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1. Introduction11

Human pose estimation [1, 1, 2] is widely applied in human-computer in-12

teraction, smart video surveillance, health care, etc. Although a lot of efforts13

have been devoted to the research of pose estimation, it remains a very chal-14

lenging problem in computer vision because of occlusion, high dimensionality15

of the search space and high variability in people’s appearance.16

The depth image obtained by the depth sensor [3, 4, 5] can provide 2.5D17

scene geometry, which facilitates both the segmentation of human body from18

background and the disambiguation of similar poses. Recently, the focus of19

pose estimation [6, 7, 8, 9] has been shifted toward pose estimation on depth20

images. Most of these works can be divided into two categories: generative21

methods and discriminative methods.22

Typical generative methods include the proposals in [10, 9, 11, 12], in23

which a kinematic chain and a 3D surface mesh are built as the human body24

model. They treat the depth image as a point cloud over 3D space and apply25

a model-fitting algorithm, such as the iterative closest point (ICP), to the26

human body model to fit the 3D point cloud. Ye et al. [11], Ganapathi et27

al. [12] and Baak et al. [9] combine dataset searching and model fitting to28

approach the problem of 3D pose estimation. Ganapathi et al. [10] extend29

the ICP to an articulated model by enforcing constraints over the pose space.30

Although such methods do not need a training step, they suffer many draw-31

backs. For example, the accuracy depends on the surface mesh level [13] and32

the fitting usually needs long processing and inconvenient setups.33
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Compared with the generative methods, the discriminative methods do34

not iteratively fit models to the observed data. Rather they directly esti-35

mate the parameters about pose. Thus they can estimate the pose quickly36

and adapt to various conditions. They regard the human pose as a collection37

of different parts/joints and learn discriminative classifiers for the part/joint38

detection [6, 8, 7, 14]. The most famous works on depth images are those39

based on random forest [6, 8, 7]. Shotton et al. [6] formulate the pose estima-40

tion as a classification task and use the random forests to learn the classifiers.41

Girshick et al. [8] convert the classification task to the regression problem for42

the estimation of the occluded parts. In [7], Sun et al. incorporate tem-43

porary states of the object, such as person’s height and facing direction, to44

boost the performance of the classifiers. However, these methods infer lo-45

cations of body joints either independently [6, 8] or relying on some global46

information [7], neglecting the dependence between body joints.47

It is natural to boost the pose estimation performance by adding con-48

straints among joints. One of the most widely used approach in this direc-49

tion is to use graph model-based prior structure, which was first proposed50

in [15] for general computer vision problems and later applied to the pose51

estimation problem in [16]. It assumes that the relationships among joints52

are state-constrained among the body parts. Two important components53

are defined in the model: one is the appearance model which represents the54

probability of a body part at a particular location in the given image; the55

other is the prior model which represents the probability distribution over56
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pose space. To make a trade-off between computational efficiency and es-57

timation accuracy, tree-structured models with a single Gaussian prior are58

commonly used [15, 16, 17, 18]. However, as the diversity of human pose59

increases, a simple Gaussian prior usually leads to a poor model of human60

articulation, which cannot be applied well to the tasks on the depth images.61

This is mainly due to two reasons. One is that it is not an easy work to62

find a proper kernel number for the Gaussian model in a large dataset. A63

small number may cause a poor fitting of the prior, while a large number64

will cost extra computation and is prone to over-fitting. The other is that65

the method always applies the same prior model to test samples, even when66

they are of distinct poses. This limits the adaptability of the method. The67

works in [19, 20] cluster poses into sub-clusters and learn a GMM for each68

sub-cluster to enhance the adaptability of prior model. However, at the in-69

ference stage, they need to infer all possible poses and select one as the final70

output. This makes the inference complex.71

In this paper, we propose a novel framework called Latent Variable Picto-72

rial Structure (LVPS) for pose estimation on depth images. We construct and73

estimate a latent variable based on the human silhouette. At the inference74

stage, our model rebuilds the appearance model and the prior model based75

on the values of the latent variable and then infers human poses. We shall76

show its effectiveness through experiments on public datasets. Compared77

with the state-of-the-art methods, our proposal can significantly increase the78

accuracy of pose estimation.79
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The rest of the paper is organized as follows. We overview the proposal80

