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Abstract5

Sedimentary provenance studies increasingly apply multiple chemical, mineralogical and isotopic prox-6

ies to many samples. The resulting datasets are often so large (containing thousands of numerical values)7

and complex (comprising multiple dimensions) that it is warranted to use the internet-era term ‘Big Data’8

to describe them. This paper introduces Multidimensional Scaling (MDS), Generalised Procrustes Anal-9

ysis (GPA) and Individual Differences Scaling (INDSCAL, a type of ‘3-way MDS’ algorithm) as simple10

yet powerful tools to extract geological insights from ‘Big Data’ in a provenance context. Using a dataset11

from the Namib Sand Sea as a test case, we show how MDS can be used to visualise the similarities and12

differences between 16 fluvial and aeolian sand samples for five different provenance proxies, resulting13

in five different ‘configurations’. These configurations can be fed into a GPA algorithm, which trans-14

lates, rotates, scales and reflects them to extract a ‘consensus view’ for all the data considered together.15

Alternatively, the five proxies can be jointly analysed by INDSCAL, which fits the data with not one16

but two sets of coordinates: the ‘group configuration’, which strongly resembles the graphical output17

produced by GPA, and the ‘source weights’, which can be used to attach geological meaning to the group18

configuration. For the Namib study, the three methods paint a detailed and self-consistent picture of a19

sediment routing system in which sand composition is determined by the combination of provenance and20

hydraulic sorting effects.21

keywords: provenance – statistics – sediments – U-Pb – zircon – heavy minerals22

1 Introduction23

Some 65% of Earth’s surface is covered by siliclastic sediments and sedimentary rocks. Unravelling the prove-24

nance of these materials is of key importance to understanding modern sedimentary environments and their25

ancient counterparts, with important applications for geomorphology, paleotectonic and paleogeographic re-26

constructions, hydrocarbon exploration and reservoir characterization, and even forensic science (e.g., Pye,27

2007; Vermeesch et al., 2010; Garzanti et al., 2012, 2014a,b; Stevens et al., 2013; Nie et al., 2014; Scott et al.,28
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2014). Over the years, thousands of studies have used a plethora of chemical, mineralogical and isotopic29

indicators to trace sedimentary provenance. The complexity of the resulting datasets can be organised on a30

number of hierarchical levels:31

1. A single sample32

Siliclastic sediments are made of grains, and on the most basic level, geological provenance analysis33

extracts certain properties from these grains. These properties can either be categorical (e.g, mineral-34

ogy) or continuous (e.g., age). In rare cases, analysing just a single grain can already yield important35

insight into the provenance of a sediment. For example, a single grain of alluvial diamond confirms the36

existence of kimberlitic lithologies in the hinterland. In general, however, provenance studies require37

not just one but many grains to be analysed. The provenance information contained in a representative38

collection of grains can be visualised with graphical aids such as histograms, pie charts or kernel density39

estimates (Vermeesch, 2012).40

2. Multiple samples41

Subjective comparison of detrital zircon U-Pb age distributions or heavy mineral compositions reveals42

the salient similarities and differences between two samples. Things become more complicated when43

more than two samples need to be compared simultaneously. For example, a dataset comprising n =44

10 age distributions presents the observer with n(n-1)/2 = 45 pairwise comparisons. If n = 100, this45

increases quadratically to 4,950 pairwise comparisons, which is clearly too much for the human brain46

to process. Multi-Dimensional Scaling (MDS) is a technique aimed to simplify this exercise (Section47

3). Originating from the field of psychology, the method is commonly used in ecology (Kenkel and48

Orlóci, 1986) and palaeontology (e.g., Dunkley Jones et al., 2008; Schneider et al., 2011). MDS was49

introduced to the provenance community by Vermeesch (2013), and has instantly proved its value for50

the interpretation of large datasets (e.g., Stevens et al., 2013; Nie et al., 2014).51

3. Multiple methods52

Several provenance methods are in use today which can be broadly categorised into two groups. Each53

of these tells a different part of the provenance story:54

(a) Multi-mineral techniques such as heavy mineral analysis and bulk geochemistry provide ar-55

guably the richest source of provenance information, but are susceptible to hydraulic sorting56

effects during deposition as well as chemical dissolution by diagenesis and weathering (Garzanti57

et al., 2009; Andò et al., 2012). These effects obscure the provenance signal and can be hard to58

correct.59

(b) Single mineral techniques such as detrital zircon U-Pb geochronology are less sensitive to hy-60

draulic sorting effects and, in the case of zircon, scarcely affected by secondary processes as well.61

