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A Proof of Proposition 1.1

In addition to the notations introduced in the main text, we introduce the individual type

indicator  ,

 = : complier if 1 = 10 = 0

 = : never-taker if 1 = 00 = 0

 = : always-taker if 1 = 10 = 1

 =  : defier if 1 = 0 0 = 1

When instrument exclusion is imposed, we suppress the  subscript in the potential outcome

notation, and define 1 ≡ 11 = 10 and 0 ≡ 01 = 00 as a pair of the potential outcomes

indexed solely by  = 1 and 0. Note that the joint restriction of instrument exclusion and

random assignment is equivalent to (1 0  ) ⊥ .

Proof of Proposition 1.1. (i) Let  and  satisfying the inequalities (1.1) be given

and assume instrument exclusion. Our goal is to show that there exists a joint distribution

of (1 0  ) that is consistent with the given  and , and satisfies (1 0  ) ⊥ 
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and instrument monotonicity. Since the marginal distribution of  is not important in the

following argument, we focus on constructing the conditional distribution of (1 0  ) given

. Let (· ) =  (·)


and ( ) =
(·)


. Define nonnegative functions,

1() ≡ ( 1)− ( 1)

0() ≡ ( 0)− ( 0)

1() = ( 1)

0() = ( 0)

1() = 0

0() = 0

and 0() and 1() are arbitrary nonnegative functions supported on Y and satisfyR
Y 0() = Pr( = 1| = 1) and RY 1() = Pr( = 1| = 0) These nonnegative
functions,  (),  ∈ {1 0},  ∈ {   }, are introduced for the purpose of imputing
a probability density of 


Pr( ∈ ·  = ) that match the data distribution  and .

Consider the following probability law of (1 0  ) given  defined on the product -algebra

of Y × Y × {   },

Pr(1 ∈ 1 0 ∈ 0  = | = 1) = Pr(1 ∈ 1 0 ∈ 0  = | = 0)

≡
⎧⎨⎩


1

1()
Y 1()

×

0

0()
Y 0()

× [ (Y 1)−(Y 1)] if [ (Y 1)−(Y 1)]  0
0 if [ (Y 1)−(Y 1)] = 0

Pr(1 ∈ 1 0 ∈ 0  = | = 1) = Pr(1 ∈ 1 0 ∈ 0  = | = 0)

≡
⎧⎨⎩


1

1()
Y 1()

×

0

0()
Y 0()

×  (Y 0) if  (Y 0)  0
0 if  (Y 0) = 0

Pr(1 ∈ 1 0 ∈ 0  = | = 1) = Pr(1 ∈ 1 0 ∈ 0  = | = 0)

≡
⎧⎨⎩


1

1()
Y 1()

×

0

0()
Y 0()

×(Y 1) if (Y 1)  0
0 if (Y 1) = 0

Pr(1 ∈ 1 0 ∈ 0  =  | = 1) = Pr(1 ∈ 1 0 ∈ 0  =  | = 0)
≡ 0

where  (Y ) = Pr ( = | = 1) and (Y ) = Pr( = | = 0). Note that this

is a probability measure on the product sigma-algebra of Y × Y×{   }, since it is
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nonnegative, additive, and sums up to one,X
∈{}

Pr(1 ∈ Y 0 ∈ Y  = | = ) = 1  = 1 0

The proposed probability distribution of (1 0  |) clearly satisfies the joint independence
and instrument monotonicity by the construction, and it induces the given data generating

process. i.e., the proposed probability distribution of (1 0  |) satisfies

 ( 1) = Pr(1 ∈  0 ∈ Y  = | = 1) + Pr(1 ∈  0 ∈ Y  = | = 1)(A.1)
( 1) = Pr(1 ∈  0 ∈ Y  = | = 0) + Pr(1 ∈  0 ∈ Y  =  | = 0)
 ( 0) = Pr(1 ∈ Y 0 ∈  = | = 1) + Pr(1 ∈ Y 0 ∈  =  | = 1)
( 0) = Pr(1 ∈ Y 0 ∈  = | = 0) + Pr(1 ∈ Y 0 ∈  = | = 0)

This completes the proof of the first claim.

(ii) Let arbitrary  and satisfying inequalities (1.1) be given. We maintain instrument

exclusion, so, in what follows, we construct a probability law of (1 0  ) given  that is

consistent to the  and , but violates (1 0  ) ⊥ . Consider the following probability

distribution of (1 0  ) given ,

Pr(1 ∈ 1 0 ∈ 0  = | = 1) = 0

Pr(1 ∈ 1 0 ∈ 0  = | = 0) =
(

(10)(00)

(Y0) if (Y 0)  0
0 if (Y 0) = 0

Pr(1 ∈ 1 0 ∈ 0  = | = 1) =
(

 (10) (00)

 (Y0) if  (Y 0)  0
0 if  (Y 0) = 0

Pr(1 ∈ 1 0 ∈ 0  = | = 0) = 0

Pr(1 ∈ 1 0 ∈ 0  = | = 1) =
(

 (11) (01)

 (Y1) if  (Y 1)  0
0 if  (Y 1) = 0

Pr(1 ∈ 1 0 ∈ 0  = | = 0) = 0
Pr(1 ∈ 1 0 ∈ 0  =  | = 1) = 0

Pr(1 ∈ 1 0 ∈ 0  =  | = 0) =
(

(11)(01)

(Y1) if (Y 1)  0
0 if (Y 1) = 0

Note that, in this construction,  and  are dependent, i.e.,  = 1 is assigned to only never

takers and always takers, and  = 0 is assigned to only compliers and defiers, so it violates

 ⊥  (and the no-defier condition as well if (Y 1)  0). Furthermore, the proposed
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distribution of (1 0  |) satisfies (A.1), so it is consistent with the  and . Since

the proposed construction is feasible for any  and , we conclude that for any  and 

that meet the testable implications, there exists a distribution of (1 0  ) that violates

IV-validity.

B Appendix B: Proof of Theorem 2.1

B.1 Notations

In addition to the notations introduced in the main text, we introduce the following notations

that are used throughout this appendix. Let F be a set of indicator functions defined on

X ≡ Y × {0 1},

F =©1{[0]1}() : −∞ ≤  ≤ 0 ≤ ∞ª ∪ ©1{[0]0}() : −∞ ≤  ≤ 0 ≤ ∞ª 
where 1{}() is the indicator function for event { ∈  = }. The Borel -algebra
of X is denoted by B(X ). Note that F is a VC-class of functions since a class of connected
intervals is a VC-class of subsets. We denote a generic element of F by  . For generic

 ∈ P, let  be an empirical probability measure constructed by a size  iid sample from

 . we define short-hand notations,  () ≡  ([ 0] ) and () ≡  ([ 
0] ). Denote

empirical processes indexed by F by

 (·) =
√
 ( −  ) (·)

For a probability measure  on X , we denote the mean zero  -brownian bridge processes in-
dexed by F by  (·). Let (  0) = [(( −  0)2)]12 be a seminorm on F defined in terms
of the 2-metric with respect to a finite measure  on X . Given a deterministic sequence of
the sizes of two samples, {(() ()) :  = 1 2    }, let ©( [()] [()]) ∈ P2 :  = 1 2   

ª
be a sequence of the two sample probability measures that drift with the sample sizes

(() ()), where superscripts with brackets index a sequence. We often omit the

arguments of ( ()   ()) unless any confusion arises.

