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In Vivo Imaging of Flavoprotein

Fluorescence During Hypoxia Reveals

the Importance of Direct Arterial Oxygen

Supply to Cerebral Cortex Tissue

K.I. Chisholm, K.K. Ida, A.L. Davies, D.B. Papkovsky, M. Singer, A. Dyson,

I. Tachtsidis, M.R. Duchen, and K.J. Smith

Abstract Live imaging of mitochondrial function is crucial to understand the

important role played by these organelles in a wide range of diseases. The mito-

chondrial redox potential is a particularly informative measure of mitochondrial

function, and can be monitored using the endogenous green fluorescence of oxi-

dized mitochondrial flavoproteins. Here, we have observed flavoprotein fluores-

cence in the exposed murine cerebral cortex in vivo using confocal imaging; the

mitochondrial origin of the signal was confirmed using agents known to manipulate

mitochondrial redox potential. The effects of cerebral oxygenation on flavoprotein

fluorescence were determined by manipulating the inspired oxygen concentration.

We report that flavoprotein fluorescence is sensitive to reductions in cortical

oxygenation, such that reductions in inspired oxygen resulted in loss of flavoprotein

fluorescence with the exception of a preserved ‘halo’ of signal in periarterial

regions. The findings are consistent with reports that arteries play an important

role in supplying oxygen directly to tissue in the cerebral cortex, maintaining

mitochondrial function.
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1 Introduction

Mitochondrial pathology has been implicated in a wide range of diseases, including

multiple sclerosis [1], Parkinson’s disease [2], and sepsis [3], emphasizing the need

for greater understanding of the role of mitochondrial function in vivo.

The electron transport chain (ETC) is one of the main regulators of mitochon-

drial function, and can be indirectly assessed using confocal microscopy and

membrane potential-sensitive dyes, such as tetramethylrhodamine methyl ester

(TMRM), or endogenous fluorescent indicators of ETC redox potential, including

oxidized flavoproteins and reduced nicotinamide adenine dinucleotide (NAD(P)H).

Reduced NAD(P)H and oxidized flavoproteins have fluorescent properties [4] that

differ from those of their oxidized and reduced counterparts, respectively, permit-

ting cellular redox potential to be mapped with the spatial and temporal resolution

afforded by confocal microscopy. ETC efficiency depends on oxygen availability;

therefore hypoxic conditions can lead to reduction of the ETC due to accumulation

of electrons and this can be visualized using flavoprotein and/or NAD(P)H

fluorescence [5].

Oxygen is normally supplied at a rate sufficient to maintain tissue levels above

the critical value necessary for mitochondrial function [6], and this supply has

historically been attributed to the capillary network [7]. However, more recent

evidence suggests that substantial oxygen diffusion can also occur across arteries

and arterioles [8–11].

Here we examined mitochondrial function in vivo, as assessed by endogenous

flavoprotein fluorescence, in response to changes in the inspired oxygen fraction

(FiO2) to explore the role of arteries in the supply of cortical tissue oxygen.

2 Method

C57bl/6 mice (~20 g) were housed in a 12 h light/dark cycle with food and water ad
libitum. All experiments were performed in accordance with the UK Home Office

Animals (Scientific Procedures) Act (1986).

Mice were anaesthetised (~2 % isoflurane in room air, or 2 g/kg urethane and

20 mg/kg ketamine i.p.; the injectable anaesthetic was only used when imaging

NAD(P)H together with flavoproteins), and placed on a homeothermic heating mat

to maintain rectal temperature at 37 �C. An incision was made in the scalp, the skull

cleaned of connective tissue, and affixed to a titanium bar for stability with dental

cement (Contemporary Ortho-Jet Powder, USA) mixed with cyanoacrylate glue

(Loctite, Henkel Ltd., UK). The cortex was exposed by partial craniotomy (~5 mm

diameter) over the right hemisphere, and the dura was moistened and cleaned with

saline. A circular glass coverslip (6 mm) was placed over a ring of petroleum jelly

to prevent evaporation during imaging. In a subset of experiments, oxygen-sensi-

tive microbeads impregnated with a phosphorescent dye, PtPFPP (ex: 543 nm; em:
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650 nm, collected with 585 nm long pass filter) were spread on the dura (5 μl of
5 mg/ml aqueous suspension) prior to placement of the coverslip. Alternatively,

TMRM (T-668, Molecular Probes, Invitrogen, UK; 1 μM incubated on the cortex

for 30 min; ex 561 nm, em 584–656) was applied after removal of the dura.

Following surgery, the animals were moved to a custom-made stage for confocal

microscopy.

In experiments employing cyanide (NaCN) or carbonyl cyanide

4-(trifluoromethoxy)phenylhydrazone (FCCP), a coverslip was not used, and the

dura was removed. A well was created around the exposed cortex using silicone

(Body Double, Smooth-On Inc., USA) and filled with 40 μl saline to which 2 μl of
NaCN or FCCP (working concentration of 5 mM and 10 μM, respectively) were

added during time lapse imaging. Five of these images were averaged, seconds or

minutes after application, depending on the stabilization of the image. FiO2 was

controlled by mixing oxygen and nitrogen as indicated (100, 21, 15, 21, 10, 21 and

5 % oxygen, each for 5 min).

