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ABSTRACT
Measuring the angular clustering of galaxies as a function of redshift is a powerful method for
extracting information from the three-dimensional galaxy distribution. The precision of such
measurements will dramatically increase with ongoing and future wide-field galaxy surveys.
However, these are also increasingly sensitive to observational and astrophysical contaminants.
Here, we study the statistical properties of three methods proposed for controlling such
systematics – template subtraction, basic mode projection, and extended mode projection – all
of which make use of externally supplied template maps, designed to characterize and capture
the spatial variations of potential systematic effects. Based on a detailed mathematical analysis,
and in agreement with simulations, we find that the template subtraction method in its original
formulation returns biased estimates of the galaxy angular clustering. We derive closed-form
expressions that should be used to correct results for this shortcoming. Turning to the basic
mode projection algorithm, we prove it to be free of any bias, whereas we conclude that results
computed with extended mode projection are biased. Within a simplified setup, we derive
analytical expressions for the bias and discuss the options for correcting it in more realistic
configurations. Common to all three methods is an increased estimator variance induced by
the cleaning process, albeit at different levels. These results enable unbiased high-precision
clustering measurements in the presence of spatially varying systematics, an essential step
towards realizing the full potential of current and planned galaxy surveys.

Key words: methods: data analysis – methods: numerical – methods: statistical – cosmology:
observations – large-scale structure of Universe.

1 IN T RO D U C T I O N

Over the last decades, cosmological galaxy surveys collecting sta-
tistically representative samples of galaxies over a wide sky area
have been become legion (e.g. Huchra et al. 1983; Condon et al.
1998; York et al. 2000; Jones et al. 2004; Cole et al. 2005; Drinkwa-
ter et al. 2006; Ilbert et al. 2006; Skrutskie et al. 2006; Kaiser et al.
2010; LSST Dark Energy Science Collaboration 2012; de Jong et al.
2013; Frieman & Dark Energy Survey Collaboration 2013; McMa-
hon et al. 2013; Benı́tez et al. 2015). An important method for
extracting and characterizing galaxy clustering information is the
computation of the two-point correlation function on the sphere, the
angular correlation function (or its Fourier transform, the angular
power spectrum). It has proved invaluable as a powerful interface to
confront theoretical cosmological models with observational data
(e.g. Totsuji & Kihara 1969; Peebles & Hauser 1974; Hermit et al.
1996; Blake & Wall 2002; Zehavi et al. 2002; Tegmark et al. 2004;
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Eisenstein et al. 2005; Padmanabhan et al. 2007; Percival et al.
2010; Reid et al. 2010; Beutler et al. 2011; Wake et al. 2011; Busca
et al. 2013; Crocce et al. 2015).

With decreasing statistical error bars that result from a steady
increase in volume probed by current and future surveys, a proper
control of systematic effects, capable of introducing spurious sig-
nals, is becoming more and more challenging. Among others, con-
taminants may be the result of inherent survey characteristics (e.g.
survey depth, seeing, or airmass), the details of data gathering and
processing (e.g. imprinted by the image calibration procedure), or
astrophysical foregrounds (e.g. dust extinction), most of which are
spatially varying over the survey footprint. As a result, comprehen-
sive template libraries of maps describing the variation of survey
properties over the sky have become a standard data product in
state-of-the-art galaxy surveys (Ross et al. 2011, 2012; Leistedt &
Peiris 2014; Leistedt et al. 2015). The maps can then be used in
a science analysis to either verify the robustness of results, or to
actively correct for the impact of systematics.

Several methods have been proposed in literature to use sys-
tematics templates to study or reduce the contamination of galaxy
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angular clustering measurements by signals of non-cosmological
origin (e.g. Scranton et al. 2002; Blake et al. 2010; Vargas-Magaña
et al. 2014, see also Huterer, Cunha & Fang 2013; Morrison &
Hildebrandt 2015). In the template subtraction approach introduced
in Ho et al. (2012) (also applied in Ross et al. 2011), the level
of cross-correlation between systematic template maps and data is
used to clean angular clustering estimates of contaminants. An al-
ternative technique, basic mode projection, excludes specific spatial
patterns described through a set of templates by assigning infinite
variance to them (Rybicki & Press 1992; with applications in, e.g.
Tegmark et al. 1998; Slosar, Seljak & Makarov 2004; Smith, Sen-
atore & Zaldarriaga 2009; Elsner & Wandelt 2013; Leistedt et al.
2013). A variant thereof, extended mode projection, was subse-
quently introduced to identify the most important of all available
templates prior to the analysis, to reduce the total number of modes
that have to be marginalized over (Leistedt & Peiris 2014; Leistedt,
Peiris & Roth 2014).

While many of the proposed methods seem adequate in reduc-
ing the impact of systematics, some of them were realized to have
a detrimental effect on the galaxy clustering signal (see e.g. the
discussion in the appendix of Ross et al. 2012). In this paper, we
concentrate on the three systematics mitigation methods mentioned
above and study if and in what way the cleaning procedure affects
the statistical properties of angular clustering estimates. In particu-
lar, we investigate whether the results represent unbiased estimates
of the signal properties, and assess if the application of cleaning
procedures introduces additional variance to the measurement.

The paper is organized as follows. In Section 2, we provide
a detailed discussion of the statistical properties of power spec-
trum estimates cleaned using the template subtraction method. We
then turn our focus to basic and extended mode projection in
Section 3, and contrast results obtained in harmonic space and
real space (Section 4). Finally, we summarize our findings in
Section 5.

2 TEMPLATE SUBTRAC TION

In this section, we discuss the properties of a method proposed by
Ho et al. (2012) to account for systematic effects that may induce
spurious signals. The general idea behind this approach is to use
a set of externally supplied templates to be subtracted from the
data with optimally chosen weights, which in turn are estimated
from a cross-correlation of the template and data. In favour of a
transparent discussion, we will first restrict ourselves to the cleaning
of a full-sky data set with a single template here and later generalize
our results to multiple templates on the cut sky (Section 2.2 and
Appendix A).