Let 2 (· ·) : F2 → R denote the covariance kernel of  -brownian bridges, 2 ( ) =

 ()− () (). We denote by 2( ) : F2 → R the covariance kernel of the indepen-

dent two-sample brownian bridge processes (1− )
12

 (·)− 12 (·),

2( ) = (1− )2 ( ) + 2 ( ) ,
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and 2
(· ·) be its sample analogue,

2
( ) = (1− ̂) [()− ()()] + ̂ [()−()()] .

Note that, with the current notation, 2
([ 0]  ) defined in the main text is equivalent

to 2
( ), for  = 1{[0]}. For a sequence of random variables { :  = 1 2    }

whose probability law is governed by a sequence of two sample probability measures ( [()] [()])

 −→
 [][]

 denotes convergence in probability in the sense of, for every   0,

lim
→∞

Pr
 [][]

(| − |  ) = 0

In particular, if  −→
 [][]

0, we notate as  =  [][](1).

B.2 Auxiliary Lemmas

We first present a set of lemmas to be used in the proofs of Theorems 2.1 and 2.2.

Lemma B.1 Let
©
 [] ∈ P :  = 1 2   

ª
be a sequence of probability measures on X .

Then,

sup
∈F

¯̄¡
 [] −  []

¢
()
¯̄
−→
 []

0

Proof. F is the class of indicator functions corresponding to the interval VC-class of subsets,
so an application of the Glivenko-Cantelli theorem uniform in P (Theorem 2.8.1 of van der

Vaart and Wellner (1996)) yields the claim.

Lemma B.2 Suppose Condition-RG. Let
©
 [] ∈ P :  = 1 2   

ª
be a sequence of data

generating processes on X that weakly converges to 0 ∈ P as →∞. Then,

sup
∈B(X )

¯̄¡
 [] − 0

¢
()

¯̄
→ 0 as →∞.

Proof. We first consider the case of  being the Lebesgue measure. Suppose the conclusion

is false, that is, there exists   0 and a sequence { ∈ B(X ) :  = 1 2    } such that
lim sup→∞

¯̄¡
 [] − 0

¢
()

¯̄
 . By uniform tightness of Condition-RG (b), there exists

a compact set  ∈ B(X ) such that

lim sup
→∞

¯̄¡
 [] − 0

¢
( ∩)

¯̄
 2
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holds. Let {} be a subsequence of {} such that
¯̄¡
 [] − 0

¢
( ∩)

¯̄
 2 holds for

all  ≥ ∗. We metricize B (X ) by the 1-metric, B(X )(0) = (× )(40) where

 is the measure defined in Condition-RG (a) and  is the mass measure on  ∈ {0 1}.
Since { ∩ :  = 1 2     } is a sequence in a compact subset of B (X ), there exists a
subsequence  of , such that

©


∩ª converges to ∗ ∈ B (X ) in terms of metric
B(X )(· ·) and¯̄¡

 [ ] − 0
¢ ¡


∩¢¯̄  2 (B.1)

holds by the construction of {} for all  ≥ ∗ . Under the bounded density assumption

of Condition-RG (a), it holds that¯̄¡
 [ ] − 0

¢ ¡


∩¢− ¡ [ ] − 0
¢
(∗)

¯̄
≤ 2B(X )(

∩∗)→ 0, as →∞.

Hence, (B.1) implies

lim sup
→∞

¯̄¡
 [ ] − 0

¢
(∗)

¯̄
 2. (B.2)

Since  is the Lebesgue measure and, by Condition-RG (a), 0 as a weak limit of
©
 [] :  = 1 2   

ª
is absolutely continuous in × , we have 0 (

∗) = 0 where ∗ is the boundary of ∗.

Accordingly, by applying the Portmanteau theorem (see, e.g., Theorem 1.3.4 of van der

Vaart and Wellner (1996)), we obtain lim→∞
¯̄¡
 [] − 0

¢
(∗)

¯̄
= 0. This contradicts

(B.2). Hence, lim→∞ sup∈B(X )
¯̄¡
 [] − 0

¢
()

¯̄
= 0 holds.

When  is a discrete mass measure with finite support points, then the weak convergence

of  [] to 0 is equivalent to the point wise convergence of the probability mass functions,

and the sup∈B(X )
¯̄¡
 [] − 0

¢
()

¯̄
is equivalent to the supremum over power sets of the

finite support points. Hence, the claim follows.

For the case of  being a mixture of the Lebesgue and a discrete mass measure with finite

support points, the claim holds as an immediate corollary of each of the two cases already

shown.

Lemma B.3 Suppose Condition-RG. Let
©
 [] ∈ P :  = 1 2   

ª
be a sequence of data

generating processes on X that weakly converges to 0 ∈ P as →∞.

sup
∈F

¯̄¡
 [] − 0

¢
()
¯̄
−→
 []

0
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Proof. This lemma is a corollary of Lemma B.1 and B.2.

Lemma B.4 Suppose Condition-RG. Let
©
( [()] [()]) ∈ P2 :  = 1 2   

ª
be a se-

quence of two-sample probability measures with sample size () = (() ()) →
(∞∞) as  →∞. We have

sup
∈F

¯̄̄
2

[]
 

[]


( )− 2
 [][]

( )
¯̄̄
−→

 [][]
0

Proof. Consider¯̄̄
2

[]
 

[]


( )− 2
 [][]

( )
¯̄̄

(B.3)

≤ (1− )
¯̄
 []
 ()−  []

 () [] ()−  []() +  []() []()
¯̄

+
¯̄
[]

 ()−[]
 ()

[]
 ()−[]() +[]()[]()

¯̄
+ (1)

where (1) is the approximation error of order
¯̄̄
̂− 

¯̄̄
. Regarding the first term in the

right-hand side of this inequality, the following inequalities hold,

(1− )
¯̄
 []
 ()−  []

 () [] ()−  []() +  []() []()
¯̄

≤
¯̄¡
 []
 −  []

¢
()

¯̄
+
¯̄
 [] () []

 ()−  []() []()
¯̄

≤
¯̄¡
 []
 −  []

¢
()

¯̄
+
¯̄¡
 []
 −  []

¢
() []

 ()
¯̄
+
¯̄¡
 []
 −  []

¢
() []()

¯̄
≤

¯̄¡
 []
 −  []

¢
()

¯̄
+
¯̄¡
 []
 −  []

¢
()
¯̄
+
¯̄¡
 []
 −  []

¢
()
¯̄
 (B.4)

The second and the third term of (B.4) is  [] (1) uniformly in F by Lemma B.1. Further-
more, since class of indicator functions { :   ∈ F} is also a VC-class,

sup
∈F

¯̄¡
 []
 −  []

¢
()

¯̄
−→
 []

0

holds also by Lemma B.1. This proves the first term in the right-hand side of (B.3) converges

to zero uniformly in   ∈ F . So is the case for the second term of (B.3) by the same

argument. Hence, the conclusion follows.

