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Abstract — This paper addresses the polarimetric 

calibration of the nodes of a multistatic radar system, by using 

a reference object with known scattering matrix, such as a 

metallic sphere. A calibration technique is proposed and its 

experimental validation performed in a realistic scenario, by 

accounting also for the multipath effect. The intensity of the 

signal scattered by a metallic sphere and received by the 

monostatic and bistatic nodes of the NetRAD system is 

measured, by varying the antenna height, the object range and 

the bistatic angle.  The adopted calibration technique shows a 

quite good accuracy, as the calibrated values of the radar cross 

section of the reference object are close to the theoretical ones, 

after the compensation of the multipath effect. 

Keywords—polarimetric calibration; multistatic radar; radar 

multipath. 

I. INTRODUCTION  

In recent years, there has been an increasing interest on 

bistatic and multistatic radar systems, consisting of different 

separate nodes. These systems are able to increase the 

diversity of a radar system, as they consist of multiple nodes 

that look at the radar scene from different aspect angles. In 

addition to this ‘geometric diversity’, a further degree of 

freedom can be achieved by combining the radar returns at 

different transmitter-receiver polarizations. However, the 

fusion of polarimetric returns should be preceded by a 

calibration stage, which aims at correcting errors and non-

idealities introduced by the antennas. This problem is 

commonly known as polarimetric calibration, and has been 

deeply studied for monostatic radar systems [1-3]. 

A possible method consists of using one or more objects 

with known scattering matrix as reference. One of the most 

common reference objects for monostatic calibration is the 

trihedral corner reflector, due to its high radar cross section 

(RCS). Unfortunately, the trihedral corner reflector cannot 

be used for bistatic calibration, since its RCS decreases 

rapidly with increasing bistatic angles [4-7]. A suitable 

object for bistatic and multistatic calibration is the metallic 

sphere, as its RCS is not geometry-dependent [8].  

To the best of our knowledge, there is little available work 

addressing the polarimetric calibration of bistatic/multistatic 

radar nodes, and they tend to deal with quasi-monostatic 

cases, i.e. bistatic geometries with small bistatic angles. In 

this work, we aim at proposing a polarimetric calibration 

technique for a multistatic radar system deployed to achieve 

significant bistatic angles. An experimental validation of the 

proposed technique is performed by using the UCL 

NetRAD system, in a realistic scenario. NetRAD is a 

multistatic coherent pulse radar with three separate but 

identical nodes operating at 2.4 GHz, S-band. This system 

has been developed in the past few years at University 

College London [9] and has been employed for different 

research applications, such as sea clutter analysis [10], 

micro-UAV detection and classification [11], and human 

micro-Doppler characterization [12]. 

The measurements highlight the presence of a strong 

multipath effect, due to multiple reflections of the scattered 

signal on the ground plane. A model to compensate for the 

multipath effect is adopted in this paper, taking into account 

the system geometry and the electromagnetic (e.m.) 

scattering properties of the reflecting plane [13-14]. The 

multistatic calibration technique and the proposed multipath 

model are evaluated using co-polarized data in this paper.  

This paper is organized as follows: Section II illustrates the 

theoretical foundations of the proposed multistatic 

polarimetric calibration method. Section III describes the 

radar system and the realized experiments. Section IV 

discusses the results obtained before and after the multipath 

compensation. Final remarks are drawn in Section V.  

II.  MULTISTATIC POLARIMETRIC CALIBRATION 

A. Received Signal Model  

The electric field received by a radar antenna in the 

presence of a target consists of four complex components, 

two co-polar (Evv and Ehh) and two cross-polar (Evh and Ehv). 

In the adopted notation, the first and second indices denote 

the polarization of the transmitted and received signal, 

respectively. The amplitude of each component is indicated 

as Apq (p,q = h,v). The indices p and q represent the wave 

polarization and are set to ‘h’, indicating horizontal 

polarization, or ‘v’, indicating vertical polarization. The 

resulting model is given by  
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where K is a constant term, accounting for the system 

parameters, i.e ( )
-3

T T R= λ 4πK P G G  . GT and GR are the 

gain of the transmitter and receiver antenna, respectively. PT 

is the transmitted power, D is the monostatic range, k is the 

wavenumber, and S is the target scattering matrix. The 

scattering matrix of an object is commonly defined as a 2×2 

complex matrix, where the generic element 

( )exppq pq pqS s jϕ=  is the scattering complex amplitude of 

the object illuminated by a p-polarized e.m. wave and 

scattering re-irradiating a q-polarized e.m. wave.  
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where 
pq pq vv

ϕ ϕ ϕ′ = − . 

