; Sena & Chandel,

2012). Moreover, mROS have been defined as crucial molecular

effectors for cancer progression, by eliciting both metabolic adapta-

tions and in vivo metastasis formation (Tochhawng et al, 2013;

Porporato et al, 2014; Cierlitza et al, 2015).
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The mitochondrial calcium uniporter (MCU), the channel respon-

sible for mitochondrial Ca2+ uptake, has been recently identified

(Baughman et al, 2011; De Stefani et al, 2011). A number of

proteins contribute to the channel complex (Raffaello et al, 2013;

Sancak et al, 2013; Foskett & Philipson, 2015) and others regulate

its activity (Perocchi et al, 2010; Plovanich et al, 2013; Patron et al,

2014), but little is known about the role of MCU-dependent

mitochondrial Ca2+ homeostasis in tumor progression. Recent

evidence indicates that prostate and colon cancers overexpress an

MCU-targeting microRNA that, by reducing mitochondrial Ca2+

uptake, favors cancer cell resistance to apoptotic stimuli, thus

increasing cell survival (Marchi et al, 2013). Moreover, constitu-

tively elevated mitochondrial Ca2+ influx triggers mROS generation

and enhances the sensitivity of HeLa cells to ceramide-induced cell

death (Mallilankaraman et al, 2012). However, a recent study

reported a correlation between MCU overexpression and poor prog-

nosis in breast cancer patients (Hall et al, 2014). Furthermore, in

the MDA-MB-231 cell line, a TNBC model, caspase-independent cell

death was potentiated by MCU silencing, suggesting that MCU over-

expression may offer a survival advantage against some apoptotic

pathway (Curry et al, 2013). Finally, the role of MCU in the control

of breast cancer cell migration has been ascribed to a store-operated

Ca2+ entry-dependent mechanism (Tang et al, 2015).

Here, we show that MCU expression correlates with breast tumor

size and lymph node infiltration. MCU silencing causes a significant

decline in mitochondrial [Ca2+], metastatic cell motility, and matrix

invasiveness. Most importantly, in MDA-MB-231 xenografts, dele-

tion of MCU greatly reduces tumor growth and metastasis forma-

tion. In the absence of MCU, production of mROS is significantly

lower, suggesting that mROS might play a crucial role in cell malig-

nancy regulation by mitochondrial Ca2+ uptake. Moreover, MCU

silencing downregulates HIF-1a expression, thus impairing the tran-

scription of HIF-1a-target genes involved in tumor progression. In

agreement with HIF-1a being a major effector of MCU, rescue of

HIF-1a expression restores migration of MCU-silenced TNBC cells.

Finally, breast cancer dataset analysis confirms a strong correlation

of MCU expression with HIF-1a signaling. In conclusion, our work

points out MCU as a critical checkpoint of metastatic behavior, and

thus a potential pharmacological target in aggressive cancers, such

as TNBC.

Results

MCU expression correlates with breast tumor progression and
cell migration

To decipher the role of mitochondrial Ca2+ signaling in metastatic

potential, we collected the mRNA levels of MCU and related proteins

(MCUb, MICU1-3, and EMRE) from the TCGA breast cancer dataset

(http://tcga-data.nci.nih.gov/docs/publications/brca_2012/) (Koboldt

et al, 2012). Data analyses relative to tumor size and regional lymph

node infiltration demonstrate a significant correlation of MCU

and MCUb expression levels with breast cancer clinical stages

(Fig 1A and B). In particular, while MCU expression increases with

tumor progression, the expression of MCUb, the dominant-negative

channel isoform, decreases. These data suggest that mitochondrial

Ca2+ uptake may increase with tumor size and infiltration. On the

other hand, no correlation of the expression of MCU regulators

(MICU1-3 and EMRE) with tumor size and lymph node infiltration

was detected (Appendix Fig S1A and B), suggesting that either no

control is exerted on MCU regulators or that post-translational

modifications may be critical (Patron et al, 2014; Petrungaro et al,

2015).

These data indicate that increased mitochondrial Ca2+ uptake

may be instrumental for metastasis. We decided to verify this

hypothesis in a specific breast tumor subset, that is, TNBC. Accord-

ingly, three different human metastatic TNBC models were

analyzed: BT-549, MDA-MB-468, and MDA-MB-231 cell lines. For

each cell line, an agonist that evokes a robust cytosolic Ca2+ tran-

sient was chosen (i.e., ATP for MDA-MB-231 and MDA-MB-468,

histamine for BT-549 cells). In all three cell models, short-interfering

RNA (siRNA)-mediated inhibition of MCU caused a significant

decline in agonist-induced mitochondrial Ca2+ uptake (Fig 1C–E).

In line with the consistent effect on mitochondrial Ca2+ uptake,

MCU silencing impaired cell motility, monitored by wound healing

migration assay, in all TNBC lines tested (Fig 1F–H), while prolifera-

tion was largely unaffected (Fig 1I–K). The inhibitory effect of MCU

silencing on MDA-MB-231 cell migration has been previously

ascribed to the regulation of store-operated Ca2+ entry (SOCE),

although the mechanism remains unclear (Tang et al, 2015). To

clarify whether the impairment of migration is specifically due to

the reduction in mitochondrial Ca2+ uptake, or rather to indirect

effects of MCU silencing on global cellular Ca2+ signaling, cytosolic

Ca2+ transients, SOCE, and ER Ca2+ content were measured. MCU

silencing caused a decrease of agonist-induced cytosolic Ca2+ tran-

sients in BT-549 and MDA-MB-231 cell lines but not in MDA-

MB-468 (Appendix Fig S2A), maybe reflecting a cell type-specific regula-

tion of the inhibitory role that local high [Ca2+] microdomains play

on Ins(1,4,5)P3R activity (Rizzuto et al, 2012). In contrast to what

was previously reported (Tang et al, 2015), MCU silencing caused

an increase in SOCE in MDA-MB-231 and MDA-MB-468 cell lines, in

terms of both speed and maximal [Ca2+] entry and irrespective of

the experimental protocol used to deplete Ca2+ store (either CPA,

ionomycin or Ins(1,4,5)P3-coupled agonist) (Appendix Fig S2B–D).

However, this effect was absent in BT-549 cells. Treatment with

CPA or ionomycin in the absence of extracellular Ca2+ demon-

strated that MCU silencing does not affect intracellular Ca2+ stores

in all cell lines here tested (Appendix Fig S2B–D). Overall, these

results indicate a cell line-dependent effect of MCU knockdown on

the regulation of cytosolic Ca2+ transients and SOCE in the different

TNBC lines analyzed. Thus, the impairment in cell migration trig-

gered by MCU silencing is most likely due to the specific reduction

in mitochondrial Ca2+ uptake that was consistently observed in the

three cell lines, as opposed to the other aspects of global Ca2+

homeostasis.

To complete the picture, overexpression of MCU triggered an

increase in agonist-induced mitochondrial Ca2+ uptake as expected

(Appendix Fig S3A), and a decrease in cytosolic [Ca2+] transients in

the three cell lines (Appendix Fig S3B), indicating that increased

MCU levels can uncover the buffering role that mitochondria can

exert on cytosolic Ca2+ rises (De Stefani et al, 2011). MCU overex-

pression did not affect intracellular Ca2+ stores, as demonstrated by

CPA, ionomycin, or agonist treatments in Ca2+-free media

(Appendix Fig S3C–E). Finally, the effect caused by MCU over-

expression on SOCE was only marginal (Appendix Fig S3C–E).
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Figure 1. MCU expression correlates with breast tumor progression and TNBC cell migration.

