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Abstract

Our understanding of cognition has been advanced by two traditionally non-
overlapping and non-interacting groups. Mathematical psychologists rely on
behavioral data to evaluate formal models of cognition, whereas cognitive
neuroscientists rely on statistical models to understand patterns of neural
activity, often without any attempt to make a connection to the mechanism
supporting the computation. Both approaches suffer from critical limitations
as a direct result of their focus on data at one level of analysis (cf. Marr,
1982), and these limitations have inspired researchers to attempt to combine
both neural and behavioral measures in a cross-level integrative fashion. The
importance of solving this problem has spawned several entirely new theoreti-
cal and statistical frameworks developed by both mathematical psychologists
and cognitive neuroscientists. However, with each new approach comes a par-
ticular set of limitations and benefits. In this article, we survey and charac-
terize several approaches for linking brain and behavioral data. We organize
these approaches on the basis of particular cognitive modeling goals: (1) us-
ing the neural data to constrain a behavioral model, (2) using the behavioral
model to predict neural data, and (3) fitting both neural and behavioral data
simultaneously. Within each goal, we highlight a few particularly success-
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ful approaches for accomplishing that goal, and discuss some applications.
Finally, we provide a conceptual guide to choosing among various analytic
approaches in performing model-based cognitive neuroscience.

Keywords: model-based cognitive neuroscience, linking, analysis methods

1. Introduction1

Our understanding of cognition has been advanced by two nearly non-2

overlapping and non-interacting groups. The first group, mathematical psy-3

chologists, is strongly motived by theoretical accounts of cognitive processes,4

and instantiates these theories by developing formal models of cognition.5

The models often assume a system of computations and mathematical equa-6

tions intended to characterize a process that might actually take place in the7

brain. To formally test their theory, mathematical psychologists rely on their8

model’s ability to fit behavioral data. A good fit is thought to reflect an ac-9

curate theory, whereas a bad fit would refute it (Roberts and Pashler, 2000).10

The second group, cognitive neuroscientists, rely on statistical models to un-11

derstand patterns of neural activity, often without any attempt to make a12

connection to the computations that might underlie some hypothesized mech-13

anism. For example, some statistical approaches (e.g., multivariate pattern14

analysis) explicitly condition on the neural data to determine which aspects15

of the data produce better predictions for behavioral outcomes. Such an16

analysis can tell us which brain regions are predictive of a particular behav-17

ior and even by how much, but they say nothing about neither how nor why18

particular brain regions produce said behavior.19

Although both groups are concerned with explaining behavior, they tend20

to approach the challenge from different vantage points. Thinking in terms of21

Marr (1982)’s levels of analysis, mathematical psychologists tend to focus on22

the computational and algorithmic levels, whereas cognitive neuroscientists23

focus more on the implementation level. Although progress can be made24

by maintaining a tight focus, certain opportunities are missed. As a result25

of their single-level focus, both approaches suffer from critical limitations26

(Love, 2015). Without a cognitive model to guide the inferential process,27

cognitive neuroscientists are often (1) unable to interpret their results from28

a mechanistic point of view, (2) unable to address many phenomena when29

restricted to contrast analyses, and (3) unable to bring together results from30

different paradigms in a common theoretical framework. On the other hand,31
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the cognitive models developed by mathematical psychologists are inherently32

abstract, and the importance of physiology and brain function is often un-33

appreciated. After fitting a model to data, mathematical psychologists can34

describe an individual’s behavior, but they can say nothing about the behav-35

ior’s neural basis. More importantly, neural data can provide information36

that can help distinguish between competing cognitive models that cannot37

be uniquely identified based on fits to behavioral data alone (Ditterich, 2010;38

Mack et al., 2013; Purcell et al., 2012).39

The many limitations of single-level analyses have inspired researchers40

to combine neural and behavioral measures in an integrative fashion. The41

importance of solving the integration problem has spawned several entirely42

new statistical modeling approaches developed through collaborations be-43

tween mathematical psychologists and cognitive neuroscientists, collectively44

forming a new field often referred to as model-based cognitive neuroscience45

(e.g., Forstmann et al., 2011; van Maanen et al., 2011; Turner et al., 2013b;46

Mack et al., 2013; Palmeri, 2014; Boehm et al., 2014; Love, 2015; Palmeri47

et al., 2015; Turner et al., 2015b). We refer to these as “approaches”, because48

they are general strategies for integrating neural and behavioral measures via49

cognitive models, and are neither restricted to any particular kind of neural50

or behavioral measure, nor any particular cognitive model. However, with51

each new approach comes a unique set of limitations and benefits. The ap-52

proaches that have emerged in the recent years fill an entire spectrum of53

information flow between neural and behavioral levels of analysis, and de-54

ciding between them can be difficult. Given the overwhelming demand for55

these integrative strategies, we believe that an article surveying the different56

types of analytic approaches could be an invaluable guide for any would-be57

model-based cognitive neuroscientist.58

Here we survey and characterize the many approaches for linking brain59

and behavioral data. We organize these different approaches into three gen-60

eral categories: (1) using the neural data to constrain a behavioral model,61

(2) using the behavioral model to predict neural data, and (3) modeling62

both neural and behavioral data simultaneously. For each specific approach63

within each category, we highlight a few particularly successful examples, and64

discuss some applications. In an attempt to draw a detailed comparison be-65

tween the approaches, we then organize each of the approaches according to a66

variety of factors: the number of processing steps, the commitment to a par-67

ticular theory, the type of information flow, the difficulty of implementation,68

and the type of exploration. In short, we discuss the ways in which current69
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approaches bind data at multiple levels of analysis, and speculate about how70

these methods can productively constrain theory. We close with a discussion71

about additional considerations in model-based cognitive neuroscience, and72

provide an outlook toward future development.73

2. Specific Analytic Approaches74

For ease of categorization and subsequent comparison, we will hypothet-75

ically assume the presence of neural data, denoted N , and behavioral data,76

denoted B, which may or may not have been collected simultaneously. The77

neural data N could be neurophysiological recordings, functional magnetic78

resonance imaging (fMRI), electroencephalography (EEG), or other physi-79

ological measures. The behavioral data B could be response probabilities,80

response times, confidence ratings, or other typical behavioral data collected81

in a cognitive experiment. Cognitive modelers are interested in character-82

izing the mechanisms – specified in mathematical and computational terms83

– that lead to the behavior B observed in a given experimental condition.84

Commonly, this characterization is derived from fitting a cognitive model to85

behavioral data, interpreting the resulting parameter estimates, and compar-86

ing (qualitatively or quantitatively) the observed behavior and the behavior87

predicted by the model. Cognitive neuroscientists are interested in uncover-88

ing the neural mechanisms that lead to the behavior B observed in a given89

experimental condition. Commonly, this process involves a statistical analy-90

sis of neural data with respect to observed behaviors and experimental ma-91

nipulations. However, model-based cognitive neuroscientists are interested in92

integrating neurophysiological information N and behavioral outcomes B by93

way of a cognitive model. The central assumption of these analyses is that94

information obtained from either source of data (N or B) can tell a similar95

story – albeit in different languages – about some aspect of cognition, and96

the integration of the these measures assimilates the differences in languages97

across data modalities.98

As model-based cognitive neuroscientists, we have many choices in decid-99

ing which story we would like to tell, and these choices depend on our research100

goals. In practice, there seems to be at least three general categories of ap-101

proaches in the emerging field of model-based cognitive neuroscience. These102

three categories are illustrated in the rows of Figure 1. The first set of ap-103

proaches uses neural data as auxiliary information that guides or constrains104

a behavioral model. There are several ways in which the neural data can105
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Figure 1: An illustration of several approaches used for linking neural and behavioral
data, organized by specific modeling goals. N represents the neural data, B represents the
behavioral data, N∗ represents simulated internal model states, and θ, δ, and Ω represent
model parameters. When an approach is procedural, progression through processing stages
is represented by arrows of decreasing darkness (e.g., the Latent Input Approach). Dashed
lines indicate conceptual constraints (e.g., the Theoretical Approach), whereas solid lines
indicate statistical constraints.
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constrain modeling choices, and we will discuss three such approaches in the106

subsequent sections. The second set of approaches uses a behavioral model107

as a way to interpret or predict neural data. Behavioral models assume a set108

of mechanisms that theoretically mimic a cognitive process of interest, mak-109

ing them an interesting way to impose theory in data analyses. Moreover,110

while competing cognitive models might predict the same or similar patterns111

of behavioral data B, they might differ considerably in what they predict112

about neural data N , creating a powerful approach to model selection. We113

are faced with many choices in using these model mechanisms to guide our114

search for the interesting neural signatures. In the sections that follow, we115

will discuss two such approaches for accomplishing this goal. The third set of116

