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ARTICLE INFO ABSTRACT

Background: Deficits in motivational salience processing have been related to psychotic symptoms and distur-
bances in dopaminergic neurotransmission. We aimed at exploring changes in salience processing and brain
activity during different stages of psychosis and antipsychotic medication effect.
Methods: We used fMRI during the Salience Attribution Task to investigate hemodynamic differences between
19 healthy controls (HCs), 34 at-risk mental state (ARMS) individuals and 29 individuals with first-episode
psychosis (FEP), including a subgroup of 17 FEP without antipsychotic medication (FEP-UM) and 12 FEP with an-
tipsychotic medication (FEP-M). Motivational salience processing was operationalized by brain activity in re-
sponse to high-probability rewarding cues (adaptive salience) and in response to low-probability rewarding
cues (aberrant salience).
Results: Behaviorally, adaptive salience response was not accelerated in FEP, although they correctly distinguished
between trials with low and high reward probability. In comparison to HC, ARMS exhibited a lower hemodynam-
ic response during adaptive salience in the right inferior parietal lobule and FEP-UM in the left dorsal cingulate
gyrus. The FEP-M group exhibited a lower adaptive salience response than HC in the right insula and than
ARMS in the anterior cingulate gyrus. In unmedicated individuals, the severity of hallucinations and delusions
correlated negatively with the insular- and anterior cingulate hemodynamic response during adaptive salience.
We found no differences in aberrant salience processing associated with behavior or medication.
Conclusion: The changes in adaptive motivational salience processing during psychosis development reveal
neurofunctional abnormalities in the somatosensory and premotor cortex. Antipsychotic medication seems to
modify hemodynamic responses in the anterior cingulate and insula.
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1. Introduction contrast, aberrant salience refers to stimuli that have no reliable associa-

tion with reinforcement but come to be attention-grabbing and which in-

Aberrant salience processing has been proposed as a pathophysiolog-
ical hallmark of psychosis (Kapur, 2003). Positive psychotic symptoms
(hallucinations and delusions) result from inappropriate attribution of
motivational properties to stimuli, thoughts and percepts (Kapur, 2003).
Motivational salience transforms the brain's neutral representations of
conditioned stimuli into attractive representations and ‘grabs attention’
(Berridge and Robinson, 1998). Adaptive motivational salience refers to
stimuli with a reliable association with reinforcement and which can
therefore influence behavior and attract attention (Roiser et al., 2009). In
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appropriately capture thought- and goal-directed behavior (Jensen and
Kapur, 2009). Adaptive and aberrant motivational saliences have been op-
erationalized using a probabilistic reward-learning task, the Salience Attri-
bution Task (SAT) (Roiser et al., 2009). This task can distinguish between
the use of relevant cues (adaptive salience) and irrelevant cues (aberrant
salience). In the SAT, adaptive motivational salience is defined as the in-
crease in probability ratings (the explicit measure) or acceleration of re-
sponses (the implicit measure) to stimuli strongly associated with
reward, relative to those weakly associated with reward (Roiser et al.,
2009). Aberrant motivational salience is defined as the absolute difference
in acceleration or probability ratings between the two levels of the task-
irrelevant stimulus dimension (Roiser et al.,, 2009).
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Neuroimaging studies using the SAT have revealed that adaptive sa-
lience processing and aberrant salience processing occur in partially
overlapping (Roiser et al., 2010) or even in identical neurocircuits
(Roiser et al., 2013). In healthy controls (HCs), cues associated with
adaptive salience elicited greater activation in the midbrain, thalamus,
superior temporal gyrus, insula, ventral striatum and cerebellum
(Roiser et al., 2010), with similar effects in individuals with an at-risk
mental state (ARMS) (Roiser et al., 2013). Chronic schizophrenia pa-
tients exhibited (a) increased aberrant salience responses in the stria-
tum, hippocampus and prefrontal regions than with HC (Diaconescu
etal, 2011) and (b) lower adaptive salience responses in the striatum
(Gradin et al., 2013; Grimm et al., 2012), amygdala, hippocampus, and
midbrain (Gradin et al., 2013). The only fMRI study on salience process-
ing with ARMS demonstrated elicited adaptive salience brain responses
in the ventral striatum but did not find differences from HC (Roiser et al.,
2013).

