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Abstract

This paper develops a speci�cation test for instrument validity in the heteroge-

neous treatment e¤ect model with a binary treatment and a discrete instrument. The

strongest testable implication for instrument validity is given by the condition for non-

negativity of point-identi�able complier�s outcome densities. Our speci�cation test

infers this testable implication using a variance-weighted Kolmogorov-Smirnov test

statistic. The test can be applied to both discrete and continuous outcome cases, and

an extension of the test to settings with conditioning covariates is provided.
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1 Introduction

Consider a heterogeneous causal e¤ect model of Angrist and Imbens (1994) with a binary

treatment and a binary instrument. We denote an observed outcome by Y 2 Y � R, an
observed treatment status by D 2 f1; 0g; D = 1 when one receives the treatment while

D = 0 when one does not, and a binary non-degenerate instrument by Z 2 f1; 0g. Let

fYdz 2 Y : d 2 f1; 0g ; z 2 f1; 0gg be the potential outcomes that would have been observed
if the treatment status were set at D = d and the assigned instrument were set at Z = z.

Furthermore, fDz : z 2 f1; 0gg are the potential treatment responses that would have been
observed if Z = 1 and Z = 0, respectively. The seminal works of Imbens and Angrist

(1994) and Angrist, Imbens and Rubin (1996) showed that, given Pr(D = 1jZ = 1) >

Pr(D = 1jZ = 0), the instrument variable Z that satis�es the three conditions involving the
potential variables is able to identify the average treatment e¤ects for those whose selection

to treatment is a¤ected by the instrument (local average treatment e¤ect, LATE hereafter).

The three key conditions, of which the joint validity is hereafter referred to as IV-validity,

are1

Assumption: IV-validity for binary Z

(i) Instrument Exclusion: Yd1 = Yd0 for d = 1; 0, with probability one.

(ii) Random Assignment: Z is jointly independent of (Y11; Y10; Y01; Y00; D1; D0).

(iii) Instrument Monotonicity (No-de�er): The potential treatment response indicators

satisfy D1 � D0 with probability one.

Despite the fact that the credibility of LATE analysis relies on the validity of the employed

instrument, no test procedure has been proposed to empirically diagnose IV-validity. As a

result, causal inference studies have assumed IV-validity based solely on some background

knowledge or out-of-sample evidence, and, accordingly, its credibility often remains contro-

versial in many empirical contexts.

The main contribution of this paper is to develop a speci�cation test for IV-validity in the

LATE model. Our speci�cation test builds on the testable implication obtained by Balke
1Note that the null hypothesis of IV-validity tested in this paper does not include the instrument relevance

assumption, Pr(D = 1jZ = 1) > Pr(D = 1jZ = 0). The instrument relevance assumption can be assessed
by inferring the coe¢ cient in the �rst-stage regression of D onto Z.
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and Pearl (1997) and Heckman and Vytlacil (2005, Proposition A.5). Let P and Q be the

conditional probability distributions of (Y;D) 2 Y � f1; 0g given Z = 1 and Z = 0, i.e.,

P (B; d) = Pr(Y 2 B;D = djZ = 1);

Q(B; d) = Pr(Y 2 B;D = djZ = 0);

for Borel set B in Y and d = 1; 0. Since P and Q are conditional distribution of observable
variables, they are identi�ed by the sampling process. Imbens and Rubin (1997) showed

that, under IV-validity,

P (B; 1)�Q(B; 1) = Pr(Y1 2 B;D1 > D0) and

Q(B; 0)� P (B; 0) = Pr(Y0 2 B;D1 > D0)

hold for every B in Y. Since the quantities in the right-hand sides are nonnegative by the
de�nition of probabilities, we obtain the testable implication of Balke and Pearl (1997) and

Heckman and Vytlacil (2005);

P (B; 1)�Q(B; 1) � 0; (1.1)

Q(B; 0)� P (B; 0) � 0;

for every Borel set B in Y.2 Figures 1 and 2 provide visual illustration of these testable

implications for a continuous Y case. The solid lines, p(y; d) and q(y; d), plot the probability

density of P (�; d) and Q(�; d) over Y -axis at �xed d 2 f1; 0g : It is important to keep in mind
that, in the presence of noncompliance, integrations of p(y; d) and q(y; d) over y 2 Y are

smaller than one, as they are equal to Pr(D = djz = 1) < 1 and Pr(D = djz = 0) < 1,

respectively. If the instrument is valid, p(y; 1) must nest q(y; 1) for treatment outcome, and

q(y; 0) must nest p(y; 0) for control outcome, as plotted in Figure 1.

In contrast, if we observe the densities as plotted in Figure 2, we can refute at least one of

the IV-validity assumptions since some of the inequalities (1.1) are violated at some subsets

in the support of Y , e.g., those labeled as V1 and V2 in Figure 2.