Lemma B.5 Suppose Condition-RG. Let
©
 [] ∈ P :  = 1 2   

ª
be a sequence of proba-

bility measures, which converges weakly to 0 ∈ P. Then, the empirical processes  [] (·)
on index set F converge weakly to 0-brownian bridges 0 (·).
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Proof. To prove this lemma, we apply a combination of Theorem 2.8.3 and Lemma 2.8.8 of

van der Vaart and Wellner (1996) restricted to a class of indicator functions. It claims that,

given F be a class of measurable indicator functions and a sequence of probability measure©
 [] :  = 1 2   

ª
in P, if (i) R 1

0
sup

p
log (F  2 ()) ∞ where  ranges over

all finitely discrete probability measures and  (F  2 ()) is the covering number of F
with radius  in terms of 2 ()-metric [(| −  0|2)]12,1 and (ii) there exists  ∗ ∈ P such
that lim→∞ sup∈F {| []( )− ∗( )|} = 0, then  [] (·) weakly converges to
 ∗-brownian bridge process ∗ (·). Condition (i) is known to hold if F is a VC-class (see

Theorem 2.6.4 of van der Vaart and Wellner (1996)).

Therefore, what remains to show is Condition (ii). By the construction of seminorm

 ( ), we have

sup
∈F

¯̄
2
 []

( )− 20( )
¯̄
≤ sup

∈B(X )

¯̄¡
 [] − 0

¢
()

¯̄
.

Hence, to validate Condition (ii) with  ∗ = 0, it suffices to have lim→∞ sup∈B(X )
¯̄¡
 [] − 0

¢
()

¯̄
=

0 which follows from Lemma B.2.

Lemma B.6 Suppose Condition-RG. Let
©
( [()] [()]) ∈ P2 :  = 1 2   

ª
be a se-

quence of probability measures of the independent two samples, which converges weakly to

(0 0), as  →∞. Then, stochastic processes indexed by VC-class of indicator functions
F,

(·) =

³
1− ̂

´12
 [] (·)− ̂

12
[](·)

 ∨ 

[]
 

[]

(· ·) ,   0, (B.5)

converges weakly to mean zero Gaussian processes 0(·) = (1−)120
(·)−120

(·)
∨00 (··)

 where 0 (·)
and 0(·) are independent brownian bridge processes.

Proof. VC-class F is totally bounded with seminorm  for any finite measure  . Hence,

following Section 2.8.3 of van der Vaart and Wellner (1996), what we want to show for the

weak convergence of (·) are that (i) finite dimensional marginal, ((1)     ()), con-
verges to that of 0(·), (ii) (·) is asymptotically uniformly equicontinuous along a sequence

1The covering number  (F  2 ()) is defined as the minimal number of balls of radious  needed to
cover F .
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of seminorms such as 2(
[] + []) norm,  []+[]( ) =

£¡
 [] +[]

¢ ¡
( − )

2
¢¤12

,

i.e., for arbitrary   0,

lim
&0

lim sup
→∞

 ∗
 [][]

Ã
sup


 []+[]

()

|()− ()|  

!
= 0 (B.6)

where  ∗
 [][]

is the outer probability, and (iii) sup∈F
¯̄
 []+[]( )− 0+0( )

¯̄
→ 0

as  → ∞. Note that (i) is implied by Lemma B.4 and Lemma B.5, and (iii) follows as a
corollary of Lemma B.2, since

sup
∈F

¯̄̄
2
 []+[]

( )− 20+0( )
¯̄̄
≤ sup

∈B(X )

¯̄¡
 [] − 0

¢
()

¯̄
+ sup

∈B(X )

¯̄¡
[] −0

¢
()

¯̄
→ 0 as  →∞

To verify (ii), consider, for   ∈ F with  []+[]( )  ,

|()− ()| (B.7)

≤
¯̄̄̄
¯ 1

 ∨ 

[]
 

[]

( )

− 1

 ∨ 

[]
 

[]

( )

¯̄̄̄
¯ ¯̄̄(1− )

12
 [] ()− 12[]()

¯̄̄
+
(1− )

12
¯̄
 [] ()− [] ()

¯̄
+ 12

¯̄
[]()−[]()

¯̄
 ∨ 


[]
 

[]

( )

+
³¯̄̄
̂− 

¯̄̄´


Note that ¯̄̄̄
¯ 1

 ∨ 

[]
 

[]

( )

− 1

 ∨ 

[]
 

[]

( )

¯̄̄̄
¯

=

¯̄̄̄
1

 ∨  [][]( )
− 1

 ∨  [][]( )

¯̄̄̄
+  [][](1)

≤ 1

2

¯̄
 ∨  [][]( )−  ∨  [][]( )

¯̄
+  [][](1)

≤ 1

2

¯̄
 [][]( )−  [][]( )

¯̄
+  [][](1) (B.8)

where the first line follows from Lemma B.4. By noting the following inequalities,¯̄
 [][]( )−  [][]( )

¯̄2
≤

¯̄̄


[]
 

[]

( )−  [][]( )

¯̄̄ ¯̄̄


[]
 

[]

( ) +  [][]( )

¯̄̄
=

¯̄̄
2
 [][]

( )− 2
 [][]

( )
¯̄̄
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and ¯̄̄
2
 [][]

( )− 2
 [][]

( )
¯̄̄
≤

¯̄
(1− )

¡
 []()−  []()

¢
(1−  []()−  []())

¯̄
+
¯̄

¡
[]()−[]()

¢
(1−[]()−[]())

¯̄
≤

¯̄
(1− )

¡
 []()−  []()

¢¯̄
+
¯̄

¡
[]()−[]()

¢¯̄
≤ (1− )2

 []
( ) + 2

[]
( )

≤ 2
 []+[]

( )

we have¯̄
 [][]( )−  [][]( )

¯̄
≤  []+[]( ). (B.9)

Combining (B.8) and (B.9) then leads to¯̄̄̄
¯ 1

 ∨ 

[]
 

[]

( )

− 1

 ∨ 

[]
 

[]

( )

¯̄̄̄
¯ ≤  []+[]( )

2
+  [][](1) (B.10)

Hence, (B.7) and (B.10) yield

sup

 []+[]

()

|()− ()| ≤ 

2

¯̄̄
(1− )

12
 [] ()− 12[]()

¯̄̄
(B.11)

+
(1− )

12


sup


 []+[]

()

¯̄
 [] ()− [] ()

¯̄
+
12


sup


 []+[]

()

¯̄
[]()−[]()

¯̄
+  [][](1).

