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Abstract 

This study seeks to evaluate the impact of uncertainty in the pre-retrofit thermal performance of 

solid walls of English dwellings on post-retrofit energy use. Five dwelling archetypes, broadly 

representative of English solid wall properties, were modelled pre- and post-retrofit, under different 

wall insulation scenarios, using dynamic thermal simulation. Findings indicate that whilst solid wall 

insulation could result in a significant reduction of space heating demand, uncertainties in the pre-

retrofit solid wall U-value could lead to a gap between the anticipated and actual energy 

performance. Specifically, results show that if the current U-value assumption of 2.1 W/m2K is 

indeed an overestimation of the in-situ U-value of solid walls, then the anticipated carbon savings 

could be significantly reduced by up to 65%.  

 

Practical Application:  

The performance gap observed in this study revealed that the actual carbon savings arising from the 

retrofit of solid wall properties could be significantly lower than predicted. This will not only affect 

UK Government carbon reduction targets, but it can also result in a lack of confidence amongst 

stakeholders who may consequently doubt the effectiveness of energy retrofit measures, thus 

reducing their uptake. Uncertainties regarding solid wall U-values may necessitate the re-

examination of the carbon targets set for the retrofit of solid wall dwellings and the exploration of 

alternative ways to further reduce their carbon emissions, e.g. by specifying higher insulation 

thicknesses. 
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1.  Introduction 

1.1. Background 

Climate change is the major challenge of the 21st century, with severe global consequences 

for human health, the environment and the economy (1–3). In 2008, the Climate Change Act made 

the UK the first country to launch a long-term legally binding framework to reduce carbon 

emissions by 80% by 2050 compared to 1990 levels (4). Approximately 30% of the UK’s total 

energy consumption and 25% of its carbon emissions can be attributed to domestic buildings (5). 

Around 78% of building-related energy use is attributed to space heating (5). Therefore, a reduction 

in domestic space heating demand could significantly contribute towards the decarbonisation of the 

housing stock. It is estimated that from the 27 million dwellings in the UK today, approximately 

80% will still be standing by 2050 (5). Consequently, the retrofit of existing dwellings is critical for 

the UK’s carbon reduction target.  

Currently, approximately one out of four dwellings in England are of solid wall construction 

(6). Solid wall dwellings are responsible for 36% of all the housing stock carbon emissions (7). 

Approximately 96% of solid wall properties in Great Britain have no wall insulation (8). In these 

dwellings, wall areas are thought to account for up to 45% of the dwelling’s total heat loss (9), thus 

representing an area of significant retrofit potential. Approximately 62% of solid wall properties 

were constructed prior to the 1920s, with the majority of them made of bricks (10). Solid brick 

walls are thought to have specific heat capacities ranging from 800-900 J/Kg·K (11) and a thermal 

conductivity ranging from 0.69-1.32 W/m·K (12). According to the Government’s Reduced Data 

Standard Assessment Procedure (RdSAP) for the Energy Rating of Dwellings (13), solid brick 

walls constructed prior to 1929 are assumed to have a U-value of 2.10 W/m2·K. 

There are a number of constraints in the retrofit of solid walls. Solid wall properties are 

considered ‘Hard-to-Treat’ (HTT) (14), as they can only be insulated internally or externally, a 

process that is more disruptive, costly and time consuming than cavity wall insulation and, in the 
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case of external insulation, may be subject to planning permission. Current UK Building 

Regulations for existing dwellings suggest an improved wall U-value for retrofitted walls of 0.30 

W/m2K and/or a threshold U-value of 0.70 W/m2K (15). A comparison between external and 

internal wall insulation is provided in Table 1. 

 

Table 1. Comparison of internal vs. external wall insulation (16) (17) 

Parameter Internal Insulation External Insulation 
 

Installation costs Usually lower  Usually higher  

External Appearance Unaffected 
 

Affected  

Thermal bridging Disruptive installation thus higher 
risk 

Continuous installation thus lower 
risk 

Planning permission Not required May be required 

Occupant disturbance Occupants may need to temporarily 
move out of their home 

Usually not affecting occupants 

Risk of interstitial condensation Higher risk Lower risk 

Internal floor area  Reduced Unaffected 

U-value Restricted by the available 
installation space 

No restriction 

Internal thermal mass Compromises exposure Maintains exposure 

 

A potential barrier to the widespread acceptance of energy retrofit is the performance gap 

that is often observed between the predicted and the actual post-retrofit energy performance of a 

building. Many previous studies have reported failure to achieve the anticipated post-retrofit 

performance. In a report analysing the results of 37 domestic retrofits of solid wall properties across 

the UK that aimed at an 80% reduction in energy use (18), it was specified that only 3 properties 

achieved the anticipated savings. Similar observations were reported for newly built dwellings 

across the UK, reporting measured heat loss through the building fabric of 7-130% more than the 

predicted value (19–24). As a result, many homeowners may be questioning whether initial capital 

costs will be paid back through energy savings within a reasonable time frame. This is likely to put 

the Government’s retrofit plans at risk, since inaccuracies in post-retrofit energy savings may result 

in a lack of confidence amongst homeowners who may be unwilling to invest in retrofit measures 

with uncertain benefits. 
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There are many potential explanations for the energy performance gap, with the following 

key sources being identified (25,26): 

a) limitations of the building physics-based model algorithms used to calculate building energy 

performance; 

b) discrepancies between the laboratory and in-situ performance of construction materials; 

c) discrepancies arising from human errors in construction; 

d) uncertainties in occupant behaviour. 