To see how densities of P (�; d) and Q(�; d) look like in real data, Figure 3 plots kernel
density estimates of p(y; d) and q(y; d) for the Vietnam era draft lottery data used in An-

grist and Krueger (1992, 1995) and Abadie (2002), where Y = log((one�s post-war annual

2As is clear from the derivation, the testable implication can be equivalently interpreted as the nonneg-

ativity conditions for the complier�s potential outcome distributions, Pr(Yd 2 BjD1 > D0) � 0, which are

identi�able under IV-validity. Imbens and Rubin (1997) noted that, depending on data, the estimates of

the complier�s outcome densities can be negative over some region in the outcome support.
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Figure 1: If the identi�able densities p(y;D = d) and q(y;D = d) are nested as in this �gure,

IV-validity cannot be refuted. The dotted lines show the marginal probability densities of the

potential outcomes, i.e., fYd(y) is the marginal probability density of Yd � Yd1 = Yd0; which
is not identi�able. Under the instrument exclusion and random assignment, both p(y; d)

and q(y; d) must lie below the potential outcome densities fYd(�).

Figure 2: If p(y; d) intersects with q(y; d) for at least one of d = 1; 0, we can refute IV-

validity.
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earnings)+1), the veteran status is D; and the draft eligibility determined by a low lottery

number is Z. See Section 4.1 for the detail description of the data. The estimated densities

overall exhibit the nesting relationships similar to those illustrated in Figure 1;3 therefore,

no strong evidence against IV-validity appears to be available. Contrasting density plots are

shown in Figure 4, where the data are from Card (1993), Y is the logarithm of one�s weekly

earning, D indicates whether one graduated from a four-year college, Z indicates whether

a four-year college is located in the area of one�s residence. No conditioning covariates

are controlled for when drawing the densities. Here, we observe that the density estimates

intersect, especially for the control outcome. This is an in-sample visual evidence against

IV-validity. These eyeball-based assessments are indeed intuitive and useful, but they fail

(i) to take into account sampling uncertainty and (ii) to quantify the strength of evidence

for or against IV-validity without relying on a speci�c choice of smoothing parameters. A

hypothesis test procedure proposed in this paper solves these important practical issues.

The above derivation of (1.1) shows only that inequalities (1.1) are necessary implications

of IV-validity, so it is natural to ask (i) whether the testable implications of (1.1) can be

further strengthened and (ii) whether there exist some P and Q for which (1.1) becomes

a necessary and su¢ cient condition for IV-validity. The next proposition shows that the

answers to these questions are negative (see Kitagawa (2015, Appendix A) for a proof).

Proposition 1.1 Assume that P (�; d) and Q(�; d) have a common dominating measure �
on Y for each d = 1; 0. (i) If distributions of observables, P and Q, satisfy inequalities

(1.1), then there exists a joint probability law of (Y11; Y10; Y01; Y00; D1; D0; Z) that satis�es

IV-validity and induces the P and Q.

(ii) For any P and Q satisfying inequalities (1.1), we can construct a joint probability

law of (Y11; Y10; Y01; Y00; D1; D0; Z) that violates IV-validity.

To my knowledge, Proposition 1.1 is new in the literature, and it shows the following

important results. First, Proposition 1.1 (i) shows an optimality of the testable implication

(1.1), in the sense that any other feature of the data distribution cannot contribute to

3The probability subdensities have probability masses at Y = 0, as the data include individuals with zero

earnings. The sample estimates of these probability masses satisfy (1.1). Qualitatively similar estimates of

the subdensities are obtained if we de�ne the outcome as Y = log((weekly wages)+1). Our test can be

applied without any change even when the distribution of outcome has probability masses.
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Figure 3: Kernel Density Estimates, Draft Lottery Data. The Gaussian kernel with

bandwidth 0.07 is used.
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Figure 4: Kernel Density Estimates, Proximity to College Data. The Gaussian

kernel with bandwidth 0.08 is used.
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screening out invalid instruments further than the testable implication of (1.1). Second,

Proposition 1.1 (ii) highlights limitation on learnability of instrument validity in the sense

that accepting the null hypothesis of (1.1) never allows us to con�rm IV-validity no matter

how large the sample size is. In this precise sense, the IV-validity is a refutable but non-

veri�able hypothesis. Such limitation on con�rmability of instrument validity is known

in other contexts, such as the classical over-identi�cation test in the linear instrumental

variable method with homogeneous e¤ect4 and the test of instrument monotonicity in the

multi-valued treatment case proposed in Angrist and Imbens (1995).5 See Breusch (1986)

for a general discussion on hypothesis testing of refutable but non-veri�able assumptions.

Our test uses a variance-weighted Kolmogorov-Smirnov test statistic (KS-statistic, here-

after) to measure the magnitude of violations of inequalities (1.1) in the data. We provide

a resampling algorithm to obtain critical values and demonstrate that the test procedure

attains asymptotically correct size uniformly over a large class of data generating processes,

and consistently rejects all the data generating processes violating (1.1). A similar variance

weighted KS-statistic has been considered in the literature of conditional moment inequal-

ities, as in Andrews and Shi (2013), Armstrong (2014), Armstrong and Chan (2013), and

Chetverikov (2012). As shown in Romano (1988), bootstrap is widely applicable and easy to

implement to obtain the critical values for general KS-statistic, and it has been instrumental

in the context of stochastic dominance testing; see, e.g., Abadie (2002), Barrett and Donald

(2003), Donald and Hsu (forthcoming), Horváth, Kokoszka, and Zitikis (2006), and Linton,

Maasoumi, and Whang (2005).