2.1 Analytical bias calculation, full sky

We first analyse the statistical properties of the proposed estimator.
For a single contaminant that contributes to the observed signal with
unknown amplitude ε, we can construct a linear data model as a
first order Taylor expansion in the template f,

d = s + εf , (1)

where s is the signal to be inferred from the data vector d of the
experiment. It is further assumed that signal and template are un-
correlated, i.e. their cross-covariance vanishes.

Implicitly assuming a non-vanishing template power spectrum
C

f ×f
� , in Ho et al. (2012), the authors derive an estimator for the

template cleaned signal power spectrum Cs×s
� ,

ĈTS
� = Ĉd×d

� − ε̂2Ĉ
f ×f
� , (2)

where

ε̂ = Ĉ
d×f
� /Ĉ

f ×f
� . (3)

For consistency with the proposed method in its original formula-
tion, we consider ε̂ to be a function of the multipole moment � in
what follows. We hence obtain

ĈTS
� = Ĉd×d

� −
(

Ĉ
d×f
�

Ĉ
f ×f
�

)2

Ĉ
f ×f
�

= Ĉs×s
� −

(
Ĉ

s×f
�

)2

Ĉ
f ×f
�

. (4)

It is then possible to check if the estimator is unbiased by calcu-
lating the ensemble average of all signal realizations,〈

ĈTS
�

〉
= Cs×s

� − 1

C
f ×f
�

〈(
Ĉ

s×f
�

)2
〉

. (5)

While it may be reasonable to assume that chance correlations
between signal and template vanish on average, the same is not true
for the square of this product,〈(

Ĉ
s×f
�

)2
〉

=
〈

1

2� + 1

∑
m

as
�ma

f ∗
�m

1

2� + 1

∑
m′

as
�m′a

f ∗
�m′

〉

= 1

2� + 1
Cs×s

� C
f ×f
� , (6)

where we made use of the statistical isotropy of the signal,〈
as

�mas ∗
�m′
〉 = Cs×s

� δmm′ . We therefore obtain for the ensemble
average〈

ĈTS
�

〉
= Cs×s

�

(
1 − 1

2� + 1

)
, (7)

i.e., the estimator is biased low, with a relative bias of b� = −1/

(2� + 1). It can be shown (see Appendix A1) that the bias scales with
the number of independent templates used in the cleaning process,

b� = −n/(2� + 1). (8)

2.2 Analytical bias calculation, cut sky

Finally, we extend our full-sky results obtained so far to the more
realistic case where data are available only on a fraction of the
sphere. In the following, we will assume that all power spectra
have been calculated with a pseudo-C� power spectrum estimation
code (Hivon et al. 2002) which allows us to develop our results self-
consistently within a common framework. We note, however, that
the use of other (e.g. maximum likelihood) estimators is possible
but leaves our conclusions unchanged.

On the cut sky, the spherical harmonics lose their orthogonality,
which manifests itself in a coupling between formerly uncorrelated
Fourier modes. Here, we have to modify equation (6) to take this
effect into account. Making use of the properties of the coupling
kernels, we obtain for the ensemble averaged, mask deconvolved
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signal power spectrum〈(
Ĉ

s×f
�

)2
〉

=
〈∑

�1

M−1
��1

1

2�1 + 1

∑
m1

as
�1m1

a
f ∗
�1m1

×
∑
�2

M−1
��2

1

2�2 + 1

∑
m2

as
�2m2

a
f ∗
�2m2

〉

=
∑

�1�2�3

(
M−1

��1

)2 1

2�1 + 1
M�1�2M�1�3C

s×s
�2

C
f ×f
�3

, (9)

where M��′ are the coupling matrices (see Appendix A2 for formal
definitions and details of the calculation). On the cut sky, equation
(7) hence takes the more complicated form〈

ĈTS
�

〉
= Cs×s

�

×
⎛⎝1 −

∑
�1�2�3

(
M−1

��1

)2 1
2�1+1 M�1�2M�1�3C

s×s
�2

C
f ×f
�3

Cs×s
� C

f ×f
�

⎞⎠,

(10)

which correctly reduces to equation (7) in the full-sky limit. We can
then just read off the multipole-dependent relative bias,

b� = −
∑

�1�2�3

(
M−1

��1

)2 1
2�1+1 M�1�2M�1�3C

s×s
�2

C
f ×f
�3

Cs×s
� C

f ×f
�

. (11)

Lastly, we discuss the most general case considered here, the
cleaning of a data set on the cut sky with multiple templates. Build-
ing on the results derived in Appendix A1, the relative bias is

b� = − 1

Cs×s
�

〈
Ĉs×f †

� Ĉf ×f −1
� Ĉs×f

�

〉
= − 1

Cs×s
�

∑
ij

(
Cf ×f −1

�

)
ij

×
∑

�1�2�3

(
M−1

��1

)2 1

2�1 + 1
M�1�2M�1�3C

s×s
�2

C
fi×fj

�3
. (12)

We provide an approximate estimate of the bias on the cut sky that
reflects the scaling of the coupling matrices with the sky fraction,

b� ∼ −n/
(
f 2

sky(2� + 1)
)

, (13)

where n is the number of independent templates used in the analysis.
We stress that the accuracy of equation (13) depends sensitively on
the functional form of signal-, template-, and mask power spectra,
and is only valid for large to intermediate sky fractions.

2.3 Verification with simulations

We now confirm the results obtained thus far using 1000 simulated
Gaussian random maps drawn from a flat power spectrum. To show-
case the biasing effect of the cleaning procedure, we generated a
set of 10 independent random templates to be subtracted from the
simulated maps. After a power spectrum analysis on the full sky
using the template subtraction method, equation (2), we computed
the relative deviation of the averaged recovered power spectra with
respect to the input. The observed multipole-dependent bias, shown
in Fig. 1, is in good agreement with the analytical estimate.

