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Abstract:

Mammals are poor at individuating the separate components that comprise odor mixtures, but not

when components enter environment serially and when there is top-down expectation. Li pro-

posed in 1990 an odor segmentation mechanism using the centrifugal feedback from the olfactory

cortex to the olfactory bulb. This feedback suppresses the bulbar responses to the ongoing and

already recognized odors so that a subsequent addition of a foreground odor can be singled out

for recognition. Additionally, the feedback can depend on context so as to, e.g., enhance sensitiv-

ity to a target odor or improve discrimination between similar odors. I review experimental data

that have since emerged in relation to the computational predictions and implications, and suggest

experiments to test the model further.

Highlights

• A proposal about the role of feedback from the olfactory cortex to the bulb.

• Feedback aids adaptation to background odors so a foreground odor can be segmented.

• Feedback could also serve to enhance sensitivity to target odors.

• Feedback could be context-dependent, and should be odor-specific.

• Neural and behavioral data in human and rodents are consistent with model predictions.

Introduction

The olfactory system contains mainly the odor receptors, olfactory bulb, and olfactory cortex. Each

type of odor receptor neuron responds to many types of odor molecules. Hence, an odor object,

which (e.g., the smell of a cat) can comparise many types of molecules in fixed proportions, acti-

vates a population response across types of receptor neurons, and the populations for different odor

objects usually overlap substantially[1••, 2]. The mitral/tufted (M/T) cells in the olfactory bulb re-

ceive the receptor inputs via glomeruli, interact with the inhibitory granule cells, and project to

the olfactory (mainly piriform) cortex. Their responses to odor are modulated by respiration, and

additionally, they often exhibit coherent oscillations (typically in the gamma range) which emerge

during inhalation and cease during exhalation. In this paper, we will refer to activity variations

at the time scales of breathing or higher-frequency (typically gamma) oscillations as respiratory or

high-frequency, respectively. The pattern of the oscillation amplitudes across the bulbar neurons is

specific to the input odor[3•]. The cortex is a network of excitatory (pyramidal) cells and inhibitory

interneurons, and the spatial range of the excitatory connections is much longer than that in the

bulb, making it suitable for the function of associative recognition and memory for odors[4, 5, 6].
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The bulbar neural oscillations can exist without the cortex, while the cortex relies on the oscilla-

tions in the bulb to respond with oscillations in the same frequency range[7]. Centrifugal feedback

from the cortex to the bulb mostly targets the granule cells, and cooling the cortex increases the

intensity of the bulbar oscillations[8•]. The olfactory cortex is reciprocally and extensively con-

nected with some higher-order areas including prefrontal, amygdaloid, perirhinal and entorhinal

cortices[9, 2]. If multiple objects are well mixed and presented simultaneously, humans and ro-

dents typically enjoy a holistic perception from which it is difficult to identify individual object

components[10•, 11••, 12].

So far, most computational models focus on the biophysics in the olfactory system, or study

representations of odor information leading to odor detection or recognition. For example, there

are models of the cellular biophysics in the bulb intended to explain local field potentials[13], of the

way that representation of odor information is dynamically transformed from receptor responses

to M/T activities[3•, 14••], of the relationship between neural representations of odor mixtures

and odor components[15], of how inhibition in the bulbar circuit could make odor representation

sparser[16], of how the timing of the M/T responses within a cycle of the neural oscillations[14••,

17••, 18], or within a sniff cycle[19], could code for odor identity, of how response properties of

receptors predict sensitivities in odor detection and discrimination[17••, 20], of how the cortical

circuit could learn, through synaptic plasticity, to recognize and form memories of odor identities

from bulbar responses[4, 21, 5, 6, 22••], and of how centrifugal feedback on the granule cells might

be useful for recognizing odors over multiple sniffs[21]. Using numerical simulations of a system

of ordinary differential equations, Freeman[23•] stated that coupling the olfactory bulb, anterior ol-

factory nucleus (which receives bulbar outputs and sends feedback to glomeruli and granule cells

in the bulb), and the olfactory cortex is sufficient to produce chaotic patterns of neural activities,

including the respiratory and high-frequency neural oscillations associated with odor discrimina-

tion.

However, the most important computational tasks in olfaction must include odor segmen-

tation, which is essential for odor recognition since environments often contain mixtures of odor

objects. Li[24••] was the first to formulate the odor segmentation problem. Noting that indepen-

dent odor objects typically do not enter environment simultaneously when forming mixtures, she

proposed that centrifugal feedback to the granule cells can make bulbar responses adapt to the

pre-existing background odors so as to single out a newly-arrived odor object for recognition. Sub-

sequently, Hopfield proposed temporal decorrelation of input signals to extract odor components

from mixtures[25], perhaps for insects which sample odors on a finer temporal scale than mammals

with their coarse sniffing[26]. One may also infer limits on odor segmentation performance from

glomerular properties[17••, 20].