The endogenous flavoprotein signal (ex: 488 nm, em: 505–570 nm) was imaged

with a LSM 5 Pascal laser-scanning confocal microscope (Zeiss, Germany), using

time series recordings with an in-plane resolution of 512 by 512 pixels and an

optical slice thickness of 896 μm. Endogenous NAD(P)H (ex: 720, em: 430–480)

was imaged using a Zeiss 510 NLO META equipped with a Coherent Chameleon

Ti:sapphire laser.

Images were processed using Fiji/ImageJ Version 1.48v. Time lapse sequences

were aligned using the ‘Stackreg’-Plugin. Statistical significance was assessed

using the IBM SPSS Statistics 22 package.

3 Results

Under normoxic conditions, endogenous green fluorescence was uniformly distrib-

uted across the surface of the cerebral cortex, with the superficial vasculature

clearly defined in negative contrast. Arteries were distinguishable from veins

based on their morphology, and their uniform outline, which was typically

highlighted by brightly fluorescent walls.

The origin of endogenous green fluorescence was explored by administrating

agents known to change the redox state of flavoproteins. Application of NaCN

(reducing the ETC) significantly decreased fluorescence intensity (~35 %), whereas

application of FCCP (oxidizing the ETC) significantly increased fluorescence

intensity (~23 %; Fig. 29.1). These data are consistent with the assumption that

green autofluorescence originates from oxidized mitochondrial flavoproteins.

Although increasing FiO2 had no effect on the signal, reducing FiO2 (to� 10 %)

resulted in a marked decrease in flavoprotein fluorescence. This decrease preferen-

tially affected tissue distal to arteries, with a ‘halo’ of preserved fluorescence in

tissue adjacent to arteries and arterioles (Fig. 29.2), and typically appeared at an

FiO2 of 5–10 %.
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To explore whether changes in flavoprotein fluorescence were associated with

changes in mitochondrial membrane potential, we examined the effects of hypoxia

on TMRM fluorescence. The same arterial ‘halos’were observed with TMRM at 5–

10 % FiO2 as were seen when imaging flavoproteins (Fig. 29.2a).

The changes in the distribution of the flavoprotein fluorescence at reduced FiO2

varied inversely with NAD(P)H fluorescence (Fig. 29.3a). As expected, changing

the FiO2 also resulted in corresponding changes in cortical tissue oxygen concen-

tration, as measured by oxygen-sensitive phosphorescent beads (Fig. 29.3b). When

FiO2 was increased, a larger change in emission intensity was observed in beads

within the ‘halo’ of preserved flavoprotein fluorescence surrounding arteries than

beads located distal to arteries (Fig. 29.3c). At an FiO2 of 5 %, a greater response in

Fig. 29.1 (a) Fluorescence intensity in response to NaCN and FCCP. Scale bar¼ 100 μm. (b)

Quantification of fluorescence intensity before and after application of saline/DMSO or NaCN/

FCCP to the cortex. Data are normalised to signal intensity before treatment and displayed as

mean� SEM. Statistical significance was assessed using a paired sample t-test (*p� 0.05,

**p� 0.01)

Fig. 29.2 (a) Flavoprotein (green) and TMRM (red) fluorescence in response to changes in FiO2.

Scale bar¼ 200 μm. (b) The ratio of periarterial to perivenular tissue flavoprotein fluorescence

intensity (examples indicated in a), red ¼ periarterial and blue¼ perivenular. Data are displayed

as mean� SEM. Statistical significance was assessed using a paired sample t-test (*p� 0.05,

***p� 0.001)
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fluorescence was observed in beads in nonarterial regions, but this difference was

not significant (Fig. 29.3c).

4 Discussion

Using endogenous flavoprotein fluorescence we have demonstrated that cortical

mitochondrial function is selectively impaired at low FiO2, with preservation of

mitochondrial redox potential around arteries and arterioles, demonstrating the role

of these structures in the direct supply of oxygen to cerebral cortex tissue.

The use of flavoprotein fluorescence as an indicator of mitochondrial redox

potential is well established [4, 12–14] but its application in vivo has been limited.

To our knowledge flavoprotein autofluorescence has not been used previously to

assess cortical redox state in response to changes in FiO2 at the high spatial and

temporal resolutions of confocal microscopy.

To confirm the mitochondrial origin of the flavoprotein signal, we assessed

signal changes in response to variations in mitochondrial redox state, induced by

the well characterised agents NaCN and FCCP. The signal source was further

validated by simultaneous measurement of flavoprotein and NAD(P)H fluores-

cence, revealing an inverse relationship and permitting mapping of the redox

ratio of the cerebral cortex in vivo.

Under normoxic conditions, oxygen supply to the brain was sufficient to main-

tain functioning mitochondria throughout the cortex. Increasing FiO2 accordingly

had no effect on flavoprotein fluorescence, presumably because oxygen availability

was not a rate limiting factor in the function of the ETC.