in Section 2. Our LVPS model is introduced in Section 3 and its application81

to the pose estimation in Section 4. We present experiments and discussions82

in Section 5 and draw conclusions in Section 6.83

2. Overview of the proposed method84

Fig. 1 shows the framework of our LVPS. It consists of two main processes:85

the training stage indicated by green arrows and the inference stage indicated86

by blue arrows.87

The training stage. The keys of the training stage involve generation88

and selection of the latent variable and the training of models. In our work,89

we extract silhouette features of poses, obtain their distributions, quantize90

the distributions into a set of states C, and use the state label as the latent91

variable. According to the value of the latent variable, all the training sam-92

ples are partitioned into subsets. After that, we attach the value of the latent93

variable to each sample and treat each sample as a two-labels object: a body94

part label and a latent variable state. Samples with labels are then input95

into classifiers to learn appearance models and prior models. As a result, the96

diversity of the appearance and prior in each cluster would be reduced and97

the prior model can be better learned and the discrimination ability of the98

appearance model can be largely enhanced.99

The inference stage. As the blue arrows indicate, to estimate one body100

pose on depth image I, we shall first evaluate its latent state. This is, the101
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likelihood p(ci|I) is estimated. After that we rebuild our prior model and102

appearance model by assembling the learned models of individual clusters103

according to the likelihoods. As a result, our proposal adapts the models104

based on the specific test image.
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Figure 1: The flowchart of the proposed method: the process with green arrows is the
training stage and that with blue arrows is the inference stage.

105

3. Latent variable pictorial structure106

A classical pictorial structure model of the human body was proposed107

in [15]. It assumes that the dependences between body joints can be ex-108

pressed by a predefined graph, G = (V,E), as shown in Fig 2, where V109

and E denote the sets of nodes and edges in the graph G, respectively. We110

use X = {x1, x2, ...} to denote the pose, in which xi denotes the position of111

joint i. For the detection of an articular object, the objective function to be112
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Figure 2: The graph model on human pose. The circle with a number is a vertex in V ,
which presents a joint/part of the body; the line between two joints is an edge in E, which
indicates that the connected joints/parts are dependent.

maximized when given image I can be written as113

pPS(X|I) ∝

{∏
i∈V

ϕ(xi|I)

} ∏
(i,j)∈E

ϕ(xi, xj)

 , (1)

where ϕ(xi|I) denotes the appearance likelihood, which models the probabil-114

ity of a part at a particular location and orientation given the input image115

I, and the factor ϕ(xi, xj) denotes a prior, which models the probability dis-116

tribution over pose space. In this paper, the factor ϕ(xi, xj) describes the117

distribution of relative position between joint i and joint j.118

In most existing methods based on the general pictorial structure model,119

only one tree-structured Gaussian prior is used to speed up the inference, and120

the appearance models of individual parts are learned independently. This121
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leads to a prior of low descriptive ability and an appearance model which122

cannot capture the multi-modal appearance of body parts, e.g. the different123

appearances of a body part in different views.124

To overcome these issues, we incorporate a latent variable into the gen-125

eral pictorial structure to propose a latent variable pictorial structure model126

(LVPS). Specifically, we utilize the discrete state of the latent variable to par-127

tition samples and the pose space. Hence the diversity of the appearance and128

prior in each cluster would be reduced, which results in more effective and129

reliable appearance and prior models at the cluster level than the global mod-130

els. Besides, clustering over the latent variable feature space leads to a simple131

classifier. We use c to denote the discrete latent variable, C = (c1, . . . , cK)132

to denote the set of the K states of the latent variable, and p(ck|I) to denote133

the probability of the state ck given image I.134

Then based on the latent structure we obtain the posterior probability of135

pose X as136

pLV PS(X|I) ∝
∑
ck∈C

{
pPS(X|ck, I)p(ck|I)