Recent decades saw an abundance of new experimental data, some seemingly unrelated with

each other, and it is instructive to organize and interpret them in a computational framework. This

paper uses the framework in Li’s model[24••] for this purpose since the model includes both the

segmentation and recognition tasks, its proposed route of centrifugal control was also shown[24••]

to allow context- or task-dependent behavior such as target seeking, and there is currently no other

model that encompasses the experimental data reviewed here.
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Figure 1: A network model[24••, 22••] of coupled olfactory bulb and cortex for odor recognition,
segmentation, and sensitivity enhancement. a: the circuit diagram based on neural anatomy. b:
neural responses in one sniff cycle to example odor inputs. Each box encloses the population re-
sponse pattern (in terms of the temporal traces of activities of five selected neurons) to one partic-
ular odor input: odor A, odor B, or the mixture of odors A and B as in[22••]. The bulbar/cortical
responses are shown in the left/right column. Each neuron’s response contains both the respira-
tory (the breathing rhythm) and high-frequency (typically in the gamma range) components. The
dissimilarity between the response to the mixture and the average of the responses to the odor
components is more apparent in the patterns of the phases of high-frequency oscillations.

A network model of olfactory bulb and cortex for odor segmenta-

tion and recognition

Briefly, the model is as follows (see [14••, 24••] and Fig. 1). Let ith M/T cell have deviation xi

from resting potential, firing rate gx(xi) ≥ 0 (a sigmoid-like function of xi), and external sensory

input Ii. Analogously, yi and gy(yi) are for the ith granule cell, which receive centrifugal input Ic,i.

Then[14••], x = (x1, x2, ...) and y = (y1, y2, ...) evolve with time t by

dxi/dt = −αxi −
∑

j H
0
ijgy(yj) + Ii,

dyi/dt = −αyi +
∑

j W
0
ijgx(xj) + Ic,i,

(1)

where W 0 and H0 are neural connection matrices and 1/α is the membrane time constant (taken

as identical across neurons for simplicity). I ≡ (I1, I2, ...) ≡ Ibackground + Iodor includes a static

background Ibackground and a respiratory odor input Iodor ≡ PodorR(t) with spatial pattern vec-

tor Podor and respiratory modulation R(t). Similarly, Ic ≡ (Ic,1, Ic,2, ...) ≡ Ic,background + Ic,control

includes background Ic,background and active control Ic,control. Response (x, y) ≡ (x̄, ȳ) + (x′, y′)

includes respiratory (x̄, ȳ) and high-frequency (x′, y′) parts. Here, (x̄, ȳ) is the value of (x, y) that
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makes dx/dt = dy/dt = 0, hence it adiabatically follows the sensory I (especially when Ic is static).

High-frequency (x′, y′) emerge when the equilibrium (x̄, ȳ) is unstable. Approximately,

dx′/dt = −αx′ −Hy′,
dy′/dt = −αy′ +Wx′,

(2)

where matrices H and W have elements Hij ≡ H0
ijg

′

y(ȳj) and Wij ≡ W 0
ijg

′

x(x̄j) which depend on

(x̄, ȳ). Let matrix A ≡ HW have kth eigenvector Xk and eigenvalue λk for various k, then[14••]

approximately x′(t) ∝ X1 exp[−αt± i
√
λ1t] (here i ≡

√
−1) is dominated by the mode k = 1 which

has the largest |Im(
√
λk)| (Im(.) means imaginary part). Hence, when input I , which determines

(x̄, ȳ) and thus Xk and λk, is such that |Im(
√
λ1)| > α, common high-frequency oscillations (x′, y′)

emerge across the bulb with a spatial pattern of amplitudes and phases dictated by the complex

vector X1. Since

(odor I, centrifugal Ic)
determines

−−−−−→ respiratory response (x̄, ȳ)
controls

−−−→high-frequency response x′, (3)

odor input I (particularly when Ic,control = 0) is coded in both the respiratory x̄ and the high-

frequency x′, which emerge during inhalation if I has the strength and pattern Podor to make

|Im(
√
λ1)| > α. In particular, across the M/T cells, both firing rates and response phases, within a

long sniff cycle and a short high-frequency oscillation cycle, should carry odor information[3•, 19].

The left column in Fig. 1b shows three model bulbar response patterns O ≡ (gx(x1), gx(x2), ...)

using five example M/T cells. The first two patterns are to single odor objects A and B, respectively.

The third one, to the mixture of odor A and B, resembles neither the response to odor A or odor

B alone, nor the average of the two component response patterns (see also Fig. 2). This is unsur-

prising given the nonlinear transform from input I to responses x̄ and x′. Such mixure behavior is

observed physiologically, even when (as is in Li’s model[24••]) complex interaction between odor

components at the level of the glomerulus is negligible[27•, 28]. These response properties partly

underlie the difficulty in identifying the components in a mixture[15].

By equation (3), for any odor input Iodor = I − Ibackground, one can make a centrifugal control

Ic,control = Ic − Ic,background to cancel the effect of Iodor on the respiratory response x̄, such that

x̄ behaves as if Iodor = 0 and consequently quenches the high-frequency response x′[24••]. This

cancelling feedback depends nonlinearly on the bulbar circuit but is specific to the odor input Iodor.

In model simulations[24••], a linear approximation Ic,control ∝ H−1Iodor is effective. Consider the

following sequence of events. First, odor A arrives, evoking initial bulbar responses x = x̄+x′ (Fig.