Of the uncertainty sources listed above, b) and c) are related to the designed vs. on-site 

performance of construction elements, which are further analysed below. 

The estimated thermal and energy performance of a building is based on the laboratory 

performance of different construction elements, such as windows and insulation materials, which is 

achieved under standard laboratory conditions. However, the laboratory and in-situ behaviour of a 

construction element can substantially vary since conditions that may affect its thermal 

performance, such as moisture, temperature and airflow, are transient and often very different in-

situ (26). Nevertheless, such allowances for the real-world performance of construction elements 

are not factored in during the modelling process (27). 

In particular, discrepancies may arise due to uncertainties surrounding the U-value of solid 

walls. In-situ measurements revealed very different U-values to the ones calculated under steady-

state laboratory conditions. The monitoring of the in-situ performance of 87 solid wall properties in 

England indicated that the U-value of solid walls varied between 0.64-2.52 W/m2K, with a standard 

deviation of 0.36 and an average U-value of 1.43 W/m2K across the sample (28) , which is well 

below the SAP standard assumed value of 2.10 W/m2K (29). A report prepared by the Society for 

the Protection of Ancient Buildings (SPAB) (30), reported the findings of a study of 60 solid walls 

that indicated an average monitored U-value of 1.24 W/m2K (30). This was attributed to the lack of 

information on accurate conductivity values for some materials, due to unknown constituents of the 

wall and wall moisture. Discrepancies between calculated and measured U-values due to moisture 
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content were reported in another study conducted by English Heritage (31), where the dry and wet 

state thermal conductivity values of 18 solid wall properties were examined. The wet thermal 

conductivity was found to be 1.5-3.0 times greater than the dry value indicating that U-values of 

solid brick walls are affected by variations in brick moisture content. In another recent study (32), 

the in-situ measurements of the U-value of a 370 mm thick solid wall of a semi-detached building 

were recorded for a period of 15 weeks. Although a theoretical U-value of 1.82 W/m2K was 

estimated, in-situ measurements indicated an average U-value of around 1.70 W/m2K.  

Discrepancies in solid wall U-values may also arise from thermal bridging (33). This may 

lead to locally different U-values, which would significantly affect the overall wall U-value and, 

therefore, the anticipated energy savings. The document BR443 ‘Conventions for U-value 

Calculations’ (34) determines the means for calculating U-values required in Building Regulations 

Approved Documents L1B and L2B, using the BS EN ISO 6946:1997 standard (35). This standard 

is based on the use of cavity wall dwellings of known materials and, in many cases, is proven to be 

inappropriate for the U-value calculation of some existing solid walls (28, 30). This standard is used 

either directly or indirectly by all certifications, technical literature and other Implicit Guidance1 for 

the assessment of existing solid wall U-values and the estimation of potential energy savings from 

retrofit of solid walls (33).  

Discrepancies may also arise from actions that are the result of error or negligence, such as 

poor onsite workmanship from builders that may compromise the anticipated performance (36). 

They may also occur as a result of intent. This usually refers to onsite supply chain issues and time 

pressure that often lead to specified materials being substituted by other products usually cheaper 

and of inferior quality (21). 

There is a wealth of literature (18,20–24,28,30,32,37) investigating the causes of the energy 

performance gap in new and retrofitted dwellings, highlighting uncertainties surrounding the U-

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1  Implicit Guidance refers to information commonly used by contractors that does not originate directly from research 
or formal guidance, but from other sources that include Building Regulations, certifications, trade literature and other 
industry documents. It guides designers and contractors to specific retrofit applications. 
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value of solid walls as one of the key sources for this gap. In a recently published study, Li et al. 

(38) presented the inconsistencies found in the solid wall U-values between the assumed RdSAP U-

values and the in-situ measurements of the Energy Saving Trust (EST) Solid Wall Insulation Field 

Trials (SWIFT). These inconsistencies were then used to assess the impact of variations in the 

assumed solid wall U-values upon the energy consumption of the English housing stock. Using a 

stock model based on the Building Research Establishment’s Domestic Energy Model (BREDEM) 

(39), it was predicted that changing the U-value from the standard value to 1.3 W/m2K would lead 

to 16% decrease in the mean predicted annual heating demand which could significantly reduce the 

carbon savings achievable from solid wall insulation (38).  

