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Abstract. The spectra (rotational, rotation-vibrational or electronic) of diatomic

molecules due to transitions involving only closed-shell (1Σ) electronic states follow

very regular, simple patterns and their theoretical analysis is usually straightforward.

On the other hand, open-shell electronic states lead to more complicated spectral

patterns and, moreover, often appear as a manifold of closely lying electronic states,

leading to perturbations with even larger complexity. This is especially true when at

least one of the atoms is a transition metal. Traditionally these complex cases have

been analysed using approaches based on perturbation theory, with semi-empirical

parameters determined by fitting to spectral data.

Recently the needs of two rather diverse scientific areas have driven the demand

for improved theoretical models of open-shell diatomic systems based on an ab

initio approach; these areas are ultracold chemistry and the astrophysics of “cool”

stars, brown dwarfs and most recently extrasolar planets. However, the complex

electronic structure of these molecules combined with the accuracy requirements of

high-resolution spectroscopy render such an approach particularly challenging. This

review describes recent progress in developing methods for directly solving the effective

Schrödinger equation for open-shell diatomic molecules, with a focus on molecules

containing a transtion metal. It considers four aspects of the problem:

(i)The electronic structure problem;

(ii)Non-perturbative treatments of the curve couplings;

(iii)The solution of the nuclear motion Schrödinger equation;

(iv)The generation of accurate electric dipole transition intensities.

Examples of applications are used to illustrate these issues.ar
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1. Introduction

New and powerful experimental techniques to produce and study ultra-cold molecules

(below 1 mK) are becoming increasingly available as recently reviewed by Hamamda

et al. (2015). These techniques include combining two ultra-cold atoms (Bergeman

et al. 2003, Juarros et al. 2006, Ulmanis et al. 2012, Pazyuk et al. 2015), direct

laser cooling (Shuman et al. 2010, Glöckner et al. 2015), deceleration techniques

(Hogan et al. 2011), cooling (Stuhl et al. 2012), magneto-optical trapping (Hummon

et al. 2013, Barry et al. 2014) and buffer-gas cooling (Hutzler et al. 2012). This has

stimulated new interest in the detailed spectroscopy of open shell diatomic systems

(Di Rosa 2004, Quéméner & Julienne 2012). Similarly, but at significantly higher

temperatures, the study of molecules in the atmospheres of brown dwarfs and cool

stars requires comprehensive datasets of spectral absorptions by a range of diatomic

species whose vibronic transitions absorb near the peak flux of the object under

study (Rajpurohit et al. 2013). Similar species are also thought to be important

constituents of the atmospheres of hot exoplanets (Ali-Dib et al. 2014, Stevenson

et al. 2014), although there are as yet no confirmed observations of such spectra from

a specific molecule. The spectra of these species also provide important diagnostics

for those interested in probing hot environments. Examples include fusion plasmas

(Duxbury et al. 1998, Brezinsek et al. 2007, Brezinsek et al. 2014), combustion (Linton

& Broida 1977, Glumac et al. 2001), laser ablation (Varenne et al. 2000, Zhang &

Li 2003, Kobayashi & Sekine 2006), laser-induced plasmas (Bai et al. 2014, Surmick &

Parigger 2014) and discharges (Vallon et al. 2009, Chan et al. 2013). Other uses include

atmospheric studies (Johnson 1965, Gole & Kolb 1981, Knecht et al. 1996), measuring

the magnetic fields in cool stars and brown dwarfs (Johns-Krull et al. 1999, Reiners &

Basri 2006, Shulyak et al. 2010), monitoring the state distribution of reaction products

(Song et al. 2004, Chang et al. 2005) and products of chemical vapour deposition (Nozaki

et al. 2000). The issues discussed in this review are relevant also to calculations of

collisions of open-shell atoms, though there are additional problems in these systems

not covered in the current review.

Theoretically the study of rotationally and vibrationally resolved electronic

(rovibronic) spectra of diatomics needs to consider couplings due to several sources

of angular momentum such as electronic spin, electron orbital angular momomentum

and molecular rotational motion. To these can be added the hyperfine effects due to

nuclear spin angular momentum and the possible effects of external fields. The various

couplings are complicated compared to their atomic equivalents by the presence of the

nuclear axis. These problems have been considered over many years and have been the

subject of a number of books (Herzberg 1950, Kovács 1969, Mizushima 1975, Lefebvre-

Brion & Field 1986, Lefebvre-Brion & Field 2004, Brown & Carrington 2010). However

the approach encapsulated in these works involves the extensive use of perturbation

theory to treat the various angular momentum couplings and, often, other aspects of

the problem too. Whereas such approaches have proved effective for parameterising
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experimental data, they are problematic when the couplings are strong; in such difficult

cases the couplings may be ascribed to the wrong physical mechanism (McKemmish

et al. 2016b). Even vibronic assignment of experimental spectra using these approaches

remains questionable (Yurchenko, Blissett, Asari, Vasilios, Hill & Tennyson 2016).

Furthermore, use of perturbation theory to treat the couplings is less useful for

formulating predictive, first principles studies.

Particularly challenging is the treatment of diatomic molecules containing at least

one transition metal atom. These systems often have several low-lying electronic

states, which is why they are important astronomically, and have a complicated

electronic structure. We are participating in a project called ExoMol which is

aimed at computing line lists for all molecular species important in hot astronomical

atmospheres, such as those found around cool stars, brown dwarfs and exoplanets

(Tennyson & Yurchenko 2012). As part of this project it was necessary to consider

extensive rovibronic spectra of a variety of closed shell (Barton et al. 2013, Barton

et al. 2014, Yorke et al. 2014, Rivlin et al. 2015, Paulose et al. 2015) and open shell (Yadin

et al. 2012, Patrascu et al. 2015, Lodi et al. 2015, Yurchenko, Blissett, Asari, Vasilios, Hill

& Tennyson 2016, Tennyson, Lanzarone, Milazzo, Shah & Yurchenko 2016) diatomics.

Studies on some of the simpler systems have used perturbation theory to include the

effects of fine structure (Yadin et al. 2012, Tennyson, Lanzarone, Milazzo, Shah &

Yurchenko 2016); similar methods have been used by other groups studying diatomics

composed of light atoms (Brooke et al. 2013, Hinkle et al. 2013, Ram et al. 2014, Brooke,

Ram, Western, Li, Schwenke & Bernath 2014, Brooke, Bernath, Western, van Hemert

& Groenenboom 2014, Brooke et al. 2016). However, the complexity of open shell

transition metal diatomics (often combined with a shortage of experimental data) means

that their spectra may not be well-treated by this approach. This has led us to develop

a procedure for the direct solution of the Schrödinger equation augmented with coupling

terms, such as spin-orbit coupling, which arise from the inclusion of relativistic effects in

the problem (Patrascu et al. 2014, Lodi et al. 2015). It is these procedures, and related

work performed by other groups, that concern us here. Early work in this direction was

performed by Marian (Marian 1995, Marian 2001) who calls this a matrix procedure

because, as we shall see, it is based on the construction and diagonalisation of matrices

involving the nuclear motion wavefunctions of several electronic states to give energy

levels and associated fully coupled wavefunctions.

There are well developed programs for solving the uncoupled diatomic nuclear

motion problem such as LEVEL (Le Roy 2007). Although there are a growing

number of studies treating coupled electronic states (Carrington et al. 1995, Tamanis

et al. 2002, Bergeman et al. 2003, Meshkov et al. 2005, Hutson et al. 2008, Zhang et al.

2010, Gopakumar et al. 2013, Brooke, Ram, Western, Li, Schwenke & Bernath 2014),

there appears to be a lack of general programs for the solving the matrix procedure.

We note BOUND by Hutson (1994a) can be used in this fashion. Recently we have

developed a program, DUO, to solve the general, coupled-states diatomic nuclear motion

problem (Yurchenko, Lodi, Tennyson & Stolyarov 2016).
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Modern electronic structure theory is generally able to reproduce the basic

properties of the potential energy surfaces of open shell diatomics made up by main

group, light atoms (H to Ar). Generally speaking because of inevitable computational

limitations the accuracy obtainable by electronic structure theory decreases as the

number of electrons in the molecule increases. For example, the excitation energies,

vibrational frequencies and bond lengths of complicated open shell systems such as C2

are well reproduced by theory (Schmidt & Bacskay 2007, Schmidt & Bacskay 2011,

Nakajima et al. 2009).