Since  []( ) ≤  []+[]( ) for every   ∈ F , we have

sup

 []+[]

()

¯̄
 [] ()− [] ()

¯̄
≤ sup


 []

()

¯̄
 [] ()− [] ()

¯̄
= ∗

 []
() 

where ∗
 []

() denotes the convergence to zero in outer probability along
©
 []

ª
as  & 0,

and the equality follows since the uniform convergence of [] () as established by Lemma

B.5 implies

lim
&0

lim sup
→∞

 ∗
 []

Ã
sup


 []

()

¯̄
 [] ()− [] ()

¯̄
 

!
= 0.

Similarly, we obtain sup
 []+[]

()

¯̄
[]()−[]()

¯̄
= ∗

[]
().
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Since
¯̄̄
(1− )

12
 [] ()− 12[]()

¯̄̄
converges weakly to the tight Gaussian processes,

(B.11) is written as

sup

 []+[]

()

|()− ()| =  [][] (1) + ∗
 [][]

() +  [][](1)

= ∗
 [][]

()

where  [][] (1) stands for that lim→∞Pr
 [][]

(| |  ) = 0 for every diverging

sequence  →∞. This establishes the asymptotic uniform equicontinuity (B.6).

The next lemma states that the null hypothesis of our test defined by inequalities (1.1)

for every Borel set  can be reduced without loss of information to the hypothesis that

inequalities (1.1) hold for all connected intervals. This lemma is a direct corollary of Lemma

C1 in Andrews and Shi (2013).

Lemma B.7  ( 1) − ( 1) ≥ 0 and ( 0) −  ( 0) ≥ 0 hold for every Borel set
 if and only if  ( 1) − ( 1) ≥ 0 and ( 0) −  ( 0) ≥ 0 hold for all  ∈ V ≡
{[ 0] : −∞ ≤  ≤ 0 ≤ ∞} 

Proof. The only-if statement is obvious. To prove the if statement, we apply Lemma C1

of Andrews and Shi (2013). By viewing V as R and  (· 1)−(· 1) as  (·) in the notation
of Lemma C1 of Andrews and Shi (2013), it follows that  ( 1) − ( 1) ≥ 0 for all 
in the Borel -algebra generated by V. Since the Borel -algebra generated by V coincides
with B(Y),  ( 1)−( 1) ≥ 0 for every  ∈ V implies  ( 1) −( 1) ≥ 0 for every
 ∈ B(Y). The same results hold for the other inequalities (· 0)−  (· 0) ≥ 0.

The next lemma shows that the version of testable implications with conditioning covari-

ates as given in (3.3) can be reduced without any loss of information to the unconditional

moment inequalities of (3.4).

Lemma B.8 Assume that Pr( = 1|) is bounded away from zero and one, -a.s. Then,

Pr( ∈  = 1| = 1)− Pr( ∈  = 1| = 0) ≥ 0 (B.12)

Pr( ∈  = 0| = 0)− Pr( ∈  = 0| = 1) ≥ 0
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hold for all  ∈ B(Y), -a.s. if and only if

 [1 () ()] ≥ 0

 [0 () ()] ≥ 0 for all (· ·) ∈ G,

where 1, 0, and G are as defined in Section 3.2 of the main text.

Proof. By applying Theorem 3.1 of Abadie (2003) with conditioning of , the first inequal-

ities of (B.12) can be equivalently written as

 [1 { ∈ }1()|] ≥ 0, -a.s. (B.13)

Hence, the only-if statement immediately follows.

To show the if statement, we again invoke Lemma C1 in Andrews and Shi (2013). Let

us read R and  (·) of their notation as

V ≡
(
[ 0]× [1 01]× · · · ×

£
  

0


¤
: −∞ ≤  ≤ 0 ≤ ∞

−∞ ≤  ≤ 0 ≤ ∞  = 1     

)


and  (·) =  [1 () 1 {() ∈ ·}], respectively. By the assumption that Pr( =

1|) is bounded away from zero and one, 1 is bounded -a.s. Hence, the thus-defined  (·)
satisfies the boundedness condition to apply Lemma C1 in Andrews and Shi (2013). More-

over, V meets the condition for a semiring. Hence,  ( ) =  [1 () 1 {() ∈  }] ≥
0 for all  ∈ V implies  () =  [1 () 1 {() ∈ }] ≥ 0 for all  in the Borel -

algebra generated by V. Since the Borel -algebra generated by V coincides with B(Y×X),
and any product set  × ,  ∈ B(Y) and  ∈ B(X), belongs to B(Y×X), it implies
 [1 { ∈ }1()1 { ∈ }] ≥ 0 for all  ∈ B(Y) and  ∈ B(X). Hence, (B.13)
follows. A similar line of reasoning yields the equivalence of the second inequalities of (B.12)

to  [0 () ()] ≥ 0 for all (· ·) ∈ G.

B.3 Proof of Theorem 2.1

LetF1 =
©
1{[0]1}() : −∞ ≤  ≤ 0 ≤ ∞ª andF0 = ©1{[0]0}() : −∞ ≤  ≤ 0 ≤ ∞ª 

We want to show

lim sup
→∞

sup
()∈H0

Pr (  1−) ≤  (B.14)

12



where

 = max

⎧⎪⎪⎨⎪⎪⎩
sup∈F1

½
̂
12

()−(1−̂)12()
∨()

¾
sup∈F0

½
(1−̂)12()−̂12()


∨()

¾
⎫⎪⎪⎬⎪⎪⎭ .

Consider a sequence
¡
 [()] [()]

¢ ∈ H0 at which Pr [()][()] (  1−) differs

from its supremum overH0 by   0 or less with  → 0 as →∞. Since ¡ [()] [()]
¢ ∈

P2 are sequences in the uniformly tight class of probability measures (Condition-RG (b)),

there exists  subsequence of such that
¡
 [( )] [( )]

¢
converges weakly to (0 0) ∈

P2 as  → ∞. Note that (0 0) lies in H0 since
¡
 [()] [()]

¢ ∈ H0 for all  and

by Lemma B.2. With abuse of notations, we read  as  and (() ()) as ()

with+ =  . Along such sequence, we aim to show lim sup
→∞

Pr [][] (  1−) ≤ 

holds.

Using the notation of the weighted empirical processes introduced in Lemma B.6, we

can write the test statistic as

 = max

(
sup∈F1 {−()− ()}
sup∈F0 {() + ()}

)


where

 () =

r




 []()−[] ()

 ∨ 

[]
 

[]

( )

,  = 1 0.