It should be noted that the radar cross section of an object 

that receives a p-polarized wave and scatters a q-polarized 

wave is related to the scattering amplitude Spq by 
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The matrix T represents the transmitter distortion matrix,  

 
vv vh

hv hh

T T

T T

 
=  
 

T   (4) 

 

where the terms Tvv and Thv indicate the system distortions 

for the vertically-polarized transmit mode. Under ideal 

conditions, if the h and v ports of the transmitter antenna are 

not coupled, then Tvv = 1 and Thv = 0. Under non-ideal 

conditions we have Tvv<1, due to amplitude and phase errors 

in the transmitted signal, and Thv>0, due to the coupling 

between the h and v ports of the antenna. In the case of 

horizontally-polarized transmit mode, Thh and Tvh represent 

the copolar and cross-polar distortion, respectively. The 

receiver distortion matrix is 
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where Rvv and Rhh represent the amplitude and phase 

distortions introduced by the receiver antenna (Rvv, Rhh 

equal to 1, in the ideal case) and Rhv, Rvh represent cross-

polarization coupling (both equal to zero in the ideal case).  

In this work, we deal with a simple distortion model, 

assuming that there is no coupling between the h and v ports 

of both the transmitter and receiver. In this case, both the 

matrices R and T are diagonal, i.e. Rhv = Rvh = Thv = Tvh = 0.  

Furthermore, we only consider the amplitude of the received 

signal as phase calibration is beyond the scope of this paper. 

The received signal model resulting from the 

aforementioned assumptions about the system distortions is 

given by 
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In this case, the calibration problem is usually referred to as 

simple polarimetric calibration, which has been solved for 

monostatic radars by using two reference objects. A 

reasonable choice of these two calibration objects includes a 

first object with a known diagonal scattering matrix and a 

second object with an unknown full scattering matrix [1,2]. 

If the aforementioned assumptions do not apply, the 

problem can be solved by using three objects, and possible 

solutions are illustrated in [3]. 

B. Polarimetric Multistatic Calibration 

In this work, we use a multistatic system that consists of a 

monostatic node - with parameters denoted by the index m - 

and a bistatic node - with parameters denoted by the index 

b. The transmitter distortion matrix is the same for all 

receiver-transmitter pairs, as there is only one transmitter. 

On the other hand, the receiver distortion matrices of the 

system nodes cannot be assumed to be identical. Hence, in 

the following received signal model, the matrix Tm is used 

for both the monostatic and bistatic nodes, whereas Rm and 

Rb denote the receiver distortion matrices of the monostatic 

node and of the bistatic node, respectively. The received 

electric fields of the monostatic and bistatic nodes are given 

by 
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The constant terms Km and Kb are given by 
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Note that PT, GT and λ are fixed parameters, as they are only 

related to the transmitter. The parameters 
( )m

R
G  and 

( )b

R
G  

represent the gain of the receiver antennas of the monostatic 

and bistatic nodes, respectively. As shown in Fig.1, the 

target is located at a distance Dm from the monostatic node 

and at a distance Db from the bistatic node. The resulting 

bistatic angle is β. It should be noted that, if the calibration 

object is accurately aligned, the monostatic range and the 

bistatic range are known. 

After performing the polarimetric calibration of the 

monostatic node with one of the methods illustrated in [1-3] 

and two or three calibration objects, the values of 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

, , ,
m m m m m m m m

hh hh hh vv vv hh vv vv
R T R T R T R T are exactly known, thus 

the value of the ratio 
( ) ( )m m

vv hh
T T  is also known, and  
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By using a reference object with known diagonal bistatic 

scattering matrix b refS , it is possible to calibrate the bistatic 

receiver. By using this object as reference for the calibration 

of the bistatic receiver we can obtain equation (10) and 

equation (11) by applying equation (9):   
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The calibration of the bistatic receiver is complete, as α, γ 

and δ are known parameters. The sphere is a good candidate 

for this simple polarimetric calibration, as its scattering 

matrix is diagonal and does not vary with the geometry.   