We then verified our understanding of the cleaning process on
the cut sky. Using an azimuthally symmetric binary mask that
restricts the power spectrum measurement to latitudes of −40◦ ≤

Figure 1. Direct subtraction of systematic templates leads to biased power
spectrum estimates. Removing contributions from 10 templates, we show
the resulting relative bias of the averaged power spectrum of 1000 simula-
tions (blue solid line) and its analytical prediction (black solid line). In the
multipole region where � ≤ (n − 1)/2, a cleaned power spectrum cannot be
constructed (grey region to the left).

Figure 2. Same as Fig. 1, but for partial sky coverage. The bias becomes
larger for a cut-sky analysis. Keeping all other simulation parameters the
same, we computed pseudo-C� power spectra on about 65 per cent of the sky.
The approximate analytical bias estimate, obtained from a simple rescaling
of the full-sky results, is also shown (black dashed line).

b ≤ 40◦ (fsky ≈ 65 per cent), we analysed 1000 simulations using
a pseudo-C� estimator. After applying the cleaning procedure, we
again computed the bias of the result. As can be seen in Fig. 2,
it has increased substantially compared to the full-sky analysis.
Aside from the exact analytical estimate, we also compare the nu-
merical results to the approximate bias description given in equation
(13). We obtain good agreement between simulations and analytical
expressions.

2.4 Discussion

The bias identified in the previous paragraphs can be understood
intuitively. Even if signal and template are uncorrelated on average,
there will still be chance correlations for every individual signal
realization. By construction, the cleaning procedure will then min-
imize the cross-correlation between signal and template, thereby
leading to an overcorrection in the ensemble mean. To be more
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precise, since the cleaning coefficients ε̂ are computed for all mul-
tipole moments individually, at a given �, the power in one of the
(2� + 1) available Fourier modes will be removed by each template,
giving rise to the simple expression in equation (8). From a more
formal point of view, the problem arises from the fact that while
we derive an estimate of the cleaning coefficient ε̂ in equation (3),
we use its square (i.e. a non-linear transform of it) in the cleaning
step equation (2). Although we indeed obtain 〈ε̂〉 = ε on average,
we however find

〈
ε̂2
〉 �= ε2.

It is interesting to discuss the limiting case where the number of
independent Fourier modes in the data drops below the number of
cleaning templates, (2� + 1) < n for a full-sky data set. For each
of these multipole moments �, the n × n matrix constructed from
all possible template auto- and cross-power spectra becomes rank
deficient. As a result, a unique solution for the cleaning coefficients ε̂

no longer exists.1 What is more, and this also includes the case where
2� + 1 = n, the template-subtracted power spectrum estimates
Ĉs×s

� vanish by construction and a meaningful conclusion about the
cleaned signal amplitude cannot be drawn.

Owing to the aggressive scaling with the sky fraction, b� ∝∼ f −2
sky ,

on the cut sky the bias can become substantial even when the data
set is cleaned with only a single template. Fortunately, since we
derived closed-form expressions for the bias, we can naturally pro-
pose a correction procedure: to obtain unbiased power spectrum
estimates only requires the multiplication of all Ĉs×s

� estimates with
the multipole-dependent factor 1/(1 + b�), where b� is given by one
of the expressions in equations (8), (2), or (13). As discussed above,
depending on the number of templates used, a correction will not
be possible for multipoles below a certain �min.

It is also worth noting that the cleaning procedure comes at a
price. Since the effective number of Fourier modes available to
measure Ĉs×s

� is reduced, the final bias-corrected power spectrum
estimates will suffer from excess variance (i.e. they have larger
error bars). More quantitatively, while a cosmic variance-limited
estimate of a power spectrum computed on the full sky has variance
Var(Ĉ�) = 2C2

� /(2� + 1), the template cleaning process increases
the uncertainty in the measurement to Var(Ĉs×s

� ) = 2(Cs×s
� )2/(2� +

1 − n). The impact of the cleaning process on the error bars of
clustering measurements has not been identified and addressed in
previous applications of this method.

While the cleaning coefficient ε̂ in equation (2) is a function
of multipole moment in the original formulation of the algorithm,
other authors have assumed it constant within power spectrum bins
(e.g. Giannantonio et al. 2015), or decided to keep it fixed entirely
(e.g. Ross et al. 2011). Restricting the number of free parameters
in the cleaning procedure will then result in a reduced bias, since
chance correlations are removed only to a lesser extent. However,
these approaches also leave less freedom in case the systematics
templates can only approximately capture the signal contamina-
tion, and may therefore increase the systematics residuals in the
cleaned clustering estimate. Since an analytical calculation of the
bias is no longer possible for these variants of the template subtrac-
tion method, simulations would be required to correct clustering
estimates in practical applications.

Our analytical studies also provide a more principled explanation
for the results of numerical tests conducted in Ross et al. (2012) on
mock galaxy catalogues to aid the analysis of BOSS data. While

1 Of course, it is still possible to obtain a (non-unique) solution to the system
of equations, for example by means of the Moore–Penrose pseudo-inverse.

the authors compare variations of the template subtraction method
which only allow for a qualitative comparison, they also find that
the cleaning procedure results in a negative bias of galaxy clustering
estimates, in agreement with the results presented here.

We note in passing that results obtained in this section resemble
the bias identified in so-called internal linear combination (ILC)
maps constructed from multifrequency observations of the cosmic
microwave background radiation (see the discussion in e.g. Hinshaw
et al. 2007; Saha et al. 2008).

3 MO D E PRO J E C T I O N

An alternative method for subtracting a set of templates from a data
set was proposed by Rybicki & Press (1992). It can be straightfor-
wardly included into the optimal quadratic power spectrum estima-
tor for which the computation is based on inverse variance weighted
combinations of the data vector (Tegmark 1997).