By the almost sure representation theorem (see, e.g., Theorem 9.4 of Pollard (1990)), weak

convergence of
³
(·)  []

 (·) []
 (·) 2


[]
 

[]


(· ·)
´
to
¡
0(·) 0(·) 0(·) 200(· ·)

¢
 as es-

tablished in Lemma B.3, B.4, and B.6, implies existence of a probability space (ΩB(Ω)P)
and random objects ̃0 (·), ̃ (·), ̃ []

 (·), ̃[]
 (·), and ̃2


[]
 

[]


(· ·) defined on it, such that
(i) ̃0 (·) has the same probability law as 0 (·) (ii)

³
̃ (·)  ̃ []

 (·) ̃[]
 (·) ̃2


[]
 

[]


(· ·)
´
has

the same probability law as
³
 (·)   []

 (·) []
 (·) 2


[]
 

[]


(· ·)
´
for all  , and (iii)

sup
∈F

|̃ ()− ̃0 ()| → 0 (B.15)

sup
∈F

¯̄̄
̃ []
 ()− 0()

¯̄̄
→ 0, (B.16)

sup
∈F

¯̄̄
̃[]
 ()−0()

¯̄̄
→ 0, and (B.17)

sup
∈F

¯̄̄
̃2

[]
 

[]


( )− 200 ( )
¯̄̄
→ 0, as  →∞, P-a.s. (B.18)
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Let ̃ be the analogue of  defined on probability space (ΩB(Ω)P),

̃ = max

⎧⎨⎩ sup∈F1

n
−̃()− ̃()

o
sup∈F0

n
̃() + ̃()

o ⎫⎬⎭ 

where ̃() =
p




 []()−[]()
∨̃2


[]
 

[]


()
. Let ̃1− be the bootstrap critical values, which we

view as a random object defined on the same probability space as
³
̃  ̃

[]
  ̃

[]
  ̃2


[]
 

[]


´
are defined. Note that the probability law of ̃1− under P is identical to the probability

law of bootstrap critical value 1− under
¡
 [] []

¢
for every , because the distributions

of ̃1− and 1− are determined by the distributions of
³
̃
[]
  ̃

[]


´
and

³

[]
  

[]


´
,

respectively, and
³
̃
[]
  ̃

[]


´
∼
³

[]
  

[]


´
for every  , as claimed by the almost sure

representation theorem.

By the Lemma C.1 shown below, ̃1− → 1− as  → ∞, P-a.s., where 1− is the
(1− )-th quantile of statistic

 ≡ max
(
sup∈F1 {−0

() ( ∨ 0
( ))}

sup∈F0 {0
() ( ∨ 0

( ))}

)
, (B.19)

where 0 = 0 + (1− )0.

Since Pr [][] (  1−) = 
³
̃  ̃1−

´
for all  and ̃1− → 1− as  →

∞, P-a.s, if there exists a random variable ̃ ∗ defined on (ΩB(Ω)P), such that

(A) : lim sup
→∞

̃ ≤ ̃ ∗, P-a.s., and

(B) : The cdf of ̃ ∗ is continuous at 1− and P
³
̃ ∗  1−

´
≤ ,

then, the claim of the proposition follows from

lim sup
→∞

Pr
 [][]

(  1−) = lim sup
→∞

P
³
̃  ̃1−

´
≤ P

³
̃ ∗  1−

´
≤ ,

where the second line follows from Fatou’s lemma. Hence, in what follows, we aim to find

a random variable ̃ ∗ that satisfies (A) and (B).
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Let  be a deterministic sequence that satisfies  →∞ and 
√
 → 0. Fix  ∈ Ω

and define a sequence of subclass of F1,
F1 =

n
 ∈ F1 : ̃() ≤ 

o
=

(
 ∈ F1 :

q
̂(1− ̂)

 []()−[]()

 ∨ ̃2

[]
 

[]


( )
≤ √



)
.

The first term in the maximum operator of ̃ satisfies

sup
∈F1

n
−̃()− ̃1()

o
= max

⎧⎨⎩ sup∈F1

n
−̃()− ̃()

o
sup∈F1\F1

n
−̃()− ̃()

o ⎫⎬⎭
≤ max

⎧⎨⎩ sup∈F1 {−̃()}
sup∈F1\F1

n
−̃()− ̃()

o ⎫⎬⎭
≤ max

⎧⎪⎪⎨⎪⎪⎩
sup

∈
[
0≥

F1
0
{−̃()}

sup∈F1\F1 {−̃()}− 

⎫⎪⎪⎬⎪⎪⎭ , (B.20)

for every where the second line follows since ̃1() ≥ 0 for all  ∈ F1 under the assump-
tion that

¡
 [] []

¢ ∈ 0, the third line follows because ̃()   for all  ∈ F1 \F1 .
Since ̃(·) is P-a.s. bounded and  →∞, it holds

sup
∈F1\F1

{−̃()}−  → −∞ as  →∞, P-a.s. (B.21)

On the other hand, since ̃(·) P-a.s converges to ̃0 (·) uniformly in F , we have

sup

∈
[
 0≥

F1
0

{−̃()}→ sup
∈F1∞

{−̃0 ()} , as  →∞ P-a.s., (B.22)

where F1∞ = lim→∞
[

 0≥
F10 . Let F∗1 = { ∈ F1 : 0() = 0()}. By the construc-

tion of F1 , every  ∈ F1∞ satisfies

lim inf
→∞

(q
̂(1− ̂)

 []()−[]()

 ∨ ̃2

[]
 

[]


( )

)
= 0. (B.23)

Since  []()−[]() converges to 0()−0() by Lemma B.2, any  satisfying (B.23)

belongs to F∗1 . Hence, we have

sup
∈F1∞

{−̃0 ()} ≤ sup
∈F∗1

{−̃0 ()} P-a.s. (B.24)
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By combining (B.20), (B.21), (B.22), and (B.24), we obtain

lim sup
→∞

sup
∈F1

n
−̃()− ̃()

o
≤ sup

∈F∗1
{−̃0 ()} , P-a.s.

In a similar manner, it can be shown that

lim sup
→∞

sup
∈F0

n
̃() + ̃()

o
≤ sup

∈F∗0
{̃0 ()}  P-a.s.,

where F∗0 = { ∈ F0 : 0() = 0()}. Hence, ̃ ∗ defined by

̃ ∗ = max

(
sup∈F∗1 {−̃0()}
sup∈F∗0 {̃0()}

)
satisfies condition (A).

Next, we show that the thus-defined ̃ ∗ satisfies (B). First, we show that ̃ ∗ is stochas-

tically dominated by  . Note that statistic  defined in (B.19) can be written as

 = max

(
 ∗  sup

∈F1\F∗1

½
− 0

()

 ∨ 0
( )

¾
 sup
∈F0\F∗0

½
0

()

 ∨ 0
( )

¾)
,

where  ∗ = max

(
sup∈F∗1 {−0

() ( ∨ 0
( ))} 

sup∈F∗0 {0
() ( ∨ 0

( ))}

)
.

