
Probabilistic In-Network Caching for Information-Centric Networks

Ioannis Psaras, Wei Koong Chai and George Pavlou
Dept. of Electrical & Electronic Engineering

University College London
WC1E 7JE, Torrington Place, London, UK

Email: {i.psaras, w.chai, g.pavlou}@ee.ucl.ac.uk

Abstract—In-network caching necessitates the transformation
of centralised operations of traditional, overlay caching tech-
niques to a decentralised and uncoordinated environment. Given
that caching capacity in routers is relatively small in comparison
to the amount of forwarded content, a key aspect is the distribu-
tion of content among the available caches. In this paper, we are
concerned with decentralised, real-time distribution of content in
router caches. Our goal is to reduce caching redundancy and in
turn, make more efficient utilisation of available cache resources
along a content delivery path.

Our in-network caching scheme, which we call ProbCache,
approximates the caching capability of a path and caches contents
probabilistically in order to: i) leave caching space for other flows
sharing (part of) the same path, and ii) fairly multiplex contents
of different flows in caches along a shared path.

We compare our algorithm against universal caching and
against schemes proposed in the past for Web-Caching ar-
chitectures, such as Leave Copy Down (LCD). Our results
show reduction of up to 20% in server hits, and up to 10%
in the number of hops required to hit cached contents, but,
most importantly, reduction of cache-evictions by an order of
magnitude in comparison to universal caching.

I. INTRODUCTION

Naming content objects directly instead of their respective
end-host machines gives the opportunity to identify content
objects as they travel from source to destination [1], [2], [3]. In
turn, given that the network transfers named objects (instead of
unidentifiable data containers, i.e., IP packets), these objects
can be cached in the network and be forwarded to subsequent
users interested in the same content [4], [5].

In-network caching has therefore emerged as a distinct
research field in the context of Information- or Content-
Centric Networks (ICN/CCN). In-network caching exhibits
fundamental differences from overlay web-caching [6], [7], or
hierarchical and co-operative caching approaches [8], [9] and
poses new challenges [10], [11]. For instance, past research
considered mainly caching of whole files (with a few excep-
tions [12]) as well as administration of their placement [13]
and location [14] by centralised entities, e.g., DNS and HTTP
redirection. Centralised administration of content placement
gives the opportunity to control and manage network resources
better at the cost of: i) increased communication overhead to
update the content location database, and ii) reduced flexibility
in terms of available cache locations.

In contrast, Information-Centric Networking enables
caching of addressable content chunks [2], [12] in every
cache-equipped network device [15] and replacement of
cached chunks at line-speed [16]. Although, this operation

increases the availability of cache locations [17] it renders
prohibitive the process of updating logically-centralised
content location databases with the exact location of cached
contents. This decentralised, location-independent operation
alters many of the basic features of past overlay caching
techniques, e.g., content-to-cache allocation [13], while it
invalidates the applicability of some others, e.g., content
placement based on fixed overlay topologies of caches and
servers [14].

In this paper, we are concerned with cache management
operations that have to be adjusted to fit in a completely
decentralised and uncoordinated environment. We focus on the
fair sharing of the available cache capacity of a path among
the content flows that use part of this path per unit time.
In other words, we focus on the allocation of the available
cache capacity along a path of caching entities among different
content flows. As a starting point we intuitively observe that
caching every content in every cache-enabled device along
the delivery route (an operation implicitly supported in [2]),
inherently causes huge caching redundancy. Subsequently, our
goal is to reduce caching redundancy and make more efficient
use of available cache resources, in order to reduce overall
network utilisation and potentially increase user-perceived
quality. Indeed, our initial investigation of selective caching
policies based on node centrality metrics shows very promising
results [18] on this direction.

To achieve our goal, we approximate the caching capability
of a given path per unit time (Section II-B) and we design
ProbCache, a probabilistic algorithm for distributed content
caching along a path of caches (Section III). Our results sug-
gest that there is indeed a lot of space for resource management
optimisation of in-network caching policies, given that appro-
priate content multiplexing rules are in place (Section IV).