3.1 Basic mode projection

We first discuss the basic mode projection approach marginalising
over a single template. The underlying idea of this technique is to
modify the signal covariance matrix to assign infinite variance to
modes that are to be excluded from the analysis. In the following,
we verify the unbiasedness of the derived power spectra.

3.1.1 Analytical bias calculation

Let us first review the basic equations of the optimal quadratic esti-
mator (Tegmark 1997). To simplify the discussion, we will consider
a full-sky analysis of noiseless data and choose the spherical har-
monic space as basis for our calculations. Retaining the data model
defined in equation (1), the estimator derives the power spectrum
from a quadratic combination of the data,

Ĉs×s
� =

∑
�′

N−1
��′ d† E�′ d, (14)

where N is the estimator normalization given by the Fisher matrix
N��′ = 2F��′ . Here, the (�max + 1)2 × (�max + 1)2 matrices

E� = C−1 ∂C
∂C�

C−1 (15)

are expressed as a function of the covariance matrix

C =
∑

�

C� D�, (16)

which takes a particularly simple form since we work in spher-
ical harmonic space. The matrices D� are diagonal and of rank
(2� + 1),

(D�)ij =
{

δij �2 < i ≤ (� + 1)2

0 otherwise
, (17)

trivially fulfilling the useful relation D� D�′ = D� δ��′ .
Mode projection is now included by means of a rank-one update

to the covariance matrix in the equations above, C̃ = limσ→∞ C +
σff †. The Sherman–Morrison formula allows the inverse to be
calculated exactly,

C̃−1 = C−1 − C−1ff †C−1

f †C−1f
. (18)
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We obtain for the ensemble-averaged, unnormalized signal power
spectrum estimate〈

d† Ẽ�d
〉

= 2� + 1

Cs×s
�

(
1 − C

f ×f
� /Cs×s

�∑
�′ (2�′ + 1)Cf ×f

�′ /Cs×s
�′

)
, (19)

an identity which we derive in Appendix B1. The diagonal elements
of the normalization factor, used to calibrate the estimator, are

Ñ�� = tr

(
C̃−1 ∂C̃

∂C�

C̃−1 ∂C̃
∂C�

)

= 2� + 1(
Cs×s

�

)2

⎛⎝1 − 2C
f ×f
� /Cs×s

�∑
�′ (2�′ + 1)Cf ×f

�′ /Cs×s
�′

+
(2� + 1)

(
C

f ×f
� /Cs×s

�

)2

(∑
�′ (2�′ + 1)Cf ×f

�′ /Cs×s
�′

)2

⎞⎠, (20)

as detailed in Appendix B1. Note that although we work on the full
sky, once mode projection is included the Fisher matrix is no longer
diagonal,

Ñ��′ = tr

(
C̃−1 ∂C̃

∂C�

C̃−1 ∂C̃
∂C�′

)

= 2� + 1

Cs×s
� Cs×s

�′

C
f ×f
� /Cs×s

� (2�′ + 1)Cf ×f

�′ /Cs×s
�′(∑

�′′ (2�′′ + 1)Cf ×f

�′′ /Cs×s
�′′

)2 (21)

for � �= �′. This newly introduced effect of mode coupling is in
agreement with the interpretation that mode projection is in fact
equivalent to masking. It is then possible to prove that〈

ĈBMP
�

〉
=
∑

�′
Ñ−1

��′
〈

d† Ẽ�′ d
〉

= Cs×s
� (22)

(see Appendix B2), i.e. the basic mode projection algorithm is
unbiased.

3.1.2 Verification with simulations

To verify results obtained for the basic mode projection algorithm,
we applied the technique to a set of 1000 simulated maps and tem-
plates with the same properties as previously introduced in Section
2.3. We used the identical mask (fsky ≈ 65 per cent) and restricted the
analysis to relatively low resolution to accommodate the compara-
tively high computational complexity of the optimal quadratic esti-
mator. We show binned measurements of the relative bias computed
from the averaged power spectrum in Fig. 3, where we projected
out 10 independent templates. In agreement with the theoretical
analysis presented above, we find no evidence for a bias in power
spectrum measurements with basic mode projection. Comparing
the diagonal elements of the Fisher matrix with and without mode
projection enabled, we also show the increase in error bars of the
power spectrum coefficients induced by the cleaning procedure.

3.1.3 Discussion

Unlike the template subtraction approach discussed in Section 2,
basic mode projection correctly accounts for the reduced variance
in power spectrum estimates in equation (19) with an appropriately

Figure 3. Basic mode projection leads to unbiased power spectrum esti-
mates. Top panel: the average power spectrum estimate of 1000 simulated
maps, computed on the cut sky with an optimal quadratic estimator with ba-
sic mode projection, is consistent with the input over the full multipole range
(blue circles). Bottom panel: the increase in error bars of the power spectrum
measurement as a result of mode projection is in the sub-percentage regime.

rescaled expression for the estimator normalization equations (20)
and (21). Although we restricted the analytical derivations in this
section to the case of a single template, this conclusion seems to
hold for arbitrary numbers of templates, as indicated by the results
of our numerical studies. Likewise, since the quadratic estimator
takes into account the analysis mask in a mathematically exact way,
the discussion extends to the cut-sky case.