Our test concerns the exogeneity of instrument de�ned in terms of statistical indepen-

dence, and it can be applied to the context in which objects of interest are distributional

features of complier�s potential outcome distribution, e.g., the quantile treatment e¤ects for

4If the instrument is multi-valued, we can naively perform the classical over-identi�cation test by treating

the multi-valued instrument as a collection of binary instruments. However, as discussed in Imbens (2014)

and Lee (2014), the over-identi�cation test should not be used if causal e¤ects are considered to be heteroge-

neous, since heterogeneity of causal e¤ects can lead to misspeci�ed over-identifying restrictions, even when

LATE IV-validity is true.
5In case of multi-valued treatment status, Angrist and Imbens (1995) propose a speci�cation test to assess

instrument monotonicity by inferring the stochastic dominance of the distribution functions of the treatment

status conditional on the instrument; see Barua and Lang (2009) and Fiorini, Stevens, Taylor, and Edwards

(2013) for applications of the Angrist and Imbens test. In the binary treatment case, however, Angrist and

Imbens test cannot be applied.
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compliers (Abadie, Angrist, and Imbens (2002)). On the other hand, if solely the mean

e¤ect is concerned, identi�cation of LATE can in fact be attained under a slightly weaker set

of assumptions, such that the instrument is statistically independent of the selection types

while the potential outcomes are only mean independent of Z conditional on each selection

type. Huber and Mellace (2013) show that this weaker LATE identifying condition has a

testable implication given by a �nite number of moment inequalities. Since our test builds

on the distributional restrictions implied from statistical independence, it screens out a larger

class of data generating processes compared to the test of Huber and Mellace. In addition,

the set of detectable alternatives and the p-value of our test are invariant to any monotonic

transformation of the outcome variables, whereas this invariance property does not hold for

the Huber and Mellace�s test. Mouri�é and Wan (2014) recently proposes an alternative

way to test the same instrument validity condition by transforming the testable implication

(1.1) into conditional moment inequality restrictions. For the binary Y case, Machado,

Shaikh, and Vytlacil (2013) develops a multiple hypothesis testing procedure that jointly

infers IV-validity and the sign of average treatment e¤ect.

The rest of the paper is organized as follows. Section 2 presents implementation of

our test when D and Z are binary and shows its asymptotic validity. Section 3 extends

the analysis to settings with a multi-valued instrument and with conditioning covariates.

Two empirical applications are provided in Section 4. The online supplementary material

Kitagawa (2015) provides proofs and the results of Monte Carlo experiments.

2 Test

2.1 Test Statistics and Implementation

Let a sample be given by N observations of (Y;D;Z) 2 Y � f1; 0g2 : We divide the sample
into two subsamples based on the value of Z, and we consider the sampling process as being

conditional on a sequence of instrument values. Let (Y 1i ; D
1
i ); i = 1; : : : ;m be observations

with Z = 1 and (Y 0j ; D
0
j ); j = 1; : : : ; n be those with Z = 0, and assume that the observations

of (Y 1i ; D
1
i ) and (Y

0
j ; D

0
j ) are drawn independently and identically from P andQ, respectively.

We assume a deterministic sequence �̂ = m=N ! � as N ! 1, where 0 < � < 1.6 We

6If one wants to perform the test without conditioning on observations of Z, instruments need be resam-

pled as well in the bootstrap algorithm given below.
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denote the empirical distributions of P and Q by

Pm(B; d) � 1

m

mX
i=1

IfY 1i 2 B;D1
i = dg;

Qn(B; d) � 1

n

nX
j=1

IfY 0j 2 B;D0
j = dg:

To test the null hypothesis given by inequalities (1.1), we consider a variance-weighted KS-

statistic,

TN =
�mn
N

�1=2
max

8<: sup�1�y�y0�1

n
Qn([y;y0];1)�Pm([y;y0];1)
�_�Pm;Qn ([y;y

0];1)

o
;

sup�1�y�y0�1

n
Pm([y;y0];0)�Qn([y;y0];0)
�_�Pm;Qn ([y;y

0];0)

o 9=; ; (2.1)

where � is a positive constant speci�ed by the user and

�2Pm;Qn ([y; y
0]; d) = (1��̂)Pm ([y; y0]; d) (1� Pm ([y; y0]; d))+�̂Qn ([y; y0]; d) (1�Qn([y; y0]; d)):

If the sample counterpart of the �rst (second) inequality of (1.1) is violated at some in-

terval, then, the �rst (second) supremum in the max operator becomes positive. For

each interval [y; y0], �2Pm;Qn ([y; y
0]; d) is a consistent estimator of the asymptotic variance

of
�
mn
N

�1=2
(Pm([y; y

0]; d)�Qn([y; y0]; d)) : Thus, the proposed test statistics quanti�es a

variance-adjusted maximal violation of the inequalities (1.1) over a class of connected in-

tervals including unbounded ones. The exact suprema can be computed by evaluating the

maximand at the �nite number of intervals, because, to compute the �rst (second) supremum

in the statistic, it su¢ ces to evaluate the di¤erences of the empirical distribution functions

at every interval, the boundaries of which are given by a pair of Y values observed in the

subsample of fD = 1; Z = 0g (fD = 0; Z = 1g). The suprema are searched over a smaller

class of subsets than the class of Borel sets for which the population inequalities (1.1) are

examined. Nevertheless, this reduction of the class of sets does not cause any loss of in-

formation, in the sense that any data generating processes that violate (1.1) for at least

one Borel set can be screened out asymptotically (Theorem 2.1 (ii) below). Note that the

proposed test statistic and asymptotic validity of the test are not restricted to a continuous