It should be noted that only the amplitudes of the distortion 

terms are required to perform an amplitude calibration. They 

can be computed by extracting the amplitude of each 

complex term in equation (10) and (11). 

C. Copolar Calibration with Multipath Compensation 

We consider the presence of the multipath component, due 

to multiple reflections on the ground surface. The model for 

the amplitude of the received signals, considering only the 

co-polar components and the multipath effect [13-14] is 
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It should be noted that in (12) the amplitude of the co-polar 

distortion components, 
( ) ( )m m

pp pp
R T  and 

( ) ( )b m

pp pp
R T , is extracted 

and that the amplitude of the scattering elements -
( )m

pp
s and

( )b

pp
s  - is used. The multipath effect, due to multiple 

reflections from the ground surface, is introduced in the 

received signal model through the multipath term Mpp, given 

by 
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where p = h,v and ϕ is the phase deviation between the 

direct ray and the two-way reflected ray. For the monostatic 

node, the phase deviation is given by 
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where hR is the radar antenna height, hTGT is the target 

height, λ is the wavelength. The term ρp represents the 

Fresnel reflection coefficient for a p-polarized e.m. wave, 

summarizing the reflecting properties of the ground surface. 

The Fresnel reflection coefficient for horizontal 

polarization, ρh, is given by 
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In the case of vertical polarization, ρv is given by 
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where θ is the grazing angle of the reflection point located 

on the ground plane [1]. A sketch of the system geometry on 

the elevation plane is shown in Fig.2. The monostatic 

grazing angle is given by  

 ( )arctanm R TGT mh h Dθ = +     (17) 

 

The parameter Y accounts for the electromagnetic properties 

of the reflecting plane and is given by 
 

 60
r
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where εr is the relative permittivity and σ is the conductivity. 

The value of εr depends on the material of the reflecting 

plane, in our case soil covered by grass. The soil moisture 

has also an effect on the value of εr, as the presence of water 

increases the electrical permittivity of materials [1]. 

Depending on the soil moisture, values of εr are included 

between 0 and 40. The conductivity has low values, 

approximately equal to 0.01 S/m.  

For the bistatic geometry, the e.m. wave is reflected around 

two different points on the ground plane. The first reflecting 

point is the same as in the monostatic geometry, 

characterized by the Fresnel coefficient 
( )m

p
ρ  and phase 

deviation 
m

φ .The second reflecting point is located along 

the path from the target to the bistatic node, characterized by 

a phase deviation given by 
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whereas the Fresnel reflection coefficient,
( )b

p
ρ , is obtained 

from (15) or (16), by using the grazing angle 

( )arctanb R TGT bh h Dθ = +    of the reflection point between 

the target and the bistatic node. 

The resulting bistatic multipath coefficient is given by 
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The bistatic antenna height is assumed to be equal to the 

monostatic one, and Db represents the bistatic range, i.e. 

2 2

b m
D D L= +  , L is the baseline.  

The amplitudes of the co-polar elements of the object 

scattering matrix are calculated by using a reference object 

of known scattering elements (
( )m

pp refs ,
( )b

pp refs ),  
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In (21) the amplitude of the received electric field from the 

object under test is normalized to the amplitude of the 

received electric field of the reference object. The reference 

object and object under tests can be located at different 



distances from the radar nodes, hence their scattered signals 

are attenuated by different propagation losses and distorted 

by different multipath terms. These are corrected by the 

second and third terms in equation (21).  
 

 

Fig. 1. Sketch of the geometry on the azimuth plane: M and B are the 

monostatic and bistatic node, respectively. L is the baseline, Dm is the target 

monostatic range, Db is the distance of the target from the bistatic node. β is 

the bistatic angle. 

 
Fig. 2. Sketch of the geometry on the elevation plane: hR and hTGT are the 

height of the radar antenna and of the target, respectively. D is the distance 

between the target and the radar antenna, measured on the ground plane. θ 

is the grazing angle of the reflection point. 