approaches builds a single model that jointly accounts for the random varia-117

tion present in both the neural and behavioral data. With the proper model118

in place, one can simultaneously achieve constraint on the behavioral model119

while retaining the ability to interpret the neural data. In the sections that120

follow, we will discuss two approaches designed to accomplish this goal. We121

do not necessarily think this is a comprehensive list; in fact, we suspect that122

there is room for further development, and possibly the creation of entirely123

new analytic approaches.124

Figure 1 represents the specific approaches as graphical diagrams where125

observable measures (i.e., data) are depicted as shaded square nodes, latent126

model parameters are depicted as empty circles, and arrows depict depen-127

dencies. Two of these approaches (i.e., Two-stage and Latent Input) require128

several processing stages, and we have represented the dependency struc-129

ture of these stages as increasingly lighter shades of gray. Most of these130

approaches require a transformation from the data space to a (latent) pa-131

rameter space, and this transformation can be unimodal (i.e., concerning132

only behavior data B or neural data N) or bimodal (i.e., concerning both133

B and N simultaneously). The parameters can define a mechanistic model,134

like those commonly used by cognitive modelers, or they can define a statis-135

tical model, like those commonly used by cognitive neuroscientists. When an136

unimodal transformation is required, we denote the parameters of the neural137

model which predict N as δ, and the parameters of the behavioral model138

which predict B as θ. The neural model parameters δ might be slopes or139

intercept terms from a general linear model, or something more sophisticated140

like those used in topographic latent source analysis (Gershman et al., 2011).141

The behavioral model parameters θ represent things like discriminability in142

the signal detection theory model (Green and Swets, 1966), or the drift rate143
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in the “diffusion decision model”2 (Ratcliff, 1978; Forstmann et al., 2015).144

When a bimodal transformation is required, we generically denote the pa-145

rameters as θ (e.g., the Integrative Approach in the bottom-right panel of146

Figure 1). For example, in the ACT-R framework (Anderson, 2007), the147

set of parameters θ represents a sequence of module activations, and their148

values have bimodal effects in the prediction of both neural and behavioral149

measures. Some approaches in our set require a simulation process where150

the parameters are used to generate synthetic data, and we will denote these151

data with an asterisk (e.g., N∗ denotes predicted neural data in the Latent152

Input Approach). Other approaches assume a secondary projection from a153

set of several parameter spaces to a group-level parameter space, such as in154

hierarchical modeling. We denote these higher-level parameters as Ω (e.g.,155

the Joint Modeling Approach in the bottom-left panel of Figure 1). As an156

example, the joint modeling framework (Turner et al., 2013b) uses a hierar-157

chical (Bayesian) structure for bridging the connection between neural and158

behavioral measures. With these general assumptions and notation in place,159

we can discuss how these various approaches achieve their intended analytic160

goal.161

2.1. Neural Data Constrain Behavioral Model162

We begin our discussion with approaches that constrain a behavioral163

model with neural data. In this endeavor, the neural data are considered164

important, but only in the sense that they inform the mechanisms in the be-165

havioral model. We have identified three specific approaches (i.e., see Figure166

1): the Theoretical Approach, the Two-stage Behavioral Approach, and the167

Direct Input Approach. We now discuss each of these in turn.168

2.1.1. Theoretical Approach169

In the Theoretical Approach, psychological theories are developed on the170

basis of considerations from both neuroscience and behavioral data. The top171

left panel of Figure 1 illustrates the Theoretical Approach as statistically172

independent models of the neural and behavioral data because the link be-173

tween these measures is established only through the researcher themselves174

(i.e., represented by the dashed arrow). In this approach, the dominant175

2In this article, we refer to this model as the “diffusion decision model” following
Forstmann et al. (2015). This same model has been called other names such as the “the
diffusion model”, the “drift diffusion model”, and the “Wiener diffusion model.”
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procedure uses neural measures to inspire the development of psychological176

models. First, the researcher observes particular aspects of brain function,177

such as information about the structure (e.g., individual neurons or densely178

connected brain regions) or function (e.g., dorsal and ventral pathways of vi-179

sual stimulus processing) of the brain. Next, the researcher develops a model180

of behavior that, at its core, abides by these neural observations. With an181

initial model structure imposed by N , the researcher is now able to evaluate182

the relative merits of nested theoretical assumptions, and make incremental183

adjustments in the model to provide better fits to behavioral data B. Un-184

like other approaches discussed in this article, the Theoretical Approach may185

draw inspiration from physiological or anatomical observations, but there is186

no mathematical or statistical link between the neural data N and either the187

model architecture or the model parameters that predict the behavioral data188

B.189

Although the absence of an explicit link between neural and behavioral190

data may seem craven, the Theoretical Approach has proven to be a powerful191

framework for motivating psychological theory. Perhaps the most prominent192

example of a Theoretical Approach is the enormous class of neural network193

models. Neural network models have a long history, with one classic example194

being Rosenblatt’s Perceptron machine (Rosenblatt, 1961). In the develop-195

ment of the Perceptron, Rosenblatt made choices in his model that reflected196

operations observed in individual neurons, such as that the firing of individ-197

ual neurons should be discrete (motivated by the McCullogh-Pitts neuron;198

McCullogh and Pitts, 1943). Although these original neural network models199

were heavily criticized (Minsky and Papert, 1969), pioneering work allowing200

for continuous activations in neuron-like units (Grossberg, 1978; Anderson,201

1977; Rumelhart, 1977; McClelland and Rumelhart, 1981; Rumelhart and202

McClelland, 1982) evolved neural network models into more complex and203

successful theoretical approaches such as the parallel distributed process-204

ing (PDP; McClelland and Rumelhart, 1986) models. Superficially, these205

models allow for the presence of individual nodes embedded within layers206

of a network, and these nodes are massively interconnected across layers,207

resembling neural structures in the brain. Through a process known as back-208

propagation, PDP models can be trained on behavioral data to learn impor-209

tant aspects of the decision rule, facilitating further systematic explorations210

of representation, learning, and selective influence (i.e., by a process referred211

to as “lesioning”).212

As another example, consider the Leaky Competing Accumulator (LCA;213

8



Usher and McClelland, 2001) model. The LCA model was proposed as a neu-214

rally plausible model for choice response time in a k-alternative task. The215

model possesses mechanisms that extend other diffusion-type models (e.g.,216

Ratcliff, 1978) by including leakage and competition by means of lateral in-217

hibition. These additional mechanisms have proven effective in explaining218

how, for example, time sensitive stimulus information can give way to differ-219

ences in individual subject performance. For example, Usher and McClelland220

(2001) and Tsetsos et al. (2011) have shown the effects of primacy and re-221

cency for some subjects in a time-varying stimulus information paradigm. In222

these multi-alternative choice experiments, one response option may receive223

the strongest “input” (e.g., the brightness level) for the first 500 ms, but224

then the stimuli transition such that a different response option receives the225

strongest input relative to the first. In both of these studies, different param-226

eterizations of the LCA model were used to demonstrate how primacy effects227

could be appreciated by having a large value for lateral inhibition relative228

to the strength of the input (i.e., the drift rate), and recency effects could229

be captured through a large leakage term relative to the input (Usher and230

McClelland, 2001; Tsetsos et al., 2011).231

As a specific example of how the neurosciences have guided the assump-232

tions in the LCA model, it is well known that the firing rate of individual233

neurons can never be negative. However, these firing rates can be attenuated234

by way of inhibition – a process carried out by other neurons in the system.235

To instantiate these neuronal dynamics, the full LCA model enforces a con-236

straint such that if the degree of evidence for any choice alternative becomes237

negative, the degree of evidence for that accumulator should be reset to zero238

(Usher and McClelland, 2001). The floor-on-activation constraint was later239

found to be critical in capturing patterns of individual differences in multi-240

alternative choice that could not be captured by other diffusion-type models241

(Tsetsos et al., 2011). It is worth noting that other neurological constraints242

allow the LCA model to provide a unique characterization of behavioral data243

that would not otherwise be realized; specifically, the role of lateral inhibi-244

tion relative to leakage in the model plays an interesting role in characterizing245

subject-specific patterns in behavioral data (Bogacz et al., 2006; van Raven-246

zwaaij et al., 2012; Tsetsos et al., 2011; Gao et al., 2011; Bogacz et al., 2007;247

Purcell et al., 2012; Teodorescu and Usher, 2013; Tsetsos et al., 2012; Ossmy248

et al., 2013; Turner and Sederberg, 2014; Turner et al., 2015a).249

Given the highly subjective nature of the neural constraints imposed on250

a behavioral model, it should not be surprising that a great deal of contro-251
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versy surrounds some applications of the Theoretical Approach. While neu-252

ral network modelers have undoubtedly derived inspiration from the brain253

in building their models, the mechanistic implementation of these inspira-254

tions is often interpreted as a strong commitment, which opens the gates255

for scrutiny about plausibility and falsifiability (Minsky and Papert, 1969;256

Massaro, 1988; Roberts and Pashler, 2000). Furthermore, in some cases these257

additional neural mechanisms do not provide any advantage in terms of quan-258

titative fit statistics to behavioral data over their simpler counterparts (e.g.,259

see Ratcliff and Smith (2004), but also see Teodorescu and Usher (2013) and260

Turner et al. (2015a) for a different perspective). In some cases, there are261

also concerns centered on the level of explanation that the model provides (cf.262