A, B Correlation of MCU and MCUb expression levels with breast cancer clinical stages. Median-centered log2 mRNA expression levels of MCU and MCUb were collected
from the TCGA breast cancer dataset (http://tcga-data.nci.nih.gov/docs/publications/brca_2012/). Data were plotted and analyzed against tumor size (T1–T4) (A) and
regional lymph node infiltration (N0–N3) (B), according to the AJCC Cancer Staging Manual (7th edition). Linear regression analysis with different stages was
implemented. Parameters of linear regression are shown. Numbers of samples for each stage are shown in parentheses.

C–E MCU silencing reduces [Ca2+]mit uptake in TNBC cells. Cells were transfected with siMCU or siControl. After 48 h, [Ca2+]mit uptake upon ATP (C, E) or histamine (D)
stimulation was measured (n = 10). P-values: ***P = 0.0008 (C), ***P < 0.0001 (D), ***P = 0.0001 (E), respectively.

F–H MCU silencing impairs TNBC cell migration. Cells were transfected with siMCU or siControl. The day after transfection, a linear scratch was obtained on the cell
monolayer through a vertically held P200 tip (time point 0 h). Cell migration into the scratched area was monitored 48 h later. The covered area was measured
and expressed as a percentage relative to 0-h time point (n = 12). P-value: ***P < 0.0001.

I–K Cell proliferation is mainly unaffected by MCU depletion. Cells were transfected with siMCU or siControl. Cell number was counted every 24 h for 3 days (the 72-h
time point corresponds to the 48-h time point of wound healing assay). Results are expressed as ratio R/R0 where R0 is the number of cells at the time of
transfection (0-h time point) (n = 6). P-value: *P = 0.05.

Data information: In each panel, data are presented as mean � SD. A two-tailed unpaired t-test was performed. See also Appendix Figs S1–S3.
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MCU silencing blunts cell invasiveness without affecting
cell viability

To further investigate the molecular mechanism involved in the

regulation of migration by MCU, we focused on MDA-MB-231 cells.

Of note, re-expression of mouse MCU (Ad-mMCU), in cells in which

MCU was silenced, rescued motility confirming the specificity of the

effect of siMCU (Fig 2A). Next, the invasion potential of TNBC cells

upon MCU silencing was investigated. For this purpose, an in vitro

spheroid formation assay was performed. Stable MCU-silenced cells

were produced and checked for MCU protein downregulation and

reduced mitochondrial [Ca2+] at rest, and upon agonist stimulation

(Appendix Fig S4A–C). shMCU cells were grown in agar containing

medium, and spheroid-shaped colonies were moved into a collagen

matrix, where they further grew and spread radially into the 3D

environment. By monitoring spheroids migration over time, we

demonstrated that MCU silencing strongly impairs the ability of

TNBC cells to invade the surrounding collagen matrix (Fig 2B). Of

note, a colony formation assay revealed that, in 7 days, cell growth

was partially inhibited by shMCU (Fig 2C). As already reported

(Curry et al, 2013), we excluded a role of apoptosis and of cell cycle

arrest in our experimental settings (Fig 2D and E). Moreover, the

drop in mitochondrial Ca2+ uptake upon MCU silencing was not

related to alterations in the mitochondrial membrane potential

(ΔΨ), as no difference was detected in the steady-state accumulation

of the cationic fluorescent dye tetramethyl rhodamine methyl ester

(TMRM) in mitochondria (Appendix Fig S4D).

Hence, MCU activity is not limited to the regulation of TNBC cell

migration, but it controls the invasion potential of malignant breast

cancer cells.

MCU deletion hampers tumor growth and metastasis formation
in MDA-MB-231 xenografts

The in vitro data on migration, invasiveness, and clonogenic activity

were further supported by an in vivo orthotopic tumor analysis.

MCU deletion of MDA-MB-231 cells was achieved by CRISPR/Cas9

Nuclease RNA-guided genome editing technology (Cong et al,

2013). Two independent MCU�/� clones were selected and tested

for their reduced resting mitochondrial [Ca2+] and agonist-induced

Ca2+ uptake (Appendix Fig S4E–G), while cytosolic Ca2+ transients

were unaffected (Appendix Fig S4H). MCU�/� cells were injected

into the fat pad of SCID mice, and tumor size, lymph node infiltra-

tion, and metastasis formation were measured. Tumor growth was

slower in mice injected with MCU�/� cells, relative to controls

(Fig 3A). Therefore, mice were sacrificed at different time points to

compare the metastatic potential of tumors with equal size (i.e.,

control mice were sacrificed at day 39 post-injection, while MCU�/�

clones 1 and 2 mice were sacrificed at day 46 and 56 p.i., respec-

tively). Independently of tumor size, lymph node infiltration and

lung metastasis of MCU�/� tumors were sharply impaired as

revealed by in vivo imaging of metastasis at the homolateral axillary

area (Fig 3B), lymph nodes weight (Fig 3C), lymph nodes infiltra-

tion by human cytokeratin-positive cells (Fig 3D), and ex vivo imag-

ing of lung metastases (Fig 3E).

These results demonstrate that the molecular knockdown of

mitochondrial Ca2+ signaling impairs rapid tumor progression and

metastasis formation in vivo, and well match the data of Fig 1,

which showed overexpression of MCU in advanced clinical stages of

breast cancer.

MCU downregulation decreases cellular NADH levels and ATP
production, but increases NADPH/NADH ratio

To understand the impact of MCU downregulation on mitochon-

drial redox metabolism, we measured cellular and mitochondrial

NADH levels (the most abundant nicotinamide adenine dinu-

cleotide species present in mitochondria), NADPH levels, and ATP

production using live cell fluorescent and luminescent techniques.

First, we used a recently developed approach to assess cellular

NADPH/NADH homeostasis by discriminating the two autofluores-

cent species according to their fluorescence lifetime parameters

(Blacker et al, 2014). By measuring the lifetime component associ-

ated with the enzyme-bound fraction of NADPH/NADH (sbound),
the ratio of the two redox equivalents can be directly assessed,

while intensity measurements reflect their total amount. Interest-

ingly, in shMCU cells, we observed a significant increase in sbound,
as compared to shControl cells (Fig 4A and B), indicating an

increased NADPH/NADH ratio, that was associated with the

reduction in total NADPH+NADH intensities in shMCU cells

(Fig 4C). Next, to assess the redox ratio of the NADH/NAD+

couple, we compared the resting NADH fluorescence intensity to

maximally oxidized (in the presence of the uncoupler carbonyl

cyanide4-(trifluoromethoxy)phenylhydrazone, FCCP) and maximally

reduced (in the presence of the complex I inhibitor rotenone) state

(Fig 4D and E). These measurements indicate that, in spite of the

decrease in the total amount of NADH, the redox equilibrium

between NADH/NAD+ is unaltered following MCU knockdown.

Altogether, these changes suggest a complex alteration in cellular

redox state due to the lack of MCU. On the one hand, it implies a

mitochondrial bioenergetic defect due to the lack of reducing equiv-

alents used in oxidative phosphorylation (OXPHOS). This has been

further demonstrated by measuring ATP production rate after

2-deoxy-D-glucose treatment in MCU-silenced and control cells.

Under those settings, MCU silencing significantly reduced mitochon-

drial ATP production (Fig 4F). On the other hand, the overall

increase in NADPH/NADH ratios suggests an augmented cellular

antioxidant capacity. This prompted us to investigate further the

turnover of mitochondrial reactive oxygen species, which has been

previously implicated in regulating cell migration and invasion

(Bogeski et al, 2011; Sena & Chandel, 2012).