We use the terms “router” and “cache” interchangeably
to refer to cache-enabled network devices [16]; it should be
noted that our approach does not require every router to be
cache-enabled, but it will work in hybrid architectures as well.
Furthermore, we refer to content “packets”, “messages” and
“chunks” interchangeably to refer to the cacheable unit, which
is not necessarily of similar size to an IP packet. In fact, we
leave open the actual size of the cacheable unit which is yet
to be defined by the ICN research community. We highlight
that the concepts and algorithms proposed in this paper are
cache unit- as well as architecture-agnostic and would apply
to almost any ICN environment [19], [2], [20].

We differentiate between two types of redundancy, namely,

network traffic redundancy [5] and caching redundancy [13],
[9]. Caching has been traditionally used to reduce traffic
redundancy [4], [6]. Assuming a set of available caches, as
opposed to a single proxy cache, redundancy can still exist
between cached contents in different locations, something that
has also been investigated in the past for overlay caching
schemes [13], [9]. However, and as mentioned earlier, overlay
schemes require some form of co-operation between the
caches themselves and/or between the caches and a central
management entity. In contrast, in the case of in-network
caching, management has to happen in an uncoordinated,
uncooperative fashion. In this paper, we consider each path
of caching entities as a pool of caching resources; we try
to find optimal ways of distributing content in these caches
in order to eliminate caching redundancy and in turn, reduce
traffic redundancy. Our results show that careful content flow
multiplexing in caches can achieve up to 20% more cache
hits. Surprisingly, this translates to one order of magnitude
reduction in terms of traffic redundancy.

II. SYSTEM MODEL AND ASSUMPTIONS

We argue that in-network cache management has to take
into account the approximate cache capacity of the path of
caches and the estimated amount of traffic that these caches
serve per unit time, in order to make decisions on whether
to cache incoming contents or not. In Section II-A, we make
assumptions that help us approximate the cache capacity of
a given path and in Section II-B, we present our design
principles.

A. Assumptions on Caching Technologies

By definition, caching is different to storage, both in net-
works and in computer systems, in that caching keeps contents
stored for a specific amount of time and not indefinitely, as in
storage. Therefore, the size of a cache is a relative factor,
which cannot stand on its own, but instead has to be linked to
the amount of time that a given content is cached for. We,
therefore, associate the cache size with the traffic that the
corresponding router serves per second. Our cache size unit
is the number of seconds worth of traffic cached in a given
router and depends on the speed of the outgoing links of the
router in question.

One important question then is: “For how long can we
afford to cache contents in a given router?”. Furthermore,
given that in this study we are concerned with paths of caches
and not with single-caches only, another important question is:
“For how long do we need to cache contents in a given path
in order to minimise redundant traffic and maximise gain?”.
Our reasoning for answering these questions is as follows:

• Today’s memory access technologies guarantee line-
speed access to DRAM chips of up to 10GBytes at a
reasonable price [16]. This means that a 5GByte-long

LINK NAME LINK SPEED 1-SEC TRAFFIC SECS OF TRAFFIC
IN A 10GB CACHE

OC-24 1,2 Gbps ∼ 0.15 GBs ∼ 64 secs
OC-48 2,4 Gbps ∼ 0.31 GBs ∼ 32 secs
OC-192 9,9 Gbps ∼ 1.25 GBs ∼ 4 secs
OC-768 39,8 Gbps ∼ 5 GBs ∼ 2 secs
OC-1536 79,6 Gbps ∼ 10 GBs ∼ 1 sec
OC-3072 159,2 Gbps ∼ 20 GBs ∼ 0.5 secs

TABLE I
LINK SPEEDS AND RELATED CACHING PROPERTIES

cache behind a 40Gbps link1 can safely be assumed to
hold contents for one second (see also Table I). Without
loss of generality, we assume that each cache along a
path has sufficient memory to cache contents in a DRAM
chip for at least one second (see third column in Table I).