2a). Second, the cortex, upon recognizing odor A, sends the cancelling feedback Ic,control (which

could be learned by the cortex[22••]) in subsequent sniffs, suppressing the bulb responses to odor

A (Fig. 2d) and manifesting odor adaptation. Third, if odor B arrives later, superposed on the

pre-existing odor A, the bulb’s full adaptation to odor A should make it respond as if odor B is pre-

sented alone, achieving effective foreground segmentation. The resemblance between the response

to odor B alone and that to the foreground odor B (compare Fig. 2b with Fig. 2e) applies not only

to the pattern of response amplitudes, but also to the pattern of high-frequency oscillation phases.

Accordingly, odor adaptation is not fatigue, but an active strategy that enables segmentation. In

particular, the bulb remains sensitive to newly arrived odors — this would be difficult if adaptation

were merely by reducing the sensitivities of the activated bulbar neurons, as new inputs are likely

to involve at least a subset of these neurons. In a special case, adaptation makes the bulb respond

to an increase in the input strength of the adapted odor as if the increased amount is presented

alone without adaptation. The cancelling feedback is a realization of what has become known as

predictive coding[29].
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(a): odor A, no adaptation

(d): odor A, while adapt to A

(b): odor B, no adaptation

(e): odor A+B, while adapt to A

(c): mixture odor A+B, no adaptation

(f): 2 × odor B, while adapt to A

Figure 2: Model bulbar responses in odor segmentation and adaptation. The format of each panel
is as in the left column of Fig. 1b, but a plot is added in a box at the lower right of each panel
to visualize the amplitude and (relative) phase of each neuron’s high-frequency oscillation (at the
dominant frequency coherent across cells) by a vector (color coded for individual neurons) of that
amplitude and phase angle. a–c: bulbar responses without odor adaptation, i.e., during the first
sniff in exposure to odor input, odor A, odor B, and the mixture odor A and odor B. d–f: bulbar
responses to odor A (d), the mixture of odor A and B (e), and double-strength odor B (f) while being
fully adapted to odor A (i.e., Ic,control ∝ H−1Iodor(A) with Iodor(A) as the Iodor for odor A). d, e, and
f demonstrate self-adaptation, segmentation, and cross-adaptation, respectively. The bulbar model
for this figure is from[24••]. Responses from only five (cells 1, 2, 4, 6, and 8) out of ten of the model
M/T model cells are shown. Odor A has input Iodor ∝ Podor = 0.0049 · (1, 1, 1, 1, 1, 1, 1, 1, 1, 1), odor
B has Podor = 0.001 · (5.3, 4.1, 4.4, 2.2, 4.7, 3.9, 5.3, 2.9, 5.2, 3.8).

Li and Hertz[22••] extended the model to the cortex. With bulbar output O, the net effec-

tive bulbar input to the cortical pyramidal cells is Ibulb = L(O), where L(.) is an approximately

linear transform including (1) a spatial transform by the lateral olfactory tract to enable each M/T

cell project to many cortical locations and (2) a temporal high-pass filtering using the feedforward

inhibitory interneurons (Fig. 1a). Due to the high-pass filtering, Ibulb is more sensitive to the high-

frequency rather than the respiratory part of the bulbar output O. The cortical pyramidal cells and

feedback interneurons are analogous to the bulbar M/T and granule cells, respectively, hence we

can analyze their dynamics like we did for the bulbar dynamics, replacing (x, y) for the M/T and

granule cells by (u, v) for the pyramidals and (feedback) interneurons and replacing sensory input

I by the effective bulbar output Ibulb. Let Ībulb and I ′bulb, respectively, be the respiratory and high-

frequency parts of Ibulb ≡ Ībulb + I ′bulb, and analogously let (u, v) ≡ (ū, v̄) + (u′, v′) (here, (ū, v̄) is

the value of (u, v) that makes du/dt = dv/dt = 0 when high-frequency I ′bulb = 0). The cortex and

bulb differ additionally as follows. First, the pyramidal cells project long-range-wise to each other

and to the feedback interneurons[4]. Second, the recurrent connections are such that the cortex

does not oscillate spontaneously (i.e., (ū, v̄) is always stable when I ′bulb = 0)[7]. Third, the cortex

learns, i.e., stores in its recurrent connections through neural plasticity, the patterns of the bulbar

high-frequency drive associated with some odor objects (i.e., the stored patterns are the eigenvec-

tors analogous to Xk for the bulb near equation (2)), the long-range nature of the recurrent con-

nections makes this learning easy[22••]. Fourth, pyramidal activities resonate with a bulbar drive

Ibulb when Ibulb (particularly its high-frequency pattern) sufficiently resembles a stored pattern,
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i.e., u′ ≈ s · I ′bulb with a sensitivity |s| that increases with the similarity (in patterns of amplitudes

and phases) between the bulbar drive and any stored memory (this resonance is a generalization

of a pendulum’s resonance to external drive when the driving frequency matches the intrinsic fre-

quency). The right column in Fig. 1b shows the cortical responses to odor A, B, and their mixture.

The model cortex had stored memories of A and B but not the mixture, so that the cortical response

to the mixture is weaker. Finally, the pyramidal responses are transformed to a desired centrifugal

control pattern Ic,control[22••].