MCU silencing critically reduces mitochondrial ROS production

It is well established that redox signaling is involved in cellular

migration, and a variety of antioxidant molecules have been shown

to inhibit cell motility both in vitro and in vivo (Porporato et al,

2014). In line with these observations, treatment of MDA-MB-231

cells with two different antioxidants/reductants (N-acetylcysteine

(NAC) and dithioerythritol (DTE)) reduced cell migration, as

measured by wound healing assay (Fig 5A). To specifically analyze

the effect of mitochondrial ROS on migration, we used the mito-

chondria-targeted ROS scavenger MitoTEMPO. The effect of Mito-

TEMPO on breast cancer cell migration was similar to that obtained

by NAC and DTE, thus supporting the hypothesis that mitochondrial

ROS play a crucial role in TNBC migration (Fig 5B).
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Figure 2. MCU silencing blunts cell invasiveness without affecting cell viability.

A Re-expression of mMCU rescues cell motility of MCU-silenced cells. Cells were transfected with siMCU or siControl. Ad-mMCU was used to re-express MCU (Ad-GFP
was used as a control). MCU protein expression was verified by Western blot. The day after transduction, a linear scratch was made (0-h time point). Cell migration
into the wounded area was monitored at 48-h time point, and the covered area was measured (n = 12). P-value: ***P < 0.0001.

B MCU silencing blunts cell invasiveness. Stable shMCU- and shControl-expressing spheroids were plated and let grow into collagen I (0-h time point). Spheroid area
was measured at 0 h and 48 h (n = 8). Scale bar: 300 lm. P-value: ***P = 0.0003.

C MCU silencing reduces the clonogenic potential of MDA-MB-231 cells. Stable shMCU- and shControl-expressing cells were plated at low confluence (2 × 103/well of a
6-well plate). After 7 days, the number of colonies was counted (minimum 30 cells/colony, n = 8). P-value: **P = 0.0027.

D MCU depletion does not induce cell death. Cells were transfected with siMCU or siControl. Seventy-two hours later, cell apoptosis and necrosis were measured by
FITC-Annexin V and propidium iodide (PI) detection (Q1: PI positive, Q2: PI and FITC-Annexin V positive, Q3: PI and FITC-Annexin V negative, Q4: FITC-Annexin V
positive; n = 6).

E MCU depletion does not alter cell cycle. Cells were transfected with siMCU or siControl. Seventy-two hours later, cell cycle distribution was monitored by propidium
iodide (PI) detection (n = 6).

Data information: In each panel, data are presented as mean � SD. A two-tailed unpaired t-test was performed. See also Appendix Fig S4.
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Next, we sought to verify the role of mitochondrial Ca2+

uptake in ROS production. For this purpose, we directly measured

mitochondrial hydrogen peroxide (H2O2) levels with pHyper-dMito

protein sensor. One of the major advantages of this probe is that

it is ratiometric by excitation, thus limiting measurement

errors deriving from photobleaching or concentration variability

(Belousov et al, 2006). Since pHyper-dMito is known to be sensi-

tive to pH, we in addition measured mitochondrial pH using the

redox insensitive form of the sensor, SypHer2 (Shirmanova et al,

2015). MCU silencing did not affect matrix pH (Fig 5C) while

mitochondrial H2O2 levels were significantly reduced (Fig 5D).

This was further confirmed using two different non-ratiometric

redox indicators, the mitochondrial H2O2-sensitive HyPerRed

probe (Ermakova et al, 2014) (Fig 5E) and the superoxide anion

sensitive dye, MitoSOXTM (Fig 5F). Finally, we took advantage of

ectopic expression of mitGrx1-roGFP2, a genetically encoded ratio-

metric protein sensor for detection of mitochondrial glutathione

redox potential (EGSH), as a direct indication of oxidative stress

(Gutscher et al, 2008). Live cell imaging revealed that MCU

silencing caused a marked reduction in the GSSG/GSH ratio

(Fig 5G). Altogether, these results show that MCU silencing

significantly reduces mitochondrial ROS production, suggesting

that mROS may represent the key signaling mediators of MCU-

regulated cell motility.

HIF-1a signaling is a major effector of MCU

One of the main regulators of cell transformation and cancer

progression is HIF-1a, which not only plays an essential role in

hypoxic tumors, but also regulates a large variety of target genes

controlling the malignancy of several tumor types, which express

HIF-1a even in normoxic condition (Semenza, 2010). ROS signaling

has been reported to increase HIF-1a protein stability (Klimova &

Chandel, 2008) and transcription (Movafagh et al, 2015), both in

normoxic and hypoxic conditions. Given the observed decrease in

mROS production by MCU silencing, we asked whether MCU

regulates HIF-1a levels, either controlling protein stability or gene

transcription. MCU silencing caused a robust downregulation of

HIF-1a protein levels (Fig 6A). To understand how siMCU induces

HIF-1a depletion, we first investigated the canonical pathway of

A B

D E

C

Figure 3. MCU deletion hampers tumor growth and metastasis formation in MDA-MB-231 xenografts.
Control MDA-MB-231 cells and MCU�/� clones 1 and 2 carrying the firefly luciferase reporter gene were injected into the fat pad of SCID mice.

A Tumor mass volume was measured at specific time points until the day of sacrifice (day 39 post-injection for control, day 46 and 56 p.i. for MCU�/� cl.1 and cl.2,
respectively). P-values: (cl.1) ***P = 0.0001, (cl.2) ***P < 0.0001.

B Left: in vivo metastasis at the homolateral axillary area of three representative mice per group at the time of sacrifice. Right: total flux analysis. P-values: **P = 0.01,
*P = 0.02.

C Lymph nodes weight at the time of sacrifice. P-values: ***P = 0.0010, **P = 0.0014.
D Human cytokeratin 7 (CK7) IHC staining of three representative lymph nodes per group. Scale bar: 500 lm.
E Left: images of three representative lungs per group collected ex vivo at the time of sacrifice. Right: total flux analysis. P-values: **P = 0.0031, ***P = 0.0004.

Data information: In each panel, data are presented as mean � SE (n = 9 for Control, n = 8 for MCU�/� cl.1, n = 10 for MCU�/� cl.2). A two-tailed unpaired t-test was
performed. See also Appendix Fig S4.
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HIF-1a protein degradation. Prolyl hydroxylase domain protein 2

(PHD2) hydroxylates HIF-1a in an O2-dependent manner, thus

triggering interaction of HIF-1a with von Hippel–Lindau tumor

suppressor protein (VHL) and, eventually, proteasome recruitment.

We reasoned that, if siMCU enhanced HIF-1a protein degradation,

proteasome inhibition would lead to accumulation of hydroxylated

HIF-1a (OH-HIF-1a). Thus, we treated MDA-MB-231 cells with the

proteasome inhibitor MG132 at different time points and monitored

protein levels of both HIF-1a and hydroxylated HIF-1a. As expected,
MG132 treatment caused progressive accumulation of HIF-1a and

hydroxylated HIF-1a in siControl samples. Surprisingly, both HIF-1a
and hydroxylated HIF-1a protein levels were constantly lower after

MCU silencing (Fig 6B), suggesting that proteasome-mediated

degradation is not responsible for siMCU-dependent HIF-1a
depletion.

Thus, we pursued the hypothesis of a transcriptional control of

HIF1A. Indeed, induction of mitochondrial ROS production by para-

quat treatment increased HIF-1a mRNA levels (Fig 6C). In addition,

siMCU strongly reduced HIF1A transcription both in normoxic and

in hypoxic conditions (Fig 6D). Notably, rescue of MCU expression

restored HIF-1a mRNA levels (Appendix Fig S5A). Also, HIF2A tran-

scription was significantly blunted by siMCU (Fig 6E). Moreover,

HIF-1a target genes, selected on the basis of their role in metabolic

reprogramming and/or migration control, were induced by hypoxia,

as expected (Fig 6F–J). In agreement with HIF-1a downregulation,

transcription of these genes was significantly reduced by MCU

silencing both in normoxia and in hypoxia (Fig 6F–J). These data

indicate that MCU silencing mainly controls transcription of HIF1A

and of its target genes, presumably through the regulation of mROS

production. To verify whether HIF-1a determines shMCU-mediated

effects on cell migration, we carried out a rescue experiments by re-

expressing HIF-1a in MCU-silenced cells. We observed that HIF-1a
overexpression significantly rescues siMCU-mediated impairment of

migration (Fig 6K) demonstrating that HIF-1a is a crucial down-

stream effector of MCU in TNBC. To understand whether similar

correlation occurs in human tumors, we analyzed the mRNA levels

of HIF-1a and its regulated genes in the TCGA BRCA dataset (see

above). Importantly, significant correlations of MCU expression with

both HIF1A and its target genes were found (Fig 6L and M), indicat-

ing that MCU-dependent HIF1A transcription may also occur in

human breast tumors and that MCU may represent a novel regulator

of breast cancer progression.