Marr, 1982). On the one hand, the study of individual neurons constitutes263

an exploration of Marr’s implementation level of analysis (Broadbent, 1985;264

Kemp and Tenenbaum, 2008; Pinker and Prince, 1988; Smolensky, 1988). On265

the other, the development of a cognitive model involves meandering through266

the computational level – Marr’s highest level of analysis (Shiffrin and No-267

bel, 1997). To what extent should the implementation level be reflected or268

imposed on the computational level (e.g., Love, 2015; Frank, 2015; Teller,269

1984)? For example, if we believe that individual neurons have a floor on270

activation or are inherently “leaky” (i.e., meaning they lose information over271

time), should this restriction be imposed on the dynamics of racing accu-272

mulators in a cognitive model (Zandbelt et al., 2015)? These accumulators273

are intended to reflect the amount of sensory evidence for each alternative274

– evidence that is apparently observed in many brain areas (including the275

lateral intraparietal area, superior colliculus, frontal eye field, and dorsolat-276

eral prefrontal cortex; Horwitz and Newsome, 1999, 2001; Kim and Shadlen,277

1999; Shadlen and Newsome, 2001, 1996; Purcell et al., 2010, 2012; Hanes and278

Schall, 1996; Hanks et al., 2015), and so it begs the question: Which – if any279

– levels of decision making models should reflect the function of individual280

neurons? If the accumulators are to reflect the behavior of individual neu-281

rons, how might this connection be formally established (Smith, 2010; Smith282

and McKenzie, 2011)? Questions like this have been considered by many283

other scientists (e.g., Marr, 1982; Broadbent, 1985; Love, 2015; Frank, 2015;284

Schall, 2004; Teller, 1984), and the next two sections discuss two different285

ideas about how this connection should be made.286
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2.1.2. Two-stage Behavioral Approach287

The first formal linking approach uses neurophysiology to replace param-288

eters of a behavioral model. For example, consider a model that explains289

some neural data N with parameters δ, and behavioral data B with param-290

eters θ. The neural parameters δ could be divided into a set of parameters291

characterizing a key neural signal δ1, and a set of nuisance parameters δ2 so292

that δ = {δ1, δ2}. Now suppose the behavioral model parameters could be293

divided into a set of parameters that are reflective of the behavioral signal294

θ1, and a set of parameters θ2 that are not. The structure of the Two-stage295

Behavioral Approach is to simply replace the set of parameters θ1 with the296

parameters of the neural signal δ1. We refer to this approach as the “Two-297

stage Behavioral” approach because the connection involves two stages, and298

that behavioral model parameters are replaced by neural parameters. This299

approach makes a strong commitment to how the neural signal is represented300

in the abstract mechanisms assumed by the behavioral model, and as a re-301

sult, it is a stronger instantiation of neurophysiology than the Theoretical302

Approach discussed above.303

The Two-stage Behavioral Approach is nicely illustrated by the work of304

Wang and colleagues (Wong and Wang, 2006), who developed a spiking neu-305

ral network model of perceptual decision making. This model aims to account306

for the same kinds of behaviors as the DDM and the LCA model, but is far307

less abstract, with thousands of simulated spiking neurons, dense patterns308

of excitatory and inhibitory connections, pools of neurons associated with a309

single response, and the dynamics of individual neurons defined by several310

differential equations. While the model has dozens of potentially free param-311

eters, most of them are defined directly by neural data. For example, the312

time constants of integration of different inhibitory and excitatory receptor313

types are based directly on physiological measures. While low-level spiking314

neural network models of this sort capture well many of the details of neurons315

and neural circuits and provide reasonable first-order predictions of behav-316

ioral data, they are difficult to simulate and quantitative fits to behavioral317

data are simply impossible using even state-of-the-art computer hardware318

(see Umakantha et al., 2015). Indeed, as a result of this additional complex-319

ity, very few efforts have been devoted to systematically studying the model’s320

predictions for choice response time data. However, a few approximations321

have been developed for fitting purposes, and these approximations behave322

similarly to popular models in cognitive science such as the LCA model323
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(Wong and Wang, 2006; Bogacz et al., 2006; Roxin and Ledberg, 2008).324

2.1.3. Direct Input Approach325

The Two-stage Behavioral Approach represents one way in which the326

neural data can guide the behavioral model through neural model parame-327

ters, but it is easy to imagine other approaches that are more direct. For328

example, rather than translating the neural data N to the neural model pa-329

rameters δ, and then using δ to constrain the behavioral model parameters330

θ, we could instead use the neural data to directly replace dynamics of the331

behavioral model. This alternative approach is nicely illustrated by the Van-332

derbilt group (e.g., Palmeri et al., 2015; Purcell et al., 2010, 2012). They333

examined perceptual decision making within the sequential sampling model334

architecture assumed by models like the DDM (DDM; Ratcliff, 1978), and335

the LCA model (Usher and McClelland, 2001), among others. They specifi-336

cally tested the hypothesis that different types of neurons in the frontal eye337

field (FEF) carry out different computations specified in accumulator mod-338

els, namely that visually-responsive neurons in FEF encode the drift rate339

driving the decision process and that movement-related neurons in FEF in-340

stantiate the accumulation process itself. To test this linking proposition341

most directly (cf. Teller, 1984; Schall, 2004), they replaced the parameter-342

ized mechanisms thought to be embodied by the visually-responsive neurons,343

namely the time for perceptual processing and the drift rate, with the neu-344

rophysiological data recorded from visually-responsive neurons. Rather than345

having abstract mathematical and computational components specified by346

free parameters drive the decision process, the neural data (N) drove the347

decision process directly. To do this, the neural data were used to directly348

replace components of the model that would otherwise have been latent, and349

would need to be estimated from behavioral data. The only remaining free350

parameters were those that defined the decision making architecture (i.e.,351

race, feedforward, lateral, or gated accumulation), and that defined speed-352

accuracy tradeoffs (i.e., threshold of accumulation). When constrained by353

neural inputs, they observed that only some of the various decision making354

architectures could fit the full set of behavioral data (correct and error re-355

sponse time distributions and response probabilities). They were then able to356

distinguish further between models based on how well the predicted accumu-357

lator model dynamics matched the observed neural dynamics in movement-358

related neurons, the neurons they hypothesized to carry out an accumulation359

of evidence (see Latent Input Approach below).360
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Although the Direct Input Approach is commonly used to feed neural361

data into a cognitive model, one could potentially invert the direction of362

influence in Figure 1 to analyze the neural data as a function of some behav-363

ioral variable, such as accuracy (e.g., Eichele et al., 2008) or response time364

(e.g., Weissman et al., 2006; Hanes and Schall, 1996). Once the neural data365

have been sorted as a function of the levels of the behavioral outcome, one366

might analyze the distribution of neural data between these levels (Woodman367

et al., 2008). Such a procedure has been the dominant analytic approach in368

neuroscience since its inception, but is not model-based, and so we will not369

consider it here. However, the model-based analogue of this analysis would370

be to use the model’s machinery to drive the analysis of neural data. We refer371

to this approach as the Latent Input Approach, and will discuss it further in372

the next section.373

2.2. Behavioral Model Predicts Neural Data374

Another set of analytic approaches involves searching the brain for areas375

that support mechanisms assumed in the behavioral model. Such a procedure376

allows one to interpret neural data through mechanisms in the model, which377

can potentially be more informative than behavioral data alone. We consider378

two approaches for accomplishing this goal: the Latent Input and the Two-379

stage Neural Approaches.380

2.2.1. Latent Input Approach381

The goal of the Latent Input Approach is a converse of sorts to the Direct382

Input Approach. In the Direct Input Approach, the goal is to use the neural383

data N to constrain model mechanisms and parameters θ that predict be-384

havior. In the Latent Input Approach, the cognitive model is used to guide385

the inference of neural data N , or to make predictions about N . To per-386

form an analysis within this approach, one typically carries out three stages,387

illustrated in the middle-left panel of Figure 1. First, the parameters of a388

cognitive model θ are estimated by fitting the model to behavioral data B389

alone. Second, the resulting parameter estimates are used to generate predic-390

tions about neural data N∗, which typically represents some “internal state”391

of the cognitive model in terms of the neural measure. Third, one searches392

for correlates of the model’s internal state N∗ with the observed neural data393

N .394

One example of an Latent Input analysis using fMRI data would be a395

voxel-by-voxel application of the general linear model relating the model’s396
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internal state N∗ to the neural data N (e.g., O’Doherty et al., 2007). The397