• Authors in [5] show up to 60% bandwidth savings by
redundant traffic elimination within the first 10 seconds
after the original transmission, in some enterprise net-
works. We associate redundant traffic, i.e., subsequent
requests for the same content, with the aforementioned
result. That is, we consider, without loss of generality,
that any content should be kept in any one of the path’s
caches for a target time window, Ttw, of 10 seconds.

Both the above settings are relatively arbitrary and can
change in the future, but these values are a good starting
point based on today’s technology. In addition, our concepts
and algorithms presented next are still applicable should these
values change.

B. System Model

We assume the topology of Fig. 1. The path from source to
destination comprises n routers, where router ri has Ni cache
slots, each able to hold one addressable content chunk; based
on the discussion above, we assume that Ni slots can hold
one second worth of traffic. Our model notation is given in
Table II.

Path Cache Capacity. The caching capacity of our path of
caches is

∑n
i=1 Ni, in terms of memory, which amounts to n

seconds worth of traffic cached along the path.

Path Cache Capability. Given that our target time window
is Ttw seconds worth of traffic cached along a given path,
the caching capability of an n-long path, as a fraction of the

required capacity for Ttw seconds, is
∑n

i=1
Ni

TtwN , where N is
the average cache size along the path. We revisit the issue of
average cache size in the next section.

Symmetric Paths. Request and Content messages follow the
same route, according to recent proposals [1], [19], [2], [21].

Path Length Monitoring. Similar to the TTL field included
in IP packets, our design requires that ICN request message

1To the best of our knowledge, operators to date use links of up to 40
Gbps, while some operators plan to update a limited number of their links
to 100 Gbps: http://www.prnewswire.com/news-releases/verizon-first-service-
provider-to-announce-100g-deployment-on-us-network-118891754.html

SYMBOL MEANING

n Number of caches on the path
Ni Cache memory in ri that holds 1-sec worth of traffic
Ttw Target Time Window (set to 10 secs here)
TSI, c Time Since Inception (Header field - Request Message):

Hop-Distance from Client, Value range: 1 to n
TSB, x Time Since Birth (Header field - Content Message):

Hop-Distance from Server, Value range: 1 to n

TABLE II
MODEL NOTATION

headers include the Time Since Inception (TSI) field and
content message headers include both the TSI and the Time
Since Birth (TSB) fields. Every router increases the TSI value
of request packets by one. The content source attaches the
TSI value that it sees on the request message to the content
message. Every router increases the TSB value of the content
message by one. Hence, during the content message’s journey
back to the client, the TSI value in the content message is a
fixed value and denotes the path-length of this specific content
flow, while the TSB value denotes the number of hops that the
content message has travelled so far2.

Fig. 1. Design Topology

III. BUILDING ProbCache

We approach the problem of content placement within a
system of caches from the path caching capability point of
view. In particular, each router, based on the amount of traffic
that it has to serve per unit time, indirectly approximates the
number of copies of incoming contents that the (rest of the)
path can accommodate. This value is the TimesIn factor (see
Section III-A). Based on the TimesIn indication and on the
router’s distance from the user, which we call CacheWeight
(see Section III-B), each router probabilistically caches con-
tents as they travel along the path (see Section III-C).

A. Estimating the Caching Capability of a Path

Consider two users shown, in Fig. 1, five and four hops away
from the server, respectively. The total cache capacity of the
path is

∑n
i=1 Ni, where n1 = 5 for Request1 and n2 = 4

for Request2. Grey circles denote the caches that have to be
shared between the two users, while white and black circles
denote caches used exclusively by Users 1 and 2, respectively.

The number of times that the path can afford to cache this
packet is reflected in the TimesIn factor, whose calculation
takes place as follows:

2In case of a cache hit, the TSI and TSB values are treated as if the cache
is the actual source, that is, the TSI value of the content packet is replaced
by that of the Request packet, while the TSB is set to 1.