A slight decrease in FiO2 to 15 % also had little influence on the mitochondrial

redox potential. However, a further decrease of FiO2 to � 10 % induced a charac-

teristic change, with preservation of oxidized flavoprotein in periarterial tissue, and

reduction of flavoproteins in distal tissue and near veins. This pattern was also seen

with TMRM, suggesting other measures of mitochondrial function such as

Fig. 29.3 (a) Flavoprotein (green) and NAD(P)H (blue) fluorescence in response to hypoxia. (b)

Oxygen-sensitive phosphorescent beads (red) on the hypoxic cortex. A¼ Periarterial,

NA¼Nonarterial. (c) Bead emission intensity in response to changes in FiO2. Data are displayed

as mean� SEM. Statistical significance was assessed using an independent sample t-test

(**p�0.01)
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membrane potential are also affected. Preservation of flavoprotein and TMRM

fluorescence around arteries is not consistent with the historical assumption that

oxygen exchange is limited to capillaries [7]. Rather, our data support recent

evidence that arteries play a major role in supplying cortical oxygen directly to

tissue [8–11].

As expected, decreasing FiO2 also decreased cortical oxygenation as measured

by oxygen-sensitive beads. Tissue oxygenation in periarterial regions increased to a

greater extent during hyperoxia than in nonarterial areas, further supporting the

suggestion that oxygen exchange occurs along arteries [8–11]. However, no mea-

surable difference in periarterial and nonarterial tissue responsiveness was detected

at �10 % FiO2, despite the decrease in oxidized flavoprotein remote from arteries.

In conclusion, changes in mitochondrial redox potential, as demonstrated by a

regionally selective decrease in flavoprotein fluorescence, are evident in the hyp-

oxic cerebral cortex. The simultaneous preservation of oxidized flavoproteins in

tissue surrounding arteries is consistent with the direct delivery of oxygen from

arteries to adjacent tissue.

Acknowledgments This work was supported by grants from the University College London

Grand Challenges and Multiple Sclerosis Society of Great Britain and Northern Ireland.

Open Access This book is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.

References

1. Mahad D, Lassmann H, Turnbull D (2008) Review: mitochondria and disease progression in

multiple sclerosis. Neuropathol Appl Neurobiol 34:577–589

2. Schapira AHV, Gu M, Taanman JW et al (1998) Mitochondria in the etiology and pathogen-

esis of Parkinson’s disease. Ann Neurol 44:S89–S98

3. Fink MP (2002) Bench-to-bedside review: cytopathic hypoxia. Crit Care 6:491–499

4. Reinert KC, Dunbar RL, Gao WC et al (2004) Flavoprotein autofluorescence imaging of

neuronal activation in the cerebellar cortex in vivo. J Neurophysiol 92:199–211

5. Kasischke KA, Lambert EM, Panepento B et al (2011) Two-photon NADH imaging exposes

boundaries of oxygen diffusion in cortical vascular supply regions. J Cereb Blood Flow Metab

31:68–81

6. Erecinska M, Silver IA (2001) Tissue oxygen tension and brain sensitivity to hypoxia. Respir

Physiol 128:263–276

7. Krogh A (1919) The number and distribution of capillaries in muscles with calculations of the

oxygen pressure head necessary for supplying the tissue. J Physiol Lond 52:409–415

8. Ivanov KP, Derry AN, Vovenko EP et al (1982) Direct measurements of oxygen-tension at the

surface of arterioles, capillaries and venules of the cerebral-cortex. Pflugers Arch Eur J Physiol

393:118–120

9. Ivanov KP, Sokolova IB, Vovenko EP (1999) Oxygen transport in the rat brain cortex at

normobaric hyperoxia. Eur J Appl Physiol Occup Physiol 80:582–587

238 K.I. Chisholm et al.



10. Vovenko E (1999) Distribution of oxygen tension on the surface of arterioles, capillaries and

venules of brain cortex and in tissue in normoxia: an experimental study on rats. Pflugers Arch

Eur J Physiol 437:617–623

11. Sakadzic S, Roussakis E, Yaseen MA et al (2010) Two-photon high-resolution measurement

of partial pressure of oxygen in cerebral vasculature and tissue. Nat Methods 7:755–759

12. Chance B, Schoener B, Oshino R et al (1979) Oxidation-reduction ratio studies of mitochon-

dria in freeze-trapped samples – NADH and flavoprotein fluorescence signals. J Biol Chem

254:4764–4771

13. Huang SH, Heikal AA, Webb WW (2002) Two-photon fluorescence spectroscopy and micros-

copy of NAD(P)H and flavoprotein. Biophys J 82:2811–2825

14. Scholz R, Thurman RG, Williams JR et al (1969) Flavin and pyridine nucleotide oxidation-

reduction changes in perfused rat liver. I. Anoxia and subcellular localization of fluorescent

flavoproteins. J Biol Chem 244:2317

29 In Vivo Imaging of Flavoprotein Fluorescence During Hypoxia Reveals the. . . 239


	Chapter 29: In Vivo Imaging of Flavoprotein Fluorescence During Hypoxia Reveals the Importance of Direct Arterial Oxygen Suppl...
	1 Introduction
	2 Method
	3 Results
	4 Discussion
	References