However, zircon is ‘blind’ to sediment sources such as mafic volcanic rocks and carbonates. Fur-62

thermore, the robustness of zircon comes at a price, as it is difficult to account for the effect of63

sediment recycling (Garzanti et al., 2013).64

Great benefits arise when these two types of methods are used in tandem. A string of recent studies65

combining conventional bulk and heavy mineral petrography techniques with detrital geochronology66

have shown that this provides a very powerful way to trace provenance (e.g, Stevens et al., 2013;67
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Garzanti et al., 2012, 2014a,b). Combining multiple methods adds another level of complexity which68

requires an additional layer of statistical simplification. The datasets resulting from these multi-sample,69

multi-method studies are so large and complex that it is warranted to use the internet-era term ‘Big70

Data’ to describe them. This paper introduces Procrustes analysis (Section 4) and 3-way MDS (Section71

5) as valuable tools to help make geological sense of ‘Big Data’. These methods will be applied to a72

large dataset from the Namib Sand Sea, which combines 16 samples analysed by 5 different methods73

(Section 2). Although the use of some mathematical equations was inevitable in this paper, we have74

made the text as accessible as possible by reducing the algorithms to their simplest possible form. The75

formulas given in Sections 3-5 should therefore be considered as conceptual summaries rather than76

practical recipes, with further implementational details deferred to the Appendices.77

2 The Namib dataset78

The statistical methods introduced in this paper will be illustrated with a large dataset from Namibia. The79

dataset comprises fourteen aeolian samples from the Namib Sand Sea and two fluvial samples from the80

Orange River (Figure 1). These samples were analysed using five different analytical methods:81

1. Geochronology: ∼100 zircon U-Pb ages were obtained per sample by LA-ICP-MS. For samples N1-N13,82

this was done using methods described by Vermeesch et al. (2010). N14, T8 and T13 are new samples83

which were analysed at the London Geochronology Centre using an Agilent 7700x ICP-MS coupled to84

a New Wave NWR193 excimer laser with standard two volume ablation cell.85

2. Heavy minerals: a full description of samples N1-N14 was given by Garzanti et al. (2012). Samples T886

and T13 were reported (as samples S4328 and S4332) by Garzanti et al. (2014a,b).87

3. Bulk petrography: is also taken from Garzanti et al. (2012, 2014a,b).88

4. Major element composition: 10 major elements were measured by acid dissolution (Aqua Regia) ICP-89

ES at AcmeLabs Inc. in Vancouver, Canada (protocol 4A/B).90

5. Trace element composition: 27 trace elements were measured by acid dissolution (Aqua Regia) ICP-ES91

and ICP-MS at AcmeLabs (protocol 4A/B).92

The complete dataset is available as an Online Supplement in a tabular form that can be imported into93

the software discussed later in this paper. Taken altogether, the entire dataset contains 16,125 physical94

measurements covering a variety of ordinal and compositional spaces. This is a prime example of ‘Big Data’95

in a provenance context. A lot can be learned by a simple qualitative analysis of the measurements. For96

example, the zircon age distributions reveal prominent peaks at ∼600 and ∼1,000 Ma, consistent with a97

hinterland affected by Damara and Namaqua orogenesis, while the widespread occurrence of pyroxene and98

basaltic rock fragments indicates the existence of a volcanic sediment source (Garzanti et al., 2012, 2014a).99

But it is difficult to go beyond these general observations without statistical assistance because there is100

simply ‘too much’ data. In the following sections, we will follow the hierarchical organisation of Section 1101

to gain a better understanding of the multivariate dataset in different steps. First, we will integrate the102

different age distributions and compositions into five MDS maps (Section 3). Then, we will integrate these103