The situation is rather worse when we consider transition metal diatomics. In these

cases not only does one have to deal with an increased number of electrons but also the

density of electronic states is higher, leading to more frequent perturbations. In this

review, we concentrate on these cases as they represent the most challenging situations,

specifically from the perspective of electronic structure theory.

2. Overall Method

When the diatomic molecule is not in a 1Σ± electronic state interactions between the

various terms are present and one cannot treat each electronic state in isolation.

The procedure followed starts by making the Born-Oppenheimer approximation

and separating the electronic and nuclear motion, although it is possible to partially

correct for this approximation later in the calculation. Consideration of relativistic and

other angular momentum effects leads to couplings which are considered in detail in

the next section. The resulting nuclear motion Hamiltonian appears quite complicated

but is amenable to direct variational solution (Yurchenko, Blissett, Asari, Vasilios, Hill

& Tennyson 2016). However, the calculation of the necessary potential energy curves

(PECs) and angular momentum coupling curves remains challenging.

In particular, as discussed in more detail in section 3, there are three main sources

of angular momentum: electronic orbital angular momentum L̂, electronic spin angular

momentum Ŝ, and nuclear rotation angular momentum R̂; in turn, these lead to a

multitude of interactions (couplings) between different electronic states. These angular

momenta should be coupled together to form the total angular momentum Ĵ, which

is the only conserved angular momentum in the system. For three angular momentum

operators there are in principle 3!=6 possible ordering, and these orderings are generally

denoted Hund’s cases and labelled with the letters (a), (b), (c), (d), (e), and (e′) (Stepanov

& Zhilinksii 1974, Brown & Carrington 2010, Nikitin & Zare 1994). For perturbative

treatments the order in which these couplings are performed matters. In treatments

which aim at a full solution of the problem they just represent how the angular basis

set is constructed and, given a complete basis, the results should be independent of

this choice. Formal issues arising from the open shell diatomic problem have recently

been discussed in detail by Schwenke (2015), who like us and Marian (1995), favours

the use of a Hund’s case (a) representation of the problem. In this scheme the problem

is represented in terms of the angular momenta J and R, and the projections along the
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Table 1. Summary of the notation used for angular momenta in diatomic molecules

after Lefebvre-Brion & Field (1986).

Angular momentum Operator Projectiona Commutationb

electronic orbital L̂ =
∑

i l̂i Λ normal

electron spin Ŝ =
∑

i ŝi Σ normal

total electronic Ĵa = L̂ + Ŝ Ω = Λ + Σ normal

nuclear rotational R̂ 0 anomalous

nuclear spin Î = Îa + Îb ΩI normal

nuclear rotational plus electronic orbital N̂ = R̂ + L̂ Λ anomalous

nuclear rotational plus electron spin Ô = R̂ + Ŝ Σ anomalous

nuclear rotational plus total electronic Ĵ = R̂ + L̂ + Ŝ Ω anomalous

‘total’ angular momentum F = R̂ + L̂ + Ŝ + Î ΩF anomalous

a Label used for the z axis (i.e., the internuclear vector).
b Whether the components of the given angular momentum along the body-fixed axes

obey normal ([Ax, Ay] = i~Az) or anomalous ([Ax, Ay] = −i~Az) commutation relations.

molecule’s internuclear axis, Λ, Σ and Ω, see Table 1. Of these only J and the parity

are actually conserved quantities.

Dipole moment curves (DMCs), both diagonal and between different states, are

required to give transition probabilities. The accurate calculation of these various

curves requires solution of electronic structure problems which remain challenging in

the presence of a transition metal atom. These are discussed in section 4.6.

3. Formal considerations

3.1. Body-fixed Hamiltonian for diatomics

The non-relativistic Hamiltonian in the absence of external fields of a diatomic molecule

with nuclei A and B and n electrons is given in atomic units by:

Ĥ = T̂N + T̂e + VNN + Vee + VNe

= − ~2

2MA

~∇2
A −

~2

2MB

~∇2
B +

~2

2me

n∑
i=1

~∇2
i

+
1

4πε0

{
ZAZB

|RA −RB|
+

n∑
i<j

q2

|ri − rj|
−

n∑
i=1

[
ZAq

|ri −RA|
+

ZBq

|ri −RB|

]} (1)

where nucleus I (I = A,B) has mass MI , charge ZI and is represented by coordinate

RI ; q is the elementary positive charge; the electrons are represented by coordinates ri.

We will call the Cartesian coordinates defining the Hamiltonian above laboratory-fixed.
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The Hamiltonian (1) has the following exact symmetries (Lodi & Tennyson 2010):

i) It is invariant to rigid translations of all coordinates.

ii) It is invariant to rigid rotation of all coordinates.

iii) It is invariant to inversion of all coordinates.

iv) It is invariant to permutation of any two electronic coordinates.

v) If the two nuclei are identical, it is invariant by permutation of the nuclear

coordinates.

Symmetry i) implies that the centre-of-mass motion of the system can be separated

out. Symmetry ii) that the sum of orbital and rotational angular momenta, N̂, is a

conserved quantity; furthermore the state is N(N + 1) times degenerate and one may

refer to one specific degenerate component by specifying the projection of N̂ along the

laboratory Z axis, MN . Symmetry iii) indicates that parity τ = ±1 is a conserved

quantity and can be used as a quantum number, for which the label e or f are generally

used (Brown et al. 1975). Symmetry iv) merely indicates that we can always satisfy

the Pauli principle (i.e., we can always choose a solution antisymmetric with respect to

exchange of any two electron coordinates). Similarly for symmetry v), if the two nuclei

are identical, we can always find a solution which is antisymmetric or symmetric with

respect to nuclear interchange; this gives rise to the well-known ortho and para states

of homonuclear diatomics (Bunker & Jensen 1998).

Hamiltonian (1) is non-relativistic so commutes with the electron and nuclear spin

operators Ŝ and Î as well as their projections along the laboratory Z axis, so that a

wave function has a degree of degeneracy equal to N(N + 1)S(S + 1)I(I + 1). One

can refer to specific degenerate components by specifying the quantum numbers of the

projection operators along the laboratory Z axis, MN , MS and MI , or alternatively

by specifying the total angular momentum F̂ = N̂ + Ŝ + Î and its component along

the laboratory Z axis, MF . In summary, Hamiltonian (1) admits the following exact

quantum numbers: N and MN (overall angular momentum of all particules excluding

spin and its projection); τ (inversion parity quantum number); S and MS (electron

spin quantum number and its projection); I and IS (nuclear spin quantum number and

its projection). We note that similar considerations hold for any molecule, not just

diatomics. Any other label used specifically for diatomics, such as Λ, must therefore be

considered an approximate quantum number.

Details on how to separate the translational and rotational degrees of freedom

can be found elsewhere (Kolos & Wolniewicz 1963, Pack & Hirschfelder 1968, Judd

1975, Bunker 1968, Sutcliffe 2007, Islampour & Miralinaghi 2015). It is customary

for diatomics to choose body-fixed coordinates such that the origin is at the centre of

nuclear mass and the body-fixed z axis always points along the internuclear vector.