typical result is a pattern of voxels representing significant correlations with398

the cognitive model, and these voxels are taken as the region of the brain399

supporting the mechanism assumed by the model. This univariate approach400

is commonly referred to as “model-based fMRI”, but of course any neural401

measurement could be correlated with the model measure.402

The Latent Input Approach is commonly used in reinforcement learning403

models to relate mechanisms of learning and prediction errors to the brain404

(e.g., O’Doherty et al., 2003, 2007; Gläscher and O’Doherty, 2010; Hamp-405

ton et al., 2006), and has been particularly powerful in the field of clinical406

neuroscience (e.g., Montague et al., 2012; Wiecki et al., 2015). One simple407

example is the Rescorla-Wagner (RW) model that characterizes the process408

of learning a conditioned response through repeated presentations of a condi-409

tioned stimulus (Rescorla and Wagner, 1972). In the model, the value of the410

unconditioned stimulus is represented as u, and the value of the conditioned411

stimulus on Trial t is represented as vt. To learn the stimulus environment,412

the model assumes that vt is updated sequentially according to a learning413

rate parameter α, and an evaluation of the prediction error ε. Specifically,414

after a decision is made and the unconditioned stimulus is presented, the415

model’s internal state of the value of the conditioned stimulus is updated416

according to the rule417

vt = vt−1 + αε. (1)

Eventually, the internal representation of the value v converges to u, ε ap-418

proaches zero, and the model “learns” the stimulus-to-response pairing. The419

value of vt can be directly observed by assessing the strength of the condi-420

tioned response, whereas other variables are estimated by fitting the model421

to behavioral data. Typically, α remains fixed across the trials in an experi-422

ment, allowing one to derive a trial-by-trial estimate of ε through Equation423

1. Hence, the model produces trial-to-trial estimates of the value of the424

conditioned stimulus v and the prediction error ε. As outlined above, these425

values can be entered into an fMRI analysis as a time series by convolving426

them with a hemodynamic response function (HRF), and then regressing427

the result against the fMRI data through the general linear model. However,428

the estimates v and ε are not parameters; instead, they reflect the model’s429

internal state for value and prediction error, respectively. This distinction430

is important because it separates this analytic approach from other possible431

Two-stage approaches, such as in van Maanen et al. (2011), which we discuss432
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below.433

As the previous example makes clear, Latent Input Approaches can iden-434

tify candidate neural substrates for theoretical concepts, such as prediction435

error, that are not directly observable but can be defined within a cognitive436

model. Entering latent model measures into the imaging analyses is rela-437

tively straightforward. Indeed, multiple model measures can be considered438

simultaneously. For example, Davis et al. (2012) simultaneously analyzed439

cognitive operations related to recognition and representational uncertainty440

by including two related measures in the imaging analysis from a cognitive441

model fit to trial-by-trial category learning data.442

Extensions to Model Discrimination. One issue with what is commonly re-443

ferred to as model-based fMRI is that models tend to be preferred to the444

extent that they correlate with many voxels in the brain. However, it is not445

clear that this is an appropriate criterion. Because simple cognitive mod-446

els do not attempt to model every process in the brain, they should not be447

expected to account for the variance of every voxel. Furthermore, cogni-448

tive states may be coded by brain states that are defined by the pattern of449

activation over voxels. This notion of brain state is multivariate as it de-450

pends on the pattern of activity, whereas most model-based analyses focus451

on univariate correlations between a model measure and an individual voxel.452

One approach that attempts to address these deficiencies is model decod-453

ing (Mack et al., 2013). Rather than assume a single cognitive model as the454

“correct” model, this generalization acknowledges that there may be com-455

peting cognitive models of the same phenomenon and uses the neural data456

to adjudicate between those competitors. It is well known in mathemati-457

cal psychology that models assuming very different internal mechanisms can458

sometimes predict the same observed behavior. To the extent that different459

model mechanisms produce different internal model states, one way to dis-460

criminate between models predicting the same behavior is to compare those461

predicted internal model states to observed internal brain states. Models462

that predict observed behavior but cannot predict internal brain states are463

rejected.464

Consider, for example, the work of the Vanderbilt group discussed earlier465

(Palmeri et al., 2015; Purcell et al., 2010, 2012). After excluding neurally-466

constrained models that could not fit the observed behavioral data, they were467

then able to distinguish further between models based on how well the pre-468

dicted accumulator model dynamics matched the observed neural dynamics469
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in movement-related neurons, the neurons they hypothesized to carry out an470

accumulation of evidence (see also Purcell and Palmeri, 2015, in this special471

issue). Only their gated accumulator model produced accumulator dynamics472

that matched the observed dynamics of movement-related neurons in FEF.473

Consider next the recent work of Mack et al. (2013), who developed a474

strategy for evaluating different models of object categorization on the basis475

of their consistency with observed fMRI data. They specifically contrasted476

two well-known theories of category representation: exemplar and prototype477

models (see also Palmeri, 2014). Exemplar models assume that members478

of a category are explicitly stored in memory, and a categorical decision for479

a new stimulus is a function of its similarity to these remembered exem-480

plars. Prototype models assume that category representations are abstract,481

averages of experienced category examples, and a categorical decision is a482

function of similarity to the stored category prototypes. In this sense, the483

prototype representation is abstract – a category could be represented in a484

location of feature space that is not representative of any particular known485

category member. These particular theories of category representation have486

been fiercely debated for decades (e.g., Medin and Schaffer, 1978; Minda and487

Smith, 2002; Zaki et al., 2003). Indeed, in their first analysis, Mack et al.488

(2013) showed that both exemplar and prototype models provided nearly489

indistinguishable fits to the observed behavioral data.490

Even though the exemplar and prototype models make similar predictions491

about behavior, they do so by assuming very different kinds of internal rep-492

resentations. Indeed, the degree to which different test items activate these493

internal representations – similarity to stored exemplars for the exemplar494

model versus similarity to category prototypes for the prototype model – dif-495

fers considerably between the two models. Mack et al. (2013) asked whether496

the pattern of brain activity elicited by different test items would be more497

similar to the pattern of activation of internal representations for the exem-498

plar model or the prototype model. They specifically evaluated the mutual499

information shared between brain and model state using machine learning500

techniques like multivariate pattern analysis (MVPA) and representational501

similarity analysis (RSA). The patterns of brain activity across trials showed502

better correspondence to the internal state of the exemplar representation503

than the prototype representation. These findings serve as a powerful exam-504

ple of how the neurosciences – combined with a Latent Input Approach –505

allow us to draw conclusions regarding competing cognitive models that we506

might not otherwise reach.507
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These model decoding approaches represent an important departure from508

the Latent Input Approach discussed above. Namely, these methods do not509

assume that the model used to interpret the neural data is correct. Instead,510

they posit a set of competing models for the underlying cognitive process,511

and the best explanation is to be determined from each model’s correspon-512

dence to the neural data. Once a cognitive model is selected, it can then be513

used as a lens on the brain data, using any existing technique, such as the514

aforementioned univariate approaches or representation similarity analysis515

(RSA). This stage of the analysis can be seen as confirmatory – the winning516

model has been established and is used to help interpret the neural data.517

Pairing model decoding with a model-based analysis approach allows for in-518

formation from brain and behavior to be mutually constraining through the519

bridge of the cognitive model. This extra step of selecting a model based520

on neural data is atypical of Latent Input Approaches, and this step is not521

illustrated in Figure 1.522

2.2.2. Two-stage Neural Approach523

The second approach we will discuss that uses behavior to predict neural524

data is related to the Two-stage Behavioral Approach discussed above, ex-525

cept that here, the parameters of the behavioral model θ are used to guide526

the analysis of the neural data N instead of vice versa. While a subset of527

neural model parameters δ could be replaced with a subset of behavioral528

model parameters θ akin to the Two-stage Behavioral Approach, in prac-529

tice, this is rarely done. Instead, relationships between θ and δ are formed530

through correlational or regression analyses. The correlational approach has531

been especially successful in the field of perceptual decision making (Mul-532

der et al., 2014). For example, Forstmann et al. (2008), Forstmann et al.533

(2010), and Mansfield et al. (2011) show in various experimental setups that534

accumulator model parameters that reflect response caution correlate with535

averaged BOLD responses in pre-supplementary motor area and striatum,536

two regions in the brain that are thought to be involved in mediating cogni-537

tive control. These studies illustrate that individual differences in behavior,538

captured by hypothesized processes, are driven by individual differences in539

how the brain works. This approach thus strengthens our understanding of540

the role of certain brain areas in cognition, but it also adds credence to the541

type of cognitive model that is adopted to describe behavior.542

In the regression approach, parameters of a behavioral model are used543

as predictors in a regression model of the neural variables. In the context544
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of fMRI, behavioral model parameters are often entered as regressors in a545

general linear model that quantifies the BOLD response in certain brain ar-546

eas (e.g., Mulder et al., 2012; Summerfield and Koechlin, 2010; White et al.,547

2014). Usually, this is done in addition to regressors that relate to the ex-548

perimental manipulations, yielding statistical maps of brain activation that549

reflect the predicted change in neural activation (i.e., in δ) for a fixed change550

in behavioral model parameter (θ), in addition to the standard notion of a551

change in δ as a function of the experimental manipulation.552

Some properties of behavior are difficult to cast in experimental condi-553

tions. For example, fluctuations that occur as part of a time series of obser-554

vations are ideally analyzed as such (Wagenmakers et al., 2004). Moreover,555

these fluctuations may be related to incorrect (Dutilh et al., 2012; Eichele556

et al., 2008) or task-unrelated responses, for example due to attentional lapses557