TimesIn(x) =

∑c−(x−1)
i=1 Ni

TtwNx
(1)

where c is the Time Since Inception (TSI) value and x is
the Time Since Birth (TSB) value that the router sees in the
header of the content message (Table II). As an example,
consider content messages traveling through router r2 to fulfil
Request1, in Fig. 1, will have TSI = 5 and TSB = 2, while
contents for Request2 will have TSI = 4 and TSB = 2.
The sum in Eq. 1 considers the result of the subtraction of
TSI minus TSB (or c − (x − 1) in Eq. 1) to account for the
remaining caches only, instead of the total number of caches
from the content source to the client.

B. Weight-based Caching

We argue that in order to achieve fair resource (in our case
cache) allocation in a distributed environment, each content
flow has to take into account other content flows sharing the
same path (grey circles in Fig. 1). Hence, to decide where to
cache the number of copies that TimesIn indicated, we use
the Cache Weight factor:

Cache Weight(x) =
x

c
(2)

where x is the TSB value of the packet header and c is the TSI
value. We note that the TSI value is fixed during the content
packet’s journey from the source to the client, while the TSB
value is increasing for each router the packet traverses; hence,
CacheWeight → 1 as the packet is getting closer to its
destination. This is a desirable system property considering
path-diversity, in terms of number of hops, between clients
and sources of different content flows.

C. ProbCache: Probabilistic In-Network Caching

ProbCache is the product of TimesIn and CacheWeight.
Each router along the path caches incoming chunks with
probability ProbCache, depending on their TSI and TSB
values.

ProbCache(x) =

∑c−(x−1)
i=1 Ni

TtwNx︸ ︷︷ ︸
TimesIn

× x

c︸︷︷︸
CacheWeight

(3)

The Cache Weight factor increases the probability of a
content being cached closer to its destination. This way, we
achieve fair content flow multiplexing between contents that
travel to different destinations in terms of path length. For
example, contents for User 1 in Fig. 1 should be cached
inversely proportionally to User 1’s distance from the server,
i.e., in (white) routers r4, or r5, in order to leave (grey)
routers r1−r3 for clients travelling shorter paths to cache their
contents. This is in accordance with our previous findings in
[17] that contents tend to be cached for longer towards the
edge of the network.

NOTE: To calculate the TimesIn factor each router has to
conjecture on the size of the rest of the routers on the path.

However, given that we do not know what amount of memory
each router will have, or if backbone routers, for instance,
will have bigger caches than edge-network routers, we make
the following simplifying assumption. Each router assumes
that all other routers on the path have the same amount of
cache as it has got. Even in a random-size cache deployment
scenario, this assumption serves our purposes well. That is,
a router with a big cache, compared to the caches along the
path, will be caching contents with higher probability, while a
router with a small cache will experience the opposite effect
(Eq. 1). This is a desirable system property which alleviates the
effect of unknown cache sizes, but at the same time guarantees
fair load distribution among nodes with diverse caches. We
relax the assumption of homogeneous cache sizes later on
and show that although our simplifying assumption does not
harm the performance of ProbCache in heterogeneous cache
size environments, it fails to exploit extra caching resources
(Section IV-B).

IV. PERFORMANCE EVALUATION

We test our algorithm in a custom-built simulator, where we
use Least Recently Used (LRU) caches. Given that the ultimate
goal of ProbCache is to manage caching resources more
efficiently, by reducing cache redundancy, the straightforward
metric of interest is the reduction of Server Hits. Furthermore,
the gain from serving user requests from intermediate caches,
instead of travelling to the origin server, depends on the
number of hops that the request travels before it eventually hits
cached contents. Clearly, as the number of hops increases, the
overall gain decreases. To measure this gain, we also monitor
and present the Hop Reduction Ratio.

We use binary tree topologies; set the exponent of the
Zipf distribution of content popularity to 0.8 to capture the
worst case of fairly unpopular content [22]; and compare the
performance of ProbCache against: i) the universal caching
approach proposed in [2], a scheme that we call Cache
Everything Everywhere (CE2), ii) the Leave Copy Down
(LCD) [23] algorithm proposed in the past for overlay caching
topologies3, iii) a probabilistic algorithm that caches with
probability p = 0.7 at every cache and iv) a probabilistic
algorithm that caches with probability p = 0.3.