If one deals with the rotational symmetry by introducing new, rotationally-invariant

(‘body-fixed’) coordinates and integrating out the degrees of freedom corresponding

to the rotational symmetry (Pack & Hirschfelder 1968, Hornkohl & Parigger 1996,

Sutcliffe 2007, Islampour & Miralinaghi 2015), then one obtains an effective Hamiltonian
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depending on two quantum numbers, namely the total angular momentum J and its

projection along the body-fixed z axis, Ω. The effective Hamiltonian one obtains is (see

eq. (12) of Bunker (1968)) is:

Ĥeff = Ĥe + Ĥv + ĤR + Ĥµ (2)

where Ĥe is the electronic Hamiltonian and is given by

Ĥe = T̂e + VNN + Vee + VNe (3)

and the terms are defined in Hamiltonian (1). The body-fixed vibrational energy

operator Ĥv is

Ĥv = − ~2

2µ

1

R

∂2

∂R2
R (4)

where R is the internuclear separation and

µ =

(
1

MA

+
1

MB

)−1

(5)

is the reduced mass of the molecule. Note that if, as is customary, a factor 1/R is

included in the definition of the vibrational wavefunction φ(R):

φ(R) = u(R)/R (6)

then if we choose to work with the wavefunction u(R) the body-fixed vibrational energy

operator Ĥv takes on the simpler form

Ĥv = − ~2

2µ

∂2

∂R2
(7)

The body-fixed coordinate rotational energy operator ĤR is given by

ĤR = B R̂2 (8)

where B = ~2/(2µR2), and R̂ is the body-fixed rotational angular momentum; finally,

Ĥµ is the mass-polarisation energy given by

Ĥµ = − ~2

8µ

N∑
i=1

n∑
j=1

~∇i · ~∇j (9)

The mass polarisation term is small and can safely be neglected in all but the highest

accuracy calculations (Kutzelnigg 1997).

Effects due to couplings between the electronic potential energy curves of Ĥv and

of the diagonal part of ĤR are generally referred to as non-adiabatic and their inclusion

is important in high-accuracy studies. While treatment of the electronically diagonal
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adiabatic correction is relatively straightforward ab initio (Handy et al. 1986, Kutzelnigg

1997, Dinelli et al. 1995), inclusion of the non-adiabatic effects is not. The relative

importance of the adiabatic versus non-adiabatic correction terms is considered by

Reimers et al. (2015). There have been some attempts to treat non-adiabatic effects in a

completely ab initio fashion starting from the classic works on H2 by Kolos & Wolniewicz

(1963); other early studies include those by Herman & Asgharian (1968), Bunker & Moss

(1977) and Hutson & Howard (1980). Work on non-Born-Oppenheimer effects for H2

continues (Pachucki & Komasa 2014) and, indeed, has reached the exquisite accuracy

of of 10−4 cm−1 for the vibrational fundamentals of the main isotopologues (Dickenson

et al. 2013). Schwenke (2001) proposed a more general method of treating non-adiabatic

effects in molecules which he tested on H2
+. In practical application of these approaches,

e.g. by Le Roy & Huang (2002), non-adiabatic effects are taken into account by replacing

the rotational kinetic energy expression in Eq. (8) by

~2

2µR2
→ ~2

2µR2
[1 + α(R)] , (10)

and the vibrational kinetic energy operator in Eq. (7) by

~2

2µ

∂2

∂R2
→ ~2

2µ

∂

∂R
[1 + β(R)]

∂

∂R
, (11)

where the unitless functions α(r) and β(r) (sometimes called the rotational/vibrational

Born-Oppenheimer breakdown function or the rotational/vibrational g factors) are

obtained either semi-empirically by fitting to experimental data from more than one

isotope or by ab initio means (Sauer 1998, Bak et al. 2005). However, as discussed

under Inverse Problems below, (Watson 2004) noted that experimental data alone are

not generally enough to fully determine the α and β functions.

This approach of Le Roy & Huang is ultimately based on a perturbative treatment

of non-adiabatic effects and may break down in presence of avoided crossings between

the potential energy curves. In such cases it is usually preferable to explicitly treat

the off-diagonal matrix elements of the kinetic energy operator (4) which can be

done by borrowing approaches originally developed to describe scattering processes

(Hutson 1994b). Alternatively, but possibly equivalently, one can introduce diabatic

(crossing) curves (Lewis & Hougen 1968), as done, for example, in a recent study on C2

(Kokkin et al. 2007).

To the non-relativistic laboratory-fixed Hamiltonian (1) one can also add further

interaction terms, see, e.g., Chapter 3 of Brown & Carrington (2010) for a derivation and

list of interactions. In particular, the spin-orbit Hamiltonian operator is usually essential

for even qualitative accuracy of transition metal diatomic spectra while the spin-rotation

and spin-spin operators are sometimes important in high accuracy studies. The coupling

rules which govern the interactions between these terms are given in Table 2.

In principle, these terms can be evaluated once the spin is included into the

wavefunction. However, only the spin-orbit matrix elements are routinely computed
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within specialised electronic structure programs. The one-electron component of the

spin-orbit coupling usually dominates; therefore, treatment of electron correlation is

less critical than for other properties (Lischka et al. 2011). For the other spin-terms,

we in practice often use effective coupling terms for the spin-spin and spin-rotational

Hamiltonian operators and fit to experimental energies or frequencies. These are

discussed in more detail by Yurchenko, Lodi, Tennyson & Stolyarov (2016).

3.2. Wavefunctions

Within a Hund’s case (a) frawework, a complete basis set can be constructed by

multiplying the electronic wave functions by a set of functions complete for the nuclear

(vibrational and rotational) degrees of freedom, giving:

|state, J,Ω,Λ, S,Σ, v〉 = |state,Λ, S,Σ〉|J,Ω,M〉|state, J, S,Λ,Ω, v〉, (12)

where (see also table 1) Λ = 0,±1,±2, · · · is the eigenvalue of L̂z; S is the electron

spin quantum number; M is the projection of the total angular momentum along the

laboratory axis Z; v is the vibrational quantum number. For the rovibronic basis set

the combinations of Σ and Λ are selected to satisfy −J ≤ Ω ≤ J . The label ‘state’

is a counter over electronic states having the same symmetry. The |state,Λ, S,Σ〉 are

solutions of the electronic structure problem and can be obtained (although usually not

exploiting the full C∞v or D∞h point-group symmetry of a diatomic system) using a

number of electronic structure packages; the |J,Ω,M〉 are symmetric top eigenfunctions

which are Wigner D functions (Pack & Hirschfelder 1968, Sutcliffe 2007, Zare 1988,

Islampour & Miralinaghi 2015) and depend on the Euler angles (α, β, γ) specifying the

orientation of the body-fixed axis with respect to the space-fixed one:

|J,Ω,M〉 =

√
2J + 1

4π
DJM,Ω(α, β, γ =

π

2
)∗ (13)

Note that in the expression above the third Euler angle, γ, has been fixed to the value

π/2 as the condition that the body-fixed z axis points from one nucleus to the other

leaves it completely unconstrained; the normalization factor has been chosen so that that

no integration over γ should be performed. This is the customary choice for diatomics

(Vleck 1951), although other treatments of γ are possible (Judd 1975, Hornkohl &

Parigger 1996).

Finally, |state, J, S,Λ,Ω, v〉 are vibrational functions found as solutions of the one-

dimensional Schrödinger equations for the electronic potential curves En(r) (possibly

complemented by the diagonal part of the rotational Hamiltonian, eq. (22)) and will be

discussed in detail in the next section.

Note that our notation implies that the electronic wave functions |state,Λ, S,Σ〉
are chosen such that:

〈state,Λ, S,Σ|L̂z|state,Λ, S,Σ〉 = Λ (14)

σ̂v(xz)|state,Λ, S,Σ〉 = (−1)sq+Λ+S−Σ|state,−Λ, S,−Σ〉 (15)
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where σ̂v(xz) is the operator corresponding to reflection through the body-fixed xz-

plane and where sq = 1 for Σ− electronic states and sq = 0 in all other cases; commonly

used quantum chemistry programs such as Molpro (Werner et al. 2012) do not use

this form and therefore couplings obtained from such programs need to be converted

(Patrascu et al. 2014, Schwenke 2015, Yurchenko, Lodi, Tennyson & Stolyarov 2016).

As a second and final step one computes the matrix elements of the Hamiltonian

(2) (plus, if desired, any other additional Hamiltonian components such as spin-orbit

coupling, spin-rotation interaction etc.) in the chosen basis set and obtains the final

energies and wave functions by diagonalisation of the Hamiltonian matrix.