(Weissman et al., 2006; Mittner et al., 2014). For these situations it can be558

useful to study fluctuations in brain and behavior over time.559

To understand how the variability in brain measures from trial to trial560

adds to the behavioral variability, some researchers have developed models561

in which parameters are estimated on a trial-by-trial basis (Behrens et al.,562

2007; Brunton et al., 2013; Erlich et al., 2015; Hanks et al., 2015; van Maanen563

et al., 2011). For example, Behrens et al. (2007) used an optimal model that564

updates the expected reward for one of two responses on a trial-by-trial basis.565

The parameters of this model were also updated on a trial-by-trial basis,566

based on the actual trial outcome (i.e., the choice of the participant) and the567

expected outcome (i.e., the model prediction). Behrens and colleagues found568

that the level at which participants were responsive to changes in the rewards569

was predictive of anterior cingulate cortex activation on a trial-by-trial basis,570

supporting the idea that anterior cingulate cortex activation reflects changes571

in the environment (e.g., Rushworth et al., 2009).572

A slightly different approach was taken by Van Maanen and colleagues573

(van Maanen et al., 2011; Ho et al., 2012; Boehm et al., 2014). Using the574

LBA model, these authors estimated the most likely combination of drift575

rate and starting point of evidence accumulation, given the distribution of576

these parameters across trials. The most likely combination of parameters is577

determined by the set of parameters that specify the response time. While578

powerful, this method is difficult because the most likely parameter estimates579

are highly uncertain, due to the large variability in the joint distribution of580

the model parameters, and due to the simplification of the model to include581

only two sources of variability. Nevertheless, van Maanen et al. (2011) showed582
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that trial-to-trial fluctuations in BOLD in pre-supplementary motor area583

correlated with the trial-to-trial measure of threshold, but only for speed-584

stressed trials. This finding was corroborated by Boehm et al. (2014), who585

found a similar correlation between the trial-to-trial model parameter and586

a trial-to-trial estimate of the Contingent Negative Variation (CNV). The587

CNV is a slow rising potential, thought to represent neural activation in a588

cortico-basal ganglia loop including the supplementary/pre-supplementary589

motor areas (Nagai et al., 2004; Plichta et al., 2013).590

Although the Two-stage Neural Approach has been instrumental in elu-591

cidating various mechanistic explanations of neural data, the framework ne-592

glects an important source of constraint. Namely, by analyzing the neural593

and behavioral data independently, the secondary analysis does not statis-594

tically guide our understanding of how these variables are related. In this595

way, Two-stage frameworks are not statistically reciprocal because the neural596

data cannot influence the parameter estimates of the behavioral model (cf.597

Forstmann et al., 2011). To accomplish such a goal, a framework would need598

to automatically learn the covariation of the neural and behavioral parame-599

ters in harmony with the analysis of the neural and behavioral data. Such a600

framework is the topic discussed in the next section: Simultaneous Modeling.601

2.3. Simultaneous Modeling602

At this point, we have discussed two general analytic approaches that603

apply unidirectional statistical influence: modeling and analysis of one source604

of data guides the modeling and analysis of another source. The primary605

motivation of these approaches is that one measure is particularly well suited606

for answering a key theoretical question. In this way, one measure carries607

more “theoretical importance” than the other. However, some modeling608

approaches are agnostic in specifying which measure is more important, and609

instead posit a bidirectional link between the two measures. Similar to the610

subdivisions in other research goals above, the level at which the link is611

established is an important distinction between the two approaches, which612

we will now discuss in turn.613

2.3.1. Joint Modeling Approach614

The next approach we discuss is the recently developed Joint Modeling615

framework (Turner et al., 2013b; Turner, 2015; Turner et al., 2015b). The616

Joint Modeling Approach is conceptually similar to the Two-stage Neural Ap-617

proach in that it attempts to relate the parameters of the behavioral model618
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to the parameters of the neural model. However, statistically speaking, the619

Joint Modeling Approach is unique in the way it bridges this connection.620

Specifically, it assumes an overarching distribution that enforces an explicit621

connection between these parameters. The bottom-left panel of Figure 1622

illustrates this connection via the parameters Ω that link θ to δ. In this623

illustration, the connection enforced by Ω is clearly abstract; one must make624

a specific assumption about how θ and δ should coexist in their explanation625

of the underlying cognitive process. As an example, one simple linking func-626

tion used in practice has been the multivariate normal distribution where Ω627

consists of the hyper mean vector and the hyper variance-covariance matrix.628

This connection is important because it allows the information contained in629

the neural data N to affect the information we learn about the behavioral630

model parameters θ.631

Perhaps the greatest benefit of the Joint Modeling Approach is its flexibil-632

ity – it can be applied to different modalities (e.g., fMRI or EEG data), make633

different assumptions about the underlying cognitive process (i.e., changing634

the behavioral submodel), and establish a link at any number of levels in a635

hierarchical model. For example, Turner et al. (2013b) used structural dif-636

fusion weighted imagining data to explain differences in patterns of choice637

response time data across subjects. They showed how a joint model equipped638

with information about the interconnectivity of important brain areas could639

make accurate predictions about a subject’s behavioral performance in the640

absence of behavioral data. Turner et al. (2015b) extended this approach641

to build in brain state fluctuations measured with fMRI into the DDM. The642

problem Turner et al. (2015b) addressed centered on a lack of information643

about within-trial accumulation dynamics. In behavioral choice response644

time experiments, following the presentation of a stimulus, researchers can645

only observe the eventual choice and response time. These data are then646

used to estimate parameters of a cognitive model, following an assumption647

that the data observed on each of these trials arises from the same psycholog-648

ical process. However, this assumption – known as stationarity – is a strong649

one, and is seldom observed in empirical data (e.g., Peruggia et al., 2002;650

Craigmile et al., 2010). Turner et al. (2015b) used a multivariate model to651

describe the joint activation of a set of brain regions of interest, and used652

this description to enhance the classic DDM. In a cross validation test, they653

showed that their extended model could generate better predictions about654

behavioral data than the DDM alone, demonstrating that neurophysiology655

can be used to improve explanations about trial-to-trial fluctuations in be-656
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havior.657

Effectively, the Joint Modeling Approach is a strategy for treating groups658

of parameters as covariates, and this covariation is learned through hierar-659

chical modeling. However, one could imagine an approach for performing660

model-based cognitive neuroscience that is similar to the Two-stage Neural661

approach, but instead of correlating or regressing variables after independent662

analyses, the parameters of the regression equation are estimated. Such an663

approach can be thought of as a Joint Modeling Approach, except the link-664

ing parameters Ω are deterministic. Recently, this approach has been used665

in cognitive neuroscience to link decision models to neural fluctuations. For666

example, Nunez et al. (2015) used EEG data on a perceptual decision making667

experiment as a proxy for attention. They controlled the rate of flickering668

stimuli presented to subjects to match the sampling rate of their EEG data,669

a measure known as the steady-state visual evoked potential. Importantly,670

Nunez et al. (2015) showed that individual differences in attention or noise671

suppression was indicative of the choice behavior, specifically it resulted in672

faster responses with higher accuracy. In a particularly novel application,673

Frank et al. (2015) showed how models of reinforcement learning could be674

fused with the DDM to gain insight into activity in the subthalamic nu-675

cleus (STN). In their study, Frank et al. (2015) used simultaneous EEG and676

fMRI measures as a covariate in the estimation of single-trial parameters.677

Specifically, they used pre-defined regions of interest including the presup-678

plementary motor area, STN, and a general measure of mid-frontal EEG679

theta power to constrain trial-to-trial fluctuations in response threshold, and680

BOLD activity in the caudate to constrain trial-to-trial fluctuations in evi-681

dence accumulation. Their work is important because it establishes concrete682

links between STN and pre-SMA communication as a function of varying re-683

ward structure, as well as a model that uses fluctuations in decision conflict684