For Li’s proposed centrifugal adaptation, the cortex simply transforms bulbar responses to

the corresponding Ic,control, so the detail of the cortical model to implement this transform is not

critical. We should however note the following. First, the cortex has to have the odor information,

e.g., by recognizing the bulbar output, in order to provide an odor-specific Ic,control for adapta-

tion. Li and Hertz modelled non-recognition as weak cortical responses[22••]; whether this is the

case physiologically is unclear, as non-recognition could involve learning, attention, and their as-

sociated neuromodulators and response properties[6]. What matters is a lack of (a sufficiently)

effective Ic,control under non-recognition. Second, the high-pass filtering of bulbar inputs to the

cortex suggests that the cortex prioritizes the odor information in the high-frequency rather than

the respiratory part of the bulbar output. Behaviorally, adaptation, or recovery from it, takes from

seconds to minutes, this could be implemented in our model but is inessential. With stationary

odor input, feedforward and feedback between the bulb and cortex should reach an equilibrium

with residual responses in both structures[22••].

Experimental data in relation to the predictions and implications

of the model

Helped by modern experimental technology[30, 31], much data pertaining to Li’s model have since

emerged. Some of them were predicted originally[24••], others are natural extensions.

Figure-ground segmentation in bulbar responses

Using a design analogous to Fig. 2a–e, Kadohisa and Wilson[32••] showed in anaesthetized rats

that odor adaptation, and neural response levels that may reflect figure-ground segmentation, oc-

curred only in the cortex but not in the bulb. However, on awake mice, Vinograd et al 2015 (ab-

stract in Soc. Neurosci Abstr 2015, Program No. 561.10) found that population responses in the

bulb to a foreground odor superposed on an adapted background resembles the response to the

foreground odor alone, and that bulbar responses adapt to exposed odor (bulbar adaptation had

also been observed by Chaput and Panhuber[33•]). Also, Vinograd et al found that adaptation

and figure-ground segmentation to be stronger in the awake than anaesthetized mice, perhaps ex-

plaining the apparent contradiction with Kadohisa and Wilson’s findings. The necessity of the

awake state to facilitate adaptation and figure-ground segmentation is consistent with the pro-

posal that centrifugal feedback is the underlying mechanism, and that odor-specific adaptation is

a computational strategy rather than fatigue. Recent imaging data in mice also indicate that the

centrifugal feedback[34••] and bulbar activities[35, 36] depend on whether the animal is awake or

anaesthetized, and the granule cells which convey the feedback to the M/T cells are more active

when the animals are awake[36, 37].
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Odor object component in a mixture is better identified after smelling a mixture
of the other components

A natural prediction from the model is that it should be easier to identify an odor object component

in a mixture (mixture X) if observers are first adapted to another mixture (mixture Y) composed of

the other components in the first mixture. This is simply because mixture Y corresponds to the

background odor entity in our model while mixture X corresponds to the superposition of the

foreground odor and the background odor. This has indeed been observed recently in human

observers[38••, 39]. Similar findings were observed in rats trained to react only to a particular

target odor and not to a mixture of this target odor with another odor; however, after pre-exposure

to the other odor, the rats reacted to the mixture as if it were the target odor alone[40•].

Centrifugal feedback: its odor-specificity, time course, and the consequence of
turning it off

According to the model, the centrifugal Ic,control for adaptation is specific to the adapted input odor.

Furthermore, this feedback should last at least until the next sniff. Hence, if the adapted odor Iodor

is suddenly withdrawn, as in Fig. 2f, the centrifugal Ic,control will persist for a period consistent with

the time it takes for subjects to recover sensitivity to the adapted odor. Using multiphoton calcium

imaging to monitor this feedback in awake mice, Otazu et al[34••] indeed found this feedback to be

odor specific, such that the responses of the synaptic boutons on the feedback fibers to the granule

cells are selective to odors and influenced by odor concentration. Furthermore, they observed that

these feedback responses often outlast stimulus presentation by several seconds.

Otazu et al further reported that silencing the cortical activities, presumably turning off Ic
completely including its baseline Ic,background, enhanced bulbar responses in the M/T cells, con-

firming the previous observation using cortical cooling[8•].

Functional relevance of the neural oscillations

Whether there is a functional role for high-frequency neural oscillations, particularly in the vi-

sual system, has been controversial. Our model asserts that (see equation (3)) the high-frequency

bulbar oscillations x′ contain odor information and should be useful for odor coding and recog-

nition. Using the GABAA antagonist picrotoxin to interfere with neural mechanisms underpin

high-frequency oscillations, Stopfer et al[41••] demonstrated that eliminating the oscillations in

honeybees impaired difficult discriminations between similar odors, but leaving intact simpler dis-

criminations between dissimilar odors. In mice, increasing the power of neural oscillations in the

bulb (by disrupting GABAA receptors in granule cells) makes the animal better at discriminating

between closely related monomolecular alcohols or between mixtures of alcohols[42], although the

finding was somewhat complex as it depended on the animals’ experience with the odor discrim-

ination test. Furthermore, the power of gamma oscillation in the bulb is enhanced in rat when

they make finer discriminations between odors[43•]. These findings support the idea that high-

frequency neural responses contain odor information and are used for discrimination. In addition,

they suggest that odor information contained in the lower frequency responses, x̄, is also used by

the animals. This implies that, although the cortex high-pass filters the bulbar drive to prioritize

the high-frequency signals, the sensitivity to the low-frequency signals is only relatively reduced

rather than completely diminished by this filtering. Li and Hertz[22••] used such a filtering in

their cortical model so that the bulbar low-frequency signals influence the cortical low-frequency
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(a): odor A, no adaptation/enhancement (b): as in a, but with half input strength (c): as in b, but enhancing odor A

