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Abstract Neonatal stroke presents with features of encephalopathy and can result

in significant morbidity and mortality. We investigated the cerebral metabolic and

haemodynamic changes following neonatal stroke in a term infant at 24 h of life.

Changes in oxidation state of cytochrome-c-oxidase (oxCCO) concentration were

monitored along with changes in oxy- and deoxy- haemoglobin using a new

broadband near-infrared spectroscopy (NIRS) system. Repeated transient changes

in cerebral haemodynamics and metabolism were noted over a 3-h study period

with decrease in oxyhaemoglobin (HbO2), deoxy haemoglobin (HHb) and oxCCO

in both cerebral hemispheres without significant changes in systemic observations.

A clear asymmetry was noted in the degree of change between the two cerebral

hemispheres. Changes in cerebral oxygenation (measured as HbDiff¼HbO2�HHb)

and cerebral metabolism (measured as oxCCO) were highly coupled on the injured

side of the brain.
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1 Introduction

Perinatal stroke commonly presents with features of encephalopathy, seizures, or

neurologic deficit during the early neonatal period. It can result in significant

morbidity and severe long-term neurologic and cognitive deficits, including

S. Mitra (*) • J. Meek • S. Mathieson • C. Uria • G. Kendall • N.J. Robertson

Institute for Women’s Health, University College London and Neonatal Unit, University

College London Hospitals Trust, London, UK

e-mail: subhabratamitra@hotmail.com

G. Bale • I. Tachtsidis

Biomedical Optics Research Laboratory, Department of Medical Physics and Biomedical

Engineering, University College London, London, UK

© The Author(s) 2016

C.E. Elwell et al. (eds.), Oxygen Transport to Tissue XXXVII, Advances in
Experimental Medicine and Biology 876, DOI 10.1007/978-1-4939-3023-4_62

493

mailto:subhabratamitra@hotmail.com


cerebral palsy, epilepsy and behavioural disorders. The incidence is high and has

been estimated at 1 in 1600–5000 live births with estimated annual mortality rate of

3.49 per 100,000 live births [1]. Although seizures can be monitored with cerebral

function monitor (CFM) or electroencephalography (EEG), the diagnosis of cere-

bral injury is typically confirmed on brain magnetic resonance imaging (MRI) once

the infant becomes clinically stable [2, 3].

In contrast to adult stroke, the initial presentation of stroke in neonates can be

subtle and non-specific. Neonates can present with lethargy, poor feeding, apnoea

and hypotonia. This often delays the diagnosis and can influence the outcome. Any

improvement in bedside non-invasive monitoring to aid early diagnosis and man-

agement would greatly benefit this group of infants.

Near-infrared spectroscopy (NIRS) is a non-invasive tool that has been widely

used for continuous bedside monitoring of cerebral oxygenation and

haemodynamic changes. NIRS can measure the concentration changes of oxygen-

ated (Δ[HbO2]) and deoxygenated haemoglobin (Δ[HHb]) which in turn can be

used to derive changes in total haemoglobin (Δ[HbT]¼Δ[HbO2] +Δ[HHb]) and
haemoglobin difference (Δ[HbDiff]¼Δ[HbO2]�Δ[HHb]). HbT and HbDiff are

indicative of cerebral blood volume and brain oxygenation, respectively. These

measurements have been widely used to assess the haemodynamic changes in the

cerebral tissue, but a clear assessment of cerebral metabolism during the same

period is absolutely essential for a better understanding of the pathophysiology of

cerebral injury and its management.

Cytochrome-c-oxidase (CCO) is the terminal electron acceptor in the mitochon-

drial electron transport chain (ETC). It plays a crucial role in mitochondrial

oxidative metabolism and ATP synthesis and is responsible for more than 95 %

of oxygen metabolism in the body [4]. CCO contains four redox centres, one of

which—copper A (CuA)—has a broad absorption peak in the near-infrared (NIR)

spectrum, which changes depending on its redox state [5]. As the total concentra-

tion of CCO is assumed constant, the changes in the NIRS-measured oxCCO

concentration are indicative of the changes in CCO redox state in cerebral tissue,

representing the status of cerebral mitochondrial oxidative metabolism.