III. EXPERIMENT DESCRIPTION 

The experiments used two NetRAD nodes, a monostatic 
transceiver and a receive-only bistatic receiver. The radar 
carrier frequency is 2.4 GHz, the pulse repetition frequency 
(PRF) was set at 1 kHz, and the transmitted signal was a 
linear up-chirp with 45 MHz bandwidth and 0.6 µs pulse 
length. Each dataset was 5 s long, with 5000 recorded 
pulses. The experiment took place in an open football field 
at the UCL Sports Grounds in Shenley, to the North of 
London. Fig. 3 shows the calibration targets. A metallic 
sphere with 40 cm radius was used as a reference object for 
the bistatic and monostatic measurements. The scattering 
matrix of a metallic sphere is diagonal, i.e. its cross-polar 
components are null, whereas its co-polar components (HH 
and VV) are equal and constant for all the possible 
geometries. The theoretical RCS of a sphere is given by its 
silhouette area, i.e. 

 
2
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RCS rπ=   (22) 

The theoretical RCS of the sphere used here was therefore 

approximately -2.98 dBsm. However, the bistatic sphere 

RCS can present fluctuations up to several dBs, depending 

on the ratio of its radius to the wavelength. Furthermore, 

large values of the bistatic angle require a sufficiently large 

value of radius/wavelength ratio to ensure that the sphere 

RCS fluctuations are negligible. For this reason a tradeoff 

between the minimum sphere radius and the maximum 

bistatic angle should be achieved. After an examination of 

the RCS fluctuations as a function of the bistatic angle and 

of the values of this ratio [8], and considering that the 

sphere radius is equal to 40 cm and the radar wavelength is 

equal to 12.5 cm, the maximum bistatic angle is 

approximately 60°.  
A trihedral corner reflector was used as a target for the 
monostatic measurements.  The scattering matrix of the 
trihedral is diagonal and its co-polar components are equal 
in the monostatic case. Furthermore, its theoretical RCS is 
very high, thus it is a suitable reference object for 
calibrating a monostatic radar. The utilized trihedral has 
square plates, with the side of length l, equal to 50 cm. The 
theoretical RCS of a trihedral with square plates is given by 
equation (23), approximately equal to 21.7 dBsm for the 
trihedral used here. 
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Measurements with different antenna heights and target 
ranges were performed to evaluate the robustness of the 
calibration technique against multipath. The baseline was 
equal to 50 m. A summary of the measurement geometries 
is illustrated in Table I.  

TABLE I.  SUMMARY OF MEASUREMENT GEOMETRIES. hR: ANTENNA 

HEIGHT, Dm: MONOSTATIC RANGE, Db: BISTATIC RANGE, β: BISTATIC 

ANGLE, θm: MONOSTATIC GRAZING ANGLE,  θb: BISTATIC GRAZING ANGLE. 

hR (m) Dm (m) Db (m) β θm θb 

1.06  90 103 29.1° 1.31° 1.14° 

1.06  100 112 26.8° 1.18° 1.05° 

1.06  110 121 24.6° 1.07° 0.97° 

1.60 90 103 29.1° 1.65° 1.44° 

1.60 100 112 26.8° 1.49° 1.33° 

 

 
 

Fig. 3. Antennas at the NetRAD monostatic node and calibration objects 

(trihedral corner reflector and metallic sphere) mounted on a support of 

e.m. absorbing material.  



After collecting the scattered electric field by the sphere and 

the trihedral, one of the dataset was chosen as reference and 

the calibration was performed on the remaining dataset. The 

difference between the theoretical and the calibrated RCS 

value was selected as a measure of the calibration accuracy 

achieved by the adopted technique. 

 

IV. RESULTS 

The time history plots of the received signal intensity as a 

function of time are shown in Fig.4. The HH and VV data 

collected by using the sphere as target show an almost 

constant intensity, approximately equal to -20 dB, whereas 

the intensity of the cross polarized (HV) data fluctuates 

between -35 dB and -40 dB. The background intensity 

fluctuates between -35 dB and -50 dB. These results are 

related to the fact that the scattering matrix of a sphere is 

diagonal, with identical diagonal elements. Hence, the HH 

and VV components should assume identical values and the 

HV and VH components should consist only of background 

noise. Both of these hypotheses are verified by the data in 

Fig.4. The difference between the co-polar and cross-polar 

signal intensities indicates also the polarization isolation of 

the system, approximately equal to 15 dB. In the following 

subsections, the accuracy of the proposed calibration 

technique is evaluated before and after the compensation of 

the multipath effect. 
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Fig. 4. Time history of intensity values of the received signals (in dB), 

relative to the bistatic sphere measurements. hR = 1.06 m and Dm = 90 m. 