MDS maps into a single ‘Procrustes analysis’ (Section 4). Finally, we will jointly analyse the five datasets104

using ‘3-way MDS’ to gain further insight into the sediment routing system (Section 5).105
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Figure 1: The Namib dataset comprises of 1,533 detrital zircon U-Pb ages (shown as kernel density estimates

with a bandwidth of 30 Ma, Vermeesch, 2012), 3,600 heavy mineral counts (‘HM’), 6,400 petrographic point

counts (‘QFL’), and chemical concentration measurements for 10 major and 27 trace elements. ‘opx’ =

orthopyroxene, ‘cpx’ = clinopyroxene, ‘am’ = amphibole, ‘gt’ = garnet, ‘ep’ = epidote, ‘oth1’ = zircon +

tourmaline + rutile + Ti-oxides + sphene + apatite + staurolite; ‘Q’ = quartz, ‘KF’ = K-feldspar, ‘P’

= plagioclase, ‘Lm’, ‘Lv’ and ‘Ls’ are lithic fragments of metamorphic, volcanic and sedimentary origin,

respectively; ‘oth2’ = TiO2 + P2O5 + MnO; ‘oth3’ = Sc + Y + La + Ce + Pr + Nd + Sm + Gd + Dy +

Er + Yb + Th + U, and ‘oth4’ = Cr + Co + Ni + Cu + Zn + Ga + Pb. This figure makes the point that

an objective interpretation of a large database like this is impossible without the help of statistical aids.

3 Multidimensional Scaling106

The Namib study contains 16 samples, which can be visualised as kernel density estimates (for the U-Pb107

data) or pie charts/histograms (for the compositional datasets). For each of the five provenance proxies,108
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we have 16×15/2 = 120 pairwise comparisons, which is clearly too much to handle for an unaided human109

observer (Figure 1). Multidimensional Scaling (MDS) is a technique aimed to simplify the interpretation of110

such large datasets by producing a simple two-dimensional map in which ‘similar’ samples plot close together111

and ‘dissimilar’ samples plot far apart. The technique is rooted in the field of psychology, in which human112

observers are frequently asked to make a subjective assessment of the dissimilarity between ‘stimuli’ such as113

shapes, sounds, flavours etc. A classic example of this is the colour-vision experiment of Helm (1964), which114

recorded the perceived differences between 10 colours by a human observer, resulting in a 9×9 dissimilarity115

matrix. Let δi,j be the ‘dissimilarity’ between two colours i and j (‘red’ and ‘blue’, say). Then MDS aims to116

find a monotone ‘disparity transformation’ f117

f(δij) = δ′ij (1)

and a configuration1 X118

X =

[
x1 x2 · · · xi · · · xj · · · xn

y1 y2 · · · yi · · · yj · · · yn

]
(2)

so as to minimise the (‘raw’) stress S119

S =
∑
i<j

[
δ′ij −

√
(xi − xj)2 + (yi − yj)2

]2
(3)

The (x,y)-coordinates resulting from Equation 2 can be plotted as a map which, in the case of the Helm120

(1964) dataset, reveals the well-known colour circle (Figure 2a). Exactly the same principle can be used121

for geological data with, of course, dissimilarities not based on subjective perceptions but analytical data.122

There is a rich literature documenting ways to quantify the dissimilarity between petrographic or geochem-123

ical datasets. Further details about this are provided in Appendix A.124

125

Applying these methods to the Namib dataset, we can convert the raw input data (Figure 1) into five126

dissimilarity matrices. For the purpose of this exercise, we have used the Kolmogorov-Smirnov statistic for127

the U-Pb data, the Bray-Curtis dissimilarity for the heavy mineral and bulk petrography data, and the128

Aitchison distance for the major and trace element compositions (see Appendix A for a justification of these129

choices). Each of the resulting dissimilarity matrices can then be fed into an MDS algorithm to produce130

five configurations (Figure 2). Note that, because the Bray-Curtis dissimilarity does not fulfil the triangle131

inequality, the petrographic and heavy mineral datasets cannot be analysed by means of classical MDS132

(Vermeesch, 2013). The MDS maps of Figure 2 were therefore constructed using a nonmetric algorithm (see133

Kruskal and Wish, 1978; Borg and Groenen, 2005; Vermeesch, 2013, for further details). It is important134

to note that nonmetric MDS merely aims to reproduce the ‘rank order’ of the input data, rather than the135

actual dissimilarities themselves (Kruskal, 1964; Borg and Groenen, 2005). Bearing this in mind, the five136