}
, (2)

where pPS(X|ck, I) denotes the posterior probability conditional on the spe-137

cific cluster corresponding to ck. The latent variable c may encode any de-138

sirable properties of the target objects. In this paper, we propose to utilize139

it to encode the whole human pose through body silhouette.140

The inference stage is show in Fig 3. To the given image I, we first extract141

its latent variable value Hist(I), which has a form of histogram of silhouette142
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Figure 3: The flowchart of inferring a human pose X from the given image I.

features in this paper. Then the likelihood is evaluated between Hist(I)143

and those of sub-models. We sort the sub-models in descending order of the144

likelihood p(c|I) and the first K∗ sub-models that have their total likelihood145

beyond threshold T are selected. At last, a linear strategy is used to build146

the final detection model for the pose inference using (3):147

X∗ = argmax
X

K∗∑
k=1

{
pPS(X|ck, I) ∗ p(ck|I)

}
,

K∗ = argmin
N

N∑
i=1

{p(ci|I)} > T,

(3)

where K∗ is the number of selected sub-model, T is the threshold and N is148

a variable for counting sub-models. In this way we can adjust the number149

of the models used for the test sample, and its effect can be shown in the150

experiments in Section 5.4.151
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4. Details of LVPS152

This section describes how the LVPS models are implemented for human153

pose estimation. Since the samples are partitioned into subsets based on the154

value of the latent variable, the variation of the pose space is decomposed155

and a pose subspace can be better modeled even with a simple model. As a156

result, two main parts will be discussed in the following: the generation and157

selection of the latent variable and the learning of the appearance models.158

4.1. The latent variable159

A simple way to model the variation of the pose space is to cluster poses160

directly in the pose space as in [20]. However, they have to learn a multino-161

mial logistic regression to classify each cluster. Another way is to use some162

properties of the object [7, 21], such as torso orientation, person’s height or163

facing direction. These features are natural, but they are not much associated164

with the pose as a whole.165

In our proposal, we extract a kind of silhouette feature to represent the166

pose and use such feature to build our latent variable and to cluster our167

samples. The most commonly used silhouette feature to represent a pose is168

the shape context feature, which was first proposed in [22] for shape matching169

and then used for human pose estimation [23, 24]. However, the silhouette170

features extracted from RGB/grey images cannot represent the 3D structure171

of pose. So He et al. [25] extend the 2D shape context [23] to 3D space.172

To the best of our knowledge, existing pose estimation methods only use173
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silhouette feature to learn maps from the feature space to the pose space,174

rather than to build latent variables to boost the prior model.175

Original image
Silhouette 

extraction

Feature 

extraction

Parameter

calculation

Histogram

binning
(a) (b) (c) (d) (e)

Figure 4: Extraction of shape context feature in [25]: (a) is the original depth image; (b)
is the result after silhouette extraction; (c) shows how to extract the shape context feature
on point p1; (d) calculates the offset parameters between p1 and any other points on the
silhouette; (e) shows the building of histogram of the shape context feature.

In the following, we discuss how to generate and select the latent variable176

using the feature proposed in [25].177

One brief flowchart of feature extraction [25] is shown in Fig 4. First,178

a sequence of edge points are extracted on each depth image. Then, for179

each edge point, the offsets between it and other points are calculated and180

voted into a histogram. This histogram encodes local pose information by181

collecting offsets on the edge points and is called shape context feature. At182

last, one pose is encoded by a bag of shape context features. More details183

about the feature extraction can be found in [25]. However, with such a bag184

of features, it is computationally consuming to compare two images.185

To tackle this issue, we use the method in [23] to align these shape context186

features, which will be then used to form a feature vector for the construction187

of our latent variable. Specifically, we run k-means on the shape context188
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features from all the training samples to obtain B quantized centers. To189

represent one pose, we softly vote the shape context features of one image190

onto these learned centers with Gaussian weights. Finally, each pose on a191

depth image can be represented by a B-dimensional feature vector f . In the192

experiments, we set B to 100 as with [23]. Feature vectors of some samples193

are shown in Fig. 5.