Psychotic patients treated with antipsychotics showed behavioral
impairments in adaptive salience (Roiser et al., 2009), consistent with
reinforcement-associated abnormal brain responses in medicated
schizophrenia patients (Murray et al., 2008; Waltz et al., 2009).
Dopaminergic agonists facilitate (Nagy et al., 2012; Pessiglione et al.,
2006), while antipsychotics attenuate motivational salience (Kapur,
2003), leading to undesired effects, e.g. loss of motivation, apathy and
anhedonia (Roiser et al., 2009).

In the present study, we focused on hemodynamic responses during
motivational salience processing and their relationship to hallucinations
and delusions in emerging psychosis. We firstly hypothesized that there
were differences in whole-brain activity in ARMS and unmedicated FEP
patients (FEP-UM) relative to HCs. Secondly, we expected that
antipsychotic-medicated FEP patients (FEP-M) would exhibit lower re-
sponses in salience-related brain regions than did patients without cur-
rent antipsychotic medication (FEP-UM). Thirdly, given the relation
between salience processing and positive symptoms (Roiser et al.,
2013), we further tested whether salience-related brain activity was re-
lated to positive symptoms (hallucinations and delusions) in ARMS and
FEP patients.

2. Materials and methods
2.1. Study population

The Early Detection of Psychosis (FePsy), Psychiatric University
Clinics in Basel, Switzerland, recruited and followed up ARMS and FEP
individuals (Riecher-Rossler et al., 2009). This is an ongoing prospective
naturalistic study and all individuals included were assessed for current
symptoms at the time of the MRI scan (for details see supplement).

The ARMS (N = 34) individuals were characterized using the Basel
Screening Instrument for Psychosis (Riecher-Réssler et al., 2007), iden-
tical with the Comprehensive Assessment of ARMS (CAARMS) criteria
(Yung et al., 2005): a) “attenuated” psychotic symptoms; b) brief limit-
ed intermittent psychotic symptoms; or c) a first-degree relative with a
psychotic disorder plus a marked decline in social or occupational
functioning. After 33.3 months of clinical follow-up, 6 ARMS individuals
transited to psychosis. All but one ARMS individual were antipsychotic-
naive. Eleven of the ARMS individuals were receiving antidepressants.

The FEP patients (N = 29) fulfilled the criteria for acute psychotic
disorder according to the ICD-10 or DSM-1V, but not yet for schizo-
phrenia (Yung et al., 1998). The transition to psychosis in ARMS indi-
viduals was defined by the CAARMS criteria (Yung et al., 1998). The
mean duration of psychosis was 7.76 months (SD = 15.77 months),
with an upper limit of 5 years. We divided FEP according to their cur-
rent status of antipsychotic medication: 17 FEP-UM were without
current antipsychotic medication and 12 FEP-M were receiving
atypical antipsychotics. Ten of the FEP group (N = 5 in FEP-M)
were taking antidepressants.

The 19 HCs, from the same geographical area, had no history of
psychiatric or neurological disorder, head trauma, serious illness, or
substance abuse, assessed by an experienced psychiatrist.

General exclusion criteria were: history of previous psychotic disor-
der, psychotic symptomatology secondary to an ‘organic’ disorder, re-
cent substance abuse according to ICD-10 research criteria, psychotic
symptomatology associated with an affective psychosis or a borderline
personality disorder, age under 18 years, inadequate German knowl-
edge, and IQ < 70 (measured using the multiple choice vocabulary-
intelligence test (MWT-B)). All participants provided written informed
consent and received compensation for participating. The local ethics
committee approved the study.

2.2. Salience Attribution Task (SAT)

Neural and behavioral responses during motivational salience pro-
cessing were assessed with the SAT (Roiser et al., 2009, 2010). Partici-
pants had to respond quickly to the presentation of a square. Money
was available in 50% of trials, with the likelihood of reward in a given
trial signaled by one of four categories of cues. The cues varied in two
different visual dimensions, with one of these cue dimensions being
task-relevant. Participants estimated reward probabilities for each
cue-category using visual analogue scales in %.

2.3. Statistical analysis of demographic and behavioral data

Data were analyzed using the Statistical Package for the Social
Sciences version 20.0 (SPSS Inc., Chicago, IL, USA). We used one-way
analysis of variance (ANOVA) and y? tests for demographic, clinical
and behavioral analyses. The Bonferroni correction (at P < 0.05) was ap-
plied for all post-hoc tests.