A. Before multipath compensation 

For each dataset, the mean intensity of the measured data 

was extracted as an estimate of the signal intensity. The 

received signal samples as extracted from the range cell 

where the object was located consist of a constant term, i.e 

the scattering amplitude of the stationary object, plus a 

random disturbance. The latter is related to thermal noise 

and ground clutter, and can be assumed to be Gaussian-

distributed. Hence the Maximum-Likelihood Estimate 

(MLE) of the signal amplitude, ŝ is given by equation (24) 
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where zI(n) and zQ(n) represent the in-phase and quadrature 

received signal samples, respectively. The number of pulses 

is indicated as N, equal to 5000 for the analyzed datasets.  

The measured values of the RCS are calculated as in (3), 

then calibrated by using (21). The sphere monostatic and 

bistatic measurements performed at the minimum antenna 

height (1.06 m) and minimum range from the monostatic 

node (90 m) were used as reference.  

Initially the co-polar calibration was performed without 

compensating for multipath. The resulting calibrated values 

of the sphere RCS, compared to the theoretical sphere RCS, 

are shown in Fig.5. 
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Fig. 5. Calibrated sphere RCS values, before multipath compensation. The 

HH RCS values are plotted in blue, the VV ones are plotted in red, the 

theoretical ones in black. 

B. After multipath compensation 

A critical parameter for a good multipath model is the 

relative permittivity, and the variation of the calibrated RCS 

values as a function of this parameter is shown in Fig. 6. 

The sphere RCS values are expected to be identical for all 

the geometries and polarizations. Fig.6a shows that the HH 

and VV curves cross for εR ≈ 25 and RCS ≈ -2.55 dBsm. 

Fig.6b shows that the HH and VV curves cross for εR ≈ 26 

and RCS ≈ -2.4 dBsm. Hence, a good approximation of the 

permittivity is between 25 and 26. This is confirmed by 

examining the values of the calibrated RCS values of the 

trihedral, in the monostatic case as in Fig. 6c, where the HH 

and VV curves cross for εR ≈ 24 and RCS ≈ 20.2 dB. The 

calibrated RCS values, obtained by setting εR = 25   are not 

far from the theoretical values (about -3dBsm for the sphere 

and 21.7 dBsm for the trihedral).  

The calibrated values of the sphere RCS after multipath 

compensation are shown for each analyzed geometry in 

Fig.7.  By comparing the results shown in Fig.5 and Fig.7, it 

can be noted that the multipath compensation makes the 

RCS values closer to the theoretical ones. Except for the 

monostatic data collected at minimum antenna height and 

110 m range, the HH and VV data are almost identical, 

which shows good performance of the calibration method in 

correcting the deviations between data at different 

polarizations. The calibrated RCS values show deviations 

smaller than 2.5 dBsm from the theoretical values, meaning 



that a good calibration accuracy is achieved, considering 

that the measurements were realized in a realistic scenario. 
 

 

 
Fig. 6. Calibrated RCS values, after multipath compensation, as a function 

of the relative permittivity εR.  Sphere, monostatic (a) and bistatic (b); 

trihedral monostatic (c), at 100 m monostatic range and maximum antenna 

height. HH RCS values plotted in blue and VV RCS values plotted in red. 
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Fig. 7. Calibrated sphere RCS values, after multipath compensation. The 

HH RCS values are plotted in blue, the VV ones are plotted in red, the 

theoretical ones in black. 

V. CONCLUSION 

In this work, we have illustrated and tested with 

experimental data a polarimetric calibration technique for 

multistatic radar systems. The results obtained from the 

experimental validation have shown that the calibrated RCS 

values are almost identical for HH and VV data and that the 

calibration accuracy is good.  

In the future, the proposed calibration technique will be 

extended to the cross-polar channels, i.e. HV and VH. 

Furthermore, the assumption on the coupling between the h 

and v ports of both the receiver and transmitter antennas will 

be eliminated, in order to realize a fully polarimetric 

calibration of a multistatic radar. To this aim, one or more 

objects with totally or partially known bistatic scattering 

matrix should be found or developed to be used as reference 

targets for the cross-polar channels.  
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