Figure 5: Some samples and their feature vectors f .

194

The feature vector f encodes the silhouette of body and can capture richer195

pose information than some straight properties, such as torso orientation and196

persons height. To quantize a feature vector further, we perform another k-197

means algorithm to obtain K discrete states (i.e. cluster labels) as the values198

of the feature vectors. We adopt the cluster label as the latent variable. After199

that, we can partition the training data into K subsets based on the value200

of the latent variable and can estimate the likelihood that image I belongs201

to the kth cluster ck by using a simple histogram distance as202

p(ck|I) ∝ 1/dst(Hist(I), Hist(ck)), (4)

where dst(Hist(I), Hist(ck)) indicates the distance between two histograms203
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Hist(I) and Hist(ck).204

We show some average poses of individual clusters in Fig. 6. From Fig. 6,205

we can find that by clustering poses through the mid-level representation we206

can encode pose states and reduce the pose diversity in each cluster. For207

example, in Fig. 6, clusters (1), (4) and (6) show the hands changes while208

(1), (2) and (5) focus on the facing direction. In Section 5, more samples209

are shown in the experiments and the value of sub-model number K and its210

influence on the performance will be discussed.

(1) (2) (3) (5) (6)(4)

Figure 6: Six average poses of individual clusters: our latent variable encodes pose states
and reduce the pose diversity in each cluster. Average poses (1), (4) and (6) show the
hands changes while (1), (2) and (5) focus on the facing direction.

211

4.2. Learning of the model212

Random forests [26] have been proved as an effect and efficient algorithm213

for human pose estimation on depth images. This section introduces how214

to learn the structure of random forest and the corresponding parameters of215

appearance models. We learn the structure of random forest based on the216

method in [8], but different from [8], we treat each sample as a two-label217

structure.218

Overview of random forest. Random forest Γ = {Tt} is a collection219

of randomized decision trees Tt. Each tree Tt is built on a randomly selected220
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subset of training samples and learns a mapping from a sampled point to221

parameter space Θ. For the classification task, the parameter space is the222

label set, indicating the body part, and for the regression task, it may beR3 in223

our case. To learn the structure of tree Tt, the selected samples corresponding224

to tree Tt will be iteratively divided into two separated subsets by a binary225

splitting function ζ. The splitting function ζ could be simple comparison of226

feature values and its threshold is generated randomly. The best one of the227

splitting functions will be chosen by maximizing the information gain. We228

use S = {si} to denote the set of the training samples and SL, SR for the two229

split subsets. As a result, the destination function can be written as230

ζ∗ = argmin
ζ

g(ζ), (5)

231

g(ζ) = H(S)−
∑

i∈{L,R}

|Si|
|S|

H(Si), (6)

where H(·) is the entropy or the sum-of-squared-differences depending on232

the specific task. This splitting continues recursively until the stop criteria233

are met, e.g. the tree reaches the maximal depth or there are less than a234

minimum number of samples in set S.235

Learning tree structures. We treat each pixel labeled by a body part236

on the depth image as a sample and use random forest for the multi-label237

classification task. If each sample subset is used to train each sub-model238

independently, the complexity of the final model will increase at least linearly239
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in number of states of the latent variable. To address this issue, we employ240

a shared-structure model to train the random forest. We see each sample241

(pixel) as a multi-tag object si = (fi, li, ci), where fi refers to features, li242

refers to the body part label and ci refers to the latent state. To fit the243

multi-tag samples, we adjust the expression of entropy H(S) to be244

H(S) =
∑
c∈C

H(Sc), (7)