Y case. The same statistic can be used for any ordered discrete Y or a mixture of discrete

and continuous Y .7

7A similar test statistic can be de�ned also for unordered discrete Y and multi-dimensional Y . In

case of unordered discrete Y , the supremum can be de�ned over every support point of Y , and in case of

multi-dimensional Y , the supremum can be de�ned over a class of rectangles in the support of Y .
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The user-speci�ed trimming constant � plays a role in ensuring that the inverse weighting

terms are su¢ ciently away from zero. Note that when � � 1=2, the proposed test statistic
is identical up to a constant to the non-weighted KS-statistic,

TN;nw =
�mn
N

�1=2
max

(
sup�1�y�y0�1 fQn([y; y0]; 1)� Pm([y; y0]; 1)g ;
sup�1�y�y0�1 fPm([y; y0]; 0)�Qn([y; y0]; 0)g

)
: (2.2)

Hence, variance-weighting is e¤ective only when � is smaller than 1=2. The Monte Carlo

studies presented in Kitagawa (2015, Appendix D) show that the test size is insensitive to

a choice of � even in small sample situations. The �nite sample power of the test, on the

other hand, can be sensitive to a choice of � depending on a speci�cation of alternative.

Speci�cally, when violations of the testable implications occur at the tail parts of P and Q,

our Monte Carlo experiments suggest that smaller � yields a higher power. In contrast, if

violations occur at an interval where P and Q have high probabilities, a larger � tends to

show a slightly higher power. Although a formal discussion regarding an optimal choice of

� is out of scope of this paper, our informal recommendation is to specify � to a value in the

range of 0:05 and 0:1 in order to avoid a big power loss when violations are occurring at the

tail parts of P and Q. Alternatively, reporting the test results with several choices of � is

also recommended in order to showcase the range of p-values over di¤erent choices of �.

To obtain asymptotically valid critical values for the test, we focus on a data generating

processes on the boundary of the one-sided null hypothesis, such that P and Q are identical

to some probability measure H. Speci�cally, we set H at the pooled probability measure

(the unconditional distribution of (Y;D)),8

H = �P + (1� �)Q, (2.3)

and aim to estimate the quantiles of the null distribution of the statistic as if the data were

generated from P = Q = H.9

8Instead of the pooled probability measure, a di¤erent convex combination of P and Q,

H = cP + (1� c)Q, c 2 [0; 1] ,

can be used to generate the bootstrap samples without distorting the size property of the test. The power of

the test, on the other hand, can vary depending on the choice of c. We leave investigation about a desirable

choice of c for future research.
9The �nite sample power may be improved if critical values are obtained from the null distribution of

the supremum statistic over a pre-estimated set of y where p(y; d) = q(y; d) (contact set). See Lee, Song,
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We now summarize a bootstrap algorithm for obtaining critical values for TN .

Algorithm 2.1:

(i) Sample (Y �i ; D
�
i ); i = 1; : : : ;m randomly with replacement from HN = �̂Pm+

�
1� �̂

�
Qn

and construct empirical distribution P �m: Similarly, sample (Y
�
j ; D

�
j ); j = 1; : : : ; n ran-

domly with replacement from HN and construct empirical distribution Q�n.

(ii) Calculate a bootstrap realization of test statistic10

T �N =
�mn
N

�1=2
max

8<: sup�1�y�y0�1

n
Q�n([y;y

0];1)�P �m([y;y0];1)
�_�P�m;Q�n ([y;y

0];1)

o
;

sup�1�y�y0�1

n
P �m([y;y

0];0)�Q�n([y;y0];0)
�_�P�m;Q�n ([y;y

0];0)

o 9=; ;
where �2P �m;Q�n ([y; y

0]; d) = (1� �̂)P �m ([y; y0]; d) (1� P �m ([y; y0]; d)) + �̂Q�n ([y; y0]; d) (1�
Q�n([y; y

0]; d)):

(iii) Iterate Step 1 - 3 many times and get the empirical distribution of T �N : For a chosen

nominal level � 2 (0; 1=2); we obtain a bootstrap critical value cN;1�� from its empirical
(1� �)-th quantile .

(iv) Reject the null hypothesis (1.1) if TN > cN;1��. The bootstrap p-value is obtained

according to the proportion of bootstrap repetitions such that T �N exceeds TN .

2.2 Asymptotic Uniform Size Control and Consistency

This section formally claims that the test procedure of Algorithm 2.1 is asymptotically valid

uniformly over a certain class of data generating processes. Let P be a set of probability

measures de�ned on the Borel �-algebra of Y�f0; 1g, and the set of data generating processes
satisfying (1.1) is denoted by

H0 =
�
(P;Q) 2 P2 : inequalities (1.1) hold.

	
:

and Whang (2011), Linton, Song, and Whang (2010)), Donald and Hsu (forthcoming), and the literatures

on generalized moment selection including Andrews and Barwick (2012), Andrews and Shi (2013), Andrews

and Soares (2010), among others. Estimation of the contact set relies on a user-speci�ed tuning parameter,

and the test size can be a¤ected by its choice.
10Since P �m and Q

�
n are drawn from the common pooled empirical distribution, recentering of the bootstrap

empirical measures with respect to the original Pm and Qn are not needed.