If the distribution of  ∗ is identical to ̃
∗, then the distribution of  stochastically domi-

nates ̃ ∗ so that we can ascertain the second part of (B). Hence, in what follows we show

that  ∗ and ̃ ∗ follow the same probability law. Define stochastic processes defined on

subdomain of F , F∗ = F∗1 ∪ F∗0 ,

() = −0()1 { ∈ F∗1}+ 0()1 { ∈ F∗0} 
() = − 0

()

 ∨ 0
( )

1{ ∈ F∗1}+
0

()

 ∨ 0
( )

1{ ∈ F∗0}.

Note first that, for  ∈ F∗, 0() = 0() = 0() implies that

200( ) = 0()(1− 0()) = 20
( ) .

Hence,  (()) =  (()) holds for every  ∈ F∗. To also show equivalence of the

covariance kernels of (·) and (·) consider, for   ∈ F∗

(() ()) =
(1− ) [0()− 0()0()] +  [0()−0()0()]

( ∨ 00 ( )) ( ∨ 00 ( ))
=

[(1− )0 + 0] ()−0()0()

( ∨ 0
( )) ( ∨ 0

( ))
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If  ∈ F∗1 and  ∈ F∗0 , 0 () = 0() = 0() = 0. If   ∈ F∗1 , then (0 0) ∈ H0

implies 0 ≥ (0 −0) () ≥ (0 −0) () = 0, so 0 () = 0() = 0(). Similarly,

if   ∈ F∗0 , (0 0) ∈ H0 implies 0 ≤ (0 −0) () ≤ (0 −0) () = 0, so 0 () =

0() = 0() holds as well. Thus, we obtain

(() ()) =
0()−0()0()

( ∨ 0
( )) ( ∨ 0

( ))

= (() ())

for every   ∈ F∗. Equivalence of the covariance kernels imply equivalence of the prob-

ability laws of the mean zero Gaussian processes, so we conclude  ∗ ∼ ̃ ∗. Hence,


³
̃ ∗  1−

´
≤ Pr(  1−) = .

To check the first requirement of (B), we show continuity of the cdf of ̃ ∗ at 1− by

applying the absolute continuity theorem for the supremum of Gaussian processes (Tsirelson

(1975)), which says the supremum of Gaussian processes has a continuous cdf except at the

left limit of its support. By the definition of  (·),  can be equivalently written as

 = sup∈F { ()}. Note first that the support of  contains 0 since F contains an

indicator function for a singleton set in X at which 0
() = 0 holds with probability one.

Following the symmetry argument of the mean zero Gaussian process, which we borrowed

from the proof of Proposition 2.2 in Abadie (2002), we have

Pr( ≤ 0) = Pr ((@ ∈ F   ()  0)) = Pr ((@ ∈ F   ()  0)) 

By Condition-RG (a),  (·) is not a degenerate process, so

Pr ((@ ∈ F   ()  0) ∩ (@ ∈ F   ()  0)) = 0

Hence,

1 ≥ Pr ((@ ∈ F   ()  0) ∪ (@ ∈ F   ()  0))
= 2Pr( ≤ 0)

implying that the probability mass that  can have at the left limit of its support is less

than or equal to 12. As a result, 1− for  ∈ (0 12) lies in the region where the cdf of 
is continuous. Since ̃ ∗ is also a supremum of mean zero Gaussian process and, as already

shown, it is stochastically dominated by  , the cdf of ̃
∗ is also continuous at 1−. This

completes the proof of Theorem 2.1 (i).
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To prove claim (ii), assume that the first inequality of (1.1) is violated for some Borel

set  ⊂ Y. By lemma B.7, there exists some ∗ ∈ F1 such that 0 ≤  (∗)  (∗) holds.

Then, we have

 = max

⎧⎪⎪⎨⎪⎪⎩
sup∈F1

½
̂
12

()−(1−̂)12()
∨()

¾
sup∈F0

½
(1−̂)12()−̂12()

∨()

¾
⎫⎪⎪⎬⎪⎪⎭

≥

³
̂
12

(
∗)− (1− ̂)12 (

∗)
´

 ∨ 
(∗ ∗)

+

r




(∗)−  (∗)
 ∨ 

(∗ ∗)
 (B.25)

where the second term of (B.25) diverges to positive infinity, while the first term is sto-

chastically bounded asymptotically. Since the bootstrap critical values 1− converges to

1−  ∞ irrespective of the null holds true or not, the rejection probability converges to

one.

C Convergence of the Bootstrap Critical Values and

Proof of Theorem 2.2

C.1 Lemma on Convergence of the Bootstrap Critical Values

The proof of Theorem 2.1 given in the previous section assumes P-almost sure convergence

of the bootstrap critical value ̃1− to 1−. This convergence claim is proven by the next

lemma. The probability space (ΩB(Ω)P) and the random objects with "tilde" used in

the following proof are the ones defined in the proof of Theorem 2.1 (i) by the almost sure

representation theorem.

Lemma C.1 Suppose Condition-RG. Let ̃1− be the bootstrap critical value of Algorithm

2.1 constructed from ̃
[ ]

 = ̂̃
[]
 + (1 − ̂)̃

[]
  which is viewed as a sequence of random

variables {̃1− :  = 1 2    } defined on probability space (ΩB(Ω)P). It holds that

̃1− converges to 1− as  →∞, P-a.s, where 1− is the (1− )-th quantile of statistic

 = max

(
sup∈F1 {−0

() ( ∨ 0
( ))}

sup∈F0 {0
() ( ∨ 0

( ))}

)
,
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where 0 = 0 + (1− )0.

Proof. Let sequence
n
̃
[ ]

 :  = 1 2   
o
be given, and let  ∗ and ∗ be the bootstrap

empirical probability measures with size  and size  respectively, drawn iid from ̃
[ ]

 .

Define bootstrap weighted empirical processes indexed by  ∈ F as

∗(·) =

r




 ∗(·)−∗(·)
 ∨ ∗∗(· ·)

=
(1− ̂)12∗

̃
[ ]



(·)− ̂
12

∗0
̃

[]



(·)()
 ∨ ∗∗(· ·)



where ∗
̃

[]



(·) = √
³
 ∗ − ̃

[ ]



´
(·) and ∗0

̃
[]



(·) = √
³
∗ − ̃

[ ]



´
(·) are two in-

dependent bootstrap empirical processes given
n
̃
[ ]

 :  = 1 2   
o
. Let (1     )

be the  support points of ̃
[ ]

 , and let  be the point-mass measure at . To apply

the uniform central limit theorem with exchangeable multipliers (Theorem 3.6.13 of van der

Vaart and Wellner (1996)), we introduce multinomial random vector (1    ) that

is independent of (1    ) and has parameters
¡
 1


     1



¢
. We express ∗

̃
[]



(·)
as

∗
̃

[]



(·) =
1√


X
=1

³
 − 



´


(·)

=
1√


X
=1

³
 − 



´ ¡

− [ ]

¢
(·)

= ̂
−12 1√



X
=1



¡

− [ ]

¢
(·) 

where  =  − 

,  = 1      . Note that

¡
1     

¢
are exchangeable ran-

dom variables by construction and 
³
1


P

=1 
2


´
= 



¡
1− 1



¢ →  as  → ∞. On

the other hand, since  [ ] converges weakly to 0, an application of Lemma B.5 yields