A. Scenario 1: Path Cache Capacity Management

We use a 6-level binary tree topology of 127 nodes in total.
The root node represents the server node and we configure
requests to come from the last two levels of the tree, assuming
that individual users are not connected to backbone network
routers; we note however that results are similar in case of
users attached to all routers. We generate a total of 100,000
requests, to allow enough time for the system to reach a steady-
state. As noted earlier, our cache-size unit is the number of

3According to LCD [23], every request for a specific content causes the
content to be copied one hop closer to the user, or one level down in the
cache hierarchy. If a request for a content is received after the content has
been evicted from the cache, according to the LRU policy, the content has to
be retrieved from another cache up-the-hierarchy, or from the origin server.

seconds worth of traffic cached in a given router. In our first
experiment, we assume homogeneous caches and we test the
performance of the algorithms as we increase each router’s
cache capacity from one to six seconds (Fig. 2).

The Server Hits performance difference balances around
a reduction of approximately 12-15% (12,000-15,000 Server
Hits less) for ProbCache against CE2 and around 7-10% com-
pared to the rest of the algorithms evaluated here (Figs. 2(a)).

The Hop Reduction difference is roughly 8-10% against
the CE2 scheme, while it is smaller compared to the rest of
the algorithms and especially compared to LCD (up to 3%).
However, considering short path lengths (up to 6 hops) and the
operational properties of both CE2 and LCD, whose design
targets bringing content as close to the end-user as possible,
we argue that even this small performance difference unveils
better exploitation of storage resources in merit of ProbCache.
To validate this claim further, we trace the average number of:
i) Cache Hits, ii) Received Requests, and iii) Cache Evictions
per tree level. The size of the cache is set to be equal to three
seconds worth of traffic at each cache.

 65000

 70000

 75000

 80000

 85000

 90000

 95000

 1 2 3 4 5 6

S
e

rv
e

r
H

it
s

Number of Seconds worth of Traffic Held at each Cache (N_i)

CE
2

LCD
P(0.7)
P(0.3)

ProbCache

(a) Server Hit Saving

 0.78
 0.8

 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1 2 3 4 5 6

H
o

p
 R

e
d

u
c
ti
o

n

Number of Seconds worth of Traffic Held at each Cache (N_i)

CE
2

LCD
P(0.7)
P(0.3)

ProbCache

(b) Hop Reduction Ratio

Fig. 2. Scenario 1: Homogeneous Caches

We observe, although do not present the related results here
due to space limitations, disproportionate differences between
the number of Cache Hits and the corresponding number of
Received Requests in case of ProbCache. That is, ProbCache
has more Cache Hits and less Received Requests than the
rest of the algorithms. This difference in Cache Hits and
Received Requests owes to the efficient resource management
of ProbCache, which results in contents staying in caches for
longer. To substantiate our claims, we plot in Fig. 3 the average
number of evictions per tree-level, where the smaller the tree
level, the closer to the server this level is. The very big differ-
ence in terms of cache evictions validates our claim that per-
path, distributed resource management results in more contents
staying in the caches for longer and therefore, getting more
cache hits. This huge reduction in cache evictions in Fig. 3
reflects the reduction in terms of traffic that flows through the
network and subsequently, redundant traffic elimination.

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

 1 2 3 4 5
C

a
c
h

e
 E

v
ic

ti
o

n
s

Tree Level

ProbCache
P(0.3)
P(0.7)

LCD
CE

2

Fig. 3. Scenario 1: Average Number of Cache Evictions per Tree Level

B. Scenario 2: Heterogeneous Cache Sizes

We proceed to relax the assumption of homogeneous caches.
In particular, we expect that as research in the area matures,
caches will be sized according to a specific norm or a set
of guidelines. We conjecture three potential norms: i) larger
caches are deployed towards the core of the network, where
servers reside, ii) larger caches are deployed towards the edges
of the network, where users are connected, iii) all caches have
roughly similar sizes (homogeneous cache scenario presented
in the previous section).