11



The uniform validity of our test procedure is based on the following two weak regularity

conditions.

Condition-RG:

(a) Probability measures in P are nondegenerate and have a common dominating measure

� for the Y-coordinate, where � is the Lebesgue measure, a point mass measure with �nite
support points, or their mixture. The density functions p(y; d) � dP (�;d)

d�
are bounded

uniformly over P, i.e., there exists M < 1 such that p(y; d) � M holds at �-almost every

y 2 Y and d = 0; 1 for all P 2 P.
(b) P is uniformly tight, i.e., for arbitrary � > 0, there exists a compact set K � Y�f0; 1g
such that

sup
P2P

fP (Kc)g < �.

The asymptotic validity of the proposed test is stated in the next proposition (see Kita-

gawa (2015, Appendix B) for a proof).

Theorem 2.1 Let � 2 (0; 1=2). (i) Suppose Condition-RG. The test procedure of Algo-

rithm 2.1 has asymptotically uniformly correct size for null hypothesis H0,

lim sup
N!1

sup
(P;Q)2H0

Pr (TN > cN;1��) � �:

(ii) For a �xed data generating process that violates inequalities (1.1) for some Borel set B,

the test based on TN is consistent, i.e., the rejection probability converges to one as N !1.

This theorem establishes asymptotic uniform validity of the proposed test procedure over

P. The second claim of the proposition concerns the power of the test at a �xed alternative,
and it shows that any alternatives violating the testable implication (1.1) can be consistently

rejected.

2.3 Power against N�1=2-local Alternatives

In this section, we show that the proposed test has nontrivial power against a class of

non-parametric N�1=2-local alternatives. Let
��
P [N ]; Q[N ]

�
2 P2 : N = 1; 2; : : :

	
denote a
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sequence of probability measures on Y � f1; 0g shrinking to (P0; Q0) 2 H0. The next

assumption de�nes a class of local alternatives, against which we derive power of our test.

Assumption-LA:

A sequence of true alternatives
��
P [N ]; Q[N ]

�
2 P2 : N = 1; 2; : : :

	
is represented by

P [N ] = P0 +N
�1=2�

[N ]
1 and (2.4)

Q[N ] = Q0 +N
�1=2�

[N ]
0 ;

where (P0; Q0) 2 P2 is a pair of probability measures on Y�f1; 0g and
n�
�
[N ]
1 ; �

[N ]
0

�
: N = 1; 2; : : :

o
is a sequence of bounded signed measures on Y � f1; 0g.
(a) (P0; Q0) 2 H0 and P0 ([y; y0] ; d) = Q0 ([y; y

0] ; d) > 0 for some �1 � y � y0 � 1,
and d 2 f1; 0g.
(b) For all N , �N1=2P0 � �

[N ]
1 < 1 and �N1=2Q0 � �

[N ]
0 < 1 hold and �[N ]1 (Y ; d) =

�
[N ]
0 (Y ; d) = 0 for d = 1; 0.
(c) �[N ]1 � �[N ]0 converges in terms of the sup metric over Borel sets to a bounded signed

measure �� as N !1.
(d) For some ([y; y0] ; d) satisfying (a), �� ([y; y0] ; 1) < 0 and/or �� ([y; y0] ; 0) > 0 hold.

Assumption-LA (a) says that (P0; Q0) 2 H0; to which
�
P [N ]; Q[N ]

�
converges, has a

nonempty contact set with a positive measure in terms of P0 = Q0. Assumption-LA (b)

ensures
�
P [N ]; Q[N ]

�
2 P2 and Pr(D = 1jZ = 1) � Pr(D = 1jZ = 0) for all N , and P [N ] and

Q[N ] are in an N�1=2-neighborhood of P0 and Q0 in terms of the total variation distance.

Assumption-LA (c) implies that
p
N
�
P [N ] �Q[N ]

�
([y; y0] ; d)! �� ([y; y0] ; d) at every [y; y0]

contained in the contact set of P0 and Q0. Accordingly, combined with Assumption-LA (d),�
P [N ]; Q[N ]

�
violates the IV-validity testable implication at some [y; y0] contained in the

contact set for all large N .

The next theorem provides a lower bound of the power of our test along N�1=2-local

alternatives satisfying Assumption-LA.

Theorem 2.2 Assume Condition-RG and
��
P [N ]; Q[N ]

�
2 P2 : N = 1; 2; : : :

	
satis�es Assumption-

LA. Then,

lim
N!1

Pr
P [N ];Q[N ]

(TN > cN;1��) � 1� �(t);

13



where �(�) is the cumulative distribution function of the standard normal distribution,

t =

�
�2P0;Q0 ([y; y

0] ; 1)

�2
^ 1
��1 �

c1�� � [�(1� �)]1=2
j�� ([y; y0] ; d)j

� _ �P0;Q0 ([y; y0] ; 1)

�
;

c1�� is the limit of the bootstrap critical value of Algorithm 2.1 that is bounded and depends

only on (�; �; �; P0; Q0), and ([y; y0] ; d) is as de�ned in Assumption-LA (a) and (d).