Discussion

Mitochondrial Ca2+ signaling goes far beyond the general stimula-

tion of cellular energetics. In the last decades, the contribution of

mitochondrial Ca2+ uptake in cell survival and response to

apoptotic stimuli has been widely investigated (Rizzuto et al,

2012). The molecular characterization of MCU (Baughman et al,

2011; De Stefani et al, 2011) provided the tools to understand new

roles of mitochondrial Ca2+ uptake in several pathophysiological

conditions, including cancer. By genetic manipulation of MCU

complex, the notion that mitochondrial Ca2+ signaling is required

for cancer progression has emerged (Mallilankaraman et al, 2012;

Curry et al, 2013). Indeed, in human breast cancer, a correlation

between MCU gene expression and poor prognosis has been

A

B C

D

F

E

Figure 4. MCU downregulation alters cellular redox state.

A–C FLIM analysis of cellular NADH/NADPH levels. Fluorescence lifetimes of
NAD(P)H autofluorescence in stable shControl- and shMCU-expressing
cells were imaged. Representative images of the distribution of sbound on
an intensity weighted pseudocolored scale (2.2–2.5 ns) are shown. Scale
bars: 20 lm (A). Mean � SE of sbound (B) and relative NADH and NADPH
intensities (C) calculated from equation in Blacker et al (2014) are shown
(n = 3). P-values: **P = 0.01 (B), **P = 0.002 (C).

D, E Measurement of the redox state of the NADH/NAD+ couple.
Representative measurements of NADH intensity at steady state and at
minimal and maximal reduced state (D). Percentage of the steady-state
redox state (E) (n = 3).

F MCU depletion impairs the mitochondrial rate of ATP production. Cells
were transfected with siMCU or siControl. Forty-eight hours later, cells
were treated with 5.5 mM 2-deoxy-D-glucose for 1 h and cellular ATP
levels were quantified (n = 6). P-value: ***P = 0.0009.

Data information: In each panel, data are expressed as mean � SE. A two-
tailed unpaired t-test was performed.
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reported (Hall et al, 2014). At first sight this evidence may appear

in contrast with the previous finding that miR-25, that specifically

targets MCU, is expressed in colon and prostate primary tumors

(Marchi et al, 2013). However, it should be taken into account that

metastatic cells must adapt and modify their signaling phenotype

and bioenergetic profile, to undergo unrestrained proliferation

(LeBleu et al, 2014).

On this basis, we investigated the contribution of mitochondrial

Ca2+ uptake to metastasis. We hypothesized that, while at early

stages of tumor formation low mitochondrial Ca2+ loading should

be preserved to avoid sensitization to apoptotic stimuli (Marchi

et al, 2013), in advanced stage tumors, high mitochondrial Ca2+

levels might have different, favorable roles.

Bioinformatic analysis corroborated this hypothesis indicating a

relatively small but strongly significant increase in the expression

of the channel forming subunit of the MCU complex during tumor

progression. Interestingly, this was accompanied with the reduc-

tion in the endogenous dominant-negative MCUb isoform. The

mRNA levels of the regulatory subunits (MICU1-3, EMRE) showed

no correlation, suggesting that their posttranslational modification

plays more important roles in regulating Ca2+ flux through the

channel forming MCU subunits (Patron et al, 2014; Petrungaro

et al, 2015).

We thus reasoned that elevated mitochondrial Ca2+ transients

might be essential for cancer progression. To validate our hypothe-

sis, we chose three different TNBC metastatic cell lines (BT-549,

MDA-MB-231, MDA-MB-468) and markedly reduced mitochondrial

Ca2+ uptake by MCU silencing. We simultaneously monitored the

capacity of those cells to migrate and rescue a scratched area. MCU

suppression strongly reduced all three TNBC lines migration poten-

tial, and this effect could not be justified by short-term changes in

cell cycle or death. It has been proposed that MCU regulates store-

operated Ca2+ entry-dependent cell migration (Tang et al, 2015).

Our analysis demonstrates a cell line-dependent effect of MCU

silencing on cytosolic [Ca2+] and SOCE. One intriguing possibility

would be that both increased and decreased cytosolic [Ca2+] simi-

larly regulate cell migration, although with different mechanisms.

However, we also show that MCU deletion does not affect cytosolic

[Ca2+] in CRISPR/Cas9 clones used for the in vivo xenograft

experiments. These data convincingly point to a specific role of

mitochondrial Ca2+ uptake in the regulation of migration and tumor

progression.

Notably, MCU stable depletion reduced cell growth, as demon-

strated by the colony formation assay, and the capacity of invading

a collagen-based matrix that mimics in vitro the potential of meta-

static cells to spread into distant tissues. Most importantly, in vivo

experiments confirmed these results, in terms of primary tumor

growth (slower in MCU�/� xenografts), lymph node infiltration, and

lung metastasis formation (both parameters being reduced by MCU

deletion, independently of primary tumor size).

The cellular events that underlie this process are still subject to

intensive study and involve a complex rearrangement of mitochon-

drial and cellular metabolism. In the presence of glucose as nutrient,

mitochondrial membrane potential was preserved, while mitochon-

drial dysfunction (i.e., reduced ATP production) became apparent

upon inhibition of glycolysis. In addition, we found a significant

reduction in total NAD(P)H following MCU silencing. This cannot

be simply explained by a general reduction in the TCA cycle flow,

since the redox ratio of the NADH/NAD+ couple remained

unchanged. As we already showed in skeletal muscle (Mammucari

et al, 2015), also in TNBC cells MCU silencing leads to reduced rest-

ing mitochondrial [Ca2+], given that the channel is the only source

of mitochondrial Ca2+ uptake, which is supposed to reduce the

activity of three Ca2+ sensitive TCA cycle-related enzymes (Rizzuto

et al, 2012). However, the maintenance of the NADH/NAD+ ratio

accompanied by reduced total NAD(P)H levels indicate that (i)

either Ca2+ has still unknown direct targets in mitochondria (e.g.,

in NAD(P)H synthetic or transport pathways) or (ii) altered Ca2+

homeostasis and TCA activity can be indirectly compensated by

altering total cellular redox homeostasis. Notwithstanding the exact

mechanism, a crucial consequence of MCU silencing is an increased

NAD(P)H/NADH ratio, which has profound consequences on cellu-

lar antioxidant capacity. On this basis, we considered that the lack

of MCU overall can result in reduced steady-state levels of mito-

chondrial reactive oxygen species (mROS). ROS are critical triggers

of metastasis, both in vitro and in vivo (Santner et al, 2001; Porporato

et al, 2014) and antioxidant treatments result in migration

impairment (Tochhawng et al, 2013; Cierlitza et al, 2015), as we

confirmed in our model. In TNBC cells, mROS production was

significantly blunted upon MCU silencing, as demonstrated by

◀ Figure 5. MCU depletion reduces mitochondrial ROS production.