We use the same topology as before, set cache sizes
according to the formula: Ni×TSB (see Table II) and observe
the performance difference in case of heterogeneous caches.
That is, if a core router caches one second worth of traffic
and we assume larger caches towards the edges of the network
(which we denote as c(ore)→ E(dge)), then the edge router
of a six-hop path will cache six seconds worth of traffic. The
capacity of the path in that case is c→ E :

∑c−(x−1)
i=1 (c−i)Ni.

The opposite applies for deployments where larger caches are
deployed in the core of the network (which we denote as
C(ore) → e(dge)); the capacity of the path in this case is
C → e :

∑c−(x−1)
i=1 iNi.

We modify the TimesIn factor based on the above path
capacities for each case in Eqs. 4 and 5, respectively and call
the new algorithm ProbCache+. The corresponding cache
capacity calculations along a six-hop path for Eqs. 1, 4 and 5
are shown in Fig. 4. We use the default algorithm (i.e., Eqs. 1
and 3) as our benchmark for comparisons, and for clarity, we
compare the performance of ProbCache+ against CE2 [2]
and LCD [23] only.

TimesIn(C→e)(x) =

∑c−(x−1)
i=1 iNi

TtwNx
(4)

TimesIn(c→E)(x) =

∑c−(x−1)
i=1 (c− i)Ni

TtwNx
(5)

Figure 5 summarises our results. We present the ratio of
each protocol’s cache hits performance in case of extra cache
added in the core (Scenario 2.1) or the edge (Scenario 2.2) over
the performance in case of homogeneous caches (Scenario 1).

As noted, ProbCache is the original algorithm in Eq. 3,
hence this algorithm does not take into account the extra
caching capacity; in contrast, ProbCache+ incorporates Eq. 4
in Scenario 2.1, Fig. 5(a), and Eq. 5 in Scenario 2.2, Fig. 5(b).
In both cases, we observe that both CE2 and LCD fail
to utilise the extra available cache capacity; that is, their
performance increases by less than 5%, although the extra

1 2 3 4 5 6

Hop Number

P
a
th

C
a
p
a
c
it
y

Ni

Hc- iL Ni

i Ni

Fig. 4. Path Capacity calculation that takes place at each router along a
6-hop Path: the Ni curve is for homogeneous caches, hence the capacity is
given by c → e :

∑c−(x−1)

i=1
Ni; the iNi curve is for larger core caches,

hence C → e :
∑c−(x−1)

i=1
iNi; the (c − i)Ni curve is for larger caches

towards the edge, hence c→ E :
∑c−(x−1)

i=1
(c− i)Ni.

cache capacity we added is 30% compared to Scenario 1 (Sec-
tion IV-A). We see that this is the case too with ProbCache
and ProbCache+ in case of extra cache capacity at the core
of the network (i.e., Fig. 5(a))4.

Interestingly, and in contrast to recent results reported in
[24], where the authors show that cache size heterogeneity
does not improve the caching performance in ICNs, we find
that both ProbCache and especially ProbCache+ utilise a
good amount (up to 18%) of the extra caching capacity added
towards the edge of the network in Scenario 2.2, Fig. 5(b).
The overall performance difference in that case is between
20-25% compared to CE2 and LCD, if we take into account
the absolute results reported in Section IV-A, Fig. 2(a). We
argue that this is due to more efficient resource utilisation
of the proposed algorithm and better content multiplexing in
caches, something that does not constitute a design goal for
neither CE2 nor LCD.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 TSB 2 TSB 3 TSB 4 TSB 5 TSB 6 TSB

P
e

rf
o

rm
a

n
c
e

 I
n

c
re

a
s
e

 R
a

ti
o

Number of Seconds worth of Traffic Held at each Cache times TSB (N_i x TSB)

Actual Extra Amount of Cache

CE
2 LCD ProbCache ProbCache+

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 1 2 3 4 5 6

(a) Scenario 2.1: Larger Cache at the Core (C → e)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 TSB 2 TSB 3 TSB 4 TSB 5 TSB 6 TSB