Note that the provided lower bound of the power is increasing in j�� ([y; y0] ; d)j and it
approaches one as a deviation from the null j�� ([y; y0] ; d)j gets larger. Hence, we conclude
that, for some N�1=2-local alternatives satisfying Assumption-LA, the power is greater than

the size of the test for every � 2 (0; 1=2).

3 Extensions

3.1 A Multi-valued Discrete Instrument

The test procedure proposed above can be extended straightforwardly to a case with a

multi-valued discrete instrument, Z 2 fz1; z2; : : : ; zKg. Let p(zk) = Pr(D = 1jZ = zk),

and assume knowledge of the ordering of p(zk), so that without loss of generality we assume

p(z1) � � � � � p(zK). With the multi-valued instrument, we denote the potential outcomes
indexed by treatment and instrument status by fYdz : d = 0; 1; z = z1; : : : ; zKg, and potential
selection responses by fDz : z = z1; : : : ; zKg : The following assumptions guarantee that the
linear two-stage least squares estimator can be interpreted as a weighted averages of the

compliers average treatment e¤ects (Imbens and Angrist (1994)).

Assumption: IV-validity for Multi-valued Discrete Z

(i) Instrument Exclusion: Ydz1 = Ydz2 = � � � = YdzK for d = 1; 0, with probability one.

(ii) Random Assignment: Z is jointly independent of (Y1z1 ; : : : ; Y1zK ; Y0z1 ; : : : ; Y0zK ) and

(Dz1 ; : : : ; DzK ).

(iii) Instrument Monotonicity: Given p(z1) � � � � � p(zK), the potential selection indica-
tors satisfy Dzk+1 � Dzk with probability one for every k = 1; : : : ; (K � 1).

14



Let P (B; djzk) = Pr(Y 2 B;D = djZ = zk), k = 1; : : : ; K, and Pmk
(B; djzk) be its empir-

ical distribution based on the subsample of Zi = zk with size mk. The testable implication

of the binary instrument case is now generalized to the following set of inequalities,

P (B; 1jz1) � P (B; 1jz2) � � � � � P (B; 1jzK) and

P (B; 0jz1) � P (B; 0jz2) � � � � � P (B; 0jzK)
(3.1)

for all Borel set B in Y. Using the test statistic for the binary Z case to measure the

violation of the inequalities across the neighboring values of Z, we can develop a statistic

that jointly tests the inequalities of (3.1),

TN = max fTN;1; : : : ; TN;K�1g ; (3.2)

where, for k = 1; : : : ; (K � 1);

TN;k =

�
mkmk+1

mk +mk+1

�1=2
max

8<: sup�1�y�y0�1

n
Pmk ([y;y

0];1jzk)�Pmk+1 ([y;y
0];1jzk+1)

�k_�k([y;y0];1)

o
;

sup�1�y�y0�1

n
Pmk+1 ([y;y

0];0jzk+1)�Pmk ([y;y
0];0jzk)

�k_�k([y;y0];0)

o 9=; ;
�2k ([y; y

0]; d) =

�
mk+1

mk +mk+1

�
Pmk

([y; y0]; djzk) (1� Pmk
([y; y0]; djzk))

+

�
mk

mk +mk+1

�
Pmk+1

([y; y0]; djzk)(1� Pmk+1
([y; y0]; djzk));

and �1; : : : ; �K�1 are positive constants. Critical values can be obtained by applying a

resampling algorithm of the previous section to each TN;k simultaneously.

Algorithm 3.1:

(i) LetHN;k (�) =
�

mk+1

mk+mk+1

�
Pmk+1

(�jzk+1)+
�

mk

mk+mk+1

�
Pmk

(�jzk) be the pooled empirical
measures that pool the sample of Zi = zk+1 and that of Zi = zk. Sample (Y �i ; D

�
i ); i =

1; : : : ;mk+1 randomly with replacement from HN;k and construct the bootstrap empirical

distribution P �mk+1
(�jzk+1): Similarly, sample (Y �j ; D�

j ); j = 1; : : : ;mk randomly with

replacement from HN;k and construct the bootstrap empirical distribution P �mk
(�jzk):

(ii) Apply step 1 for every k = 1; : : : ; (K � 1), and obtain (K � 1) pairs of the re-
sampled empirical measures, (P �m1

; P �m2
), (P �m2

; P �m3
); : : : ; (P �mK�1

; P �mK
). De�ne, for
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k = 1; : : : ; (K � 1);

��2k ([y; y
0]; d) =

�
mk+1

mk +mk+1

�
P �mk

([y; y0]; djzk)
�
1� P �mk

([y; y0]; djzk)
�

+

�
mk

mk +mk+1

�
P �mk+1

([y; y0]; djzk+1)(1� P �mk+1
([y; y0]; djzk+1));

T �N;k =

�
mkmk+1

mk +mk+1

�1=2
�max

8<: sup�1�y�y0�1

n
P �mk ([y;y

0];1jzk)�P �mk+1 ([y;y
0];1jzk+1)

�k_��k([y;y0];1)

o
;

sup�1�y�y0�1

n
P �mk+1 ([y;y

0];0jzk+1)�P �mk ([y;y
0];0jzk)

�k_��k([y;y0];0)

o
9=; ;

where �k, k = 1; : : : ; (K � 1), are positive constants. The bootstrap statistic T �N is

computed accordingly by T �N = max
�
T �N;1; : : : ; T

�
N;K�1

	
.