A Antioxidant treatments decrease cell migration. A linear scratch was obtained on cell monolayer through a vertically held P200 tip (0-h time point). Cells were
treated for 48 h with N-acetylcysteine (NAC) or dithioerythritol (DTE). Cell migration into the wounded area was monitored at 48-h time point, and the covered
area was measured (n = 12). P-values: (DTE 100 lM) **P = 0.008, ***P < 0.0001, (NAC 100 lM) **P = 0.005.

B Scavenging of mitochondrial ROS decreases cell migration. A linear scratch was obtained on a cell monolayer through a vertically held P200 tip (0-h time point).
Cells were treated for 48 h with 50 lM MitoTEMPO. Cell migration into the wounded area was monitored at 48-h time point, and the covered area was measured
(n = 12). P-value: ***P < 0.0001.

C MCU silencing does not affect matrix pH. Cells were transfected with siMCU or siControl and SypHer2 probe. Forty-eight hours later, matrix pH was measured
(n = 22).

D, E Mitochondrial H2O2 levels are critically blunted after MCU depletion. Cells were transfected with shMCU or shControl, together with the ratiometric YFP-based
biosensor pHyper-dMito (D) or the mitochondrial H2O2-sensitive HyPerRed probe (E). Forty-eight hours later, H2O2 production was measured (n = 35). P-values:
*P = 0.02 (D), *P = 0.05 (E).

F Mitochondrial superoxide levels are critically blunted after MCU silencing. Cells were transfected with siMCU or siControl. Forty-eight hours later, cells were loaded
with the red dye MitoSOXTM and superoxide anion levels were measured (n = 25). P-value: *P = 0.04.

G Mitochondrial GSSG/GSH ratio is critically reduced after MCU silencing. Cells were transfected with shMCU or shControl, together with the mitochondrial targeted
mitGrx1-roGFP2 probe. Ninety-six hours later, the glutathione redox potential (EGSH) was measured (n = 46). P-value: ***P < 0.0001.

Data information: In panels (A, B), data are expressed as mean � SD. In panels (C–G), data are expressed as mean � SE. A two-tailed unpaired t-test was performed.
Scale bars: 10 lm.
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accurate analysis of mitochondrial redox state, performed by means

of four different mitochondria-targeted redox-sensitive probes.

Thus, the final outcome of MCU silencing depends on alterations in

the redox potential, which could in turn involve a large number of

intracellular signaling cascades. However, our results reveal a

smaller effect of mROS depletion on migration, compared to MCU

knockdown, indicating that mROS are critical effectors of MCU/

Ca2+ regulation of metastasis, but most likely cooperate with other

yet unresolved mitochondrial signaling molecules.

Recent findings indicate mROS as crucial regulators of protein

stabilization and transcription of HIF1A, one of the master regula-

tors of tumor progression (Sullivan & Chandel, 2014; Movafagh

et al, 2015). We show here that, in MDA-MB-231 cells, paraquat

treatment, which triggers superoxide production, increases HIF1A

transcription. This result, together with the evidence that MCU

silencing decreases mROS production, prompted us to consider

HIF-1a as possible effector of MCU depletion. We demonstrated a

proteasome-independent regulatory mechanism based on downreg-

ulation of HIF1A transcription by MCU silencing. Notably, in many

solid tumors and cell lines, including MDA-MB-231, HIF1A has been

reported to be expressed also in normoxic conditions (Hiraga et al,

2007). The fact that MCU depletion decreases HIF-1a-dependent
transcription also in normoxic conditions suggests that MCU plays

a fundamental role to suppress HIF-1a-dependent metabolic repro-

gramming and migration. HIF-1a is known to induce expression of

many different genes that control the wound repair process, as well

as metabolic proteins and adhesion proteins (integrins). In cancer

cells, HIF-1a induces the expression of several glycolytic protein

isoforms that differ from those found in non-malignant cells,

including glucose transporters and a plethora of enzymes (Semen-

za, 2010). In addition to the well-known role of these proteins in

promoting the metabolic reprogramming of cancer cells, some HIF-

1a-induced glycolytic isoforms also participate in survival

processes, including inhibition of apoptosis (i.e., HKII) (Sato-

Tadano et al, 2013) and promotion of cell migration (i.e., G6PI)

(Torimura et al, 2001). Moreover, HIF-1a upregulates lysyl-oxidase

(LOX) which, in breast cancers, controls migration and invasion

(Payne et al, 2005). An additional HIF-1a-regulated gene is the

carbonic anhydrase CAIX, which has been identified as a marker of

aggressive carcinomas (Chiche et al, 2013). In order to gain insight

into the mechanism, we measured the expression levels of various

HIF-1a target genes (namely PDK1, HKII, G6PI, LOX, and CAIX)

and found that MCU silencing counteracts HIF-1a-dependent gene
expression.

Finally, HIF-1a overexpression rescues MCU silencing-induced

migration impairment, suggesting that HIF-1a represents the key

effector of the siMCU-mediated phenotype. Accordingly, we show

here that a positive correlation of MCU expression with HIF1A and

its regulated genes exists in human breast cancer samples, indicat-

ing that, in parallel with HIF-1a, MCU represents a novel marker of

cancer progression.

Overall, our results demonstrate that mitochondrial Ca2+

uptake is required for TNBC progression in vivo, and clarify the

close correlation between mitochondrial Ca2+ uptake and mROS

production, which targets the transcriptional regulation of HIF1A.

According to our model, mitochondrial Ca2+ uptake prompts

sustained mROS production and thus activation of a HIF-1a signal-

ing route that contributes to tumor growth and metastasis forma-

tion. This scenario suggests that mitochondrial Ca2+ uptake may

represent a novel therapeutic target for clinical intervention in

aggressive cancers.

Materials and Methods

Cell culture and transfection

BT-549 and MDA-MB-468 cells were cultured in Dulbecco’s modi-

fied Eagle’s medium (DMEM) (Life Technologies), supplemented

with 10% fetal bovine serum (FBS) (Life Technologies). MDA-

MB-231 cells were cultured in DMEM/F12 medium (1:1) (Life Technolo-

gies), supplemented with 10% FBS. MCF10AT1k.cl2 and

MCF10CA1a.cl1 cells were cultured in DMEM/F12 supplemented

with 5% horse serum (HS), 10 lg/ml insulin, 20 ng/ml EGF,

8.5 ng/ml cholera toxin, 500 ng/ml hydrocortisone. All media were

supplemented with 1% penicillin G-streptomycin sulfate (Euro-

clone) and 1% L-glutamine (Euroclone). Cells were maintained in

culture at 37°C, with 5% CO2. For experiments performed in

hypoxic conditions, cells were cultured for 24 h in a modular incu-

bator chamber at 37°C, with 5% CO2, 94% N2, and 1% O2. O2 levels

◀ Figure 6. MCU depletion critically affects HIF-1a levels and signaling.

A MCU silencing reduces HIF-1a protein levels. Cells were transfected with siMCU or siControl. HIF-1a protein levels were detected 48 h later.
B MCU silencing reduces MG132-mediated HIF-1a and hydroxylated HIF-1a protein accumulation. Cells were transfected with siMCU or siControl. Forty-eight hours

later, cells were treated with 10 lM of the proteasome inhibitor MG132. Left: Protein levels were revealed by Western blot. Right: quantification by densitometry
(n = 5).

C ROS increase HIF1A transcription. Cells were treated overnight with 100 lM paraquat to induce ROS production. HIF-1a mRNA levels were measured by real-time
PCR (n = 3). P-value: **P = 0.002.

D–J MCU silencing reduces mRNA levels of HIF1A, HIF2A, and HIF-1a target genes. Cells were transfected with siMCU or siControl. mRNA expression was measured
by real-time PCR (n = 3). P-values: for HIF-1a **P = 0.0031 (20% O2), **P = 0.009 (1% O2); for HIF-2a **P = 0.01; for LOX ***P = 0.001 (20% O2), ***P = 0.0005 (1%
O2); for PDK1 *P = 0.02, **P = 0.009; for G6PI *P = 0.02, **P = 0.005; for CAIX **P = 0.0026 (20% O2), **P = 0.0022 (1% O2); for HK2 **P = 0.0024, *P = 0.03.