The inverse of the normalization provides us with direct access
to the estimator variance. In contrast to the template subtraction
method in Section 2, the more complicated mathematical expres-
sions make a straightforward interpretation difficult. If we assume,
however, a constant ratio of template to signal power spectra, we
can gain some insights by deriving an approximate expression for
the variance of the signal power spectrum estimate. Considering the
case of a full-sky data set with mode projection of a single template,
we obtain

Var(Ĉs×s
� ) ≈ 2(Cs×s

� )2

2� + 1

(
1 + 1

(�max + 1)2

)
. (23)

Alternatively, we can express the increased variance in terms of a
reduced effective sky fraction of the experiment,

Var(Ĉs×s
� ) ≈ 2(Cs×s

� )2

(2� + 1) f eff
sky

, (24)

where we have defined f eff
sky ≈ 1 − 1/(�max + 1)2 < 1. Here, the ex-

cess variance is approximately given by the ratio of the single tem-
plate mode projected to the total number of Fourier modes present
in a data set band-limited at �max. We observe a smaller increase
in variance compared to the template subtraction method, where
the cleaning procedure is applied at every multipole moment inde-
pendently. Still, some of the discussion in Section 2.4 also applies
to mode projection: in case the number of templates is too large
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compared to the number of Fourier modes at multipole moment �,
power spectrum estimation is rendered impossible.

3.2 Extended mode projection

Although basic mode projection is unbiased, including template
marginalization over a large number, possibly thousands, of system-
atics maps will result in a substantial increase in estimator variance,
considerably degrading the predictive power of the data set. This
observation prompted the development of the extended mode pro-
jection algorithm (Leistedt & Peiris 2014), where a smaller subset of
templates to be projected is selected among all available templates
by means of some heuristic criterion prior to the power spectrum
analysis. The idea behind the selection process is to identify system-
atic maps that show noticeable correlations with the data and may
therefore be adequate tracers of spurious signals. Systematic maps
that are not or only slightly correlated with the data, on the other
hand, appear to lack relevance for describing possible contaminants
and are therefore excluded from being marginalized over.

3.2.1 Analytical bias calculation

In the following, we assess the effects of the template selection
step on the statistical properties of the power spectrum estimate.
To do so, we first have to specify a selection criterion. While an
approximate χ2 estimate computed from the cross-power spectrum
of signal and template was used in the original formulation of the
algorithm (Leistedt & Peiris 2014), here we adopt a simplified mea-
sure to enable a more transparent discussion. We consider a full-sky
experiment and a template f, containing power only at a single multi-
pole moment f�m ∝ δ��′δm0. Setting a�0 to be the spherical harmonic
coefficient of the data vector corresponding to the template mode,
we adopt a selection criterion based on a predefined threshold t ≥
0 such that the extended mode projection algorithm defaults to a
standard power spectrum estimation method if |a�0| ≤ t, while it
otherwise makes use of basic mode projection.

We compute the ensemble average of the signal power spectrum
estimate to check if the estimator is unbiased. For this first test, we
assume that the data is free of any contaminant. In that case,〈

ĈEMP
�

〉
=
〈∏

m �=0

∫ ∞

−∞
da�m

∫ −t

−∞
da�0 P ({a�m})

∑
m |a�m|2

2� + 1

+
∏
m �=0

∫ ∞

−∞
da�m

∫ t

−t

da�0 P ({a�m})
∑

m �=0 |a�m|2
2�

+
∏
m �=0

∫ ∞

−∞
da�m

∫ ∞

t

da�0 P ({a�m})
∑

m |a�m|2
2� + 1

〉

= Cs×s
�

(
1 −

√
2

πCs×s
�

t

2� + 1
e
− t2

2Cs×s
�

)
, (25)

for a Gaussian random field a�m. We conclude that for the case
considered here, power spectra estimated with the extended mode
projection algorithm are biased with a relative bias of

b� = −
√

2

πCs×s
�

t

2� + 1
e
− t2

2Cs×s
� . (26)

In the presence of a contaminating signal that can be perfectly
characterized by the template, however, the situation changes. For
the updated data model d = s + kf, where k = ε/

√
Cs×s

� ≥ 0 is

the relative level of contamination, the integral bounds in equation
(25) shift from ±t to ±t − k. We then obtain a generalized form of
equation (26),

b� = −
√

2

πCs×s
�

1

2(2� + 1)

(
t − k + (t + k) e

2tk

Cs×s
�

)
e
− (t+k)2

2Cs×s
�

− k2

2(2� + 1)Cs×s
�

[
erf

(
k − t√
2Cs×s

�

)
− erf

(
k + t√
2Cs×s

�

)]
,

(27)

where the bias becomes a function of the additional parameter k.
We note that the results obtained in equations (26) and (27) are only
valid for the selection criterion introduced above.

3.2.2 Verification with simulations

To test our results for correctness, we again compare the analyti-
cal results derived in the previous paragraph to simulations. Since
equations (26) and (27) are both functions of the selection threshold
t, we present results of the parameter exploration for a fixed mul-
tipole moment, � = 5. To verify the first case discussed, equation
(26), we simulate 100 000 systematics-free data sets. We compute
power spectra using extended mode projection with a single tem-
plate, where we chose the values of the threshold parameter from a
regularly spaced grid. To check the second result, equation (27), we
prepared a new set of simulations, adding a constant contribution of
a contaminant with amplitude k = 0.5. In Fig. 4, the derived relative
bias estimates are plotted as a function of the selection threshold.
Comparing the analytical formula to simulation results, we find
good agreement.

3.2.3 Discussion

Although the extended mode projection algorithm is a very close
derivative of basic mode projection, the two approaches to sys-
tematics mitigation behave qualitatively differently regarding their
ensemble averaged power spectrum estimates. For extended mode
projection, we find in general a non-zero bias whose exact numeri-
cal value is dependent on the template selection criterion adopted in
the analysis. In agreement with results presented in Section 3.1, the
bias vanishes in the limit t → 0, where extended mode projection
becomes equivalent to basic mode projection. Likewise, if the data
are free of systematics, the bias goes to zero in the limit t → ∞,
where extended mode projection reduces to simple power spectrum
estimation. The latter result changes, however, in case there is a con-
taminant contributing to the observed signal. If it can be captured by
the template, then there exists a non-zero value of the threshold pa-
rameter for which the power spectrum estimates become unbiased.
Unfortunately, to locate this sweet spot would require knowledge of
the actual level of systematics in the data, which will not be easily
available in real-world applications. Although beyond the scope of
this paper, we note that forward-modelling simulations, attempting
to model the full transfer function of the survey including systematic
effects, appear to be well-suited to provide the additional informa-
tion needed to debias signal power spectra (Bergé et al. 2013; Busha
et al. 2013; Chang et al. 2015).