H(Sc) = −
∑
li

pli,c log(pli,c), (8)

where H(Sc) is the entropy from the sample subset under the same latent245

state c, and pli,c is the probability of the sample with the label li in the246

subset. We adopt the depth comparison features proposed in [6], then the247

splitting function ζ for sample s could be:248

ζ(s; k, η) =

 0, if fs(k) < η ,

1, otherwise .
(9)

where fs(k) is the kth value in the depth comparsion features and η is the249

random threshold.250

Parameters of appearance model. At each leaf ι of a tree we learn251

a compact expression p(xi|ι, ck) of votes for the position xi conditional on252

the value of latent variable ck. Specifically, for each sample set with latent253
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variable ck, a mean-shift algorithm with a Gaussian kernel is applied to clus-254

ter the relative votes which present the offsets from the sampled position255

to the body part. The largest M centers {∆ιmck} are stored at leaf node ι256

with a confidence weight wιmck which is equal to the size of the cluster. As a257

result, the conditional distribution p(xi|ι, ck) can be expressed by using the258

Gaussian Parzen density estimators as:259

p(xi|ck, ι) ∝
∑
m∈M

wιmck exp(−
∥xi − (∆ιmck + xs)∥2

b2
), (10)

where xs is the 3D location of sampled point s, b is the kernel bandwidth260

and we set an empirical value 0.05m in the experiments. While (10) models261

the probability for a voting element arriving at the leaf ι of a single tree, the262

probability over the forest is calculated by averaging over all trees,263

ϕ(xi|ck) ∝
1

|T |
∑
Tt∈T

p(x|ck, ιt), (11)

where ιt is the corresponding leaf of tree Tt in the forest.264

Parameters of prior model. Besides learning parameters of the ap-265

pearance model at each leaf ι, we also learn a compact expression p(∆ij|ι, ck)266

of the relative position between joints i and j conditional on the value of267

latent variable ck using the similar method as that in the learning of ap-268

pearance parameters. We use {∆ij,ιmck} to denote the learned centers of the269

relative position between joints i and j by mean-shift algorithm and wij,ιmck270
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to denote its weight. So, the relative position distribution between joints i271

and j conditional on the leaf ι and latent variable ck can be expressed as272

p(xi, xj|ck, ι) ∝
∑
m∈M

wij,ιmck
exp(−∥xi − xj −∆ij,mck∥

2

bij
2 ), (12)

where xi and xj are the estimated positions of joints i and j, and bij is the273

kernel bandwidth, which we set to the average limb length in the training274

data. As a result, the probability of the forest is calculated by averaging over275

all trees,276

ϕ(xi, xj|ck) ∝
1

|T |
∑
Tt∈T

p(xi, xj|ck, ι). (13)

Compared with the Gaussian prior model, our prior model builds its expres-277

sion using specific sampling points on each test image. This would enhance278

adaptability of a prior model.279

5. Experiments and Discussion280

5.1. Datasets281

In this section, we evaluate our algorithm for human pose estimation on282

two depth datasets, the Stanford dataset [12] and our THU pose dataset.283

The Stanford dataset. It consists of 28 action sequences of one person,284

which includes 7891 images in total with a resolution of 176×144. The images285

were captured by using a ToF camera in a lab environment and joint positions286

are obtained by motion sensors. Among the images, 6000 are selected for287

training and the rest, less than 2000, are for testing.288
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The THU dataset2. To further evaluate our method, we collect a new289

dataset for experiments. Our THU dataset2 contains 15000 depth images290

captured by a Kinect camera, which consists of 5 persons performing general291

actions (including upper/lower limbs movements, turning, jumping, etc.).292

Some samples are shown in Fig. 7. We use motion detection method, such293

as [27, 28], to get the foreground manually labeled landmarks as the ground294

truth. Among the images, 10000 are randomly selected for training and the295

rest are for testing.

Figure 7: Samples from the THU dataset2: RGB and depth images.

296
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5.2. Preprocessing of the training data297

We assume the foreground is clear in our model. So to ensure this, some298

preprocessing should be done before training. We perform a motion-based299

method [29] to segment the foreground from background. Some segmentation300

results in the Stanford dataset are shown in Fig. 8. Besides, the baseline301

method [8] used in this paper needs to label the pixels for each part. It302

involves a great deal of work. To facilitate this, we label each pixel as the303

nearest body part.