(iii) Iterate Step 1 -3 many times, get the empirical distribution of T �N , and obtain a boot-

strap critical value cN;1�� from its empirical (1� �)-th quantile .

(iv) Reject the null hypothesis (3.1) if TN > cN;1��. The bootstrap p-value is obtained by

the proportion of T �N�s greater than TN .

3.2 Conditioning Covariates

Empirical studies commonly use observable conditioning covariates in the context of instru-

mental variable methods. One of the major motivations for introducing them is to control

for potential confounders that invalidate the random assignment assumption. This section

brie�y discusses how to extend IV-validity test proposed above to the settings with condi-

tioning covariates, X 2 X�Rdx, used for this purpose.
IV-validity to be tested in this case consists of the joint restriction of instrument exclusion,

instrument monotonicity, and the conditional version of the instrument random assignment

assumption, (Y11; Y10; Y01; Y00; D1; D0) ? ZjX. These three assumptions combined with the
�rst stage rank condition, Pr(D = 1jZ = 1; X) 6= Pr(D = 1jZ = 0; X) for someX, guarantee
that the linear two stage least squares with a function of (Z;X) used as an instrument (e.g.

Pr(D = 1jZ;X)) estimates a certain weighted average of the complier�s conditional causal
e¤ects E(Y1 � Y0jD1 > D0; X) (Heckman and Vytlacil (2005)). Moreover, under the same

set of assumptions, the semiparametric IV estimator developed by Abadie (2003) consistently

estimates the unconditional complier�s causal e¤ect E(Y1 � Y0jD1 > D0).
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A testable implication with the largest screening power in the sense similar to Proposition

1.1 (i) is given by the conditional version of the inequalities (1.1), i.e., for every Borel set

B � Y and X 2 X,

Pr(Y 2 B;D = 1jZ = 1; X)� Pr(Y 2 B;D = 1jZ = 0; X) � 0; (3.3)

Pr(Y 2 B;D = 0jZ = 0; X)� Pr(Y 2 B;D = 0jZ = 1; X) � 0:

As shown in Kitagawa (2015, Lemma B.8), the use of Theorem 3.1 of Abadie (2003) and

the instrument function argument for conditional moment inequalities as given in Andrews

and Shi (2013) and Khan and Tamer (2009) enable us to reduce (3.3) to the following

unconditional moment inequalities without loss of any information,11

E [�1 (D;Z;X) g(Y;X)] � 0; (3.4)

E [�0 (D;Z;X) g(Y;X)] � 0; for all g(�; �) 2 G

where

�1 (D;Z;X) = D
Z � Pr(Z = 1jX)

Pr(Z = 0jX) Pr(Z = 1jX) ;

�0 (D;Z;X) = (1�D) (1� Z)� Pr(Z = 0jX)
Pr(Z = 0jX) Pr(Z = 1jX) ;

and G is the class of indicator functions for boxes in Y � X ,

G =
(
1 f(Y;X) 2 Cg : C = [y; y0]� [x1; x01]� � � � �

�
xdx ; x

0
dx

�
, �1 � y � y0 � 1 ,

�1 � xl � x0l � 1; l = 1; : : : ; dx.

)
:

(3.5)

Accordingly, a variance-weighted KS statistic to infer (3.4) can be proposed as

TN =
p
N max

(
supg2G

�EN [�̂1(D;Z;X)g(Y;X)]
�_�̂1(g) ;

supg2G
�EN [�̂0(D;Z;X)g(Y;X)]

�_�̂0(g)

)
;

11If the random assignment assumption is strengthened to (Y11; Y10; Y01; Y00; D1; D0; X) ? Z, then it can
be shown that the moment conditions of (3.4) are reduced to

Pr((Y;X) 2 C;D = 1jZ = 1)� Pr((Y;X) 2 C;D = 1jZ = 0) � 0;

Pr((Y;X) 2 C;D = 0jZ = 0)� Pr((Y;X) 2 C;D = 0jZ = 1) � 0;

for any box C in Y�X . As a result, the test procedure for no-covariate case can be extended straightforwardly
to this case.
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where �̂d is an estimate of �d with estimated Pr(Z = 1jX) plugged in, EN (�) is the sample
average, and �̂2d (g) is the sample variance of �̂d (Di; Zi; Xi) g(Yi; Xi). Treating �̂d as given

(estimated from the original sample), we obtain the critical values by bootstrapping the

supremum statistic of the recentered moments,

T �N =
p
N max

8<: supg2G
�[E�N [�̂1(D;Z;X)g(Y;X)]�EN [�̂1(D;Z;X)g(Y;X)]]

�_�̂�1(g)
;

supg2G
�[E�N [�̂0(D;Z;X)g(Y;X)]�EN [�̂0(D;Z;X)g(Y;X)]]

�_�̂�0(g)

9=; ;
where E�N (�) is the sample average based on a bootstrap sample that is obtained by resam-
pling (Y;D;Z;X) from the original sample, and �̂�2d (g) is the variance estimate based on the

bootstrap sample.12

In terms of practical implementation, a couple of issues deserve attention. First, in the

presence of many covariates, computation of the statistic involves an optimization over a

large class of indicator functions. This raises a computational challenge in implementing

the test. Second, validity of the test relies on consistent estimation of Pr(Z = 1jX). Hence,
if a parametric estimation for Pr(Z = 1jX) is used to implement the test, a misspeci�ed
functional form in the estimation of Pr(Z = 1jX) can lead to an erroneous conclusion.