It is relatively straightforward to identify the source of the ob-
served bias. Since the template selection process is based on the
actual data realization, it will inevitably be influenced by chance
correlations between signal and template. As a result, for the selec-
tion criterion adopted here, larger values of the signal amplitude are
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Figure 4. Extended mode projection power spectrum estimates can be biased. For a single template analysis, we show the relative bias of the algorithm as a
function of the template selection threshold from simulations (blue solid lines) and analytical estimates (black solid lines) for the multipole moment � = 5.
The bias is strictly non-positive in case the data are intrinsically free of any contaminants (left-hand panel), while it otherwise crosses zero (right-hand panel).

more likely to trigger the use of mode projection than smaller values,
leading to an underestimation of the signal variance on average.

4 R E S U LT S F O R A N G U L A R C O R R E L AT I O N
F U N C T I O N M E A S U R E M E N T S

Since we assumed an isotropic signal, results in the previous sec-
tions have been exclusively derived in spherical harmonic space,
a basis where symmetries simplify most of the analytical calcu-
lations considerably. Real space angular correlation functions are
widely used in the field of large-scale structure analysis. Their in-
formation content is equivalent; they are related to power spectrum
measurements in a mathematically exact way,

w(θ ) =
∞∑

�=0

2� + 1

4π
C�P� (cos(θ )) , (28)

where the P� are Legendre polynomials of degree �.
In the following, we discuss the generalization of our harmonic

space results to real space. Unfortunately, since the most popular
angular correlation function estimator introduced by Landy & Sza-
lay (1993) does not use the inverse variance weighted data vector as
basis for the calculation, the mode projection methods reviewed in
Section 3 cannot be straightforwardly extended to real space anal-
yses applying this estimator. We will therefore only consider the
template subtraction method of Section 2.

4.1 Analytical bias calculation

To obtain real-space expressions for the bias, we first discuss the
direct transformation of our results from Section 2 to real space, i.e.
still assuming that the cleaning procedure itself was performed in
harmonic space. Given an analytical expression for the multipole-
dependent relative bias b� of the signal power spectrum, we obtain
for the ensemble averaged angular correlation function

〈
ŵ(θ )TS

〉 = ws×s(θ ) +
∞∑

�=0

2� + 1

4π

(
b� Cs×s

�

)
P� (cos(θ ))

= ws×s(θ ) + wb(θ ), (29)

where the real-space bias term wb(θ ) now always implicitly depends
on Cs×s

� and cannot be easily expressed as a multiplicative correc-
tion to ws × s(θ ). This is a characteristic property, typical for the
mixing of Fourier modes in angular correlation function measure-
ments. Given the bias derived in harmonic space, equation (12) (or
its approximation, equation 13), it is then possible to obtain equiv-
alent real space expressions to debias angular correlation function
measurements cleaned with the template subtraction method using
equation (29).

In the more realistic case where the full analysis, including the
cleaning step, is performed in real space, the situation grows more
complex. Building on the formalism developed for the harmonic
space analysis in Section 2 and Appendix A, we find for angular
correlation function estimates on the cut sky, cleaned with multiple
templates,〈
ŵ(θ )TS

〉 = ws×s(θ) − 〈
ŵ(θ )s×f †ŵ(θ )f ×f −1ŵ(θ )s×f

〉
= ws×s(θ) −

∑
ij

(
w(θ )f ×f −1

)
ij

wss×fifj (θ), (30)

where we identify the second term on the right-hand side as bias
wb(θ ). If the analysis is performed on the full sky, for example, we
find

wss×fifj (θ ) =
∑

�

(
2� + 1

4π
P� (cos(θ ))

)2 1

2� + 1
Cs×s

� C
fi×fj

� . (31)

To derive this expression for the bias in real space, we again needed
to make use of the isotropy of the signal in the Fourier domain. As
before, the mode mixing in angular correlation function estimates
prevents us from writing the estimator bias term in equation (31) as
a signal-independent multiplicative factor.

4.2 Verification with simulations

To demonstrate the correctness of our calculation, we computed
angular correlation function estimates of 1000 simulated maps,
cleaned with the template subtraction method in real space. To
this end, we generated band-limited Gaussian maps drawn from a
C� ∝ (� + 1)−1 power spectrum, smoothly truncated at �max using a
cosine apodization. We derived correlation function measurements
of the signal on the full sky using 10 templates in the cleaning
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Figure 5. Same as Fig. 1, but for measurements of the angular correlation
function in real space. The bias formally remains finite at all angular scales
as a result of mode coupling.

process, adopting a minimal width for the angular binning set by
the pixel size. In Fig. 5 we show results at several different values
of θ in comparison with the analytical estimate obtained from equa-
tion (31), finding good agreement. We note that the data points are
significantly correlated across all angular scales.

4.3 Discussion

While the conclusions presented in Section 2 remain qualitatively
unchanged, we find that applying template cleaning in real space
leads to somewhat different bias estimates. Unfortunately, the cou-
pling of Fourier modes in angular correlation function estimates
complicates the analytical bias calculation.

While power spectra are a function of an integer variable �, the
argument of the angular correlation function is a real number. It is
therefore necessary to adopt some binning scheme for the latter and
average the measurements over angular separations in intervals with
finite width, θmin ≤ θ ≤ θmax. Since varying the binning will result in
a different bias introduced by the cleaning procedure, we consider
the use of Monte Carlo simulations to correct angular correlation
function estimates cleaned with the template subtraction method to
be the preferred strategy in practical applications. For that reason,
we limited the derivation of analytical results to a single example.