2.4. Magnetic resonance imaging acquisition

Participants were scanned using a whole-body 3 T MRI system
(Magnetom Verio, Siemens Healthcare, Erlangen, Germany). During
the SAT, we acquired T,*-weighted echo-planar images (EPIs) with
the following parameters: 38 axial slices of 3 mm thickness, 0.5 mm
interslice gap, field of view 228 x 228 cm? and an in-plane resolution
of 3 x 3 mm?. The repetition time was 2.5 s and the echo time 28 ms.

2.5. fMRI analysis

EPIs were analyzed using Statistical Parametric Mapping (SPM8,
www fil.ion.ucl.ac.uk/spm). Maximum likelihood parameter estimates
were calculated at the first level at each voxel using the general linear
model. Our design matrix included an autoregressive AR(1) model of
serial correlations and a high-pass filter with a cutoff of 128 s. The onsets
of each event were convolved with the SPM synthetic hemodynamic re-
sponse function and its temporal and dispersion derivatives. The first
level design matrix included four cue regressors, an outcome regressor
and its parametric modulation by magnitude of reward (in Swiss
Francs); for more details see Roiser et al. (2010). Only adaptive and ab-
errant reward prediction contrasts entered the second-level analyses to
identify the main effect of motivational salience and between-group dif-
ferences, using the summary statistics approach to random-effects
analysis.

We used a full factorial ANOVA to compare FEP-M and FEP-UM,
ARMS, and HC on the adaptive and aberrant reward prediction contrasts.
For between-group differences, significance was assessed at a cluster-
level threshold of P < 0.05 FWE corrected across the whole brain,
using a cluster-forming threshold of P < 0.005 (uncorrected)
(Petersson et al., 1999). Effects were visualized in the FMRIB Software
Library Viewer and labeled using the incorporated atlas tools. Based
on the previously described essential roles of the insula and the anterior
cingulate cortex (ACC) in salience processing, along with their
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association with positive psychotic symptoms (Palaniyappan and
Liddle, 2012), we tested the correlation of the BPRS hallucination and
delusion score with activation in the right ACG and the right insula
during adaptive salience, using Spearman's p.

3. Results
3.1. Demographic and clinical characteristics

The groups were well matched for gender, age, handedness, and
verbal 1Q. There was a significant main effect of group on positive
and negative symptoms and global functioning (P < 0.0001). FEP-UM,
FEP-M and ARMS had more positive, negative psychotic symptoms
and worse global functioning than HC (P < 0.005). FEP-UM had
significantly more positive symptoms (P < 0.0001) and worse global
functioning (P = 0.027) than ARMS (Table 1).

3.2. Behavioral characteristics

There was no main effect of group in the overall ANOVA for adaptive
(explicit F(3,78) = 1.478, P = 0.227; implicit F(3,78) = 1.104, P =
0.353) or aberrant (explicit F(3,78) = 2.186, P = 0.096; implicit
F(3,78) = 1.115, P = 0.348) salience. Each group exhibited significant
explicit adaptive, and explicit and implicit aberrant salience (one sample
t tests, P < 0.0001). The ARMS (t(33) = 4.63, P <0.001) and HC groups
(t(18) = 4.63, P < 0.001) responded significantly more quickly to
adaptive salience. However, neither the FEP-M group (t(11) = 0.67,
P = 0.52) nor FEP-UM (t(16) = 1.31, P = 0.21) showed any significant
implicit adaptive salience (Supplementary Table 6).

3.3. fMRI data

3.3.1. Within-group analyses

Hemodynamic responses of adaptive, reverse adaptive, aberrant, and
reverse aberrant reward prediction in separate groups are presented in
Supplementary Tables 2, 3, 4, and 5.

3.3.2. Between-group analyses

Compared to HC, ARMS had significantly lower hemodynamic re-
sponses during adaptive salience in the right inferior parietal lobule.
FEP-UM exhibited lower responses in the left dorsal cingulate gyrus
than HC (Fig. 1, Table 2). Compared to HC, there was less activation in
the whole FEP group in the right precentral gyrus and insula.

FEP-M exhibited lower hemodynamic responses than ARMS in the
bilateral cingulate gyri and than HC in the right insula (Fig. 2, Table 2).
We found hemodynamic responses in the ventral striatum and prefron-
tal cortex in all included groups. Nevertheless, there was no between-
group difference in these motivationally relevant regions.