Our group has recently demonstrated that brain mitochondrial oxidative metab-

olism measured by Δ[oxCCO] using broadband NIRS system during and after

cerebral hypoxia-ischemia correlates well with simultaneous phosphorus magnetic

resonance spectroscopy parameters of cerebral energetics in a preclinical model [6].

We have recently developed a new broadband NIRS system which is capable of

absolute measurements of optical absorption and scattering to quantify Δ[oxCCO]
as well as Δ[HbO2] and Δ[HHb] in neonatal brain [7]. In this study, we present the

haemodynamic and metabolic changes following neonatal stroke. Our aim was to

compare the haemodynamic and metabolic responses between the injured and

non-injured side of the brain following neonatal stroke, using broadband NIRS

measurement of changes in oxCCO.
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2 Methods

Ethical approval for the Baby Brain Study at University College London Hospitals

NHS Foundation Trust (UCLH) was obtained from the North West Research Ethics

Centre (REC reference: 13/LO/0106). We studied a term (40 weeks 6 days) new-

born infant (birth weight 3370 g), admitted with clinical seizures. Seizures were

first noted at 9 h of age and stopped at 17 h of age after treatment with multiple

anticonvulsants (phenobarbitone, phenytoin, midazolam and paraldehyde). Sei-

zures initially involved only the right upper and lower limbs. EEG recordings

revealed repeated seizure episodes originating from the left hemisphere.

NIRS monitoring was commenced at 24 h of age. One NIRS channel was placed

on either side of the forehead and data were collected at 1 Hz. Four detector optodes

were placed horizontally against each source optode on either side with source-

detector separations of 1.0, 1.5, 2.0 and 2.5 cm for multi-distance measurements.

The longest optode source-detector distance of 2.5 cm was chosen to ensure a better

depth penetration [8]. Differential path length (DPF) was chosen as 4.99 [9].

A program was created in LabVIEW 2011 (National Instruments, USA) to

control the charge-coupled device (CCD), collect the raw data and calculate the

corresponding concentrations. The changes in chromophore concentrations were

calculated from the measured changes in broadband NIR light attenuation using the

modified Beer-Lambert law as applied with the UCLn algorithm [10] across

136 wavelengths (770–906 nm). Systemic data from the Intellivue Monitors

(Philips Healthcare, UK) were collected using ixTrend software (ixellence

GmbH, Germany). Systemic and EEG data were synchronised with the NIRS

data. Electroencephalography (EEG) data was collected using a Nicolet EEG

monitor (Natus Medical, Incorporated, USA). Brain magnetic resonance imaging

(MRI) and venography were performed on day 5 using a 3T Philips MRI scanner

(Philips Healthcare, UK) on day 5. T1 and T2 weighted images with an apparent

diffusion coefficient (ADC) map were obtained on MRI.

3 Data Analysis

Initial data analysis was carried out in MATLAB R2013a (Mathworks, USA).

NIRS data were visually checked and were processed with an automatic wavelet

de-noising function, which reduces the high frequency noise but maintains the trend

information. Systemic data were down-sampled and interpolated to the NIRS data

timeframe (1 Hz). Artefacts from movement or changes in external lighting were

removed using the method suggested by Scholkmann et al. [11]. This method also

corrects shifts in the baseline due to artefact. All statistical analysis was performed

using GraphPad Prism 6 (GraphPad Software, USA).

62 In Vivo Measurement of Cerebral Mitochondrial Metabolism Using Broadband. . . 495



Fig. 62.1 NIRSsignals from each side of the brain during all events (each coloured line represents
a single event). Δ[HbO2], Δ[HbT], and Δ[HbDiff] reflect higher changes on the left side, but
Δ[oxCCO] revealed minimal change on the injured left side compared to the right side
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4 Results

NIRS data were collected over a 3-h period without any clinical or electrographical

seizure noted during this period. Synchronous and repeated transient changes in

Δ[HbO2], Δ[HHb] and Δ[oxCCO] were noted on both sides (Fig. 62.1). Following

an acute drop in these parameters, signals returned slowly towards baseline. These

changes were noted over an average duration of 90 s. A change in Δ[HbT] of more

than 2 μM was considered a significant event and 16 similar events were identified

and analysed during the study.