MDS maps representing the Namib dataset reveal some clear trends in the data.137

138

A first observation is that the coastal samples (N1, N2, N11, N12, T8 and T13) plot close together in139

all five MDS maps, with the easternmost samples (N4, N5, N8 and N9) plotting elsewhere. Second, the140

1In this paper we will only consider two-dimensional solutions, which simplfies the notation and interpretation. It is easy to

generalise the equations to more than two dimensions.
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Orange River samples (N13 and N14) tend to plot closer to the coastal samples than to the inland samples.141

And third, within the eastern group, the northern samples (N4 and N5) are generally found in a different142

direction from the southern samples (N8 and N9), relative to the coastal group. But in addition to these143

commonalities, there also exist notable differences between the five maps. Specific examples of this are the144

odd position of N14 in the bulk petrography configuration (Figure 2d), the different orientation of the major145

and trace element configurations (Figures 2e and 2f) and countless other minor differences in the absolute146

and relative inter-sample distances. Also note that not all five datasets fit their respective MDS configuration147

equally well. A ‘goodness of fit’ measure called ‘Stress-1’ can be obtained by normalising the ‘raw’ stress148

(Equation 3) to the sum of the squared fitted distances (Kruskal, 1964; Kruskal and Wish, 1978). The149

resulting Stress-1 values range from 0.02 to 0.07, indicating ‘excellent’ fits to some and ‘fair’ fits to other150

datasets (Figure 2b-f). The five MDS maps, then, present us with a multi-comparison problem similar to151

the one presented by Figure 1, with the only difference being that it does not involve multiple KDEs or pie152

charts, but multiple MDS maps. Making this multi-sample comparison more objective requires an additional153

layer of statistical simplification, in which all the data are pooled to produce a ‘consensus’ view.154

4 Procrustes analysis155

According to Greek mythology, Procrustes was an inn keeper who managed to fit all travellers to a single156

bed, regardless of their size or length, by stretching or amputation. Similarly, in a statistical context,157

a Procrustes arrangement can be found that resembles each of several MDS maps by a combination of158

stretching, translation, reflection and rotation. In mathematical terms, Generalised Procrustes Analysis159

(GPA, Gower, 1975; Gower and Dijksterhuis, 2004; Borg and Groenen, 2005) proceeds in a similar manner160

to the method laid out for MDS in Section 3. Given K sets of two-dimensional MDS configurations Xk (for161

1 ≤ k ≤ K)162

Xk =

[
x1k x2k · · · xik · · · xnk

y1k y2k · · · yik · · · ynk

]
(4)

GPA aims to find a transformation g constituting of a combination of scale factors sk, orthonormal163

transformation matrices Tk and translation matrices tk (Borg and Groenen, 2005):164

g(Xk) = skXkTk + tk = X ′k =

[
x′1k x′2k · · · x′ik · · · x′nk
y′1k y′2k · · · y′ik · · · y′nk

]
(5)

and a ‘group configuration’ X̄165

X̄ =

[
x̄1 x̄2 · · · x̄i · · · x̄j · · · x̄n

ȳ1 ȳ2 · · · ȳi · · · ȳj · · · ȳn

]
(6)

so as to minimise the least squares misfit SS:166

SS =

K∑
k=1

n∑
i=1

(x′ik − x̄i)2 + (y′ik − ȳi)2 (7)

Applying this method to the five (i.e., K=5) Namib MDS maps of Figure 2 produces a Procrustes map167

(Figure 3) confirming the salient points raised in Section 3. The GPA analysis shows the dichotomy between168
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Figure 2: Nonmetric (2-way) MDS analyses of (a) Helm (1964)’s colour-vision data (for a single observer,

‘N1’) and (b)-(f) the five Namib datasets. The ‘stress’ values indicate ‘excellent’ (< 0.025) to ‘fair’ (<0.1) fits

(Kruskal and Wish, 1978; Vermeesch, 2013). Axes are plotted on a one-to-one scale with omitted labels to

reflect the fact that non-metric MDS aims to preserve the ranks rather than the values of the dissimilarities.