The exact wave function has a definite parity with respect to inversion of all

laboratory-fixed coordinates; on the other hand the basis functions given of Eq. (12) do

not. Laboratory-fixed inversion is equivalent to reflection through the molecule-fixed

xz plane (Pack & Hirschfelder 1968, Røeggen 1971, Kato 1993). Symmetrized basis

functions having definite parity τ = ±1 are given by

|state, J, |Ω|, |Λ|, S, |Σ|, v, τ〉 =
1√
2

(|state, J,Ω,Λ, S,Σ, v〉

+τ (−1)sq+J−S|state, J,−Ω,−Λ, S,−Σ, v〉
)
.

(16)

This parity relates to the standard linear-molecule e/f parity labels (Brown et al. 1975)

as follows. For Bosons (J integer) e states have parity given by (−1)J and f states by

(−1)(J+1); for Fermions this becomes (−1)(J− 1
2

) for e states and (−1)(J+ 1
2

) for f states.

3.3. Rotational couplings

Actual calculations require matrix elements of the effective Hamiltonian (2). In the

basis set functions given by eq. (12), the rotational angular momentum R̂ appearing in

eq. (8) can be expanded as (see table 1)

R̂ = Ĵ− L̂− Ŝ. (17)

The rotational Hamiltonian given by eq. (8) can be written as (Lefebvre-Brion &

Field 1986)

ĤR =
~2

2µr2

{
(Ĵ2 − Ĵ2

z ) + (Ŝ2 − Ŝ2
z ) + (L̂2 − L̂2

z) (18)

+ (Ĵ+Ŝ− + Ĵ−Ŝ+) (19)

− (Ĵ+L̂− + Ĵ−L̂+) (20)

+(L̂+Ŝ− + L̂−Ŝ+)
}
. (21)

The second term in ĤR (eq. 19) is due to terms of the type Ĵ±Ŝ∓ and is called spin

uncoupling, see, for example page 626 of Brown & Carrington (2010) for a description.

This term leads, for increasing J , to a transition from Hund’s case (a) to case (d). The

third term in ĤR (eq. 20) is due to terms of the type Ĵ±L̂∓ and is called L-uncoupling.

This term is responsible for the Λ-doubling of Π, ∆, Φ states (i.e., the splitting of the
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Table 2. Coupling rules for matrix elements of the body-fixed Hamiltonian given

by eq. (2) using the (non-symmetrised) basis functions of eq. (12). The coupling rules

∆J = 0 and g = u (only for homonuclear diatomics) always hold. For the symmetrised

basis functions given by eq. (16) there is a further universal selection rule, namely e↔ e

and f ↔ f are possible but not e↔ f .

Description Eq.a Coupling rules

|∆S| |∆Σ| |∆Λ| |∆Ω| notes

vibrational and nonadiabatic, Ĥv (4) 0 0 0 0 b

rotational diagonal (18) 0 0 0 0

S-uncoupling, Ĵ±Ŝ∓ (19) 0 1 0 1

L-uncoupling, Ĵ±L̂∓ (20) 0 0 1 1

spin-electronic, L̂±Ŝ∓ (21) 0 1 1 0

spin-orbit, ĤSO c 0, 1 0, 1 0, 1 0 d,e

spin-rotation, ĤSR c 0 1 0 1

spin-spin, ĤSS c 0,1,2 0,1,2 0,1,2 0 f,g

a Relevant equation in the text defining the operator.
b Matrix elements of Ĥv between different electronic states (having the same molecular

term symbol) are considered nonadiabatic interactions.
c See Chapter 3 of Brown & Carrington (2010).
d Extra selection rule for Σ electronic states: Σ± ↔ Σ∓ but Σ± = Σ±.
e The matrix element is zero if ∆S = 0 and Σ′ = Σ” = 0.
f Extra selection rule for Σ electronic states: Σ± ↔ Σ± but Σ± = Σ∓; the converse of

that for ĤSO), see note d.
g Spin-spin interaction is zero between Σ states with S ≤ 1/2.

τ = + and τ = − components of non-Σ states). When it is the prevailing perturbation it

leads for increasing J to a transition from Hund’s case (a) to case (d). The fourth term

in ĤR (eq. 21) is due to terms of the type L̂±Ŝ∓ is a spin-electronic term which obeys

coupling rules very similar to the spin-orbit Hamiltonian and hence experimentally it

cannot generally be distinguished from spin-orbit interactions.

Matrix elements of the rotational Hamiltonian (18–21) in the basis given by

eq. (12) can be evaluated using the rules of the angular momentum (Lefebvre-Brion

& Field 1986). The coupling rules for the rotational Hamiltonian, as well as for

other components of the total Hamiltonian (2) (spin-orbit, spin rotation and spin-spin

interactions) are given in Table 2.

The expectation value of the first term in ĤR, eq. (18), for each of the basis functions

(12) gives rise to the well-known rotational centrifugal potential. Its effect amounts to

an additive potential term to the Born-Oppenheimer potential which can be written in
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the following equivalent ways:

Hdiag
R = 〈J,Ω,M |〈state,Λ, S,Σ|ĤR|state,Λ, S,Σ〉|J,Ω,M〉

= B
[
[J(J + 1)− Ω2] + [S(S + 1)− Σ2] + L2

x + L2
y − Λ2

]
= B

[
J(J + 1) + S(S + 1)− 2(Λ2 + ΛΣ + Σ2) + L2

x + L2
y

]
= B

[
J(J + 1) + S(S + 1)− 2Ω(Λ + Ω) + L2

x + L2
y

]
.

(22)

For 1Σ states the expression above reduces to the well-known expression BJ(J + 1). In

the absence of Hdiag
R the non-relativistic wavefunctions are 2(2S+1)-times degenerate for

Λ 6= 0 and (2S + 1)-times for Λ = 0. Inclusion of Hdiag
R partially splits these degenerate

components according to their value of Λ and Σ. Specifically, for S < bΛ/2c each

state splits by effect of Hdiag
R in 2S + 1 components, while for S ≥ bΛ/2c each state

splits into bS + Λ/2 + 1c components, where bxc indicates the floor function, i.e. the

largest integer not greater than x. In ab initio treatments L2
x and L2

y are functions of R

obtained by averaging the body-fixed angular momentum operators over the electronic

wave function. Essentially they amount to a small correction to the Born-Oppenheimer

potential V (R) and in experimental analyses they are not considered separately from

it. Because of the cylindrical symmetry of the electronic problem Lx(R) = Ly(R).

Note that the values of Lx and Ly depend on the choice of the origin of the body-fixed

axes, and for consistency with the rest of the treatment, we recommend that they are

computed with the origin fixed at the centre of nuclear mass. Because of this choice of

the origin upon dissociation Lx(R) and Ly(R) grow proportionally to R, and the term

B(L2
x + L2

y) in eq. (22) tends to a constant value as B ∝ 1/R2.

4. Electronic structure calculations

4.1. Overview

The above formalism is largely concerned with the couplings of the various angular

momenta and is, in principle, exact. The largest source of uncertainty in computing the

energy levels arises from solution of the electronic structure problem to give the required

potential energy curves (PECs) and couplings between electronic states, specifically

the spin-orbit coupling and L-uncoupling matrix elements. At the moment only a

few electronic structure packages, such as Dalton (Aidas et al. 2014), are capable of

computing the spin-rotation and spin-spin matrix elements and such terms are usually

dealt with empirically.

Ab initio electronic structure theory has been used to predict the properties of many

electronic states in diatomics containing one transition metal. There are many recent

examples of such calculations (Tzeli & Mavridis 2006, Kardahakis & Mavridis 2009,

Miliordos & Mavridis 2010, Goel & Masunov 2011, Sakellaris et al. 2011, DeYonker

& Allen 2012, Kaplan & Miranda 2012, Sakellaris & Mavridis 2012a, Sakellaris &

Mavridis 2012b, Sakellaris & Mavridis 2013, Borin et al. 2014, DeYonker et al. 2014,

Kalemos & Mavridis 2000, Borin & de Macedo 2004, Abdul-Al et al. 2005, Midda
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et al. 2006, Ramı́rez-Soĺıs 2006, Demovič et al. 2007, Ghanmi et al. 2007, Koukounas

& Mavridis 2008, Ribas et al. 2008, Sakellaris et al. 2010, Papakondylis 2011, Shi

et al. 2011, Karman, Chu & Groenenboom 2014, Karman, & Groenenboom 2014, Shi

et al. 2015). There has also been investigations into using ab initio electronic

structure theory to study the even more complicated problem of electronic states in

diatomics containing two transition metals (Gao et al. 2006, Zhang et al. 2007, Czuchaj

et al. 1997, Gao et al. 2009, Camacho et al. 2010, Kalemos et al. 2010, Kalemos &

Mavridis 2011, Krechkivska et al. 2012, Coe et al. 2014, Kaplan & Miranda 2014,

Kalemos & Mavridis 2015, Kalemos 2015). For example, the ground electronic

state of the chromium dimer, Cr2, is a remarkably challenging system and is often

used as a benchmark to test new theoretical methods (Müller 2009, Kurashige &

Yanai 2011, Sokolov & Chan 2016).