A significant difference was noted between right and left sides in both cerebral

metabolism, oxygenation and their relationship. Δ[HbO2], Δ[HbT] and Δ[HbDiff]
were higher on the left (injured) side. However changes in [oxCCO] were more

prominent on the right side during the events (Fig. 62.1). During the events,

maximum concentration changes (fall) in Δ[HbO2], Δ[HbT], Δ[HbDiff] and

Δ[oxCCO] were significantly different between the two sides (Table 62.1) but

Δ[HHb] did not show any significant difference between the sides. Δ[oxCCO]
responded differently to changes in Δ[HbDiff] between the left side (slope 0.64, r2

0.5) and right side (slope �0.21, r2 0.05) (Fig. 62.2).

MRI of brain on day 5 revealed low signal intensity on TI weighted images and

high signal intensity on T2 weighted images in the left parieto-occipital region

Table 62.1 Differences in the maximum change between the left and right sides. Mean� standard

deviations of changes on both sides are presented with two-tailed p values

Left Right p value

Δ[HbO2] (mmolar) �0.0032� 0.0002 �0.0018� 0.0002 0.0002

Δ[HHb] (mmolar) �0.0020� 0.0001 �0.0020� 0.0002 0.9933

Δ[HbT] (mmolar) �0.0049� 0.0004 �0.0036� 0.0003 0.0315

Δ[HbDiff] (mmolar) �0.0016� 0.0001 �0.0008� 0.0001 0.0012

Δ[oxCCO] (mmolar) �0.0011� 0.0001 �0.0021� 0.0001 0.0003

Fig. 62.2 Linear regression analysis between Δ[oxCCO] with Δ[HbDiff] on both sides on day

1. Each coloured and different shaped point represents an event
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indicating a left sided neonatal stroke. Apparent diffusion coefficient (ADC) map

demonstrated restricted diffusion in the same area on the left side (Fig. 62.3).

5 Discussion

Spontaneous transient changes in NIRS parameters were recorded repeatedly from

both cerebral hemispheres; a clear asymmetry was evident in these spontaneous

haemodynamic and metabolic changes between the injured left side and the right

side. The origin of these events is unclear. Similar events have been described

previously following seizures using a different optical system [12]. We did not find

any significant changes in systemic observations and electrical activity on EEG

during the events in our study. Absolute band power in EEG was suppressed on the

injured left side when compared to the right side during the study. It is possible that

neuronal metabolic changes following seizures were driving the haemodynamic

changes. Cerebral oxygenation (measured as HbDiff) and cerebral metabolism

(measured as oxCCO) were tightly coupled on the injured side (left).

Following stroke, a persistent reduction in blood flow leads to a decrease in both

substrate supply and oxygenation on the injured side [13]. These changes have

opposite effects on Δ[oxCCO]. A decrease in substrate supply would lead to a

change in redox state towards oxidation whereas a decrease in oxygenation will

lead to a reduced redox state. These changes in redox state in opposite directions

may explain why the Δ[oxCCO] response on the left side during these events was

attenuated compared to the right side. The oxygenation and haemodynamic

responses were however more exaggerated on the injured side. This restricted

oxCCO change on the injured side of the brain is likely to reflect a persistent

abnormal mitochondrial metabolism following unilateral seizures and reduced

ATP turnover. An asymmetry in the cerebral energy state has been described

with 31P MRS recorded from right and left cerebral hemispheres after seizures in

a newborn baby [14]. This persisting abnormal cerebral metabolism may be due to

Fig. 62.3 MRI scan taken at 3T on day 5. (a) T1 weighted axial image demonstrating generalised

low signal intensity in the left parieto-occipital region with T1 shortening, (b) T2 weighted axial

image demonstrating high signal intensity in the affected region with loss of cortical ribbon, (c)

Apparent diffusion coefficient (ADC) map showing restricted diffusion in the affected area
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the increased energy demand that occurs during persistent seizures; this is known to

lead to unpredictable changes in the redox states of ETC metabolites [13].

In summary, we identified asymmetric cerebral oxidative and metabolic

responses following neonatal seizures on day 1 using broadband NIRS measure-

ment in a newborn infant. Although we were able to make an earlier predictive

assessment, compared to the current standard clinical assessment tool (MRI) in this

case study, a generalisation should be avoided at this point.
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