5 SU M M A RY A N D C O N C L U S I O N S

Measurements of the angular clustering of cosmological data have
become a standard analysis tool in modern cosmology. To mitigate
the impact of systematic effects, capable of introducing spurious
signals of non-cosmological origin, a number of approaches have
been proposed in literature. Concentrating on three popular tech-
niques, template subtraction (Ho et al. 2012), basic mode projection
(Rybicki & Press 1992), and extended mode projection (Leistedt &
Peiris 2014), we presented an in-depth discussion of the effects
of the systematics mitigation method on the inferred power spec-
trum estimates. Based on a rigorous mathematical analysis, and in
agreement with simulations, we concluded that two out of the three
methods – template subtraction and extended mode projection – re-
turn biased estimates of the cleaned signal power spectra. In detail,
we obtain the following results:

For template subtraction, we derived closed-form expressions for
the multipole-dependent bias in the most general case considered
here, the cleaning of data with multiple templates on the cut sky. We

explained its root cause as a consequence of chance correlations be-
tween the signal realization and the template. Our results then allow
debiased power spectrum estimates to be obtained with this method,
or, equivalently, measurements of the angular correlation function.
We further identified an increase in variance of the estimates and
concluded that for a given number of cleaning templates, the cluster-
ing on specific angular scales can no longer be measured. Extending
the discussion to the template cleaning of angular correlation func-
tion estimates, we obtained consistent results. Since we found the
analytical bias calculation in real space to be more involved, we
proposed to mainly use simulations to obtain the correction factor
needed to debias results.

The analysis of basic mode projection showed that power spec-
trum estimates remain unbiased in this framework. We verified
analytically that mode projection increases the estimator variance
and introduces additional coupling between Fourier modes. Owing
to the details of the cleaning process, we found the excess variance
to be smaller than for the template subtraction method.

Lastly, assessing the properties of the extended mode projection
algorithm, we identified the power spectrum estimates to be biased.
Since the basic mode projection algorithm has been proven bias-
free, we showed that it results from the selection process that was
used to decide if a given template should be marginalized over. We
concluded that the bias originates from chance correlations between
the template and the data, which introduce an implicit dependence
of the selection process on the signal amplitude. Although we were
able to obtain analytical expressions that would in principle allow
debiased power spectrum estimates, they depend on the details of
the adopted template selection criterion as well as on the actual level
of contamination, which we presume unknown. We conclude that
additional information, for example provided by forward-modelling
simulations of the data including systematics, is necessary to obtain
unbiased signal estimates.
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et al. 2005) package.

R E F E R E N C E S

Benı́tez N. et al., 2015, in Cenarro A. J., Figueras F., Hernández-Monteagudo
C., Trujillo Bueno J., Valdivielso L., eds, Proc. XI Scientific Meeting of
the Spanish Astronomical Society. Highlights of Spanish Astrophysics
VIII, Teruel, Spain, p. 148
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APPENDIX A : TEMPLATE SUBTRAC TION

A1 full-sky analysis with multiple templates

We now extend our results derived in Section 2 for a single template
to an arbitrary number n of linearly independent templates using the

updated data model

d = s +
n∑

i=1

εifi . (A1)

To this end, we first have to generalize the estimator equation (2)
by transforming it into a matrix equation,

ĈTS
� = Ĉd×d

� − ε̂†Ĉf ×f
� ε̂, (A2)

where ε̂† = (ε̂1, . . . , ε̂n), and
(

Ĉf ×f
�

)
ij

= Ĉ
fi×fj

� . Contrary to the

single template case, the estimates for ε̂ are now computed by
solving a system of linear equations,

ε̂ = Ĉf ×f −1
� Ĉd×f

� , (A3)

where the vectors
(

Ĉd×f
�

)
i
= Ĉ

d×fi
� . We find,

ĈTS
� = Ĉd×d

� − Ĉd×f †
� Ĉf ×f −1

� Ĉd×f
�

= Ĉs×s
� − Ĉs×f †

� Ĉf ×f −1
� Ĉs×f

� . (A4)

To show the equality of the two right-hand side expressions, we first
note that, given equation (A1),

Ĉd×d
� = Ĉs×s

� + 2
∑

i

ε̂i Ĉ
s×fi
� +

∑
ij

ε̂i ε̂j Ĉ
fi×fj

� . (A5)

Using Ĉ
d×fi
� = Ĉ

s×fi
� +∑

j ε̂j Ĉ
fi×fj

� , we obtain

Ĉd×f †
� Ĉf ×f −1

� Ĉd×f
� = Ĉs×f †

� Ĉf ×f −1
� Ĉs×f

�

+2
∑
ijq

(
Ĉf ×f −1

�

)
ij

Ĉ
fj ×fq

� ε̂q Ĉ
s×fi
�

+
∑
ijpq

(
Ĉf ×f −1

�

)
ij

Ĉ
fj ×fq

� ε̂q ε̂pĈ
fi×fp

� ,

(A6)

from which equation (A4) follows. Applying the same procedure
as in equation (6), we find for the ensemble averaged signal power
spectrum estimate〈

ĈTS
�

〉
= Cs×s

� −
〈

Ĉs×f †
� Ĉf ×f −1

� Ĉs×f
�

〉
= Cs×s

� − Cs×s
�

2� + 1

∑
ij

(
Cf ×f −1

�

)
ij

C
fi×fj

�

= Cs×s
�

(
1 − n

2� + 1

)
, (A7)

i.e. the generalized expression for the relative bias on the full sky is
b� = −n/(2� + 1).