P
e

rf
o

rm
a

n
c
e

 I
n

c
re

a
s
e

 R
a

ti
o

Number of Seconds worth of Traffic Held at each Cache times TSB (N_i x TSB)

Actual Extra Amount of Cache

CE
2 LCD ProbCache ProbCache+

(b) Scenario 2.2: Larger Cache at the Edge (c→ E)

Fig. 5. Scenario 2: Heterogeneous Caches – y-axis measures the performance
difference ratio compared to the homogeneous scenario presented in Fig. 2 –
the inner part of Fig. 5(a) is a zoom-in to the line-plots of the same figure

Summarising, we argue that these are the properties of in-
network caching that the research community needs to investi-

4We note that in Fig. 5 we present the performance increase of the protocols
compared to the previous scenario. This means that the performance of the
algorithms in absolute terms is similar to the one presented in Fig. 2.

gate further, in order to exploit this inherent capability of ICNs
for in-network caching. We have tested our algorithm in scale-
free topologies with multiple servers and multiple replicas of
contents. Our results show even greater differences in terms
of redundant traffic elimination in favour of ProbCache.
In case of CE2 this owes to inefficient resource utilisation,
while in case of LCD it owes to its inherent design to fit
to directed graphs only, where the direction from servers to
clients is a fixed hierarchy. In contrast, ProbCache exploits
the knowledge provided by TSI and TSB and multiplexes
content flows according to their respective path lengths.

V. RELATED WORK

Several recent studies have focused specifically on the
properties of a network with in-network caches (e.g., [10],
[22], [25]). In [22], the authors provide a comprehensive per-
formance evaluation of in-network caching taking into account
several parameters, such as content request distributions, the
catalog size, and cache replacement policies. They conclude
that content popularity is (by far) the most important parameter
of all. Along the same lines, authors in [26] investigate the
impact of traffic mix on the caching performance of a two-
level cache hierarchy. They conclude that VoD content should
be cached towards the edge of the network, while other types
of content should be stored in large discs towards the core.

In a recent study [24], the authors show that having hetero-
geneously sized caches does not improve overall performance.
We argue that this owes to the assumption of ubiquitous
caching, that is, caching chunks in all routers along the content
delivery path. As we have shown both in this paper (see
Section IV-B, Fig. 5) and in our recent study [18], by caching
a limited number of copies of a chunk in selected caches in the
network, we achieve significantly higher gains. In particular, in
[18], we show that the centrality of nodes in a given network
topology gives valid evidence of which nodes are within the
most number of paths. In turn, caching in those nodes increases
the overall performance by up to 15% in realistic scale free
topologies [18].

VI. CONCLUSIONS

We have argued that caching named chunks in network
routers’ DRAM memory, as opposed to caching large ob-
jects or files in proxy disks, calls for reconsideration of
past approaches to caching. That is, in-network caching in
ICNs has to happen in an uncoordinated and distributed
fashion. We have proposed ProbCache, an algorithm that
approximates the capability of paths to cache contents, based
on path lengths, and multiplexes content flows accordingly.
The ultimate goal of ProbCache is to utilise resources
efficiently, reduce caching redundancy and in turn, network
traffic redundancy. We have considered both homogeneous and
heterogeneous cache sizes and have adjusted ProbCache to
fit in both environments.

We report savings of up to 20% in server hits; 7-8% in
the number of hops to hit cached contents; and reduction
by an order of magnitude in cache evictions, which directly

translates to network traffic redundancy elimination by the
same proportion.

Several issues in our design still remain open. For example,
our formula can be applied to incentivise caching towards the
edge of a domain and before an expensive transit link. We
hope that our study will trigger further research on similar
directions as the ICN research field matures.

REFERENCES

[1] T. Koponen and et al., “A Data-Oriented (and beyond) Network Archi-
tecture,” SIGCOMM, vol. 37, no. 4, pp. 181–192, 2007.

[2] V. Jacobson and et al., “Networking Named Content,” in CoNEXT ’09.
New York, NY, USA: ACM, 2009, pp. 1–12.

[3] A. Ghodsi and et al., “Naming in content-oriented architectures,” in ACM
SIGCOMM ICN Workshop, 2011, pp. 1–6.