The FEP-UM group exhibited higher aberrant salience responses
than HC in the right cuneus. HC exhibited a higher aberrant salience
response than ARMS and FEP in the left inferior parietal lobule
(Supplementary Table 1).

3.3.3. Correlation analyses of positive psychotic symptoms and insular and
anterior cingulate activation

The FEP-UM group showed negative correlation between insular ac-
tivation and hallucinations (r = — 0.643, P = 0.005; survived correction
for multiple comparison). If ARMS and FEP-UM were pooled, there was
a negative correlation between ACG activation and delusions
(r= —0.245,P = 0.013), but this did not survive the correction for mul-
tiple comparison; Fig. 3.

4. Discussion

We explored the neural correlates of motivational salience process-
ing in subjects with an ARMS for psychosis and in FEP patients. Attenu-
ated adaptive salience-related responses in the dorsal cingulate cortex
were found in unmedicated FEP patients, reflecting psychosis-
associated deficits independent of antipsychotic medication. Surprising-
ly, currently medicated FEP patients showed intact explicit adaptive
salience in behavior, but attenuated adaptive salience-related activation
in the right ACC and insular cortex.

Table 1
Demographic and clinical data.
FEP-M (n =12) FEP-UM (n=17) ARMS(n=34) HC(n=19) Statistics Post hoc
Gender M/F 6/6 13/4 26/8 10/9 $*(3) = 5.417
P =0.144
Mean age in year (SD) 27.42 (7.9) 24.82 (5.7) 24.35 (5.5) 26.42 (4.1) F(3,78) = 1.155
P=0332
Handedness non-left/non-left ~ 11/3 16/1 32/2 18/1 x*(3) = 0.988
P =0.988
MWT-B IQ (SD) 105 (20) 103 (12) 113 (15) 113 (10) F(3,41) = 1.786
P = 0.165
BPRS total (SD) 42.75 (14.8) 51.71 (15.5) 39.67 (9.5) 24.53 (1.2) F(3,77) = 19.920 P <0.0001 M=>H,U>H,A>H,U>A
BPRS 9 3.00 (1.7) 3.47 (14) 227 (1.2) 1.00 (0.0) F(3,77) = 14184P<0.0001 M=>H,U>H,A>H,U>A
BPRS 10 250 (2.1) 3.53 (2.0) 1.55 (1.0) 1.00 (0.0) F(3,77) = 12439 P<0.0001 M>H,U>H,U>A
BPRS 11 3.25(1.9) 3.71(1.9) 1.97 (1.3) 1.00 (0.0) F(3,77) = 13.645P<0.0001 M>H,U>H,M>A U>A
SusHalDel 8.75 (4.7) 10.71 (4.4) 5.79 (2.4) 3.00 (0.0) F(3,77) = 21.238 P<0.0001 M>H,U>H,M>A,U>AA>H
SANS total (SD) 17.08 (16.2) 21.82 (14.9) 23.03 (15.2) 0.00 (0.0) F(3,75) = 13.036 P<0.0001 M=>H,U>H,A>H
GAF total (SD) 63.50 (10.0) 53.06 (17.94) 64.13 (13.3) 88.63 (4.5) F(3,76) = 24496 P<0.0001 M<H,U<H,A<H,U<A
Antipsychotic n AN/AF/Med 0/0/12 11/6/0 34/0/0 19/0/0 x%(6) = 105.967
P <0.0001
Antidepressants n (%) 5(29%) 5 (24%) 1(31%) 0 $*(3) =7.323
P = 0.062
Alcohol n No/Mod/Uncon 2/6/4 7/9/1 8/17/9 1/14/4 $%(6) = 9.878
P =0.130
Cannabis currently (%) 1(8%) 7 (41%) 11 (32%) 4(21%) v*(3) = 4.641
P = 0.200
Smoking (cig/day) 9.42 (18.42) 10.88 (11.5) 7.19 (9.8) 2.47 (5.8) F(3,78) = 2.799 P = 0.045 U>H