A2 Cut-sky analysis with a single template

For completeness, we start by listing the definitions of the pseudo-
C� coupling kernels and matrices used in Section 2.2, as derived by
Hivon et al. (2002). Setting a�m[][][a] to be the spherical harmonic
expansion coefficients of an unmasked map on the full sky, the effect
of an arbitrary real window function W then results in a related set
of coefficients a�m,

a�m =
∑
�′m′

ā�′m′

∫
dnY�′m′W (n)Y ∗

�m

=
∑
�′m′

ā�′m′K�m�′m′ . (A8)
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The coupling kernels K can be explicitly expressed in terms of
a product of Gaunt coefficient with W�m, the spherical harmonic
expansion of the mask,

K�1m1�2m2 =
∑
�3m3

w�3m3 (−1)m2

×
[

(2�1 + 1)(2�2 + 1)(2�3 + 1)

4π

]1/2

×
(

�1 �2 �3

0 0 0

)(
�1 �2 �3

m1 −m2 m3

)
, (A9)

where the last two factors are Wigner 3j symbols.
The pseudo-C� coupling matrices then relate the power spec-

trum of the masked coefficients a�mto the full-sky coefficients

ā�m such that the pseudo-C� estimates become unbiased,
〈
Ĉ�

〉
=∑

�′ M��′
〈
ĈPCL

�′
〉

= C�. Given the orthogonality relations of the

Wigner 3j symbols, they take a particularly simple form,

M�1�2 = 2�2 + 1

4π

∑
�3

(2�3 + 1)Cw×w
�3

(
�1 �2 �3

0 0 0

)2

. (A10)

With the definitions given above, we can now derive the result
quoted in equation (9). For brevity, let X = 〈(Ĉs×f

� )2〉, then

X =
∑
�1m1
�2m2

M−1
��1

M−1
��2

1

2�1 + 1

1

2�2 + 1

×
∑
�3m3

Cs×s
�3

K�1m1�3m3K
∗
�2m2�3m3

×
∑
�4m4

C
f ×f
�4

K∗
�1m1�4m4

K�2m2�4m4 . (A11)

Expanding the coupling kernels using equation (A9), we obtain

X =
∑
�1m1
�2m2

M−1
��1

M−1
��2

1

2�1 + 1

1

2�2 + 1

×
∑
�3m3
�4m4

Cs×s
�3

Cw×w
�4

(−1)m2+m3+m4
√

(2�1 + 1)(2�2 + 1)

× (2�3 + 1)(2�4 + 1)

4π

(
�1 �3 �4

0 0 0

)(
�2 �3 �4

0 0 0

)

×
(

�1 �3 �4

m1 −m3 m4

)(
�2 �3 �4

−m2 m3 −m4

)

×
∑
�5m5
�6m6

C
f ×f
�5

Cw×w
�6

(−1)m1+m5+m6
√

(2�1 + 1)(2�2 + 1)

× (2�5 + 1)(2�6 + 1)

4π

(
�1 �5 �6

0 0 0

)(
�2 �5 �6

0 0 0

)

×
(

�1 �5 �6

−m1 m5 −m6

)(
�2 �5 �6

m2 −m5 m6

)
. (A12)

By first performing the sum over the projective quantum numbers
m3, m4, m5, and m6, combined with the orthogonality relations of
the Wigner 3j symbols and upon substituting equation (A8), we
arrive at the much simplified expression equation (9).

A P P E N D I X B : BA S I C M O D E P RO J E C T I O N

B1 Estimator mean and variance

Here, we prove the identities used in the derivation of equations
(19), (20), and (21). To do so, we first obtain simplified expressions
for a series of terms we will make use of in the process. We find

tr
(

D�ff †) = (2� + 1)Cf ×f
� , (B1)

f †C̃−1f =
∑

�

(2� + 1)
C

f ×f
�

Cs×s
�

, (B2)

tr
(

C̃−1ff † D�C̃−1ff †
)

= (2� + 1)
C

f ×f
�

Cs×s
�

∑
�′

(2�′ + 1)
C

f ×f

�′

Cs×s
�′

, (B3)

tr
(

C̃−1ff † D�C̃−1ff † D�

)
=
[

(2� + 1)
C

f ×f
�

Cs×s
�

]2

. (B4)

Then, from〈
d† Ẽ�d

〉
= 1

Cs×s
�

× tr

[(
D� − C−1ff † D�

f †C−1f

)(
1 − C−1ff †

f †C−1f

)]
, (B5)

equation (19) follows. Likewise, we find for

Ñ�� = 1(
Cs×s

�

)2

× tr

[(
D� − C−1ff † D�

f †C−1f

)(
D� − C−1ff † D�

f †C−1f

)]
, (B6)

and

Ñ��′ = 1

Cs×s
� Cs×s

�′
tr

(
C−1ff † D�C−1ff † D�′(

f †C−1f
)2

)
(B7)

for � �= �′, and therefore obtain equations (20) and (21).

B2 Proof of unbiasedness

Given our results summarized in equations (19), (20), and (21), we
now want to show that the quadratic estimator remains unbiased
when mode projection is included, i.e.

∑
�′ Ñ

−1
��′ 〈d† Ẽ�′ d〉 = Cs×s

� .
As it turns out, it is simpler to prove the equivalent expression
〈d† Ẽ�d〉 = ∑

�′ Ñ��′Cs×s
�′ instead. Indeed, we find,

∑
�′

Ñ��′Cs×s
�′ = 2� + 1

Cs×s
�

(
1 − 2

C
f ×f
� /Cs×s

�∑
�′ (2�′ + 1)Cf ×f

�′ /Cs×s
�′

+ C
f ×f
� /Cs×s

�∑
�′ (2�′ + 1)Cf ×f

�′ /Cs×s
�′

×
∑

�′

(2�′ + 1)Cf ×f

�′ /Cs×s
�′∑

�′′ (2�′′ + 1)Cf ×f

�′′ /Cs×s
�′′

)

=
〈

d† Ẽ�d
〉

. (B8)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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