K HIF-1a overexpression rescues siMCU-mediated migration impairment. Cells were transfected with siMCU or siControl. Wild-type (wt) and constitutively active (ca)
HIF-1a were expressed by retroviral infection (pBABE was used as a control). The day after transduction, cells were scratched (0-h time point). Cell migration into
the wounded area was monitored at 48-h time point, and the covered area was measured (n = 12). P-values: ***P < 0.0001, *P = 0.04.

L, M MCU expression levels correlate with HIF1A (L) and HIF-1a-regulated genes (M). A linear model (lm) to test the power of MCU expression levels predicting the
expression of HIF1A and HIF-1a-regulated genes was calculated and plotted for each of the 532 samples of the TCGA database (see Fig 1). Equation and R2 values
of the linear regression and significance indicating deviation from 0 are shown. The area of 95% prediction limit is shaded below and above the linear regression
line. The HIF-1a-regulated gene set was compiled from Broad Institute GSEA database (http://www.broadinstitute.org/gsea/msigdb/cards/V$HIF1_Q5.html, merged
sets of V$HIF1_Q3 and V$HIF1_Q5).

Data information: In each panel, data are expressed as mean � SD. A two-tailed unpaired t-test was performed. See also Appendix Fig S5.
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were monitored by LabQuest2-Interface and Oxygen Sensor (ML

Systems). All cell lines were tested for mycoplasma contamination.

siRNAs (10 pmoles/cm2) were transfected using Lipofectamine�

RNAiMAX Transfection Reagent (Life Technologies). Expression

plasmids were transfected using LT1 reagent (Mirus).

siRNA

The following MCU-targeting sequences were designed:

siRNA-MCU#1: 50-GCCAGAGACAGACAAUACUtt-30.
siRNA-MCU#2: 50-UAAUUGCCCUCCUUUAUAUtt-30.

Expression vectors

The following plasmids were used: pLPCXmitGrx1-roGFP2

and HyperRed, pHyPer-dMito (Evrogen), pLKO.1puro-NonTarget

shRNA Control (Sigma-Aldrich), pCMV-VSV-G (a gift from B.

Weinberg, Addgene plasmid #8454), pMD2.G (a gift from D. Trono,

Addgene plasmid #12259), pLKO.1-TRC cloning vector (a gift from

D. Root, Addgene plasmid #10878), HA-HIF1alpha-wt-pBABE-puro

and HA-HIF1alpha P402A/P564A-pBABE-puro (gifts from W.

Kaelin, Addgene plasmids #19365 and #19005), pBABE-puro (a gift

from H. Land & J. Morgenstern & B. Weinberg, Addgene plasmid

#1764), and pCL-Eco (a gift from I. Verma, Addgene plasmid

#12371).

For MCU stable knockdown in MDA-MB-231, the following inter-

fering sequences were cloned into pLKO.1-TRC cloning vector

according to manufacturer’s protocol (Addgene):

pLKO.1shMCU#1:

FOR: 50-CCGGGCAAGGAGTTTCTTTCTCTTTCTCGAGAAAGAGAAA
GAAACTCCTTGCTTTTTG-30

REV: 50-AATTCAAAAAGCAAGGAGTTTCTTTCTCTTTCTCGAGAAA
GAGAAAGAAACTCCTTGC-30

pLKO.1shMCU#2:

FOR: 50-CCGGTCAAAGGGCTTAGTGAATATTCTCGAGAATATTCAC
TAAGCCCTTTGATTTTTG-30

REV: 50-AATTCAAAAATCAAAGGGCTTAGTGAATATTCTCGAGAA
TATTCACTAAGCCCTTTGA-30

For 4mtGCaMP6f cloning, we took advantage of the last generation

of GCaMP probes (Chen et al, 2013). cDNA of the probe was

amplified from the pGP-CMV-GCaMP6f plasmid, a gift from Douglas

Kim (Addgene plasmid # 40755) with the following primers:

AAGCTTGGTTCTCATCATCATCATC and GGATCCTCACTTCGCTGT

CATCATT and cloned into HindIII and BamHI sites of a custom-

made pcDNA3.1-4mt vector.

Viral infection

Ad-cytAEQ, Ad-mtAEQmut, Ad-GFP, and Ad-MCU were already

published (Ainscow & Rutter, 2001; Raffaello et al, 2013).

Lentiviral particles were produced by co-transfection of

recombinant shuttle vectors (pCMV8.74 and pMD2.VSVG) and

pLKO.1shMCU (#1 and #2) in packaging HEK293T cells. Infected

cells were selected by treatment with 1 lg/ml puromycin.

For HIF-1a overexpression in MDA-MB-231 cells, retroviral parti-

cles were produced by co-transfection of recombinant shuttle vector

pCL-Eco and pBABE vectors (pBABE-puro, HA-HIF1a-wt-pBABE,

HA-HIF1a-P402A/P564A-pBABE).

Generation of MCU�/� MDA-MB-231 cell lines

To generate MCU�/� MDA-MB-231 cell lines, two Cas9 guides

targeting different regions of the human MCU gene were designed

(TGGCGGCTGACGCCCAGCCC for clone1 and GATCGCTTCCTGG

CAGAATT for clone2) and cloned into the BsmBI site of the Lenti-

CrisprV2 plasmid, a kind gift from Feng Zhang (Addgene plasmid

#52961). MDA-MB-231 cells were infected with lentiviral particles

produced as described above and selected with puromycin for one

week. Dilution cloning was performed to obtain different mono-

clonal cell populations that were screened and validated for MCU

gene ablation by Western blot. LentiCrisprV2 plasmid was used to

produce control clones.

Antibodies

The following antibodies were used: anti-MCU (1:1,000, HPA016480,

Sigma-Aldrich), anti-b-tubulin (1:5,000, sc9104, Santa Cruz), anti-

HIF-1a (1:500, 610958, Becton Dickinson), and anti-hydroxy-HIF-1a
(1:1,000, 3434, Cell Signaling).

Ca2+ measurements

For measurements of [Ca2+]cyt and [Ca2+]mit, cells grown on

12-mm round glass coverslips were infected with cytosolic

(Ad-cytAEQ) or low-affinity mitochondrial (Ad-mtAEQmut) probes,

as described (Bonora et al, 2013). Forty-eight hours later, cells were

incubated with 5 lM coelenterazine for 2 h in Krebs-Ringer modi-

fied buffer (KRB) (125 mM NaCl, 5 mM KCl, 1 mM Na3PO4, 1 mM

MgSO4, 5.5 mM glucose, 20 mM HEPES [pH 7.4]) at 37°C supple-

mented with 1 mM CaCl2, and transferred to the perfusion chamber,

and Ca2+ transients were evoked by agonist treatments. All

aequorin measurements were carried out in KRB, and agonists were

added to the same medium.

For SOCC activity measurements, cells grown on 12-mm round

glass coverslips were infected with Ad-cytAEQ. Forty-eight hours

later cells were incubated with coelenterazine, as described above,

and transferred to the perfusion chamber. After 1 min of perfusion

with 100 lM EGTA in KRB, agonists and other drugs were added for

2 min, in order to empty intracellular Ca2+ stores. Next, cells were

perfused with KRB containing 2 mM Ca2+ together with agonist or

drugs, as indicated.

All aequorin experiments were terminated by lysing the cells

with 100 lM digitonin in a hypotonic Ca2+-rich solution (10 mM

CaCl2 in H2O), thus discharging the remaining aequorin pool. The

light signal was collected and calibrated into [Ca2+] values as previ-

ously described (Bonora et al, 2013).