Bonferroni correction (at P = 0.05) was calculated for post-hoc analysis in SPSS 20.0. Abbreviations: Alcohol n, number of subjects consuming alcohol: No, no alcohol; Mod, moderate
intake of alcohol; Uncon, uncontrolled drinking; Antipsychotic, antipsychotic medication on the date of MRI: AF, antipsychotic free; AN, antipsychotic naive; Med, antipsychotic medicated;
ARMS, at-risk mental state individuals = A in the Post hoc column; BPRS, brief psychiatric rating scale; BPRS 9, suspiciousness; BPRS 10, hallucinations; BPRS 11, delusions; FEP-M, FEP
individuals who were medicated with antipsychotics at the time of testing = M in the Post hoc column; FEP-UM, FEP who were without antipsychotic medication at the time of

testing = U in the Post hoc column; GAF, Global Assessment of Functioning; HC, healthy control =

H in the Post hoc column; MWT, intelligence quotient test (multiple choice-vocabulary-

intelligence test); SANS; SusHalDel, BPRS 9 + BPRS 10 + BPRS 11, sum of suspiciousness, hallucinations, and delusions.
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Fig. 1. Brain activation during adaptive salience associated with psychosis. Compared to HC, FEP-UM showed lower reward-related responses in the left dorsal cingulate gyrus (P = 0.005
FWE corrected at cluster level). The image is displayed at a threshold of P = 0.005 uncorrected across the whole brain, and the right side of the brain is displayed on the right side of the

figure.

As expected, highly rewarding stimuli elicited responses in a
cortico-striatal-thalamic circuit (Ongiir and Price, 2000), including
the prefrontal cortex, striatum, and thalamus (Roiser et al., 2010). Com-
pared to HC, reduced adaptive salience neural activity in ARMS was
found in the secondary somatosensory cortex and in FEP-UM in the
premotor cortex, and this may contribute to cognitive deficits in early
psychosis (Fusar-Poli et al., 2012). The differences in prefrontal and in-
sular activity between the FEP and HC during adaptive salience process-
ing correspond with a recent theory proposing that abnormalities in
these regions are a key pathophysiological hallmark of psychosis

Table 2
Between group differences in regional brain activations identified by adaptive reward
prediction contrast.

Voxel level
ljFWE—corr. KE PFWE—curr. MNI
ARMS < HC 0.021 710 0.387 56 —32 44 4.05 R

Contrast Cluster level Z-score Hemisphere

and region

supramarginal
G
0.480 36 —4038 3.96 R supramarginal
G
0.742 56 —24 34 3.74 RIPL
FEP-UM<HC 0.005 935 0.511 —8—1442 393 Ldorsal ACG
0.849 —22—-1056 3.63 LMFG
0.975 —14 —-2450 3.40 L precentral G
FEP < HC 0.034 635 0.863 48620 3.61 R precentral G,
IFG
0.958 54610 3.45 R precentral G
0.995 32168 327 Rinsula
FEP-M < HC 0.007 881 0.539 3824 —4 3.91 Rinsula
0.807 48620 4,04  Rprecentral G
0918 36188 3.54 Rinsula
0.072 527 0.466 183822 3.97 R paracingulate
G
0.581 62232 388 RACG
0.750 03226 373 RACG
FEP-M < ARMS 0.025 684 0.200 84024 4.26 R paracingulate
G
0.319 —23226 411 L paracingulate
G, ACG
0.957 4504 3.46 R paracingulate
G

FEP-M < FEP-UM: R insula, kE = 125; MNI 38 26 0; P = 0.072 uncorrected at cluster level.
The data presented here are from ANOVA of 4 included groups (FEP-M, FEP-UM, ARMS,
HC) at a threshold of P = 0.005 uncorrected across the whole brain, where whole FEP
was FEP-M + FEP-UM. All results with cluster size bigger than 20 voxels are reported.
There were no significant differences in the following contrasts: FEP > HC, FEP-UM > HC,
FEP-M > HC, FEP-M vs. FEP-UM, FEP vs. ARMS, FEP-UM vs. ARMS, FEP-M > ARMS, and
ARMS > HC.

Abbreviations: CG, cingulate gyrus; G, gyrus; ACG, anterior cingulate gyrus; FEP-M, with
current antipsychotic medication FEP; FEP-UM, without current antipsychotic medication;
FG, frontal gyrus; IFG, inferior frontal gyrus; IPL, inferior parietal lobule; ITG, inferior tem-
poral gyrus; MFG, middle frontal gyrus; MNI, coordinates X y z according to the Montreal
Neurological Institute; MOG, middle occipital gyrus; SFG, superior frontal gyrus; vs., the
contrast was made in both directions (> as well as <).