1√


P

=1

¡

− [ ]

¢
(·) Ã 0

(·). Hence, the uniform central limit theorem with ex-

changeable multipliers (Theorem 3.6.13 of van der Vaart and Wellner (1996)) leads to

∗
̃

[]



(·) Ã 0
(·) for P-almost every sequence

n
̃
[ ]

 :  = 1 2   
o
. By the same

reasoning, we have ∗0
̃

[ ]



(·)Ã 0
0
(·) for P-almost every sequence

n
̃
[ ]

 :  = 1 2   
o
,

where 0
0
(·) is an 0-brownian bridge process independent of 0

(·).
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Hence, the numerator of ∗(·) converges weakly to (1−)120
(·)−120

0
(·), P-a.s.

sequences of
n
̃
[ ]



o
. Note that the covariance kernel of (1 − )120

(·) − 120
0
(·)

coincides with that of 0-brownian bridge, so we conclude that

(1− ̂)
12

∗
̃

[]



(·)− ̂
12

∗0
̃

[]



(·)()Ã 0
(·) , P-a.s. sequences of

n
̃
[ ]



o
. (C.1)

Regarding the bootstrap covariance kernel, we have convergence of sup∈F
¯̄
∗∗( )− 0

( )
¯̄

to zero (in probability in terms of the probability law of bootstrap resampling given ̃
[ ]

 )

for P-a.s. sequences of
n
̃
[ ]



o
 since

sup
∈F

¯̄
2∗∗( )− 20

( )
¯̄
≤ sup

∈F

¯̄̄
2∗∗( )− 2

̃
[]



( )
¯̄̄
+sup
∈F

¯̄̄
2
̃
[]



( )− 20
( )

¯̄̄


(C.2)

where the first term in the right hand side converges to zero (in probability in terms of the

probability law of bootstrap resampling) by applying the Glivenko-Cantelli theorem for the

triangular arrays as given in Lemma B.1, and the convergence to zero P-a.s. for the second

term follows from the almost sure representation theorem, (B.16) and (B.17).

By putting together (C.1) and (C.2), and repeating the proof of the asymptotic uniform

equicontinuity as given in (B.11) above, we obtain

∗(·) Ã (1− )120
(·)− ̂

12
0
0
(·)

 ∨ 0
(· ·)

∼ 0
(·)

 ∨ 0
(· ·)  as  →∞,

for P-almost every sequence of
n
̃
[ ]



o
. The bootstrap test statistics  ∗ is a continuous

functional of ∗(·), so the continuous mapping theorem leads to

 ∗ Ã  = max

(
sup∈F1 {−0

() ( ∨ 0
( ))}

sup∈F0 {0
() ( ∨ 0

( ))}

)
as  →∞,

for P-almost every sequence of
n
̃
[ ]



o
. We already showed in the proof of Theorem 2.1

(i) that the cdf of  is continuous at 1− for  ∈ (0 12). Hence, the bootstrap critical

values ̃1− converges to 1−, P-a.s.
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C.2 Proof of Theorem 2.2

Proof. ByAssumption-LA(c) and the Portmanteau theorem,
¡
 [ ] [ ] ∈ P2 :  = 1 2   

¢
converges weakly to (0 0) ∈ H0. We can therefore apply all the lemmas established in

Appendix B and C.1, and, as done in the proof of Theorem 2.1 (i), we can define via the

almost sure representation theorem a probability space (ΩB(Ω)P) and random objects

with "tilde", that copy the ones defined in a sequence of probability spaces in terms of¡
 [ ] [ ] :  = 1 2   

¢
. By Lemma C.1, the bootstrap critical values ̃1− converges

to 1− the (1−)-th quantile of  , P-a.s., which depends only on (   0 0). Suppose

that ([ 0]   = 1) satisfies Assumption-LA (a) and (d). Let ̃ (·) = (1−̂)12̃
 []

(·)−̂12̃
[]

(·)
∨̃


[]
 

[]


(··)

be the weighted empirical process defined on (ΩB(Ω)P), where ̃ [ ] (·) =
√

³
̃
[ ]
 −  [ ]

´
(·)

and ̃[] (·) =
√

³
̃
[ ]
 −[ ]

´
(·). Note the probability law of the test statistic is that

of

̃ = max

⎧⎨⎩ sup∈F1

n
−̃()− ̃()

o
sup∈F0

n
̃() + ̃()

o ⎫⎬⎭ 

induced by P, where

̃() =

r




 [ ]()−[ ] ()

 ∨ ̃

[ ]
 

[]

( )



Since ̃ is bounded from below by

−̃([ 0]  1)− ̃([ 
0]  1)

the rejection probability is also bounded from below by

P(−̃([ 0]  1)− ̃([ 
0]  1) ≥ ̃1−).

By Assumption-LA (c), and by applying Lemmas B.4 and B.6, ̃([ 
0]  1)− ̃([ 

0]  1)

converges P-a.s. to

−̃0 ([ 0]  1)− [(1− )]
12

∆([ 0]  1)
 ∨ 00 ([ 0]  1)
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which follows Gaussian with mean − [(1−)]12∆([0]1)
∨00 ([0]1)

and variance min
n
200

([0]1)

2
 1
o
.

Hence, we obtain

P(−̃([ 0]  1)− ̃([ 
0]  1) ≥ ̃1−)

→ P(−̃0([ 0]  1)− [(1− )]
12

∆([ 0]  1)
 ∨ 00 ([ 0]  1)

≥ 1−)

= 1− Φ

Ãµ
200 ([ 

0]  1)

2
∧ 1
¶−1Ã

1− − [(1− )]
12 |∆([ 0]  1)|

 ∨ 00 ([ 0]  1)

!!


In case ([ 0]   = 0) satisfies Assumption-LA (i) and (iv), a similar argument yields the

same lower bound.

D Monte Carlo Studies

This section examines the finite sample performance of the test by Monte Carlo. In assessing

finite sample type I errors of the test, we consider a data generating process on a boundary

of H0, so that the theoretical type I error of the test equals to a nominal size asymptotically.

( = 1) = ( = 1) = 05×N (1 1)
( = 0) = ( = 0) = 05×N (0 1)

where ( 2) is the probability density of a normal random variable with mean  and 2.

In computing the first (second) supremum of the test statistic, the boundaries points of

intervals are chosen by every pair of  -values observed in the subsample of { = 1  = 0}
({ = 0  = 1}). In order to assess how the test performance depends on a choice of

trimming constant, we run simulations for each of the following four specification of the

trimming constant,

1 =
p
0005 (1− 0005) ≈ 007

2 =
p
005(1− 005) ≈ 022

3 =
p
01(1− 01) = 03

4 = 1

Note that ,  = 1 2 3, has the form of
p
(1− ), and  can be interpreted as that,

if both  ([ 
0]  ) and  ([ 

0]  ) are less than , we weigh the difference of the

empirical distribution by the inverse of  instead of the inverse of its standard deviation
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Table II: Monte Carlo Test Size

Monte Carlo iterations 1000, Bootstrap iterations 300.