(d): (odor A+odor B)/2, enhancing odor A (e): odor B, enhancing odor A (f): no odor input, enhancing odor A

Figure 3: Model bulbar responses without or with odor searching (i.e., enhancement) for a target
odor (odor A, i.e., using centrifugal Ic,control ∝ −H−1Iodor(A)). This figure uses the same model,
odors A and B, and plotting format as in Fig. 2. a and b: bulbar responses to odor A at full (a)
or half (b) input strength, without odor adaptation or enhancement. c–f: bulbar responses under
centrifugal feedback aimed to enhance odor A, with sensory inputs as half strength odor A (c), half
strength mixture of odor A and B (d), odor B (e), and no odor input (f), respectively. Note that
centrifugal feedback to enhance odor A does not lead to hallucination of odor A when odor A is
absent (e and f).

response (ū, v̄) and place the cortex in a dynamic regime that is receptive to the high-frequency

oscillations from the bulb.

Searching for a target odor

Let Ic,adapt denote the centrifugal control Ic,control for adapting to an odor object. Li’s model

predicted that[24••] reversing this control signal, i.e., making Ic,control ∝ −Ic,adapt, should en-

hance, rather than suppress, the bulbar response to this object. We call Ic,control ∝ Ic,adapt and

Ic,control ∝ −Ic,adapt, respectively, adapting and enhancing feedback.

Fig. 3abc demonstrate that, in the model, odor enhancement increases the sensitivity to a

target odor such that the bulb responds to a weak input of this odor as if the input was stronger.

Meanwhile, if the target odor is absent from input, odor enhancement typically does not lead to

hallucinations, i.e., the response does not resemble that to the target odor, see Fig. 3ef. With non-

linear interaction between bulbar neurons, targeting the centrifugal feedback to the granule, rather

than the M/T, cells helps to prevent hallucinations[24••].

In an experiment[44•], human observers were asked if any odor was present without knowing

the odor identity. In trials with odor presentation, the observers were faster to reply positively

when they were simultaneously shown an image (of, e.g, oranges) suggesting the presented odor

compared to the situation when no image, or an image suggesting a different odor object, was

shown. However, in trials without odor presentation, seeing the image did not increase their false

alarm rate. Enhancing feedback for the odor object suggested by the image may underlie this

observation.
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Enhancing sensitivity to a target odor object can also be useful for detecting whether this

object is a component in a mixture. A recent study[45••] showed that rodents could competently

distinguish whether or not a target odor object was present in a mixture made from an unpre-

dictable composition of components selected from 14 possible candidates. The rodents learned

to do so after extensive training that started with non-mixture odor presentations and gradually

progressed by adding more components in the mixture. This finding is apparently at odds with

previous studies[10•, 46, 47] showing that rodents, like humans, find it difficult to identify compo-

nents in odor mixtures. There is however no inconsistency by noting the following: the previous

studies probed whether animals that had only learned to associate a mixture with a reward would

react to a component object in this mixture as equally rewarding, however they did not make the

animals perform the task of deciding whether a given target odor was present in a mixture. A

separate study on humans found that, although humans are unable to name all odor component

objects in a mixture when the mixture contains more than three or four components which are indi-

vidually known to them[11••]; they can still identify whether a target odor is present in a mixture

made of up to 12 components[48]. It is possible that to decide whether a target odor is present

in a mixture without first adapting to a background made of the complementary components in

the mixture, animals use an odor seeking or enhancement strategy by the centrifugal feedback

Ic,control ∝ −Ic,adapt, as suggested by our model. Fig. 3ad demonstrate that, in the model, enhanc-

ing sensitivity to a target odor makes the response to a mixture containing this target appear as if

the target odor was presented alone.

Task- and context-dependent centrifugal control of bulbar responses

Centrifugal feedback could also help fine discrimination. Let Iodor = Iodor(a) and Iodor(b) be odor

inputs for two very similar objects a and b. They evoke respiratory responses (x̄, ȳ) = (x̄(a), ȳ(a))

and (x̄(b), ȳ(b)), respectively, which in turn determine the respective high-frequency responses

x′ = x′(a) and x′(b), see equation (3). Let Īodor ≡ [Iodor(a)+ Iodor(b)]/2 and δI ≡ Iodor(a)− Iodor(b).

A small δI gives a small (δx̄, δȳ) ≡ (x̄(a), ȳ(a)) − (x̄(b), ȳ(b)), which in turn leads to a small dif-

ference between the high-frequency responses to the two odor objects so that it will be difficult to

discriminate between them. It can be shown[24••] that δx̄ ≈ SxδI and δȳ ≈ SyδI with sensitivity

matrices Sx ≡ (α2+HW )−1α and Sy ≡ (α2+WH)−1W which depend on (x̄, ȳ) through matrix el-

ements Hij = H0
ijg

′

y(ȳj) and Wij = W 0
ijg

′

x(x̄j). Meanwhile, (x̄, ȳ) depend on both Īodor and Ic,control

(see equation (3)). Hence, given Īodor (i.e., given a and b), a suitable centrifugal control Ic,control can

enhance sensitivities Sx and Sy by reaching a suitable (x̄, ȳ). In other words, a suitable Ic,control

increases discrimination sensitivity by a population level gain control. Fig. 4 demonstrates this

control, note that this control enhances the high-frequency responses in Fig. 4cf, as seen in animals

during finer discrimination[43•].