The MDS maps for the Namib dataset all paint a consistent picture in which (i) the coastal dune and Orange

river samples (N1, N2, N11, N12, T8 and T13) plot close together and the inland samples (N4, N5, N8 and

N9) plot elsewhere; and (ii) the northeastern samples (N4 and N5) are generally found in a different direction

from the southeastern samples (N8 and N9), relative to the coastal group. However, there are also some

distinct differences between the five configurations. The Procrustes and 3-way MDS analysis presented in

Figures 3 and 4 make an abstraction of these differences.
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the coastal and eastern sands, as well as the similarity of the coastal sands with the Orange River, and it169

does so more clearly than any of the five original MDS maps (Figure 2). It also emphasises the significance170

of the differences between the northeastern and southeastern samples, which plot at right angles from each171

other relative to the coastal samples. The GPA map, then, paints a detailed picture of the sediment routing172

system in the Namib Sand Sea, which would have been difficult to obtain from a simple visual inspection173

of the raw data. However, GPA weighs all five MDS configurations equally and does not readily take into174

account the significant differences in ‘goodness of fit’ (‘Stress-1, Section 3) between them. Also, although the175

trends and groupings among samples are clear from the GPA map, the underlying reasons for these features176

are not. The next section introduces a method aiming to solve this problem and thus yields additional insight177

into the sediment routing system of Namibia.178

co
as

tal
 sa

mple
s

+ O
ran

ge
 R

ive
r

northeastern
samples

southeastern
samples

N1N2
N3

N4
N5

N6
N7

N8

N9

N10

N11

N12

T8
T13

N13

N14

Figure 3: Generalised Procrustes Analysis (GPA) of the Namib dataset, pooling together all five MDS maps

of Figure 2 into a single ‘average’ configuration. This confirms the strong similarities between sand samples

collected along the Atlantic coast (N1, N2, N11, N12, T8, T13) and the Orange River (N13 and N14) as

opposed to samples collected further inland (N4 through N10).

5 3-way MDS179

As we saw in Section 4, Procrustes analysis is a two-step process. First, the various datasets are analysed by180

MDS. Then, the resulting MDS configurations are amalgamated into a single Procrustes map. The question181

then arises whether it is possible to skip the first step and go straight from the input data to a ‘group182

configuration’. Such methods exist under the umbrella of ‘3-way MDS’. In this paper, we will discuss the183

oldest and still most widely used technique of this kind, which is known as INdividual Differences SCALing184

(INDSCAL, Carroll and Chang, 1970). The method is formulated as a natural extension of the basic MDS185
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model outlined in Section 3. Given K dissimilarity matrices δij,k (1 ≤ i, j ≤ n and 1 ≤ k ≤ K), INDSCAL186

aims to find K disparity transformations fk187

δ′ij,k = fk(δij,k) (with
∑
i<j

δ′2ij,k = constant ∀ k), (8)

a group configuration X̄ (defined as in Equation 6), and a set of dimension weights W188

W =

[
wx1 wx2 · · · wxk · · · wxK

wy1 wy2 · · · wyk · · · wyK

]
(9)

so as to minimise a modified stress parameter S′189

S′ =

K∑
k=1

∑
i<j

[
δ′ij,k −

√
wxk(xi − xj)2 + wyk(yi − yj)2

]2
(10)

To illustrate the application of INDSCAL to real data, it is instructive to revisit the colour-vision exam-190

ple of Section 3. In addition to test subject ‘N1’ shown in Figure 2a, the study by Helm (1964) involved191

thirteen more participants. Each of these people produced one (or two, for subjects N6 and CD2) dissim-192

ilarity matrix(es), resulting in a total of sixteen MDS maps, which could in principle be subjected to a193

Procrustes analysis (Section 4). Alternatively, the sixteen dissimilarity matrices can also be fed into the194

INDSCAL algorithm. The resulting ‘group configuration’ (X̄) is a map that fits the perceived differences of195

all fourteen observers by stretching and shrinking (but not rotating) in the x- and y-direction (Figure 4.a).196