Trimming constant 1 ≈ 007 2 ≈ 021 3 = 03 4 = 1

Nominal size .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

(m,n):(100,100) .13 .07 .01 .13 .07 .01 .14 .06 .01 .13 .06 .01

(100,500) .11 .06 .01 .10 .06 .01 .11 .05 .01 .10 .05 .01

(500,500) .13 .06 .02 .12 .07 .02 .11 .06 .02 .12 .05 .01

(100,1000) .12 .06 .02 .12 .06 .01 .13 .06 .02 .12 .06 .02

(1000,1000) .14 .07 .02 .13 .08 .02 .13 .06 .02 .12 .06 .01

Note: The statistic is equivalent to the non-weighted KS-statistics when 4 = 1

estimate. Accordingly, as  becomes larger, we put relatively less weight on the differences

of the empirical probabilities for thinner probability events. The fourth choice of , 4 = 1,

makes the test statistic identical to the non-weighted KS-statistic.

Table II shows the simulated test size. The rejection probabilities are slightly upward

biased relative to the nominal sizes, while they are overall showing good size performance

even in the cases with the sample sizes being as small as () = (100 100) and being

unbalanced as much as () = (100 1000). It is also worth noting that these test sizes are

not sensitive to a choice of trimming constant.

In order to see finite sample power performance of our test, we simulate the rejection

probabilities of the bootstrap test against four different specifications of fixed alternatives.

These four data generating processes share

Pr( = 1) =
1

2
, Pr( = 1| = 1) = 055, Pr( = 1| = 0) = 045

( = 1) = 055×N (0 1)
( = 0) = 045×N (0 1) ( = 0) = 055×N (0 1)

while they differ in terms of specifications of the treated outcome distribution conditional
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on  = 0,

DGP 1: ( = 1) = 045×N (−07 1)
DGP 2: ( = 1) = 045×N (0 16752)
DGP 3: ( = 1) = 045×N (0 05152)

DGP 4: ( = 1) = 045×
5X
=1

N ( 01252)

(1     5) = (015 02 03 02 015) 

(1     5) = (−1−05 0 05 1) 

In all these specifications, violations of the testable implication occur only for the treatment

outcome densities. As plotted in Figure 1, the ways that the densities ( 1) and ( 1)

intersect differ across the DGPs. In DGP 1, ( 1) and ( 1) is differentiated horizontally,

and they intersect only once. In DGP 2, the violations occurs at the tail parts of ( 1)

and ( 1), whereas, in DGP 3, the violation occurs around the modes of ( 1) and ( 1).

In DGP 4, ( 1) is specified to be oscillating sharply around ( 1) and they intersect

many times. In all these specifications, ( 1) and ( 1) are designed to be equally distant

in terms of the one-sided total variation distance, i.e.,
R∞
−∞max {(( 1)− ( 1)) 0}  ≈

0092 for all the DGPs.

Table III shows the simulated rejection probabilities, based on which several remarks

follow. First, we observe that the rejection probabilities vary depending on the DGPs and

the choices of trimming constant. When the violations occur for the tail parts of the densities

(DGP2), smaller  yields a significantly higher power. In contrast, if violations occur on a

fatter part of the densities (DGPs 1, 3 and 4), middle-range ’s and  = 1 tend to exhibit a

slightly higher power than the smallest choice of . This suggests that, if a likely violation

of the testable implications is expected at the tail parts of the distributions, it is important

to use a variance weighted statistic with a sufficiently small  such as  = 007 Given these

simulation findings that a power loss by choosing  = 007 instead of the medium size 

or  = 1 is not so severe in the other cases, we can argue that, in case there is no prior

knowledge available about a likely alternative, one default choice of  is as small as 007.

At the same time, it is also worth reporting the test results with several other choices of

 ∈ (0 05]. Second, the rows of unbalanced sample sizes indicate that the magnitude of

the rejection probabilities tend to depend on a smaller sample size of (), rather than
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Figure 1: Specification of Densities in Monte Carlo Experiments of Test Power
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the total sample size  , so a lack of power should be acknowledged when one of the sample

size is small. Third, for the magnitudes of violations considered in these simulations, the

rejection probabilities are sufficiently close to one (for some smaller choices  only for DGP

2) if the sample sizes are as large as () = (1000 1000).
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Table III: Rejection Probabilities against Fixed Alternatives

Monte Carlo iterations 1000, Bootstrap iterations 300.

Trimming constant 1 ≈ 007 2 = 022 3 = 03 4 = 1

Nominal size .10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01

DGP1 (m,n):(100,100) .31 .22 .10 .31 .21 .10 .30 .21 .10 .23 .15 .05

(100,500) .42 .31 .14 .56 .43 .22 .57 .44 .21 .38 .24 .07

(500,500) .93 .88 .77 .95 .91 .78 .96 .92 .79 .89 .80 .52

(100,1000) .38 .28 .12 .58 .46 .24 .59 .46 .23 .39 .26 .09

(1000,1000) .99 .98 .94 1.00 .99 .97 .99 .98 .94 .99 .98 .93

DGP2 (m,n):(100,100) .16 .09 .02 .15 .09 .02 .08 .04 .00 .01 .00 .00

(100,500) .35 .23 .07 .17 .10 .02 .07 .02 .00 .01 .00 .00

(500,500) .95 .91 .73 .86 .77 .53 .56 .40 .16 .10 .03 .01

(100,1000) .40 .26 .08 .20 .09 .02 .06 .03 .00 .01 .00 .00

(1000,1000) 1.00 1.00 1.00 1.00 .99 .97 .96 .90 .67 .52 .27 .05

DGP3 (m,n):(100,100) .30 .20 .09 .30 .20 .09 .33 .22 .09 .34 .22 .09

(100,500) .32 .21 .08 .51 .38 .19 .59 .46 .23 .55 .40 .15

(500,500) .77 .69 .54 .83 .76 .57 .87 .79 .62 .89 .82 .61

(100,1000) .30 .18 .06 .53 .40 .18 .61 .47 .25 .54 .41 .18

(1000,1000) .98 .96 .89 .99 .98 .93 1.00 .99 .96 1.00 .99 .95

DGP4 (m,n):(100,100) .12 .07 .02 .11 .07 .02 .09 .05 .02 .09 .05 .01

(100,500) .23 .13 .04 .20 .11 .03 .15 .09 .02 .12 .05 .01

(500,500) .46 .33 .17 .45 .33 .16 .33 .22 .10 .23 .13 .03

(100,1000) .26 .15 .05 .22 .13 .05 .15 .10 .03 .11 .06 .01

(1000,1000) .78 .67 .48 .80 .69 .50 .51 .38 .19 .45 .30 .11
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