For measurements of resting mitochondrial [Ca2+], cells were

grown on 24-mm coverslips and transfected with plasmids encod-

ing 4mtGCaMP6f. After 24 h, coverslips were placed in 1 ml of

KRB and imaging was performed on a Zeiss Axiovert 200

microscope equipped with a 40×/1.4 N.A. PlanFluar objective.

Excitation was performed with a DeltaRAM V high-speed

monochromator (Photon Technology International) equipped with

a 75 W xenon arc lamp. Images were captured with a high-sensi-

tivity Evolve 512 Delta EMCCD (Photometrics). The system is

controlled by MetaFluor 7.5 (Molecular Devices) and was assem-

bled by Crisel Instruments. In order to perform quantitative
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measurements, we took advantage of the isosbestic point in the

GCaMP6f excitation spectrum: we experimentally determined in

living cells that exciting GCaMP6f at 410 nm leads to fluorescence

emission, which is not Ca2+ dependent. As a consequence, the

ratio between 474-nm and 410-nm excitation wavelengths is

proportional to [Ca2+] while independent of probe expression (Hill

et al, 2014). Cells were thus alternatively illuminated at 474 and

410 nm, and fluorescence was collected through a 515/30-nm

band-pass filter (Semrock). Exposure time was set to 200 ms at

474 nm and to 400 ms at 410 nm, in order to account for the low

quantum yield at the latter wavelength. At least 15 fields were

collected per coverslip, and each field was acquired for 10 s

(1 frame/s). Analysis was performed with the Fiji distribution of

ImageJ (Schindelin et al, 2012). Both images were background

corrected frame by frame by subtracting mean pixel values of a

cell-free region of interest. Data are presented as the mean of the

averaged ratio of all time points.

Mitochondrial membrane potential (ΔΨ) measurements

Cells were incubated with 20 nM tetramethyl rhodamine methyl

ester dye (TMRM) (Life Technologies) for 20 min at 37°C. TMRM

fluorescence was measured by FACS. The probe was excited at

560 nm, and the emission light was recorded in the 590–650 nm

range; 10 lM FCCP (carbonyl cyanide-p-trifluoromethoxyphenyl-

hydrazone), an uncoupler of oxidative phosphorylation, was added

after 12 acquisitions to completely collapse the ΔΨ. Data are

expressed as difference of TMRM fluorescence before and after

FCCP depolarization.

Measurements of NADH/NADPH levels and redox state

For fluorescence lifetime measurements, cells were plated onto

22-mm glass coverslips and allowed to adhere overnight before

imaging. At the microscope, coverslips were held at 37°C in a

metal ring and bathed in Dulbecco’s modified Eagle’s medium

(Gibco) containing 25 mM glucose, 1 mM pyruvate, and 2 mM

glutamine, buffered by 10 mM HEPES; 720-nm two-photon excita-

tion from a Chameleon (Coherent) Ti:sapphire laser was directed

through an upright LSM 510 microscope (Carl Zeiss) with a 1.0

NA 40× water-dipping objective. A 650-nm short-pass dichroic and

460 � 25 nm emission filter separated NAD(P)H fluorescence from

the incident illumination. On-sample powers were kept below

10 mW, and emission events were registered by an external detec-

tor (HPM-100, Becker & Hickl) attached to a commercial time-

correlated single-photon counting electronics module (SPC-830,

Becker & Hickl). Scanning was performed continuously for 2 min

with a pixel dwell time of 1.6 ls. Subsequent NAD(P)H FLIM data

analysis was performed using the procedures detailed in Blacker

et al (2014).

For measuring NAD(P)H redox state, cells were plated as

described above and imaged using a Zeiss 510 META UV-VIS confo-

cal microscope. The blue autofluorescence emitted by the pyridine

nucleotides NADH and NADPH in their reduced form was excited

with a UV laser (Coherent; at 351 nm), and emission was collected

using a 435-nm to 485-nm band-pass filter. To measure the

dynamic range of the signal in relation to the fully reduced and

oxidized NAD(P)H pool, cells were exposed to carbonyl cyanide

4-(trifluoromethoxy) phenylhydrazone (FCCP [1 lM] to stimulate

respiration and achieve maximum NAD(P)H oxidation) and rote-

none ([5 lM] to inhibit respiration and achieve maximum NAD(P)H

reduction). The final formula used to normalize the NAD(P)H

autofluorescence measurements was (F � FFCCP)/(Frotenone � F).

Quantitative analysis of the images obtained was done using the

ImageJ software (http://imagej.nih.gov/ij/).

ROS production measurements

To determine mitochondrial superoxide levels, cells were loaded

with 2 mM MitoSOXTM Red reagent (Life Technologies) for

15 min at 37°C. Images were taken on an inverted microscope

(Zeiss Axiovert 200) equipped with a PlanFluar 60×/1.4 NA

objective, a Photometrics Evolve Delta EMCCD, and a 75 W

Xenon arc lamp coupled to a monochromator (PTI Deltaram V).

The system was assembled by Crisel Instruments. MitoSOXTM Red

excitation was performed at ~510 nm, and emission was collected

at 580 nm. Maximal ROS production was induced with 2.5 lM
Antimycin-A (Sigma-Aldrich). Images were taken every 10 s with

a fixed 200 ms exposure time. Data were analyzed by ImageJ

software.

To determine GSSG/GSH and H2O2 levels, cells were transfected

with plasmids encoding HyperRed, pLPCXmitGrx1-roGFP2, and

pHyPer-dMito. To measure mitochondrial pH, SypHer2 plasmid was

used. SypHer2 originates from a mutation in a cysteine residue of

HyPer that renders it insensitive to H2O2 but does not affect the pH

sensitivity. Images were acquired every 5 s using a Cell Observer

High Speed (Zeiss) microscope equipped with 40× oil Fluar (N.A.

1.3) objective, CFP (Semrock HC), YFP and RFP (Zeiss) single-band

filters, 420 and 505 nm LED’s (Colibri, Zeiss), and an Evolve 512

EMCCD camera (Photometrics). Maximal ROS production was

induced with 100 lM H2O2. To calculate fluorescence ratios, back-

ground intensity was subtracted and images were corrected for

linear crosstalk. pHyPer-dMito and pLPCXmitGrx1-roGFP2 ratios

were calculated by AxioVision software (Zeiss) and analyzed in

Excel (Microsoft). HyperRed fluorescence was analyzed by ImageJ

software.

Cell death and cell cycle detection

Cell cycle and cell death induction after MCU silencing were

measured by cytofluorometry. Apoptotic and necrotic cells were

identified by labeling with FITC-Annexin V (Roche) and propidium

iodide (Sigma) for 15 min at 37°C and analyzing cells by FACS

(FACS Canto II, BD BioSciences). Data were processed using the BD

Vista software.

Wound healing migration assay

For wound healing assays, cells were seeded at low confluency

(30%) in 6-well plates, transfected with siRNA, and cultured

in medium without serum. The day after, a linear scratch was

obtained on cell monolayers through a vertically held P200

tip and medium was replaced. Images were taken at the

indicated time points (time 0 as reference). “TScratch” software

(www.cse-lab.ethz.ch/software/) was used for automated image

analysis.
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Clonogenic assay

To evaluate clonogenic potential, transduced cells were counted and

seeded (102 cells/cm2). Colonies were counted 7 days later. Only,

colonies containing ≥ 30 cells were counted.

ATP production measurements

ATP production was measured with the ATPlite 1 step Lumines-

cence Assay System (PerkinElmer) according to manufacturer’s

instructions. Glycolysis was inhibited by treatment with 5.5 mM

2-deoxy-D-glucose for 1 h.

Spheroids formation assay

15 × 102 cells/cm2 were seeded in a 96-well plate containing

100 ll of 1.5% agar in PBS. Seventy-two hours later, spheroids

were harvested and collected in tubes filled with 1 ml of medium.