The degree of stretching or shrinking associated with each observer is given by the ‘source weights’ (W),197

which can be plotted as a second piece of graphical output (Figure 4.b). For the colour-vision experiment,198

the group configuration shows the familiar colour circle, and the source weights express the degree to which199

this colour circle is distorted in the perception of the colour deficient test subjects (prefix ‘CD’) relative to200

those subjects with normal colour vision (prefix ‘N’). The latter all plot together in the northwest quadrant201

of the diagram, whereas the former plot in the southeast quadrant. Multiplying the x-y coordinates of the202

group configuration with the respective dimensions of the source weights yields sixteen ‘private spaces’, which203

are approximate MDS maps for each test subject. For the colour deficient subjects, these private spaces204

will have an oblate shape, emphasising the reduced sensitivity of the colour deficient test subjects to the205

red-green colour axis relative to the blue-yellow axis. In summary, whereas an ordinary MDS configuration206

can be rotated by an arbitrary angle without loss of information, this is not the case for an INDSCAL group207

configuration. The principal axes of the latter generally have an interpretive meaning, which is one of the208

most appealing aspects of the method (Arabie et al., 1987; Borg and Groenen, 2005).209

210

The five datasets of the Namibian study can be analysed in exactly the same manner as Helm (1964)’s211

colour data, producing the same two pieces of graphical output as before. The resulting ‘group configuration’212

(Figure 4c) looks remarkably similar to the GPA map of Figure 3. It shows the same separation between213

samples collected from the eastern and western parts of the desert, and the same 90◦ angle between the214

northeastern and southeastern sampling locations. But whereas the GPA map did not offer any explanation215

for these observations, the source weights of the INDSCAL analysis do provide some important clues (Figure216

4d). The provenance proxies based on the analysis of bulk materials (chemistry and petrography) attach217

stronger weights to the horizontal dimension. The proxies based on density separates (U-Pb ages and heavy218

minerals), on other hand, weigh the vertical dimension more heavily. Because the former proxies are more219
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sensitive to hydraulic sorting effects and comparatively less sensitive to provenance than the latter proxies220

(see Section 1), this observation leads to the interpretation that hydraulic sorting (predominantly) separates221

samples along the x-dimension, whereas the provenance signal (predominantly) separates samples along the222

y-dimension.223

6 Discussion, caveats and conclusions224

Until recently, large multi-proxy provenance studies like the Namib case study presented in this paper were225

prohibitively expensive and time consuming. However, continued technological advances in mass spectrome-226

try (Frei and Gerdes, 2009) and petrography/geochemistry (Allen et al., 2012) promise to change this picture.227

In anticipation of the impending flood of provenance data resulting from these advances, this paper borrowed228

some simple yet powerful ‘data mining’ techniques from other scientific disciplines, which help to make geo-229

logical sense of complex datasets. Some readers will be familiar with Principal Components Analysis (PCA),230

which is a dimension-reducing procedure that is commonly used to interpret geochemical, petrographic and231

other compositional data (Aitchison, 1983; Vermeesch, 2013). Multidimensional Scaling is a flexible and232

powerful superset of PCA which allows geologists to extend PCA-like interpretation to isotopic data such as233

U-Pb ages (Vermeesch, 2013). Generalised Procrustes Analysis and Individual Differences Scaling are higher234

order supersets of MDS which can be used to integrate multiple proxies in a single comprehensive analysis.235

236

The application to the Namib Sand Sea has yielded results that are broadly consistent with previous237

interpretations by visual inspection of the age distributions, petrographic diagrams etc. The statistical tools238

presented in this paper offer two key advantages over the traditional approach. First, they are far more239

objective and easy to use. Expert knowledge of mineralogy, petrography and isotope geochemistry, while240

still desirable, becomes less crucial because the statistical tools automatically extract geologically meaningful241

differences between the datasets. Second, the methods introduced in this paper provide a way to compare242

datasets of very different nature in a common framework. Thus the new approach to data interpretation243

makes it much easier to combine petrographic and isotopic provenance proxies.244

245

Despite the intuitive appeal of INDSCAL and its apparent success in the Namib study, it is important246

to mention a few caveats. Whereas the group configuration is quite robust (as exemplified by the similar-247

ity of Figures 3 and 4d), the same cannot be said about the source weights. Consider, for example, the248

INDSCAL analysis of the Namib data, which used a combination of Kolmogorov-Smirnov (for the U-Pb249

data), Bray-Curtis (for the mineralogical data) and Aitchison (for the bulk chemistry) measures. Replacing250

the Kolmogorov-Smirnov statistic with (Sircombe and Hazelton, 2004)’s L2-norm, say, results in a similar251

group configuration but in significantly different source weights with a less clear interpretation (although the252

bulk and density separated proxies still plot in opposite corners). The instability of the source weights may253

easily lead to over-interpretation, causing some (e.g., Borg and Groenen, 2005) to recommend abandoning254