Such feedback control, unnecessary when inputs are easily discriminable and specific for the

input objects, may explain the task- and context-dependent neural responses and behavioral per-

formances observed in rodents and humans[49•, 50, 51, 52]. Fig. 4cf uses a hand-picked Ic,control

to demonstrate an example of what centrifugal feedback could do. In reality, animals would have

to learn the effective feedback through training, i.e., reinforcement learning, and may find alter-

native feedback signals to improve pattern discrimination. Other forms of feedback could also

make response patterns dependent on the reward values of odor inputs, as has been observed in

data[49•, 51]. These task- and context-dependent feedback, like that which enables odor seeking

(Fig. 3), are akin to top-down attentional control in vision.
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(a): 0.75 odor A + 0.25 odor B (b): 0.53 odor A + 0.47 odor B (c): input as in b, with centrifugal control

(d): 0.25 odor A + 0.75 odor B (e): 0.47 odor A + 0.53 odor B (f): input as in e, with centrifugal control

Figure 4: Task-specific centrifugal feedback to aid fine odor discrimination illustrated in six exam-
ples (a–f) of model bulbar response patterns: a,b,d, and e without, c and f with, centrifugal control.
a and d: easily distinguishable bulbar response patterns to two dissimilar mixtures of odor A and
B. b and e: as in a and d but response patterns are now hardly discriminable because the two mix-
tures have very similar proportions of odor components. c and f: as in b and e, respectively, but
centrifugal feedback (same for c and f) is present to enhance sensitivity for both odor A and B. This
figure uses the same model, odor input patterns for odor A and B, and plotting format as in Fig. 2.

The effect of odor familiarity

To send an effective, odor-specific, centrifugal feedback Ic,adapt for odor adaptation, the central

brain must have sufficient information about the adapted odor, e.g., by recognizing the odor in the

cortex. The model predicts that[22••], for a novel odor, adaptation should be less effective or take

longer to establish, as it takes some time (though this could be brief) before an animal recognizes or

becomes familiar with it. Recent data showed that exposure to an odor in previous days decreases

bulbar responses to this odor presented for four seconds in each trial[36]. This is consistent with our

prediction if the response decrease was due to a faster establishment of adaptation. However, this

response decrease was absent under anesthesia even though the animals were awake during pre-

vious exposures to the odor[36], consistent with our proposal that adaptation is an active strategy.

Hence, odor-specific adaptation can be seen as part of the odor recognition process[22••]. Mean-

while, many other task-dependent controls can also be odor-specific, and hence odor familiarity is

also expected to make these controls more effective.

Concluding remarks

We offer our by-now venerable proposal about bulbar processing and centrifugal feedback as a way

of understanding and organizing recent exciting data. As discussed, these data agree, to a perhaps

disconcerting degree, with the original proposal. More data are needed to settle the discrepan-

cies between different studies concerning the critical prediction of the figure-ground segmentation.

While models[14••, 24••, 17••, 18] have argued for odor information in the phases of the high-

frequency neural oscillation, data so far have only revealed odor information in the phase of a

10



respiratory cycle[19, 53].

Few experiments have targetted olfactory cross adaptation at the neuronal level beyond the

peripheral receptors. The model predicts[24••] that pre-exposure to one odor should alter bulbar

responses to a second odor when the pre-exposed odor is suddenly and unexpectedly replaced by

the second odor, as demonstrated in Fig. 2f, and that the centrifugal feedback at the first sniff of the

second odor should be specific to the pre-exposed rather than the second odor.

The most pressing questions for future theoretical work include the computational roles of

the less abundant centrifugal fibers that target the glomeruli and the many other neural and circuit

complexities; some of these involve interactions with other brain areas.

Acknowledgement This work is supported by the Gatsby Charitable Foundation.

References

•• [1] Lancet D: Vertebrate olfactory reception. Annual review of neuroscience 1986, 9:329–355.

An excellent review of diverse knowledge of the olfactory system before 1990

[2] Lledo PM, Gheusi G, Vincent JD: Information processing in the mammalian olfactory

system. Physiological Reviews 2005, 85:281–317.

• [3] Freeman WJ, Skarda CA: Spatial EEG patterns, nonlinear dynamics and perception: the

neo-sherringtonian view. Brain Research Reviews 1985, 10:147–175.

Showed that spatial pattern of the high-frequency oscillation amplitudes in the M/T

responses is odor specific

[4] Haberly LB: Neuronal circuitry in olfactory cortex: Anatomy and functional implica-

tions. Chemical Senses 1985, 10:219–238.

[5] Wilson M, Bower JM: Cortical oscillations and temporal interactions in a computer sim-

ulation of piriform cortex. Journal of Neurophysiology 1992, 67:981–995.

[6] Hasselmo ME: Acetylcholine and learning in a cortical associative memory. Neural com-

putation 1993, 5:32–44.

[7] Bressler SL: Relation of olfactory bulb and cortex. ii. model for driving of cortex by bulb.