If one wants to predict or model to the highest possible accuracy the rovibronic

spectroscopy of transition metal diatomics it is usually imperative to use multireference

wavefunction-based methodologies which are able to treat both the so-called static

and dynamic parts of electron correlation, see the review by Szalay et al. (2012)

for a general discussion. These approaches generally take as a starting point a

multireference self-consistent field (MCSCF) wave function, very often of the complete

active space (CASSCF) type (Roos & Taylor 1980, Olsen 2011), and improve upon it

using either perturbation theory or on matrix diagonalization of an opportune, reduced-

size Hamiltonian matrix. Methods bases on perturbation theory include the popular

CASPT2 method (Andersson et al. 1990, Andersson et al. 1992), the n-electron valence

state perturbation theory (NEVPT) method (Angeli et al. 2001, Angeli et al. 2007), as

well as others (Werner 1996, Celani & Werner 2000, Kállay 2015), while methods based

on diagonalization include internally-contracted multireference configuration interaction

(icMRCI)(Szalay et al. 2012) and closely related modifications such as averaged coupled

pair functional (ACPF) (Gdanitz & Ahlrichs 1988) and averaged quadratic coupled

cluster (AQCC) (Szalay & Bartlett 1995, Szalay 2008). Among electronic structure

methods which are generally applicable both to the ground as well as to excited electronic

states (also for highly stretched geometries) icMRCI-type ones are the most accurate,

and in the following sections we will deal solely with them. In the remainder of the

present section we briefly discuss some other alternatives.

Among single-reference electronic structure methods, i.e. methods which take as a

starting point a Hartree-Fock type wavefunction, the most successful and widely applied

is probably the coupled-cluster (CC) method, (Bartlett & Musia l 2007), especially in its

(closed-shell) CCSD(T) version (Raghavachari et al. 1989). CC methods are generally

used to compute properties of the ground electronic state of closed-shell systems close

to equilibrium, and when one of these three qualifications is violated complications

arise. For example, CC approaches for open-shell system do exists but are much less

developed (Watts et al. 1993, Knowles et al. 1993, Knowles et al. 2000) and may not give

access to all possible values of spin or symmetries. For highly stretched geometries CC

methods are inevitably expected to degrade very significantly in quality or even to break
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down, so that complete energy curves up to dissociation cannot in general be computed.

Multireference generalization of coupled-cluster (MRCC) are being developed but at

the moment they are not in widespread use nor they can provide better accuracy than

icMRCI-type ones (Lyakh et al. 2011, Szalay 2010, Rolik & Kállay 2014).

Finally, a comment is warranted on density functional theory (DFT) methods,

which have proved very successful in applications to main group species and material

science. The DFT methodology is based on the choice of an exchange and correlation

functional, and a functional appropriate for transition metal system has proved difficult

to obtain and, despite recent progress in this direction (Zhao & Truhlar 2008, Cramer

& Truhlar 2009, Cohen et al. 2012), DFT methods are currently incapable of providing

the necessary accuracy for high-resolution electronic spectroscopy of transition metal

diatomics.

4.2. Computational considerations

It may be thought that for such small (two atoms) systems calculation time is not a

problem and that most ab initio quantum chemistry methods are practical; however,

this is definitely not the case. Some methodology changes have practically no influence

on calculation time, e.g. inclusion of a posteriori size-consistency corrections such as

the Davidson correction (+Q) (Langhoff & Davidson 1974, Szalay et al. 2012) and

relativistic corrections using the mass-velocity and Darwin terms. Diagonal and parallel

off-diagonal finite field dipole moment calculations increase calculation time by up to a

factor of three. Changes to the way in which the complete active space self-consistent

field (CASSCF) orbitals are optimised can cause or alleviate convergence problems, but

otherwise have little impact on calculation time. Increases to the basis set size have

a significant effect on calculation time; however, it is normally practical to perform

calculations for diatomic systems with basis sets with sizes similar to the aug-cc-pVQZ

basis set from the Dunning correlation-consistent family (Dunning, Jr 1989, Balabanov

& Peterson 2005). The use of effective core potentials is a possible choice instead of

all electron atomic basis sets. However, since we are mostly considering relatively light

transition metals species with modest relativistic effects, we do not consider effective

core potentials in detail here. Readers are invited to look at the recent review (Dolg &

Cao 2012) for further discussion. Basis set superposition errors is also a consideration,

particularly for calculating dissociation energies. However, in practice, other sources of

error are found to be dominant, particularly when large basis sets are used. Furthermore,

methods of addressing basis set superposition error are well established, for example,

using standard counterpoise corrections.

There are also some improvements to methodology that pose such substantial

increases to calculation time and memory requirements that they are often not practical

for calculations along the full bond distance curve or for excited electronic states, though

benchmark calculations at a single bond length may be feasible. Inclusion of semi-core

correlation (e.g. including correlation from the 3s and 3p first-row transition metal



The ab initio calculation of spectra of open shell diatomic molecules 15

electrons) falls into this category, especially when the main group element is heavier

(e.g. oxygen, fluorine). Also, increases to the active space, such as including a second

set of d orbitals, pose often insurmountable practical problems. This is unfortunate as

both of these improvements would be highly desirable for transition metal systems.

As we shall see, current ab initio electronic structure calculations fail to achieve

high accuracy for the spectroscopy of transition metal diatomics for some properties,

particularly excitation energies. Therefore, fitting of PECs and other curves to

experimental results is often used. However, these lower accuracy calculations can be

used to demonstrate the complexity and nature of electronic states within a certain

spectral band. For example, the study by (Hübner et al. 2015) of the excited states of

VO demonstrates the density of doublet states within 20 000 cm−1 and 30 000 cm−1 is

so high that correct modelling of small perturbations in the spectra of the C 4Σ− and D
4Π state (origins at 17 420 cm−1 and 19 148 cm−1 respectively) is not currently feasible

ab initio.

4.3. icMRCI Orbitals and Methodology

icMRCI calculations are far from straightforward and depend subtly on a number of

key methodological parameters that are rarely explicitly discussed. We recommend a

much more thorough specification of the methodological choices than is currently given;

the standard brief description such as icMRCI/aug-cc-pVDZ is inadequate to allow

reproducibility of the calculation.

icMRCI calculations use molecular orbitals that are usually derived from a CASSCF

calculation. A CASSCF wavefunction is a linear combination of Slater determinants

which all share a set of core doubly occupied orbitals and have variable occupation of a

shared set of active orbitals. In a CASSCF calculation, these orbitals are optimised

according to some criteria. For state-specific CASSCF, one electronic state with

particular spin and symmetry is specified; the orbitals are optimised in order to minimize

the energy of the CASSCF wavefunction of that state. During this process, both

the orbitals themselves and the coefficients of each Slater determinant are optimised.

For state-averaged CASSCF calculations, there are multiple CASSCF wavefunctions

for each electronic state that share a single set of core and active orbitals, but vary

in the coefficients of each Slater determinant. The orbitals and coefficients are all

optimised to minimise the sum of the energy of the CASSCF wavefunctions for each

state. It is also possible to put a weight on each state to preference optimisation of

one electronic state over others. Though the CASSCF calculation produces energies,

wavefunctions and other property evaluations for each component electronic state, none

of this is used in the subsequent icMRCI calculation. The icMRCI calculation only uses

the set of core, active and virtual orbitals produced during the CASSCF calculation

(note the virtual orbitals are not occupied in any Slater determinant but are formed

from orthogonal components of the atomic basis set). Only a single set of orbitals

is produced regardless of the number of states involved in the CASSCF calculation.