Figure 8: Results of foreground segmentation of [25] in the Stanford dataset: pairs of
original and foreground images.

304

5.3. Performance evaluation305

To evaluate our algorithm, we compare our proposed method with some306

state-of-the-art methods in [8, 30, 12, 11]. Two measures are used to demon-307

strate the performance: the average error and the mean of average precision308

(mAP). The average error for each joint evaluates the average difference be-309

tween the estimated position and its ground truth under the Euclidean space310

and the mAP presents the ratio of the most confident joint hypothesis within311

the distance tolerance τ = 0.1m, as with [8]. For the specific joint i, its mAP312

can be calculated by313
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mAP i =
1

M

M∑
m=1

1(|x̂i(m)− xi(m)| < τ), (14)

where M is the number of testing samples, x̂i(m) is the estimated position314

of joint i, xi(m) is the ground-truth and 1(·) is an indicator function.315

Experiments on the Stanford Dataset. Considering the sample size316

and pose variation in this dataset, we set K to 4 (∥C∥ = 4), the centers of317

the four clusters are shown in Fig. 9, and we set T = 0.2 for the inference318

stage. The influence of the cluster number K and the threshold T will be319

discussed in Section 5.4.320

On this dataset, we compare our method with some state-of-the-art meth-321

ods [8, 30, 12, 11]. The experimental results are shown in the second column322

of Table 1. We can observe that compared with the published results, our323

method obtains a better result, the mAP of 98.2%. Some of the estimated324

results are illustrated in Fig. 10. From Fig. 10, it can be found that our325

method can get good results for the most samples with a front-facing an-326

gle and with a small side-facing angle. We note that it fails under a large327

side-facing angle, the results are shown in the black box in Fig. 10. It is a328

challenging task to estimate human pose within a side-standing body. The329

first result in the black box shows that our method fails to estimate the part330

on the right body due to a large area occlusion. The second result in the331

black box shows that our method makes a symmetric error because it cannot332

recognize a back-facing body on this depth image. To overcome this issue,333
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methods in [31, 32] on sequence of images or some tracking methods in [33]334

may help. Additionally, we test the speed of our algorithm in processing335

one image on the Stanford dataset. With our non-optimized code, it runs336

the processing at about 36fps on our 4-cores computer. This would be fast337

enough for many visual interaction tasks.

Table 1: Comparison of mAP (τ = 0.1m) with some state-of-the-art methods.

Method On Stanford dataset On THU dataset2
Ganapathi et al. [12] 0.898 –
Ye et al. [11] 0.950 –
Shotton et al. [6] 0.947 –
Girshick et al. [8] 0.957 0.89
He15 [25] 0.98 0.88
ours 0.982 0.971

(1) (2) (3) (4)

Figure 9: The centers of clusters on the Stanford dataset.

338

Experiments on the THU Dataset2. For this dataset, we set K to339

16 and the average poses are shown in Fig. 11. For each cluster, we use the340

method in [25] to train the random forest. The rest of the settings are the341

same as that on the Stanford dataset.342

We compare our approach to a state-of-the-art method proposed by Gir-343

shick et al. [8] and the method in [25]. They both estimate the joint locations344
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(a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

Figure 10: Nine estimated results on the Stanford dataset: (a) the original depth image;
(b), (c) and (d) our results from the front view, the left-side view and the top view,
respectively. Results in the box are those that our method fails.

by regression forest. Experimental results are shown in the third column of345

Table 1. The detailed comparison of the approach [8], denoted by ‘Girshick et346

al.’, and our LVPS, denoted by ‘ours’, is shown in Fig. 12. From the Fig. 12,347

we can find that our algorithm achieves better results than that of [8]. More348

specifically, our algorithm obtains 3.6cm in the average error and 97.1% in349

mAP. Besides, the superior results can be remarkably observed at limb ends,350

such as elbow, wrist and hand, which we think benefits from the use of la-351

tent models and the graphical models. Compared with the method [25], our352

method yields a better result. By the way, the method [25] can be seen as353

the case that K = 1 the proposed algorithm. Some samples are illustrated354

in Fig. 13.355
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Figure 11: The centers of clusters on the THU dataset2.