INDSCAL in favour of GPA or similar techniques.255

256

Thanks to the widespread acceptance of MDS, GPA and INDSCAL in other fields of science, several257

software options are available (see Appendix B for details). These tools can be combined with other types of258

inferential techniques such as cluster analysis, regression, bootstrapping etc. This paper barely scratches the259

surface of the vast field of MDS-related research. We refer the user to the reference works by Arabie et al.260
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Figure 4: 3-way MDS analysis of the colour-vision experiment by Helm (1964, (a)-(b)) and the Namib

dataset [(c)-(d)]. The left panels [(a) and (c)] show the ‘group configurations’, whereas the right panels [(b)

and (e)] show the ‘source weights’. For the Namib dataset, the former shows essentially the same picture

as the Procrustes analysis (Figure 3). The map of ‘source weights’ (d) shows the degree of importance each

of the five proxies attach to the horizontal and vertical dimension of the group configuration. An intuitive

interpretation of these two dimensions suggests that the y-axis shows the provenance signal (which dominates

the proxies based on density separates, see Section 1), whereas the hydraulic sorting effect dominates the

x-axis (and the bulk analysis proxies).

(1987); Borg and Groenen (2005); Borg et al. (2012); Gower and Dijksterhuis (2004) for further details and261

ideas and hope that our paper will encourage others to explore these extension in order to address a new262
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class of geological problems.263

Acknowledgments264

We would like to thank Ingwer Borg, Jan de Leeuw, Patrick Mair, Patrick Groenen, Christian Hennig and265

two anonymous reviewers for feedback and statistical advice. This research was funded by NERC grant266

#NE/1009248/1 and ERC grant 259505 (‘KArSD’).267

Appendix A: dissimilarity measures268

This section provides a few examples of dissimilarity measures to compare two sediment samples (A and B,269

say). Let us first consider the case of categorical data (A = {A1, A2, · · · , An} and B = {B1, B2, · · · , Bn},270

where Ai represents the number of observations of class i, etc.) such as heavy mineral counts. Vermeesch271

(2013) used Aitchisons central logratio distance:272

δaitAB =

√√√√ n∑
i=1

[
ln

(
Ai

g(A)

)
− ln

(
Bi

g(B)

)]2
(11)

where ‘g(x) stands for ‘the geometric mean of x (Aitchison, 1986; Vermeesch, 2013). Note that the same273

distance is obtained irrespective of whether the input data are expressed as fractions or percents. The274

Aitchison distance breaks down for datasets comprising ‘zero counts’ (Ai = 0 or Bi=0 for any i). This275

problem can be solved by pooling several categories together, or by using a different dissimilarity measure276

such as the Bray-Curtis dissimilarity:277

δbcAB =

n∑
i=1

|Ai −Bi|
n∑

i=1

(Ai +Bi)
(12)

where | · | stands for the absolute value. Note that the Bray-Curtis dissimilarity does not fulfil the triangle278

inequality. It can therefore not be used for ‘classical’ MDS (in which the disparity transformation is the279

identity matrix, Vermeesch, 2013). However, this is not an issue for nonmetric MDS (as well as certain280

classes of metric MDS). For ordinal data such as U-Pb ages, it is useful to define the empirical cumulative281

distribution functions (CDFs):282

FA(t) =
1

n
(#ai ≤ t) and FB(t) =

1

m
(#bi ≤ t) (13)

where n and m are the sample sizes of A and B, respectively and ‘#x ≤ t’ stands for “the number of items283

in x that are smaller than or equal to t”. The simplest CDF-based statistic was developed by Kolmogorov284

and Smirnov and uses the maximum absolute difference between FA(t) and FB(t) (Feller, 1948):285

δksAB = max
t
|FA(t)− FB(t)| (14)

The Kolmogorov-Smirnov (KS) statistic takes on discrete values in steps of | 1n−
1
m | and may therefore yield286

dissimilarity measures with duplicate values, which in turn may cause problems in certain MDS algorithms.287