(as measured by multimodal activity in the dorsomedial frontal cortex) to685

adjust response threshold from trial-to-trial.686

The major limitation of the Joint Modeling Approach is its complexity,687

which hinders our ability to use the approach effectively in two ways. First, to688

estimate all of the model parameters, we must perform a sophisticated system689

of Markov chain Monte Carlo sampling with updates on separate blocks of690

model parameters (see Turner et al., 2013b; Turner, 2015; Turner et al.,691

2015b, 2013c, for details). This involves deriving the conditional distribution692

of blocks of parameters, and if desired, establishing conjugate relationships693

between the prior and posterior for effective estimation. One example of694
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this has been the use of a multivariate normal assumption to link neural695

and behavioral submodel parameters (Turner et al., 2013b, 2015b). In this696

approach, an increase in any neural measure automatically scales the increase697

in the behavioral model parameters, and vice versa. Second, a great deal of698

data must be available to appreciate the magnitude of the effects of interest.699

This result is driven by a complexity/flexibility tradeoff we discuss below, but700

the basic idea is that as the number of parameters increases, the influence701

the data can have on the joint posterior distribution decreases. When a702

model is complex relative to the data, one simple approach to reduce the703

complexity is to reduce the number of model parameters (Myung and Pitt,704

1997). In hierarchical models like the Joint Modeling Approach, one way to705

accomplish this is to reduce the number of levels in the hierarchy by removing706

its submodels (i.e., models within the Joint Model that explain one subset707

of the data). Such a strategy constitutes our final approach: the Integrative708

approach.709

2.3.2. Integrative Approach710

In the Integrative approach, the goal is to develop a single cognitive model711

capable of predicting both neural and behavioral measures. This approach,712

illustrated in the bottom-right panel of Figure 1, uses one set of parameters713

θ to explain the neural N and behavioral B data jointly. Notice that the714

Integrative approach differs from the Joint Modeling Approach because the715

parameters θ are directly connected to the data – there is no overarching716

distribution Ω to intervene between the data sources. Integrative approaches717

allow the neural data N to have a greater influence on the behavioral data718

B, a statistical property that can be measured by mutual information.719

Of the approaches we have discussed, the Integrative approach is ar-720

guably the most difficult to develop. Its use requires strong commitments721

to both the underlying cognitive process and where this process is executed722

in the brain. One technical hurdle in using an Integrative approach lies in723

the description of random variables with different temporal properties. For724

example, neurophysiological measures are typically observed on a moment-725

by-moment basis, detailing activation in the brain throughout the trial. By726

contrast, behavioral data are typically observed only at the end of a trial,727

such as in any number of perceptual decision making tasks. So, in the instan-728

tiation of a cognitive theory that uses the Integrative approach, we would729

need a moment-by-moment prediction of neural data, and a trial-by-trial730

prediction of the behavioral data, usually assumed to be the result of a se-731
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ries of unobservable (i.e., latent) processes. Given the unique structure of732

Integrative approaches, properly fitting them to data is a difficult task, of-733

ten involving sophisticated techniques such as Hidden Markov Models (e.g.,734

Anderson et al., 2010; Anderson, 2012), or Bayesian change point analyses735

(e.g., Mohammad-Djafari and Féron, 2006).736

Some recent applications of ACT-R have aimed for this Integrative Ap-737

proach. ACT-R assumes the presence of distinct cognitive modules that are738

recruited sequentially during a task. The recruitment of these modules across739

the time course of the task can be represented as a vector of binary outcomes,740

such that a 1 indicates that a module is being used, and a 0 indicates it is not741

being used. This vector naturally lends itself to convolution with the canon-742

ical HRF in the same way as experimental design variables (i.e., called the743

design matrix). The result of the convolution is a model-generated BOLD744

signal that can be compared to empirical data. In this way, the ACT-R745

model can actually be used in both exploratory and confirmatory research.746

When used for exploration, the model-generated BOLD signal is regressed747

against the data in a voxel-by-voxel fashion through the general linear model748

(Borst et al., 2010b; Borst and Anderson, 2013). From this analysis, clus-749

ters of voxels typically emerge, and these clusters are taken to represent750

brain areas where the modules are physically executed. This explorative751

analysis more closely resembles the Latent Input Approach. However, the752

ACT-R model can also be used in a confirmatory fashion (Anderson, 2007;753

Anderson et al., 2008a,b; Borst et al., 2010a). To do this, Anderson and754

colleagues have identified which brain areas should become active during the755

recruitment of different modules (Anderson et al., 2008b; Borst et al., 2015).756

These brain areas were identified primarily from several exploratory analyses757

(Anderson, 2007), but recent work has taken these explorations to generate758

out-of-sample, confirmatory predictions for neural data. In these confirma-759

tory studies, the specific pattern of module activations (i.e., the parameters760

θ) in the model simultaneously affects the model’s predictions for the BOLD761

response and the behavioral outcome. Although global, whole-brain predic-762

tions could be made within this framework, the strict assumption of localized763

module activity in the brain constitutes a fully confirmatory Integrative ap-764

proach, where predictions for neural activity – as well as behavioral data –765

can be quantitatively evaluated.766

The ACT-R framework provides an unique perspective on performing767

the integration between neural and behavioral measures, but actually test-768

ing these models is nontrivial. The major limitation is that one must assume769
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a set of specific modules, and the activation of these modules in the be-770

havioral model is latent, which makes their activation difficult to identify in771

behavioral data. Although neural data facilitate this identification process,772

current solutions rely heavily on assumptions about how modules are rep-773

resented in patterns of neural activity (Anderson, 2012). Furthermore, it is774

unclear how one would objectively decompose other cognitive models into a775

discrete set of modules while preserving their key theoretical and convenient776

properties (for examples of cognitive models in the style of ACT-R, see van777

Maanen and Van Rijn, 2010; van Maanen et al., 2012, 2009). For example,778

the Linear Ballistic Accumulator (LBA; Brown and Heathcote, 2008) model779

has enjoyed widespread success due to its parsimony and remarkable math-780

ematical tractability. Breaking the LBA model down into its constituent781

parts could compromise this tractability in such a way that estimation of782

the model’s parameters would be nontrivial. Hence, it is clear that not every783

cognitive model can easily be transformed and prepared for an analysis using784

the Integrative Approach. At this point, a natural question to ask is, under785

what conditions should an approach be used for an analysis?786

3. Comparing the Approaches787

It is important to supplement our discussion of approaches to model-788

based cognitive neuroscience with a guide to how these approaches compare.789

This comparison is difficult and likely to be highly subjective. How should790

the various approaches be evaluated? Along what dimensions should they791

be compared and contrasted? Do these approaches cover all possible types792

of linkage between neural and behavioral measures? Despite our fear of im-793

properly considering these questions, we will persist and attempt to organize794

the six core approaches discussed in this article along dimensions that are795

relevant for practical implementation (note that we have grouped both types796

of Two-Stage approaches together for this discussion). Table 1 provides a797

list of key factors that can be used to compare the strengths and weaknesses798

of the approaches.799

3.1. Number of Stages800

The first factor we could compare the approaches on is the number of801

processing stages. The fewest number of stages occur when the approach802

considers both measures simultaneously. Because both the Joint Modeling803

Approach and the Integrative approach make formal assumptions about how804
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both behavioral and neural measures arise, a full computational model is fit to805

the entire set of data in one stage. Another approach requiring only one stage806

is the Direct Input Approach, where the neural data replace dynamics of the807

behavioral model. Here, only the behavioral data are considered while fitting808

the model to data, but this process still only requires a single processing809

stage. The Latent Input and Two-stage approaches typically require the810

greatest number of stages at two or sometimes three. If a separate simulation811

stage is required to generate neural predictions N∗, Latent Input Approaches812

have three stages, whereas if the internal state of a model can be directly813

inferred when the behavioral model is fit to behavioral data (e.g., as in the814

reinforcement models described above), then the Latent Input Approach only815

requires two stages. In the Two-stage approach, if the parameters of the816

behavioral model can be regressed (or correlated with) the raw neural data,817

then only two stages are required. However, if some preliminary analyses818

of the neural data are required, then the Two-stage approach will require819

three stages. Finally, the Theoretical Approach can require anywhere from820

two to an infinite number of stages. In the simplest scenario, the first stage821

consists of observing some pattern or phenomena of interest in the neural822

data, and the second stage consists of the development of a behavioral model.823

However, Theoretical Approaches can also be complex to implement because824

they can involve an extensive, iterative process of running new experiments825

and refining a developing model (Shiffrin and Nobel, 1997).826

3.2. Commitment to a Particular Theory827

The second factor involves the role of flexibility in applying new theories828

to the data. For example, we consider the Two-stage Approach to have weak829

commitment to any particular theory: one could freely use the same proce-830

dure to test any number of behavioral models on the same neural data. The831

commitment to a particular theory is similarly weak in the Latent Input and832

Joint Modeling Approaches, where behavioral models can easily be switched833

out and fits to data compared. We consider the Direct Input Approach to834

be more committed to a particular theory than these aforementioned ap-835

proaches. For example, while Purcell et al. (2010) used neural data to test836

different assumptions about the accumulation process, they still maintained837

a commitment to the sequential sampling framework for these models. In this838

way, their analysis relies on some theoretical assumptions about the accumu-839

lation process, but not in a way that is inflexible. Going one step beyond this840

is the Integrative Approach, which requires strong commitments to a partic-841
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ular modeling framework such as in Anderson and colleagues’ work (e.g.,842