The ab initio calculation of spectra of open shell diatomic molecules 16

Thus, if one is interested in, say, the properties of state A, the inclusion of any other

states in the CASSCF calculation will reduce the ability of the CASSCF orbitals to

model the A state. Thus, icMRCI calculations using state-specific CASSCF orbitals

should be better than icMRCI calculations using state-averaged CASSCF orbitals; for

example, the energy of the former should be lower than the latter, and thus closer to

the true answer since icMRCI calculations are variational. The only exceptions to this

are (1) accidental cancellation of errors can mean an inferior methodology happens to

reproduce experiment more accurately and (2) the dynamic correlation is very strong

and it happens that state-averaged CASSCF orbitals can more accurately reproduce the

dynamic correlation effects. Note that this latter case is not expected to arise very often

and does not provide a justification for state-averaged CASSCF calculations in general.

Despite the superiority of state-specific calculations from a theoretical perspective,

there are a number of situations where one might require state-averaged (SA)

calculations, or where their use may be justified. First, it is imperative to include

all lower-lying states of the same spin and symmetry in a CASSCF calculation. Second,

currently there are no programs that allow computing spin-orbit matrix elements when

the bra and ket do not originate from the same orthonormal set of CASSCF orbitals;

in such cases it is therefore necessary to include both states in the optimisation of

these orbitals. However, this is a limitation that could be addressed in future code

development, and we would strongly endorse this.

In some cases, convergence can be improved by reducing symmetry from the linear

point groups C∞v and D∞h, which means further low-lying states of the same symmetry

arise. Also, sometimes convergence is improved by including more states; though various

arguments can be developed, this behaviour to our knowledge does not have a solid

theoretical basis, but CASSCF calculations are notoriously troublesome and quirky in

their convergence properties. Finally, SA calculations mean that all properties of a

set of an electronic state can be determined together. This can be extremely helpful to

ensuring the correct phase and relative signs of dipole moments, spin-orbit and electronic

angular momentum matrix elements, particularly in a complex system (in this case,

the absolute value of these matrix elements can be taken from icMRCI calculations

using more accurate state-specific or minimal state CASSCF orbitals). Alternatively,

sometimes SA calculations can be performed as a matter of convenience and reduced

human effort and calculation time. However, we note that a single SA-CASSCF with

many electronic states will almost certainly take longer than a single state-specific

CASSCF. As we shall see, there are many sources of inaccuracy in current ab initio

electronic structure theory calculations for transition metal diatomics and for many

applications the error associated with state-averaging may not be important. However,

in the latter case, we must caution that excessive consideration of other methodological

choices, most notably basis set, are not justified. The errors associated with the use of

double zeta basis set versus quadrupole zeta basis sets are found to be lower than the

error associated with state-averaged calculations.

Our experiences (McKemmish et al. 2016a) show that the effect of the choice of
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electronic states in the optimisation of the CASSCF orbitals can be large. However, we

propose a standardised notation to describe the way in which the CASSCF orbitals for

a particular icMRCI calculation are optimised. The states optimised in the CASSCF

orbitals are put in brackets, separated by commas, then a dash followed by the words

CAS are used. For example, (X,A)-CAS indicates CASSCF orbitals optimised for the

X and A electronic states. If fractional weights are utilised, these are put before the

state, e.g. (0.5 X, 1 A)-CAS.

Another often forgotten methodological consideration is that in internally-

contracted MRCI (Werner & Knowles 1988) — implemented in the popular package

Molpro (Werner et al. 2012) — the number of states requested in the icMRCI calculation

affects the result. If more states are requested, less contraction occurs; this results in

a longer calculation and lower absolute energies. We recommend that the number of

states requested in the icMRCI calculation be denoted in brackets after the icMRCI;

e.g. icMRCI(2) indicates a icMRCI calculation where 2 states were requested. More

complicated notation (e.g. icMRCI(2,1,1,2)) could be used to denote multiple states of

different spin/symmetries. Rather than explicitly prescribing this more complicated

notation here, we recommend describing the notation within the paper itself and

ensuring that the point group, symmetry and spin of states are fully specified. Even

better to ensure reproducibility of results, we encourage authors to provide sample input

files to the electronic structure program used.

4.4. Correct Identification of Electronic State

The high density of electronic states for transition metal diatomics and the relative

high inaccuracies in excitation energies (see below) makes the correct identification

of electronic states in a calculation imperative, particularly when comparing against

experiment and between different calculations. Particularly at higher energies, the

order of the electronic states is often incorrectly predicted by ab initio procedures;

furthermore, avoided and true crossing mean that the nature of the electronic state

can change with bond length. Thus, careful monitoring of each electronic state in an

ab initio calculation is imperative. The most obvious way is through monitoring the

Lz expectation value; however, this cannot distinguish between two states of the same

spin and symmetry (e.g. if the calculation has converged on the wrong state). We

find a much more sensitive test for non-Σ and non-singlet states is the diagonal spin-

orbit matrix element, which shows high stability across different quality wavefunctions.

Furthermore, this can be directly compared to experiment as the matrix element is equal

to SΛA where A is the standard experimental spin-orbit splitting constant. Diagonal

dipole moments are another possible diagnostic, but generally only distinguishes between

states of very different nature (e.g. different valency). The energy is somewhat useful,

but must be considered with care; the errors in excitation energies can make this

a misleading diagnostic, especially for low-level calculations. For example, CASSCF

excitation energies may be double the true experimental excitation energies and higher
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electronic states, where incorrect state ordering even at relatively high levels of theory

are common.

4.5. Potential energy curves

When considering ab initio potential energy curves, we are most concerned with the

parameters of each electronic state, particularly their energy relative to each other

and to the ground state, the vibrational frequencies, equilibrium bond lengths and

the long range behaviour. The choice of electronic structure theory procedure is

limited by available methodologies in common quantum chemistry packages and time

considerations. However, the most important limitation is the need for converged

calculations and for continuous, smooth curves. These requirements are particularly

difficult for the multireference methods that are required for stretched bonds and

excited states. Furthermore, open-shell systems in general exhibit more complexity

and difficulties with convergence.

Of course there are an infinite number of electronic states converging on any

ionisation limit. This situation is not well treated by standard electronic stucture

methods. However high-lying PECs have been successfully identified from negative

energy scattering calculations (Sarpal et al. 1991); under these circumstances the states

are often best characterised via their quantum defects (Rabadán & Tennyson 1997).

This procedure, unlike more standard basis set methods, becomes more accurate for

very high-lying states as the error is often characterised by a constant shift in the

quantum defect (Tennyson 1996, Schneider et al. 2000). Quantum defect theory has

been used to represent the spectrum of highly excited H2 molecules with outstanding

accuracy (Sprecher et al. 2013, Sprecher et al. 2014).

The most ambitious use to date of scattering theory for excited bound states was

by Little & Tennyson (2013), who considered Rydberg states of N2 and mapped out

in detail the many avoided crossings for this system. Use of this procedure would be

interesting for transition metal containing molecules but would require further work

to be done on improving the representation of the so-called target wavefunction (the

wavefunction of the ionised system) used in the scattering model before really accurate

results can be obtained for these systems.

Dissociation energies are calculated from two single-point energy calculations;

therefore, very high level calculations are possible (Boyarkin et al. 2013). However,

there appears to be a relative lack of interest in this property and satisfaction with

experimental results. This means that very high accuracy methodologies have not been

extensively explored for transition metal diatomics.