Furthermore, the KS-statistic is most sensitive to the region near the modes of the sample distribution, and288
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less sensitive to the tails. Finally, when FA(t) and FB(t) cross each other multiple times, the maximum289

deviation between them is reduced. Therefore, the KS-statistic (or variants thereof such as the Kuiper290

statistic) cannot ‘see’ the difference between a uniform distribution and a ‘comb’-like distribution. Although291

alternative statistics such as Cramér-von Mises and Anderson-Darling solve any or all of these problems,292

they generally exhibit an undesirable dependence on sample size. One promising alternative which does not293

suffer from this problem is the L2-norm proposed by Sircombe and Hazelton (2004). This measure explicitly294

takes into account the analytical uncertainties and may therefore be the preferred option when combining295

samples from different analytical sources.296

Appendix B: software297

The methods introduced in this paper are widely used in a variety of research fields, and several software298

options are available, including Matlab (Trendafilov, 2012), SPSS (PROXSCAL, Busing et al., 1997), PAST299

(Hammer and Harper, 2008) and R (De Leeuw and Mair, 2011). This section contains the shortest workable300

example of R code needed to reproduce the figures in this paper. The BigData.Rdata input file and a more301

general purpose code can be downloaded from http://mudisc.london-geochron.com.302

library(MASS) # performs nonmetric MDS303

library(smacof) # performs INDSCAL304

library(shapes) # performs GPA305

library(robCompositions) # supplies the Aitchison distance306

library(vegan) # supplies the Bray-Curtis distance307

308

load("BigData.Rdata") # load the raw input data (DZ, HM, QFL, Major and Trace)309

snames <- names(d$DZ) # extract the list of sample names310

n <- length(snames) # n = the number of samples311

m <- length(d) # m = the number of datasets312

313

# this function calculates the dissimilarity between age distributions314

getDZdist <- function(dat,labels=snames) {315

n <- length(dat)316

diss <- matrix(nrow=n,ncol=n,dimnames=list(snames,snames))317

for (i in 1:n){ for (j in 1:n){ # loop through the rows and columns318

diss[i,j] <- ks.test(dat[[i]],dat[[j]])$statistic }}319

return (as.dist(diss)) # convert to a ’distance’ object320

}321

322

# calculate the dissimilarity matrices for each of the five datasets323

DZdist <- getDZdist(d$DZ,labels=snames) # U-Pb data: KS statistic324

QFLdist <- vegdist(d$QFL,’bray’,labels=snames) # bulk petrography: Bray-Curtis325

HMdist <- vegdist(d$HM,’bray’,labels=snames) # heavy minerals: Bray-Curtis326

MajorDist <- dist(cenLR(d$Major)$x.clr) # major elements: Aitchison distance327

TraceDist <- dist(cenLR(d$Trace)$x.clr) # trace elements: Aitchison distance328
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distlist <- list(DZ=DZdist,QFL=QFLdist,HM=HMdist,Major=MajorDist,Trace=TraceDist)329

330

# the following lines produce a GPA map331

X <- array(dim=c(n,2,m)) # initialise the 3-way matrix of MDS configurations332

for (i in 1:m) { # loop through all the datasets333

X[,,i] <- isoMDS(distlist[[i]],k=2)$points} # perform a nonmetric MDS analysis334

pfit <- procGPA(X) # perform a GPA analysis335

xp <- pfit$mshape[,1] # x-coordinates of the procrustes configuration336

yp <- pfit$mshape[,2] # y-coordinates of the procrustes configuration337

plot(xp,yp,type="n",asp=1) # create an empty plot (replace "n" with "p" to show points)338

text(xp,yp,snames) # plot the procrustes configuration339

340

# perform an INDSCAL analysis341

ifit <- smacofIndDiff(distlist, constraint="indscal", type="ordinal")342

dev.new() # open a new graphics window for the group configuration343

plot(ifit,plot.type="confplot",asp=1) # plot the group configuration344

dev.new() # open a new graphics window for the source weights345

weights <- unlist(ifit$cweights) # extract the source weights346

xw <- weights[4*seq(m)-3] # weights of the horizontal axis347

yw <- weights[4*seq(m)] # weights of the vertical axis348

plot(xw,yw,type="n",asp=1) # create an empty plot349

text(xw,yw,names(d)) # plot the source weights350
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