4 Empirical Applications

We illustrate a use of our test using the two data sets mentioned in Introduction.

4.1 Draft Lottery Data

The draft lottery data consist of a sample of 11,637 white men, born between 1950 and 1953

extracted from March Current Population Surveys of 1979 and 1981-1985. This data set is a

subsample of the sample used in Angrist and Krueger (1992, 1995). Following Abadie (2002),

we de�ne a binary draft eligibility instrument by a dummy variable indicating whether or

not one�s lottery number is smaller than or equal to 100. See Angrist (1990) for detailed

description of the Vietnam era draft lottery. We apply our test to two outcome measures,

annual labor earnings and weekly wages, which are measured in terms of 1978 dollars using

12We leave for future research a formal investigation on in�uences of estimation errors in �̂d to the perfor-

mance of our test.
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the CPI. The measure of weekly earnings is imputed by the annual labor earnings divided

by the weeks worked. The treatment is whether one has a Vietnam veteran status. Since

the draft lottery numbers are randomly assigned based on one�s birthdate, it is reasonable

to believe that the constructed instrument is independent of any individual characteristics.

It is hard to believe existence of de�ers in the current context even though the sampling

design does not exclude the possibility of having them. A less credible assumption would

be instrument exclusion. For instance, the draft lottery can directly a¤ect control outcomes

for some never-takers if those who were drafted change their career choice, school years, or

migration choice for the purpose of escaping from the military service.

Table I shows the result of our test. We present the bootstrap p-values of our test for

several di¤erent speci�cations of the trimming constant. All of them are close to or exactly

equal to one. Hence, we do not reject validity of the draft lottery instrument from the data.

4.2 Returns to Education: Proximity to College Data

The Card data is based on National Longitudinal Survey of Young Men (NLSYM) that began

in 1966 with 14-24 years old men and continued with follow-up surveys through 1981. Based

on the respondents�county of residence at 1966, the Card data provides the presence of a

4-year college in the local labor market. The observations of years of education and wages

were based on the follow-ups�educational attainment and wages reported in the interview

in 1976.

Proximity to college was used as an instrument, because the presence of a nearby college

reduces the cost of college education by allowing students to live at their home, while one�s

unobservable ability is presumably independent of student�s residence during their teenage

years. Compliers in this context can be considered as those who grew up in relatively low-

income families and who were not able to go to college without living with their parents.

Being di¤erent from the original Card�s study, we treat the educational level as a binary

treatment, with years of education greater than or equal to 16 years, that is, the treatment

can be considered as a four year college degree.

We specify the measure of outcome to be the logarithm of weekly earnings. In the

�rst speci�cation, we do not control for any demographic covariates. This raises a concern

regarding the violation of random assignment assumption. For instance, one�s region of

residence, or whether they were born in the standard metropolitan area or rural area. may
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well be dependent on one�s wage levels and the proximity to colleges if the urban areas are

more likely to have colleges and higher wage levels compared to the rural areas.

Our test procedure yields zero p-values for each choice of trimming constant. This pro-

vides an empirical evidence that without controlling for any covariates, college proximity is

not a valid instrument.

Table I: Test Results of the Empirical Applications

Bootstrap iterations 500

data Draft lottery data Proximity to college data

sample size (m,n) (3234,8403) (2053,957)

Pr(D = 1jZ = 1);
Pr(D = 1jZ = 0) 0.29, 0.18 0.29, 0.22

Y annual earnings weekly wages weekly wages weekly wages

No Covariate No Covariate No Covariate With Covariates�

trimming constant � 0.07 0.3 1 0.07 0.3 1 0.07 0.3 1 0.07 0.3 1

Bootstrap test, p-value 0.93 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.89 0.71 0.91

� �ve dummy variables indicating (i) residence in a standard metropolitan area (SMSA) in 1976,

(ii) residence in SMSA in 1966, (iii) race is black or not, (iv) residence in southern states in 1976, and

(v) residence in southern states in 1966.

The original study of Card (1993) indeed emphasized the importance of controlling for

regions, residence in the urban area, race, job experience, and parent�s education, and he

included them in his speci�cation of the two stage least square estimation. In our second

speci�cation, we control for the covariates listed at the bottom of Table I, which are all

binary variables. We estimate Pr(Z = 1jX) using a linear probability regression with these
�ve dummy variables. The class of indicator functions G we use is

G =

8>>>><>>>>:
1 f(Y;X) 2 Cg : C = [yq; yq0 ]� fx1g � � � � � fxdxg ,

yq is the empirical q-th quantile of Y ,

q, q0 2 f0; 0:05; : : : ; 0:95; 1g , q < q0

xl 2 f0; 1g ; l = 1; : : : ; dx.

9>>>>=>>>>;
With these covariates, the p-values turn out to be large. We therefore conclude that we do

not reject validity of the college proximity instrument once these covariates are controlled

for.
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