Figure 1 provides estimates of typical experimental and theoretical errors. This

figure shows experimental dissociation energies (crosses) with error bars for early

transition metal oxides, as well as theoretical predictions using a variety of high-

level theoretical methods, specifically icMRCI, icMRCI+Q and R-CCSD(T) with and
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Figure 1. Calculated ab initio dissociation energies of neutral and charged transition

metal oxides, using large basis sets and a variety of treatments of static and dynamic

correlation compared to experiment (with error bars). Ab initio results are taken from

Tilson & Harrison (1991), Bauschlicher & Maitre (1995), Nakao et al. (2001), Miliordos

& Mavridis (2007), and Miliordos & Mavridis (2010). Experimental results are taken

from Clemmer et al. (1991), Loock et al. (1998), Luc & Vetter (2001) and Jeung et al.

(2002).

without semi-core correlation, all using cc-pVQZ basis sets. It is clear that the error

in theoretical calculations and experiments are similar, around 500 - 2000 cm−1 from a

total dissociation energy of 45 000 to 60 000 cm−1.

Electronic excitation energies: Even for high quality calculations, the errors in the

excitation energies for diatomic molecules often exceeds 1000 cm−1, especially for the

higher lying states, as shown in Fig. 2 for transition metal oxides. The very highest

accuracy calculations even for the lowest electronic states is rarely more accurate than

100 cm−1.

Vibrational Frequency: Typically, errors in vibrational frequencies are of order 10 to

30 cm−1, as shown in Fig. 3. The error seems relatively independent of treatment of
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Figure 2. Observed minus calculated excitation energies of neutral and charged

transition metal oxides, using large basis sets and a variety of treatments of static and

dynamic correlation. Ab initio results taken from Jeung & Koutecky (1988), Langhoff

(1997), Dobrodey (2001), Miliordos & Mavridis (2007), Miliordos & Mavridis (2010),

Hübner et al. (2015) and McKemmish et al. (2016a).

dynamic correlation, use of the Davidson correction (+Q), inclusion of core correlation

and relativistic effects.

Rotational Frequency: The equilibrium bond length for each vibronic state determines

the rotational frequency of that state. Generally theory is able to reproduce experiment

quite well. Errors of larger than 0.03 Å for high level calculations are rare, as shown

in Table 3. This table shows that the errors are normally significantly reduced by the

inclusion of semi-core correlation (i.e. the 3s and 3p orbitals in the correlated space).

A 0.03 Å error in the bond length of a transition metal oxide will result in an error

on order of 0.02 cm−1 for the rotational constant. This will only cause errors greater

than 1 cm−1 for J > 20. A bond length error of 0.005 Å will not cause errors in excess

of 1 cm−1 until approximately J = 120.
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Figure 3. Observed minus calculated in the calculated vibrational frequencies of

neutral transition metal oxides, using large basis sets and a variety of treatments of

static and dynamic correlation. Ab initio results taken from Langhoff (1997), Miliordos

& Mavridis (2007), Miliordos & Mavridis (2010), Hübner et al. (2015) and McKemmish

et al. (2016a).

Couplings Diagonal spin-orbit coupling removes the degeneracy in energy between

different spin components of non-singlet and non-Σ electronic states. For 3d transition

metal diatomics, this is normally treated as a modification of the pre-existing potential

energy curves for an electronic state; it is generally of magnitude 10 to 250 cm−1. Off-

diagonal spin-orbit coupling gives intensity to spin-flipping transitions.

Ab initio spin-orbit matrix elements are surprisingly insensitive to the quality

of the calculation. Lodi et al. (2015) investigated the effects of different basis sets

and treatment of dynamic electronic correlation against known experimental results

and found that CASSCF/aug-cc-pVDZ was usually as reliable as the more expensive

methodologies.

Electronic angular momentum matrix elements cannot generally be derived from

experiment and must be calculated ab initio. Since there appear to be no benchmark

results, we generally use high level theory, e.g. icMRCI/aug-cc-pVQZ. The bra and

ket wavefunctions do not have to use the same set of CASSCF orbitals. Thus, we
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Table 3. The absolute error in the predicted equilibrium bond distance, ∆re, for

various electronic states of TiO and VO. The units of bond length are Å. For TiO,

the source of ab initio data is Langhoff (1997), Dobrodey (2001) and Miliordos &

Mavridis (2010). For VO, the source of ab initio data is Miliordos & Mavridis (2007),

Hübner et al. (2015) and McKemmish et al. (2016a). All ab initio results included

in the averaging are at least icMRCI or CCSD level, with basis sets of triple-zeta

quality or better. CAS orbitals are optimised in different ways. The active space is

(4s,4px,4py,3d)/Ti, (4s,3d)/V and (2p)/O or (2s,2p)/O.

No semi-core With Semi-core

Molecule State Config. ∆re max(∆re) ∆re max(∆re)

TiO X 3∆ 4s13d1 0.014 0.017 0.002 0.003

a1∆ 4s13d1 0.014 0.018 0.004 0.005

d1Σ+ 4s2 0.011 0.017 0.005 0.006

E3Π 4s13d1 0.022 0.027 0.002 0.003

A3Φ 4s13d1 0.008 0.015 - -

b1Π 4s13d1 0.014 0.022 - -

B3Π 3d2 0.009 0.012 - -

C3∆ 4s13d1 0.020 0.028 - -

c1Φ 3d2 0.006 0.013 - -

f1∆ 4s13d1 0.008 0.017 - -

VO X 4Σ− 4s13d2 0.005 0.004 0.003 0.002

A′ 4Φ 4s13d2 0.004 0.004 0.004 0.003

c 2∆ 4s23d1 0.008 0.015 0.004 0.015

A 4Π 4s13d2 0.001 0.001 0.004 0.003

d 2Σ+ 4s13d2 0.005 0.006 0.001 0.002

B 4Π 3d3 0.005 0.005 0.010 0.005

e 2Φ 4s13d2 0.017 0.030 0.014 0.020

recommend optimising each separately (for a minimal number of states). Generally, we

find these matrix elements to be of order 1.

Both the spin-orbit and electronic angular momentum matrix elements have a

phase and sign (e.g. can be imaginary) depending on the phase of the component

wavefunctions. These phases need to be treated carefully (Patrascu et al. 2014,

Yurchenko, Lodi, Tennyson & Stolyarov 2016).

4.6. Dipole moments

While it is possible to improve potential energy curves using experimental data, see next

section, this is rarely possible and not generally recommended for dipole moment curves

(Lynas-Gray et al. 1995).

Although the option of computing dipoles is standard in electronic structure

programs, getting stable results for open shell systems is far from straightforward.

Indeed the literature is full of examples of dipole moment curves which show unphysical
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features, see Tennyson (2014). These features can arise from a variety of causes including

(i) using inappropriate models such as Hartree-Fock or coupled cluster approaches

which do not represent the dissociating wavefunction correctly and result in large,

unphysical dipoles at large internuclear separations, see Barton et al. (2013) for example;

(ii) changes in orbital ordering: our preferred model for computing dipole moments

is icMRCI; in this approach the orbitals are divided into frozen (fully occupied core

orbitals), valence (used in the complete active and reference spaces) and virtuals (used

in the CI step). Orbital swaps between these spaces at a particular geometry can result

in sharp changes in dipole moments, see Lodi et al. (2015) for example; (iii) even if

the orbitals do not actually swap they can change character, for example from ionic to

covalent, as a function of bond length with consequent changes in the dipoles. These

changes in character may well be physical: most ionically bonded species dissociate to

neutral fragments. However, orbital spaces which only contain orbitals with one of these

characteristics can be or become unbalanced. In this context it should be noted that

improved transition dipoles moments are obtained if different, optimal orbitals sets,

so called bi-orthogonal orbitals, are used for the two states involved in the calculation

(Schmidt & Bacskay 2007); (iv) symmetry contamination: as discussed above diatomic

species contain significant symmetry properties, but most quantum chemistry codes

do not use full (C∞v or D∞h) linear molecule symmetry; an exception is the package

Turbomole (Furche et al. 2004), which however does not implement multireference

methods and is therefore of limited interest to us.

Experience shows that care is needed to obtain smooth dipole moment and

coupling curves. We have found that starting calculations using wavefunctions from a

neighbouring geometry and starting calculations which use large basis sets with orbitals

from calculations with smaller basis sets helps to maintain but does not guarantee

smoothness.