(a) (b)

Figure 12: Performance on the THU dataset2: (a) average estimation error vs. body joint;
(b) mAP vs. body joint.

(a) (b) (c) (d) (e)

Figure 13: Three estimated sample images from the method in [8] and ours: (a) the
original depth image; (b) results from the method [8]; (c), (d) and (e) our results from the
front view, the left-side view and the top view, respectively.
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5.4. Discussion356

In this section we investigate the effects of three main factors that may357

affect the pose estimation accuracy of our method. These factors are the358

cluster number K = ∥C∥, the construction of the inference model and the359

threshold T .360

Cluster Number K. We retrain our models with different cluster num-361

bers K from 1 to 32 on both datasets. The results are shown in Fig. 14. On362

the THU dataset2, when K is increased from 1 to 16, the value of mAP is363

enhanced from about 0.88 to 0.97 and after that it drops. It illustrates that364

the larger the cluster number K is, the better the models are learned, but if365

K is too large, it causes over-fitting. On the Stanford dataset, splitting the366

pose space does not boost the performance. We think the small diversity of367

the pose on the Stanford dataset causes this. Nevertheless, when K is equal368

to 1, the method can be seen as the method [25]. Compared with it, we can369

observe the superiority of our method.370

Construction of Inference Model. In the inference stage, we use a371

linear strategy (3) to construct the detection model. We compare our strategy372

in (3) with another usual strategy: using a fixed value of K∗ (K∗=1 and373

2) for inference, denoted by ‘K∗ = 1’ and ‘K∗ = 2’. K∗=1 means the most374

plausible sub-model is used for inference while K∗=2 means that two sub-375

models with the largest likelihoods are linearly combined for inference. The376

results are shown in Table 2. We can observe that our proposal obtains the377

best result among these combining methods, which indicates the effectiveness378
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(a)

(b)

Figure 14: mAP vs. cluster number: (a) results on the THU dataset2, (b) results on the
Stanford dataset.

of our method. Moreover, it can be observed that the results of ‘K∗ = 1’ and379

‘K∗ = 2’ are very close. It implies that our latent variable is discriminative380

to cluster the pose.

Table 2: Performance of various combining strategies.

Method mAP (τ = 0.1m)
K∗ = 1 0.956
K∗ = 2 0.962
ours 0.97

381

Threshold T . The threshold T controls the number of sub-models used382

for inference. We investigate the pose estimation performance under different383

thresholds T and show the results in Fig. 15. Although it yields the best384

results at T = 0.2, it still maintains an mAP of higher than 0.9 for other385

values of T , which indicates the robustness of our model. Additionally, in386

order to further show how the threshold T works, we calculate the proportions387
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of cluster numbers used for inference in Fig. 16. It demonstrates that as the388

threshold T goes up, there are more clusters used for inference. Before T389

reaches 0.2, only the most probable model is used to estimate the human pose.390

After that, more and more models are involved in the inference. Considering391

both the results in Fig. 15 and Fig. 16, we find that merging the proper392

number of models can improve the performance.

Figure 15: mAP vs. the threshold T .

Figure 16: The proportions of cluster numbers used for inference under different thresholds
T : different colors indicate the values of T .

393
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6. Conclusion and Future Work394

In this paper, we have proposed a novel approach to pose estimation on395

depth images. In the approach, we have proposed the latent variable pictorial396

structure (LVPS) to adapt the prior model and enhance the discrimination397

of the appearance model by incorporating a latent variable. We have also398

modified the silhouette features to encode the human pose, clustered the399

pose space and established a new pose dataset to evaluate the performance400

of the proposed method. Through these enhancements, our LVPS model can401

learn better appearance and prior models. Experiments have verified that the402

proposed method could achieve higher accuracy on the published datasets,403

compared with other state-of-the-art methods. It would be interesting to404

further our work by combining this method with object tracking.405
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