Brain Research 1987, 409:294–301.

• [8] Gray C, Skinner J: Centrifugal regulation of neuronal activity in the olfactory bulb of

the waking rabbit as revealed by reversible cryogenic blockade. Experimental Brain Research

1988, 69:378–386.

First paper to show an effect of the centrifugal feedback on the bulb

[9] Carmichael ST, Clugnet MC, Price JL: Central olfactory connections in the macaque mon-

key. Journal of Comparative Neurology 1994, 346:403–434.

• [10] Staubli U, Fraser D, Faraday R, Lynch G: Olfaction and the ”data” memory system in

rats. Behavioral neuroscience 1987, 101:757–765.

Showed that after learning to associate a mixure of A and B with reward and another

mixture of A and C with non-reward, rats do not associate B with reward and C with

non-reward

11



•• [11] Laing DG, Francis G: The capacity of humans to identify odors in mixtures. Physiology

& Behavior 1989, 46:809–814.

A classical paper showing that humans cannot identity odor object components in a

mixture of more than three or four components

[12] Linster C, Smith BH: Generalization between binary odor mixtures and their compo-

nents in the rat. Physiology & behavior 1999, 66:701–707.

[13] Rall W, Shepherd GM: Theoretical reconstruction of field potentials and dendroden-

dritic synaptic interactions in olfactory bulb. J Neurophysiol 1968, 31:884–915.

•• [14] Li Z, Hopfield J: Modeling the olfactory bulb and its neural oscillatory processings.

Biological cybernetics 1989, 61:379–392.

First paper to go beyond numerical simulations to have a comprehensible and an-

alytical understanding of the olfactory bulb as a network of neural oscillators, each

made of locally interacting excitatory and inhibitory neurons. It shows how odor

input dictates the respiratory bulbar responses which in turn dictate the fast oscilla-

tory bulbar response pattern

[15] Linster C, Cleland TA: Configurational and elemental odor mixture perception can arise

from local inhibition. Journal of computational neuroscience 2004, 16:39–47.

[16] Koulakov AA, Rinberg D: Sparse incomplete representations: a potential role of olfac-

tory granule cells. Neuron 2011, 72:124–136.

•• [17] Hopfield J: Odor space and olfactory processing: collective algorithms and neural im-

plementation. Proceedings of the National Academy of Sciences 1999, 96:12506–12511.

Analyzed various olfactory problems, and derived some characteristics of detection

and discrimination behavior from response properties of odor receptors

[18] Brody CD, Hopfield J: Simple networks for spike-timing-based computation, with ap-

plication to olfactory processing. Neuron 2003, 37:843–852.

[19] Margrie TW, Schaefer AT: Theta oscillation coupled spike latencies yield computational

vigour in a mammalian sensory system. The Journal of physiology 2003, 546:363–374.

[20] Koulakov A, Gelperin A, Rinberg D: Olfactory coding with all-or-nothing glomeruli.

Journal of neurophysiology 2007, 98:3134–3142.

[21] Ambros-Ingerson J, Granger R, Lynch G: Simulation of paleocortex performs hierarchi-

cal clustering. Science 1990, 247:1344–1348.

•• [22] Li Z, Hertz J: Odour recognition and segmentation by a model olfactory bulb and cortex.

Network: Computation in Neural Systems 2000, 11:83–102.

Extension of Li 1990 to include a model of the olfactory cortex, models the learn-

ing of the bulbar response patterns in the cortex and the construction of centrifugal

feedback from cortical responses

• [23] Freeman WJ: Simulation of chaotic EEG patterns with a dynamic model of the olfactory

system. Biological cybernetics 1987, 56:139–150.

12



Numerical simulation of interactions within and between three structures: olfactory

bulb, anterior olfactory nucleus, and the olfactory cortex, showing neural oscilla-

tory activities and how different chaotic activity patterns arise from different model

parameters

•• [24] Li Z: A model of olfactory adaptation and sensitivity enhancement in the olfactory

bulb. Biological Cybernetics 1990, 62:349–361.

The first computational formulation and model of the odor segmentation problem,

proposed that the centrifugal feedback from the cortex to the bulb can be used for

odor segmentation, adaptation, and sensitivity enhancement for target odors

[25] Hopfield J: Olfactory computation and object perception. Proceedings of the National

Academy of Sciences 1991, 88:6462–6466.

A model of mixture segmentation by temporal decorrelation

[26] Li Z: Modeling the sensory computations of the olfactory bulb. In Models of Neural

Networks, Edited by Domany E, van Hemmen JL, Schulten K, Springer-Verlag, New York,

USA; 1995, volume 2, 221–251. 1995.

• [27] Giraudet P, Berthommier F, Chaput M: Mitral cell temporal response patterns evoked

by odor mixtures in the rat olfactory bulb. Journal of neurophysiology 2002, 88:829–838.

Perhaps the first paper in the literature on neural representation of odor mixture in

mammals

[28] Tabor R, Yaksi E, Weislogel JM, Friedrich RW: Processing of odor mixtures in the ze-

brafish olfactory bulb. The Journal of neuroscience 2004, 24:6611–6620.

[29] MacKay D: Towards an information flow model of human behavior. British Journal of

Psychology 1956, 47:30–43.