Finally we note that measurements of transition absolute transition intensities for

open shell systems and difficult are rare. An alternative is to measure the lifetime of

the excited states. Such measurements have the significant advantage that they do not

require a knowledge of the population of states in the sample being studied. Lifetimes

can be computed routinely from sets of Einstein A coefficients. This has been done

recently for the line lists computed as part the ExoMol project (Tennyson, Hulme,

Naim & Yurchenko 2016).

5. Nuclear Motion Calculation and Improving the Model

The above two sections describe the necessary ingredients for constructing a full ab

initio spectroscopic model for open shell diatomic species. The resulting nuclear motion

Schrödinger equations can then be solved. In the case of duo (Yurchenko, Lodi,

Tennyson & Stolyarov 2016) this is done variationally by solving a J = 0 problem

for each, uncoupled PEC and using these results to provide a basis set to solve the

fully-coupled, J-dependent problem. Solutions based on the direct integration of the
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coupled equations are also possible (Hutson 1994a).

This direct method works well but is not without some issues. As the number

of electronic states considerd grows, the number of coupling curves that needs to be

considered grows as approximately the square of this number. The generation and

handling of these curves can become quite cumbersome. However there are two further

issues. First couplings may occur to states which are repulsive: this is actually the

mechanism for the well-studied phenonomenon of pre-dissociation. Second, couplings

to high-lying states which are not included in the model may also be important. Both

of these situations are probably best dealt with by reverting to a pertubative treatment

of the coupling via the use of effective constants.

Of course, as a model is extended to higher energies, the number of electronic

states that might need to be considered grows rapidly. The issues here is not only the

actual density of states but also the correct treatment of both so-called dark states, ones

which do not have dipole-allowed transitions to the ground state, and the interaction

of quasi-degenerate levels, often called resonances. Such resonances are well-known

experimentally and often lead to intensity stealing by dark states which allows a few

levels associated with these states to be observed. Attributing the correct vibrational

(and sometimes even electronic) quantum numbers the states is often difficult on the

basis of observations alone. For molecules such as C2 the ab initio theory is now accurate

enough for electronic and vibrational states to be unambiguously identified (Bornhauser

et al. 2015); this is not true for systems containing transition metals (Yurchenko, Blissett,

Asari, Vasilios, Hill & Tennyson 2016).

One way of improving on the ’direct’, ab initio method for solving the spectroscopic

problem is by addressing the corresponding inverse problem (Karkowski 2009, Weymuth

& Reiher 2014), that is the task of determining the potential V (R) which leads to a

given set of energy levels EυJ , typically obtained from experiment. One of the oldest

ways to perform this task approximately is to use the semi-classical Rydberg-Klein-

Rees (RKR) method, see Karkowski (2009). A more precise strategy called inverse

perturbation analysis (IPA) based on perturbation theory has been suggested (Kosman

& Hinze 1975, Weymuth & Reiher 2014) and a program implementing this approach

was presented by Pashov et al. (2000).

The gold-standard inverse problem usually involves determining a potential energy

function, usually one represented in some pre-determined but flexible form, to a set of

experimental-derived data such as energy levels or transition frequencies. The process

involves minimizing the standard deviation of observed minus calculated for these data.

This methodology is increasing being used in problems involving coupled potential

energy curves, see Yukiya et al. (2013), Walji et al. (2015) and Patrascu et al. (2014).

A major advantage of performing such fits is that, at least with the BO approximation,

one fit can be used to obtain spectra for all isotopologues. This means, for example,

that a high accuracy fit to the (plentiful) data available for the main isotopologue can

give excellent predicted spectra for isotopically substituted species. Of course one can

also use data on several isotopologues simultaneously to determine corrections to the
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BO approximation; however, as shown by Watson (2004), one needs to be careful here

as energy levels alone do not contain enough information to fully determine all the terms

in this situation.

The usual problem in this approach is the lack of the experimental data. A

standard situation is that the number of parameters required for adequate description of

a PEC is greater than the number of vibrational states present in the experimental set,

which makes the inverse problem under-determined. In such situations the following

approaches are commonly used: (i) approximating PECs with simpler model with

smaller number of parameters; (ii) fixing some of the parameters to their ab initio

values; (iii) constraining either the PEC or the expansion parameters to the ab initio

values; (iv) ‘morphing’ the ab initio PEC using a simpler model (Patrascu et al. 2014).

Another important issue is to decide on the fitting weights. The common practice

is to set them inverse proportional to experimental uncertainty (Le Roy 1998). A very

powerful alternative is the robust weighting procedure suggested by Watson (2003),

where the weights are adjusted dynamically based on the quality of the experimental

data.

For systems involving several electronic states using experimental data to determine

the potential also brings the various coupling terms into play. These too can usually not

be fully determined on the basis of energy levels alone. There is a further problem in

that fitting can only involve a finite, usually small, number of states but the couplings

link these to higher states not included in the fits. This issue can be resolved in a

number of ways such including pseudo-states to couple with or representing some of

the associated splittings using effective Hamiltonian parameters. More work is probably

required to fully understand how best to treat this issue.

6. Conclusion

In this topical review we address the issue of first principles theoretical treatment of

diatomic molecules with special emphasis on the vibronic spectra of open shell species

containing a transition metal atom. We advocate the direct solution of the nuclear

motion Schrödinger equation; this methodology is sufficient to obtain quantitative

answers. However, the current state-of-the-art in electronic structure methodologies

is not. Indeed the predictions of what are considered high-level ab initio electronic

structure calculations are so poor that even the correct ordering of the electronic states

is hard to predict in many cases let alone the precise details required for spectroscopy.

Given this situation, experimental data will be required for the foreseeable future

to help tune spectroscopic models for transition metal containing systems. In this

context, the measurement of a large number of vibronic bands, rather than very high

precision analysis of the rotational structure of a smaller number of bands is particularly

useful. This can be best achieved in experimental conditions that lead to rotationally

cold but vibrational hot transitions. Similarly, there are rather few absolute intensity

measurements for open-shell transition-metal-containing systems, however radiative
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lifetime measurements are equally useful for testing computed Einstein-A coefficients

and appear to easier to perform. New lifetime measurements for a range of systems

would be very helpful.

Finally, if anyone is still under the illusion that ab initio description of transition

metal-containing diatomics is simple, we suggest that they look at the potential energy

curves of FeO as given in Fig. 1 of Sakellaris et al. (2011)). This system, which is of

astrophysical importance, has 48 electronic states below 27000 cm−1, even before taking

the splitting of levels into multiple terms by spin-orbit coupling into account!
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Kállay Z R M 2015 Theor. Chem. Acc. 134, 143.

Kaplan I G & Miranda U 2014 Russian J. Phys. Chem. A 88, 1861–1871.

Kaplan I & Miranda U 2012 in J Leszczynski & M. K Shukla, eds, ‘Practical Aspects of Computational

Chemistry II’ Springer Netherlands pp. 361–389.

Kardahakis S & Mavridis A 2009 J. Phys. Chem. A 113, 6818–6840.

Karkowski J 2009 Int. J. Quant. Chem. 109, 2456–2463.

Karman T, & Groenenboom G C 2014 PRA 90, 052702.

Karman T, Chu X & Groenenboom G C 2014 Phys. Rev. A 90, 052701.

Kato H 1993 Bull. Chem. Soc. Japan 66, 3203–3234.

Knecht D J, Pike C P, Murad E & Rall D L A 1996 J. Spacecrafts Rockets 33, 677–685.

Knowles P J, Hampel C & Werner H J 1993 J. Chem. Phys. 99, 5219.

Knowles P J, Hampel C & Werner H J 2000 J. Chem. Phys. 112, 3106.

Kobayashi T & Sekine T 2006 Chem. Phys. Lett. 424, 54–57.

Kokkin D L, Bacskay G B & Schmidt T W 2007 J. Chem. Phys. 126, 084302.

Kolos W & Wolniewicz L 1963 Rev. Mod. Phys. 35, 473–483.



The ab initio calculation of spectra of open shell diatomic molecules 29

Kosman W M & Hinze J 1975 J. Mol. Spectrosc. 56, 93–103.

Koukounas C & Mavridis A 2008 J. Phys. Chem. A 112, 11235–11250.
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