(Palaniyappan and Liddle, 2012). The precentral and insular gyri deficit
seen in the whole FEP group was driven primary by the FEP-M
subgroup.

Behaviorally, FEP-M and FEP-UM did not respond significantly more
quickly to adaptive salience, although they correctly distinguished be-
tween high-probability-reward trials and low-probability-reward trials.
Nevertheless, FEP-M showed additional neural deficits in the insula and
ACC during adaptive salience, which could be related to the modulatory
antipsychotic effect. We did not succeed in confirming aberrant salience
deficits.

Contrary to previous evidence (Roiser et al.,, 2009, 2010, 2013) and
the reported psychosis-associated neurocognitive impairments (Fusar-
Poli et al., 2012), we found no behavioral differences between FEP,
ARMS and HC during the SAT. Our negative results might be associated
with high within-group variability in motivational salience processing
and dopaminergic dysregulation (Howes and Kapur, 2009), as well as
with possible schizotypy characteristics (Roiser et al., 2010). Additional-
ly, our HC exhibited higher explicit aberrant salience than the previously
tested HC (Roiser et al., 2009). Furthermore, in contrast to schizophrenia
patients under long-term medication (Roiser et al., 2009), our briefly
medicated FEP patients did not perform significantly worse on explicit
adaptive salience.

4.1. Adaptive-salience-processing deficits associated with psychosis

The reduced activity in the somatosensory and premotor cortices in
ARMS and FEP-UM compared to HC is interesting considering recent re-
search on cognition. The SAT, designed to assess the learning of stimu-
lus-reinforcement associations, comprises multiple cognitive tasks,
including tests of sustained attention, maintaining stimulus informa-
tion, and decision making (Roiser et al., 2010). Finally, these cognitive
processes determine participants' motor responses, which are probably
mediated by premotor regions (Hanakawa et al., 2008; Radua et al.,
2014). Both structural (Exner et al., 2006) and functional changes in
the pre-supplementary and supplementary motor areas or premotor
cortex have been reported in schizophrenia and linked to deficits in at-
tention, executive function and time perception (Ojeda et al., 2002;
Ortufio et al,, 2002). These neural deficits may be a part of a dysfunction-
al cognitive network in early schizophrenia, rather than being specifical-
ly related to motivational salience dysfunction (Roiser et al., 2013).

Insular neural responses correlated negatively with the severity of
hallucinations in unmedicated FEP patients. These prefrontal neural al-
terations, together with the known striatal and hippocampal alterations
(Roiser et al., 2013), may explain deficits during motivational salience
processing. Ventral striatal neural responses were attenuated in chronic
schizophrenia patients (Juckel et al., 2006b) and deregulated but not
decreased in unmedicated FEP patients (Esslinger et al., 2012). Further-
more, schizophrenia patients exhibited dysregulated but not decreased
activation in the frontal insular and anterior cingulate network
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Fig. 2. Brain activation during adaptive salience associated with antipsychotic medication. The FEP-M group compared to the HC, showed attenuated reward-related responses in the right
insula (P = 0.007 FWE corrected at cluster level) and the right anterior cingulate (P = 0.072 FWE corrected at cluster level). The image is displayed at a threshold of P = 0.005 uncorrected
across the whole brain, and the right side of the brain is displayed on the right side of the figure.

compared to HC (White et al., 2013). In accordance with these differ-
ences, our FEP group did not exhibit a lower striatal neural response
on whole brain analysis.
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Fig. 3. Relationship between adaptive salience hemodynamic responses and positive psy-
chotic symptoms in unmedicated first-episode of psychosis and at-risk mental state indi-
viduals. (a) The adaptive salience hemodynamic response in the right insula (peak voxel
38 24 —4, a 15-mm-radius sphere) correlated negatively with hallucination severity in
the unmedicated first-episode of psychosis group. (b) The adaptive salience hemodynam-
ic response in the right anterior cingulate gyrus (peak voxel 10 38 22, a 15-mm-radius
sphere) correlated negatively with delusion severity in the unmedicated first-episode of
psychosis and at-risk mental state groups.