[4] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker, “Packet
caches on routers: the implications of universal redundant traffic elimi-
nation,” in ACM SIGCOMM, 2008, pp. 219–230.

[5] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee, “Redundancy
in network traffic: findings and implications,” in SIGMETRICS ’09.

[6] L. Breslau and et al., “Web caching and zipf-like distributions: Evidence
and implications,” in In INFOCOM, 1999, pp. 126–134.

[7] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache:
a scalable wide-area web cache sharing protocol,” IEEE/ACM Trans.
Netw., vol. 8, pp. 281–293, June 2000.

[8] H. Che, Z. Wang, and Y. Tung, “Analysis and Design of Hierarchical
Web Caching Systems,” in INFOCOM. IEEE, 2001, pp. 1416–1424.

[9] N. Fujita, Y. Ishikawa, A. Iwata, and R. Izmailov, “Coarse-grain replica
management strategies for dynamic replication of web contents,” Com-
put. Netw., vol. 45, no. 1, 2004.

[10] L. Muscariello, G. Carofiglio, and M. Gallo, “Bandwidth and storage
sharing performance in information centric networking,” in ACM SIG-
COMM ICN Workshop, 2011, pp. 26–31.

[11] U. Lee, I. Rimac, and V. Hilt, “Greening the internet with content-centric
networking,” eEnergy, p. 179, 2010.

[12] E. J. Rosensweig and J. Kurose, “Breadcrumbs: Efficient, Best-Effort
Content Location in Cache Networks,” in INFOCOM, 09.

[13] A. A. Jiang and J. Bruck, “Optimal content placement for en-route web
caching,” in Proceedings of IEEE NCA ’03.

[14] P. Krishnan, D. Raz, and Y. Shavitt, “The cache location problem,”
IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 568–582, Oct. 2000.

[15] D. Perino and M. Varvello, “A reality check for content centric network-
ing,” in ACM SIGCOMM ICN Workshop, 2011, pp. 44–49.

[16] S. Arianfar, P. Nikander, and J. Ott, “On content-centric router design
and implications,” in ReArch Workshop, vol. 9. ACM, 2010, p. 5.

[17] I. Psaras, R. G. Clegg, R. Landa, W. K. Chai, and G. Pavlou, “Mod-
elling and Evaluation of CCN-Caching Trees,” in Proceedings of IFIP
NETWORKING, 2011, pp. 78–91.

[18] W. K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache ‘Less for More’
in Information-centric Networks,” in Proceedings of IFIP Networking,
Prague, Czech Republic, May, 2012.

[19] W. K. Chai and et al., “Curling: Content-ubiquitous resolution and deliv-
ery infrastructure for next-generation services,” IEEE Communications
Magazine, vol. 49, no. 3, pp. 112–120, 2011.

[20] N. Fotiou, G. C. Polyzos, and D. Trossen, “Illustrating a publish-
subscribe internet architecture,” Journal on Telecommunication Systems,
Springer, March, 2011.

[21] K. Katsaros, G. Xylomenos, and G. C. Polyzos, “Multicache: An overlay
architecture for information-centric networking,” Computer Networks, to
appear, 2011.

[22] D. Rossi and G. Rossini, “Caching performance of content centric
networks under multi-path routing,” Technical Report, 2011.

[23] N. Laoutaris, H. Che, and I. Stavrakakis, “The lcd interconnection of
lru caches and its analysis,” Perform. Eval., vol. 63, no. 7, Jul. 2006.

[24] D. Rossi and G. Rossini, “On sizing CCN content stores by exploiting
topological information,” in IEEE NOMEN Workshop, 2012.

[25] E. J. Rosensweig, J. Kurose, and D. Towsley, “Approximate models for
general cache networks,” in IEEE INFOCOM, 2010.

[26] C. Fricker, P. Robert, J. Roberts, and N. Sbihi, “Impact of traffic mix on
caching performance in a content-centric network,” in In Proceedings
of IEEE NOMEN Workshop, 2012.