Each tube contained five spheroids. Spheroids were let settle to

the bottom of the tube, and medium was then sucked out.

Spheroids were resuspended in 400 ll/well of a collagen mix

solution (1.66 mM L-glutamine, 10% FBS, 0.213% NaHCO3, 1%

Pen/Strep, 2 mg/ml Collagen I Bovine Protein (Life Technologies)

in MEM (Life Technologies)) and seeded in a 24-well plate,

previously filled with 300 ll/well of collagen mix solution. After

collagen mix solidification, 1 ml of medium was added in each

well. Images were collected every day, for 3 days, and the area of

the spheroid cluster was analyzed by Fiji ImageJ software (time 0

as reference).

RNA extraction, reverse transcription, and quantitative
real-time PCR

RNA was extracted using the SV Total RNA Isolation Kit

(Promega) following manufacturer’s instructions. Complementary

DNA was generated with a cDNA synthesis kit (SuperScript II,

Invitrogen) and analyzed by real-time PCR (Bio-Rad). HPRT-1 and

GAPDH were used as housekeeping genes. The following primers

were used:

HIF-1a: FOR: TGTACCCTAACTAGCCGAGGAA_ REV: AATCAGC

ACCAAGCAGGTCATA

HIF-2a: FOR: AATGCAGTACCCAGACGGATTT_ REV: ATGTTTGTC

ATGGCACTGAAGC

LOX: FOR: TCAGATTTCTTACCCAGCCGAC_ REV: TTGGCATCAAG

CAGGTCATAGT

PDK1: FOR: AATGCAAAATCACCAGGACAGC_ REV: ATTACCCAG

CGTGACATGAACT

G6PI: FOR: TTACTCCAAGAACCTGGTGACG_ REV: CTACCAGGA

TGGGTGTGTTTGA

CAIX: FOR: TGGCTGCTGGTGACATCCTA_ REV: TTGGTTCCCCTT

CTGTGCTG

HK2: FOR: GTGCCCGCCAGAAGACATTA_ REV: TGCTCAGACCTC

GCTCCATT

HPRT-1: FOR: TGACACTGGCAAAACAATGCA_ REV: GGTCCTTTT

CACCAGCAAGCT

GAPDH: FOR: GATTCCACCCATGGCAAATTCC_ REV: CCCCACTTG

ATTTTGGAGGGAT

In vivo tumor assays

One control and two independent MDA-MB-231 MCU�/� clones

were transduced with a lentiviral vector coding for the Firefly Luci-

ferase reporter gene (Breckpot et al, 2003).

For orthotopic tumor assay, 106 cells were resuspended in 100 ll
DMEM and injected in the fat pad of six-week-old female SCID mice

(Charles River Laboratories). The volume of tumor mass was

measured by calipering at specific time points. In vivo imaging was

performed at the day of sacrifice (day 39 post-injection for control,

day 46 p.i. for MCU�/� clone1, and day 56 p.i. for MCU�/� clone2).

D-Luciferin (Biosynth AG) (150 mg/kg) was injected i.p. to anes-

thetized animals. The light emitted from the bioluminescent tumors

or metastasis was detected using a cooled charge-coupled device

camera mounted on a light-tight specimen box (IVIS Lumina II

Imaging System; Caliper Life Sciences). Regions of interest from

displayed images were identified around metastatic regions, such as

lymph nodes and lungs, and were quantified as total photon counts

or photon/s using Living Image� software (Xenogen). In some

experiments, the lower portion of each animal was shielded before

reimaging in order to minimize the bioluminescence from primary

tumor. For ex vivo imaging, D-Luciferin (150 mg/kg) was injected

i.p. immediately before necropsy. The lungs were excised, placed in

a Petri plate, and imaged for 5 min. Animals were randomized

before experiments, and no blinding was done. Procedures involv-

ing animals and their care were in accordance with the Italian law

D. L.vo no 26/2014, and the experimental protocol (Authorization

n. 8584/2012-PR) was approved by the Italian Ministry of Health.

Bioinformatics analysis

To evaluate the correlation of the expression of MCU complex

components with tumor progression, median-centered log2 mRNA

expression levels of MCUa (NM_138357.2), MCUb (CCDC109b,

NM_017918.4), MICU1 (NM_006077.3), MICU2 (NM_152726.2),

MICU3 (NM_181723.2), and EMRE (SMDT1, NM_033318.4) were

compiled from the TCGA breast cancer dataset (http://tcga-data.

nci.nih.gov/docs/publications/brca_2012/) (Koboldt et al, 2012).

Linear regression analysis of individual expression values with the

corresponding tumor size (T1–T4) and lymph node (N0–N3) stages

was done in GraphPad (GraphPad Software, Inc.).

To quantify correlation of MCU mRNA levels with HIF-1a and a

HIF-1a-regulated gene set, linear models have been constructed in

R, and prediction values were analyzed against MCU expression

levels using linear regression analysis (GraphPad). The HIF-1a-
regulated gene set was compiled from the Broad Institute GSEA

database (merged sets of V$HIF1_Q3 and V$HIF1_Q5, http://www.

broadinstitute.org/gsea/msigdb/cards/V$HIF1_Q5.html).

Constructing linear models to predict correlations between MCU
and HIF-1a and a HIF-1a-regulated gene set

To test whether the expression of members of the MCU complex was

predictive of HIF-1a expression, two linear models were created. One

to predict the expression of HIF-1a from members of the MCU

complex and the other to predict the average expression of HIF-1a-
regulated genes. Both linear models were found to be highly
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statistically significant (P-values 5.67e-12 for predicting HIF-1a and

2.48e-22 for predicting HIF-1a-regulated genes), but these models

predict only a relatively small amount of the variation in the data with

adjusted R2 values of 0.1099 and 0.1927, respectively. In both models,

some members of the MCU complex were found to be more predictive

than others. For instance, for predicting the expression of HIF-1a, MCU

is the most predictive with a P-value of the expression of MCU not being

relevant for predicting HIF-1a was 3.83e-06, while for predicting the

average of HIF-1a-regulated genes, expression of MICU2 was most

significant with a P-value of 4.57e-12. Output from R and detailed expla-

nation can be found at http://blog.yhathq.com/posts/r-lm-summary

.html. The full set of results is summarized in the tables below:

Linear model of MCU predicting HIF-1a expression

Estimate SE t-value P (> |t|)

MCU 0.50420 0.10794 4.671 3.83e-06 ***

Linear model of MCU complex predicting HIF-1a-regulated gene

expression

Estimate SE t-value P (> |t|)

MCU 0.052493 0.009344 5.618 3.17e-08 ***

Statistics

For bioinformatics data, statistical analyses are reported above.

For in vitro and in vivo experiments, statistical analyses were

performed using Student’s two-tailed non-paired t-tests. P-values

< 0.05 were considered statistically significant and marked with

asterisks (*P < 0.05; **P < 0.01; ***P < 0.001), as indicated in the

figure legends. Data are represented as mean � SD if not indicated

otherwise. Statistical tests applied are indicated in the figure legends.

Sample size determination

Fisher’s exact test has been applied to determine the probability of

detecting differences in the following end points:

1) In vivo studies: a total number of nine mice for each experi-

mental condition were analyzed in order to detect the expected

variation in terms of probability of tumor growth and metasta-

sis formation between treatment conditions, with statistical

power of 0.85 and assuming a significance threshold corre-

sponding to P < 0.05. A priori sample size determinations were

performed by the GPower3.1 (www.gpower.hhu.de/) software

tool and by a simulation based approach.

2) In vitro studies: data available in our laboratory to define the

variance of the results were adopted. We have assumed a

statistical power of 85% and a significance level of P < 0.05

applying the Bonferroni correction whenever required.

Expanded View for this article is available online.
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