[30] Buck L, Axel R: A novel multigene family may encode odorant receptors: a molecular

basis for odor recognition. Cell 1991, 65:175–187.

[31] Murthy VN: Olfactory maps in the brain. Annual review of neuroscience 2011, 34:233–258.

•• [32] Kadohisa M, Wilson DA: Olfactory cortical adaptation facilitates detection of odors

against background. Journal of neurophysiology 2006, 95:1888–1896.

Show that adaptation and segmentation does not occur in the bulb, in contradiction

to findings from other studies

• [33] Chaput M, Panhuber H: Effects of long duration odor exposure on the unit activity of

olfactory bulb cells in awake rabbits. Brain research 1982, 250:41–52.

An earlier paper showing olfactory adaptation in the bulb

•• [34] Otazu GH, Chae H, Davis MB, Albeanu DF: Cortical feedback decorrelates olfactory

bulb output in awake mice. Neuron 2015, 86:1461–1477.

Showing that centrifugal feedback is odor-specific and outlasts odor presentation

and that silencing cortical activities increases bulbar responses

13



[35] Rinberg D, Koulakov A, Gelperin A: Sparse odor coding in awake behaving mice. The

Journal of neuroscience 2006, 26:8857–8865.

[36] Kato HK, Chu MW, Isaacson JS, Komiyama T: Dynamic sensory representations in the

olfactory bulb: modulation by wakefulness and experience. Neuron 2012, 76:962–975.

[37] Cazakoff BN, Lau BY, Crump KL, Demmer HS, Shea SD: Broadly tuned and respiration-

independent inhibition in the olfactory bulb of awake mice. Nature neuroscience 2014,

17:569–576.

•• [38] Goyert HF, Frank ME, Gent JF, Hettinger TP: Characteristic component odors emerge

from mixtures after selective adaptation. Brain research bulletin 2007, 72:1–9.

Shows that human observers can better recognize an odor component in a mixture

after adapting to another mixture made of the other components

[39] Frank ME, Goyert HF, Hettinger TP: Time and intensity factors in identification of com-

ponents of odor mixtures. Chemical senses 2010, 35:777–787.

• [40] Linster C, Henry L, Kadohisa M, Wilson DA: Synaptic adaptation and odor-background

segmentation. Neurobiology of learning and memory 2007, 87:352–360.

Showed that, after being trained to react only to a target odor and not to a mixture of

this target odor with another odor, rats reacted to the mixture as if it was the target

odor alone after pre-exposure to the other odor.

•• [41] Stopfer M, Bhagavan S, Smith BH, Laurent G: Impaired odour discrimination on desyn-

chronization of odour-encoding neural assemblies. Nature 1997, 390:70–74.

First paper to show eliminating neural oscillation impairs behavior

[42] Nusser Z, Kay LM, Laurent G, Homanics GE, Mody I: Disruption of GABAA receptors

on gabaergic interneurons leads to increased oscillatory power in the olfactory bulb net-

work. Journal of neurophysiology 2001, 86:2823–2833.

• [43] Beshel J, Kopell N, Kay LM: Olfactory bulb gamma oscillations are enhanced with task

demands. The Journal of neuroscience 2007, 27:8358–8365.

Showed that stronger gamma oscillations emerge in the bulb when rats discriminate

finer differences between two odor inputs

• [44] Gottfried JA, Dolan RJ: The nose smells what the eye sees: crossmodal visual facilitation

of human olfactory perception. Neuron 2003, 39:375–386.

•• [45] Rokni D, Hemmelder V, Kapoor V, Murthy VN: An olfactory cocktail party: figure-

ground segregation of odorants in rodents. Nature neuroscience 2014, 17:1225–1232.

Showed that, with training, mice can detect a target odor in a mixture made of an

unpredictable set of components chosen from 14 possible candidate components

[46] Frederick DE, Barlas L, Ievins A, Kay LM: A critical test of the overlap hypothesis for

odor mixture perception. Behavioral neuroscience 2009, 123:430–437.

14



[47] Wiltrout C, Dogra S, Linster C: Configurational and nonconfigurational interactions be-

tween odorants in binary mixtures. Behavioral neuroscience 2003, 117:236–245.

[48] Jinks A, Laing DG: A limit in the processing of components in odour mixtures. PER-

CEPTION 1999, 28:395–404.

• [49] Kay LM, Laurent G: Odor-and context-dependent modulation of mitral cell activity in

behaving rats. Nature neuroscience 1999, 2:1003–1009.

Showed explicitly that bulb responses depend on context

[50] Zelano C, Bensafi M, Porter J, Mainland J, Johnson B, Bremner E, Telles C, Khan R, So-

bel N: Attentional modulation in human primary olfactory cortex. Nature neuroscience 2005,

8:114–120.

[51] Doucette W, Restrepo D: Profound context-dependent plasticity of mitral cell responses

in olfactory bulb. PLoS Biology 2008, 6:e258.

[52] Zariwala HA, Kepecs A, Uchida N, Hirokawa J, Mainen ZF: The limits of deliberation

in a perceptual decision task. Neuron 2013, 78:339–351.

[53] Shusterman R, Smear MC, Koulakov AA, Rinberg D: Precise olfactory responses tile the

sniff cycle. Nature neuroscience 2011, 14:1039–1044.

15