Anderson et al., 2008b; Borst et al., 2015). In this approach, it is difficult to843

imagine testing different models that are not contained within a similar over-844

arching theory. Finally, the Theoretical Approach makes no commitment to845

any particular theory, instead it uses the data to guide the development of846

the theory itself.847

3.3. Type of Information Flow848

Another factor to consider is the type of information flow. In Table 1, we849

consider three types: conceptual, one-way, and two-way. In the Theoretical850

Approach, the neural data can only guide the development of the behavioral851

model conceptually – there is no formal relationship between the behavioral852

and neural measures. At the other extreme, both the Joint Modeling and853

Integrative approaches use the information contained in either measure to854

directly constrain the estimates of the models’ parameters. Hence, we refer855

to this type of information flow as two-way because information flows in856

both directions. When one source of data enforces direct constraint on the857

other measure, we refer to this type of information flow as one-way. All of858

the remaining approaches use information flow that is one-way to maximize859

constraint in their models.860

While on the surface, a one-way information flow may seem a weakness,861

there are sometimes important theoretical reasons for enforcing this strict862

directionality. Consider, for example, the illustrated uses of the Latent Input863

Approach for model discrimination (Mack et al., 2013; Palmeri et al., 2015;864

Purcell et al., 2010, 2012; Palmeri, 2014). Here the goal was to use neural865

data to help discriminate between models of perceptual decision making or866

models of categorization that make the same behavioral predictions. The867

models were fit to the behavioral data in exactly the same way they might868

be fit if neural data were not even considered. No compromises were made869

in the behavioral fits to take into account the neural data, as might be the870

case for the Joint Modeling or Integrative Approaches. Only after the models871

were fit to the behavioral data were the predicted internal states of the model872

then compared to observed neural states in the brain. Finally, models were873

rejected if they could not adequately capture those observed neural states in874

the brain.875
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3.4. Difficulty of Implementation876

From a pragmatic perspective, it is also important to consider the diffi-877

culty of performing analyses with these six approaches. Perhaps the easiest878

approach to implement for the readers of this special issue is the Two-stage879

Approach, where the parameters of a cognitive model are simply regressed880

against a neural signal of interest. Of medium difficulty are the Direct In-881

put and Latent Input Approaches, because they often require model simula-882

tions or additional theoretical overhead to fit the models to data. The Joint883

Modeling and Integrative Approaches are considered difficult to implement884

because they either require sophisticated partitioning of the parameter space885

(e.g., Turner et al., 2015b), or estimation of hidden Markov model parame-886

ters (e.g., Anderson et al., 2010; Anderson, 2012). Perhaps the most difficult887

approach to implement is the Theoretical Approach, where models must be888

carefully constructed and iteratively fit to data as a test of specific assump-889

tions. To make matters worse, there is no clear end point when developing a890

new cognitive model in the Theoretical Approach.891

3.5. Type of Exploration892

A final consideration is the type of exploration that can be used under a893

specific approach. Approaches can be used for exploratory or confirmatory894

purposes, or some mixture of the two. The Theoretical and Two-stage Ap-895

proaches are considered exploratory because the general strategy involves a896

sequence of tests, iterating toward a solution or explanation of the data. The897

Direct Input Approach is considered a confirmatory approach because the898

neural data are used to directly replace certain mechanisms in the model,899

providing a test of the neural measure’s plausibility in predicting the be-900

havioral response. The Integrative Approach is also confirmatory because it901

makes specific assumptions about how both measures arise, where good fits902

to data support the assumptions of the model, and poor fits refute them.903

We regard the Latent Input Approach as being exploratory when used in904

a typical “model-based” analysis, but confirmatory when used to compare905

models to one another as in Mack et al. (2013) and Purcell et al. (2012). In906

this way, the Latent Input Approach is listed as “either” because the specific907

usage depends on the situation. Finally, the Joint Modeling Approach is also908

considered both confirmatory and exploratory, because its usage depends on909

the how the linking function is specified. For example, one could use a gen-910

eral linear model as the linking function – a confirmatory approach – or one911

could use ambiguous priors on hyperparameters that specify a multivariate912
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Gaussian linking function – an exploratory approach. Furthermore, the spe-913

cific prior used on the hyperparameters allows the Joint Modeling Approach914

to mix between confirmatory and exploratory roles in an analysis.915

4. Choices and Limitations916

In this article, our goal was to highlight and discuss the prominent ap-917

proaches to analysis in the emerging subfield of model-based cognitive neuro-918

science. However, we have not yet provided a guideline for choosing between919

them, nor have we discussed in greater detail the limitations of choosing a920

particular approach. In this section, we will address both of these issues.921

4.1. Choosing Between Approaches922

Although we have described, compared, and contrasted six important923

approaches for analysis, we have not provided a guideline for how these ap-924

proaches could be used to advance psychological theory. We believe that each925

of these approaches have their own utility in the pursuit and development of926

computational models, and the primary factor in choosing between them is927

the goal of the analysis. Furthermore, as a theory progresses, it is important928

to realize that the goals of an analysis should change. To this end, we advo-929

cate using all of these approaches to move from an exploratory analysis to a930

confirmatory one.931

To see how this would work in practice, consider the following stages932

of model development. In the initial stages, one approach is to develop a933

cognitive theory by acknowledging patterns in the data from both the brain934

and the behavior. For example, knowing that the brain must first encode935

stimulus information in lower-level visual areas before a representation of936

the stimulus can be perceived and acted upon could be used to impose order937

in a behavioral model. Such knowledge might motivate the development of a938

visual encoding component of the model that precedes the development of an939

accurate stimulus representation. Instantiation of the encoding process in the940

behavioral model is an implementation of the Theoretical Approach, because941

the development is motivated by brain data. Here, our goal was to simply942

develop a model that abides by certain physiological timing restrictions as a943

way to establish a more constrained stimulus processing order.944

After the development of the model, our goals have advanced – suppose945

we now wish to identify where this encoding component of our model is car-946

ried out, and specifically, which areas of the brain contribute to this process.947
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To accomplish this goal, we would elect to use an exploratory analysis, such948

as the Two-stage or Latent Input Approach. In the Two-stage analysis, we949

would simply fit our behavioral model to the behavioral data, and correlate950

the parameters regulating the encoding process of our model to say, param-951

eters of the HRF in our neural data. Similarly, in the Latent Input analysis,952

we would use the timing of the encoding component in our model to search953

for temporally-related activations in the brain. Both of these analyses consti-954

tute searches through our neural data as a way to better understand how the955

brain produces behavior from a mechanistic perspective. In this way, these956

analyses are unidirectional and do not validate or confirm our model, but957

this is perfectly acceptable because it is consistent with our current goals.958

Our exploratory analyses have paved the way for subsequent investiga-959

tions, and now suppose we wish to use the neural data to better constrain our960

behavioral model. We now have well-defined hypotheses about which brain961

areas are involved in stimulus encoding, and we suspect that the systematic962

activations in these brain areas have a correspondence to the encoding phase963

of our model. At this point, we must reconsider our specific goals. If the964

goal of our analysis is to predict behavior, we might use the Direct Input965

Approach to map activations in the key brain areas directly to the encoding966

component of our model. By contrast, if our goal is to infer relationships be-967

tween the neural and behavioral measures, we might use the Joint Modeling968

Approach to test specific impositions of brain activations to the parameters969

regulating the encoding process in our model. Both of these approaches are970

more confirmatory because they rely on specific hypotheses and assumptions971

that were derived from our exploratory analyses; however, they still only972

guide our inference. In the Direct Input analysis, because our goal was to973

predict the behavioral data, we have compromised our ability to evaluate the974

model’s suitability for the neural data. We cannot make predictions about975

neural data that we have conditioned on, as so we cannot evaluate how well976

the model captures these aspects of our (neural) data. On the other hand,977

the Joint Modeling Approach attempts to capture both aspects of the data978

simultaneously, and as a result, its predictions for the behavioral data are979

compromised by the model’s obligations to the neural data. Because the980

Joint Modeling Approach does not explicitly condition on either variable, it981

can reveal interesting generative properties of our model, but its discrimina-982