4.2. Adaptive-salience-processing deficits associated with current antipsy-
chotic medication

In contrast to schizophrenia patients on long-term antipsychotic
treatment (Roiser et al., 2009), our briefly medicated FEP patients did
not perform significantly worse than HC. However, impaired neural an-
terior cingulate- and insular-responses were associated with antipsy-
chotic medication. The anterior cingulate seems to be especially
sensitive to the antipsychotic effects (Radua et al., 2012; Snitz et al.,
2005). Antipsychotic exposure can affect structure and function even
in the early phases of psychosis (Ho et al., 2011; Nielsen et al., 2012;
Smieskova et al., 2009). Short-term antipsychotic treatment can alter
the neurophysiological cortical response during cognitive functioning
(Fusar-Poli et al.,, 2007). These results correlate with ‘the final common
pathway’ hypothesis of psychosis (Howes and Kapur, 2009): both acute
antipsychotic administration in HC and chronic antipsychotic medica-
tion in schizophrenia patients increase the striatal presynaptic
dopamine synthesis capacity (McGowan et al., 2004). Additionally,
extracellular dopaminergic levels can be elevated in the striatum (Abi-
Dargham et al., 2000) and decreased in the prefrontal cortex in unmed-
icated schizophrenia patients (Abi-Dargham et al., 2012). Antipsy-
chotics may interfere with salience attribution (Schlagenhauf et al.,
2008), although this effect should not be intense, as atypical antipsy-
chotics also influence other neurotransmitters (Juckel et al., 2006a).
Furthermore, dopamine dysfunction may be particularly prominent
during the very early stages of psychosis (Heinz and Schlagenhauf,
2010). Thus, both of our subgroups, FEP-UM and FEP-M, may have dys-
regulated prefrontal cortical dopamine levels. However, this conclusion
requires testing in longitudinal studies.

Overall, our findings support a model in which antipsychotics target
brain areas related to pathophysiology in early psychosis, but do not
necessarily suggest that drug treatment causes these alterations
(Fusar-Poli et al,, 2013; Radua et al., 2012).

4.3. Limitations and future directions

The main limitation of our study is the cross-sectional design. Vari-
ous factors may have influenced our results, such as different
neurocognitive characterizations (Rausch et al., 2013) and profiles of
psychotic symptoms in the FEP subgroups; underlying gray matter def-
icits (Pujol et al., 2013); lack of assessment of the affective state and an-
tidepressants used (Eshel and Roiser, 2010), alcohol (Sullivan et al.,
2013), nicotine or cannabis (Charboneau et al., 2013). We acknowledge
that different interview measures for prodromal symptoms have been
developed that assess either attenuated and/or brief limited psychotic
symptoms, or cognitive basic symptoms. Early prodromal states, mainly
driven by cognitive basic symptoms, may be insufficiently represented
when ARMS is defined as in the present study (Rausch et al., 2013). Ad-
ditionally, the differences we studied using SAT may also be related to
stress and motor learning associated with dopamine release (Winton-
Brown et al., 2014). The ARMS group may still contain some individuals
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with a later transition to psychosis or those who will fully remit (Simon
et al., 2013; Smieskova et al., 2012).

Recent studies have examined task-related integration among moti-
vational salience-related regions and have found aberrant functional
and effective connectivity in schizophrenia patients (Diaconescu et al.,
2011; Palaniyappan et al.,, 2013; White et al,, 2010). The differences in
focal brain activity found here were probably derived from dysfunction-
al connections to other task-related regions, and this should be ad-
dressed in connectivity studies (Ham et al., 2013; Moran et al., 2013;
Orliac et al., 2013; Schmidt et al., 2013; Wotruba et al., 2014). Addition-
ally, salience network activity also plays an important role in other psy-
chiatric diagnoses (Balthazar et al., 2014; Connolly et al., 2013; Day
et al,, 2013; Doll et al., 2013; Pannekoek et al., 2013a,b; Uddin et al.,
2013).

4.4. Conclusion

We examined motivational salience processing in ARMS and both
medicated and unmedicated FEP individuals, in comparison to healthy
controls. Our findings revealed reduced adaptive salience-related hemo-
dynamic responses in the anterior cingulate and insular cortex in rela-
tion to psychosis, collaterally with modulation in these regions by
antipsychotic treatment. To disentangle whether abnormal functional
activity during salience processing is disease- or treatment-related, lon-
gitudinal studies are needed — both before and after transition to psy-
chosis and before and after treatment with antipsychotics.
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