tive (i.e., predictive) power is diminished (Bishop and Lasserre, 2007).983

At this point, we have now developed our model and evaluated the re-984

lationships between brain and behavior in a variety of analytic approaches.985
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We know better than anyone in the world where the encoding part of our986

model is carried out in the brain, and how differences in the pattern of ac-987

tivation in these brain areas contribute to behavioral differences. As a final988

test and validation of our model, we can now move to the most confirmatory989

analysis we have discussed here: the Integrative Approach. To establish an990

integrative model, we must first make some specific assumptions about how991

activations in key brain areas map to the encoding component of our model.992

This can be a difficult process, but suppose for now that we have formally993

articulated this mapping in our model, derived from our previous exploratory994

analyses. Our goal now is to show that this integrative version of our model995

can produce patterns of data that match all aspects of our data. That is,996

adjustments of one model parameter should make specific predictions about997

how the pattern of neural and behavioral measures changes, and ideally, how998

these changes could be selectively influenced experimentally (e.g., Heathcote999

et al., 2015). In our opinion, this integrative analysis represents the strongest1000

test of psychological theory, but such a test would be misguided if not first1001

informed by the less integrative approaches.1002

4.2. Limitations of Using These Approaches1003

In our working example above, we identified a few limitations of using var-1004

ious approaches. First, the balancing of fit between behavioral data, neural1005

data, or both is a key consideration in model-based cognitive neuroscience.1006

In general, to optimize predictions for say, behavior, it would be better to1007

condition on neural data. However, if one is more interested in the joint dis-1008

tribution of both neural and behavioral measures, then the modeling goals1009

are more generative than discriminative, and conditioning on one variable1010

would introduce limitations. The authors of the present manuscript have1011

deliberated between these three modeling goals, and arrived at only an am-1012

biguous solution: decisions must be made on a case-by-case basis, always1013

with the researcher’s goals in mind.1014

Second, constraint is not always a good thing. If one does not have1015

strong intuition about how components of a model are carried out in the1016

brain, it would be unwise to impose strong constraints on a model. One way1017

of autonomously carrying out justifiable constraint is to use the approaches1018

discussed here along a continuum of increasingly more confirmatory research.1019

As another tack, one could use some of the approaches discussed here to im-1020

pose varying levels of constraint, moderating the levels of analyses between1021

exploratory and confirmatory. For example, in the Joint Modeling Approach,1022
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one can impose a completely uninformative prior on the parameters of the1023

linking function and specify that all parameters of the behavioral model be1024

mapped to the neural data. Such an analysis is wildly explorative, would be1025

difficult to implement, and would convey little information about the covaria-1026

tion between the measures. To move toward a more confirmatory regime, one1027

could impose a stronger prior derived from say, previous research or investiga-1028

tion of the prior predictive distribution (Vanpaemel, 2010, 2011; Vanpaemel1029

and Lee, 2012). Similarly, one could constrain the set of parameters that are1030

related to the neural data by simply setting elements of the linking function1031

to zero. Such an analysis would provide a greater test of the model, but1032

would also force the model to rely more heavily on the joint distribution of1033

the measures.1034

Third, in this article, we have emphasized structural connections that1035

are largely at one level. This is a limitation because the behavioral data1036

can be thought of as the end result of some brain process, again highlight-1037

ing the mismatch between Marr’s (1982) implementation and computational1038

levels of analyses we discussed earlier. Another approach would be to impose1039

structural connections that are multi-level, where a model uses the imple-1040

mentation level to drive some mechanisms, and the computational level to1041

drive others. As a hypothetical example, the implementation level could be1042

used to drive an evidence accumulation process that remains unaffected by1043

experimental instructions (i.e., computational goals), whereas other mecha-1044

nisms such as boundary separation or bias could be carried out by other brain1045

areas that are systematically adjusted in response to task demands. Such a1046

model would bridge the levels of analysis in a way that might actually be1047

reflected in the brain (Frank, 2015).1048

Finally, the imposition of structure need not arise from a model of be-1049

havior. In this article, we have oriented the approaches to analysis around1050

determining where mechanisms in the model are carried out in the brain.1051

However, one can easily imagine reversing the orientation to determining1052

how structural and functional differences in the brain manifest behaviorally.1053

Such an endeavor begins with the development of a generative model of the1054

neural data, usually formed by observing the interconnectedness of key brain1055

regions (Ratcliff and Frank, 2012; Frank, 2006; Wong and Wang, 2006; Ca-1056

vanagh et al., 2011), and ends in mapping the systematic activations of these1057

brain areas to a model of the behavioral data. These models can be difficult1058

to implement and test in the traditional cognitive modeling way (e.g., Lee and1059

Wagenmakers, 2013; Shiffrin et al., 2008; Heathcote et al., 2015; Busemeyer1060
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and Diederich, 2010), because they rely on many parameters and complex1061

simulations to validate them. However, new methods have been developed1062

to better elucidate simulation-based models (for applications in psychology,1063

see Turner and Van Zandt, 2012; Turner and Sederberg, 2012; Turner et al.,1064

2013a; Turner and Sederberg, 2014; Turner and Van Zandt, 2014; Turner1065

et al., 2015a), and as a result, we may gain new insight and interest in these1066

network-style models in the coming years.1067

4.3. Other Approaches1068

Although the approaches we have presented here encompass the most1069

prevalent approaches to model-based cognitive neuroscience, other approaches1070

have been used to gain a better understanding of how the brain produces a1071

behavior. One structural example is to use some experimental variable that1072

hypothetically affects the neural data to split the behavioral data into dif-1073

ferent levels. Once the behavioral data is divided, the data can be fit and1074

evaluated on the basis of differences in parameter values. One example of1075

this is in Parkinson’s Disease, where drug therapy is commonly administered1076

to compensate for decreased levels of dopamine. Frank (2006) make predic-1077

tions for behavioral data for subjects on and off medication in a Go/NoGo1078

task, and a probabilistic learning task. They used a computational neural1079

network model to make concrete predictions for differences in task behav-1080

ior based on activation of the subthalamic nucleus. Frank (2006) found that1081

their model accurately captured the dynamics of activity in areas of the basal1082

ganglia, and how this pattern of activity related to dynamic adjustments in1083

response thresholds. A similar mechanism was later found in impulse control1084

for Parkinson’s patients with deep brain stimulation using a similar analysis1085

design (Cavanagh et al., 2011).1086

The examples above illustrate an analytic approach where experimental1087

variables guide the analysis of the behavioral data on the basis of how those1088

variables affect the neural data. Another type of analysis takes the effects1089

of the neural data one step further (e.g., Ratcliff et al., 2003, 2007, 2009,1090

2011; Kiani et al., 2008; Mazurek et al., 2003). For example, Ratcliff et al.1091

(2009) used single-trial amplitude measures of EEG activity in a perceptual1092

decision making experiment to divide their behavioral data into separate1093

groups. Next, Ratcliff et al. fit the DDM to the data from each of these1094

separate groups and used estimates of the drift rate parameter to show early1095

component EEG signals were not reflective of the decision process, whereas1096

late component EEG signals showed a positive correlation to the stimulus1097
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evidence (i.e., the drift rate). This type of analysis is similar to the Latent1098

Input Approach, but with the flow of information moving from the neural1099

measures to the behavioral ones. By using the neural data to guide the search1100

for differences in behavioral model parameters, we can better understand the1101

mechanistic properties of these neural features by interpreting them in the1102

native language of the decision model.1103

5. Conclusions1104

The field of cognitive science has only begun to realize the full potential of1105

combining brain and behavior as a way to study the mind. However, the field1106

relies on the various approaches developed by different groups of methodolog-1107

ical experts. Due to the seemingly disjoint ways to study cognition, many1108

neuroscientists and cognitive modelers are unaware of their modeling options,1109

as well as the benefits and limitations of different approaches. In this article,1110

we have described the currently prominent general methods for integrating1111

neural and behavioral measures, while providing some examples of their use1112

in cognitive neuroscience. We then attempted to organize these approaches1113

on the basis of a variety of factors: the number of stages, the commitment1114

to a particular theory, the type of information flow, the difficulty of imple-1115

mentation, and the type of exploration. We concluded with a discussion of1116

limitations and further considerations in approaching the integration prob-1117

lem. Our comparison of the approaches (see Figure 1, and Table 1) highlights1118

that a broad spectrum of methods exist for performing model-based cogni-1119

tive neuroscience, and there are important considerations and limitations of1120

each approach. In the end, we conclude that model-based approaches in1121

cognitive neuroscience are extremely important (cf. Schall, 2004; Forstmann1122

et al., 2011, 2015; Mulder et al., 2014; White and Poldrack, 2013), and the1123

choice of analysis strongly depends on the research goal. It seems to us that1124

having a clearly articulated analytic goal in mind serves as the impetus for1125

successful integration between neuroscientific measures and cognitive theory.1126
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