There has, however, been very little research to date indicating how these inconsistencies will 

affect the energy performance of different dwelling types after solid wall insulation is applied, thus 

evaluating the impact of these inconsistencies upon the anticipated carbon savings and their further 

complications on the UK’s housing retrofit targets. 

 

1.2. Project aim and objectives 

This study seeks to build on previous studies (38) and further assess the impact of 

uncertainties associated with the thermal performance of solid walls on the anticipated energy use 

and carbon emissions of retrofitted solid wall dwellings, and potential consequences for the UK 

housing retrofit targets. The aims of this study will be realised through the following objectives: 

• to implement dynamic thermal simulation to model a set of solid wall dwellings, broadly 

representative of the English housing stock, modelling a) different types of wall insulation in 

order to determine the effectiveness of each type upon energy consumption of the different 

housing archetypes and b) different insulation levels in order to assess the relationship between 

insulation thickness and space heating energy savings; 
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• To use regression analysis to determine how the relationship between indoor and outdoor 

environment is affected by different external wall U-values; 

• To use sensitivity analysis to determine the impact of uncertainties in the pre-retrofit solid wall 

U-value upon the energy performance gap. 

2.  Methods 
 

To explore the impact of solid wall retrofitting on the winter energy performance of the English 

housing stock, four initial steps were taken: 

a) a number of existing English dwelling archetypes, their construction details and occupancy 

patterns for modelling were specified; 

b) an appropriate weather file for testing the dwellings was selected;  

c) the insulation scenarios to be tested were determined; 

d) a fuel intensity factor for translating energy demand to carbon emissions was established. 

The simulations were carried out for 15 unique combinations of five different dwelling 

geometries and three different insulation scenarios. The following steps define the process for 

assessing a) the impact of the different insulation scenarios upon the energy use of different housing 

archetypes and b) the impact of modelling uncertainties upon the estimated energy and carbon 

savings: 

1. the energy savings as a result of different insulation scenarios and the associated carbon savings 

were estimated for each archetype; 

2. simple linear regression analysis was performed to assess the relationship between indoor 

heating demand and external temperatures for different external wall U-values; 

3. the inputs and the range of their variants to be used in the sensitivity analysis were determined; 

4. simple differential sensitivity analysis was applied to determine the impact of modelling 

uncertainties on the predicted energy and carbon savings. 
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The modelling and dynamic thermal simulations were performed using EDSL-TAS (v. 9.3.1), a 

widely used and validated dynamic thermal simulation software tool (40). Whilst it is common 

practice to use steady-state models, such as BREDEM (39), to produce estimates of annual energy 

use in UK dwellings, this research was part of a larger study that also included a summertime 

overheating assessment which required a dynamic model. However, many of the input assumptions 

made in the model development are based on RdSAP values (13), as explained in section 2.2 and 

Table 4. 

  

2.1. Dwelling archetypes 
 
Five different dwelling archetypes were selected for this study as shown in Figure 1; a 

bungalow, a detached, a semi-detached, an end-terrace and a mid-terrace house, developed using 

methods described elsewhere (41). These were developed to be broadly representative of the 

English housing stock as shown in Table 2. According to the English Housing Survey (EHS), 

dwellings of these types are in their majority owner occupied. Owner occupied properties are the 

main target of Government retrofit schemes such as the Green Deal (42). These archetypes were 

modelled with solid walls, meaning that they were assumed to be built prior to 1929 (13). The 

frequency of each archetype consisting of solid wall properties among the English housing stock is 

illustrated in Table 3. 
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Figure 1. The five different archetypes analysed in this study a) End-Terrace, b) Mid-Terrace, c) Semi-Detached, d) 
Detached, e) Bungalow 

Ground	  Floor	   First	  Floor	  

Rear	  Facade	   Front	  Facade	   Side	  Facade	  

c) Semi-‐Detached	  

Ground	  Floor	   First	  Floor	  

Rear	  Facade	   Front	  Facade	   Side	  Facade	  

a) End-‐Terrace	  

Ground	  Floor	   First	  Floor	  

Rear	  Facade	   Front	  Facade	  

b) Mid-‐Terrace	  

Side	  Facade	  

Side	  Facade	  

Rear	  Facade	   Front	  Facade	  

Ground	  Floor	  

e) Bungalow	  

Ground	  Floor	   First	  Floor	  

Rear	  Facade	   Front	  Facade	  

Side	  Facade	   Side	  Facade	  

d) Detached	  
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Table 2. Frequency of the five different archetypes to be tested across the English housing stock (6)  

Dwelling type Frequency in the English housing stock Number of dwellings 

End-terrace 10% 2,300,000 
Mid-terrace 19% 4,370,000 
Semi-detached 25% 5,750,000 
Detached 15% 3,450,000 
Bungalow 10% 2,300,000 

 

 
Table 3. The distribution of solid wall dwellings across the English housing stock for the different archetypes analysed 
in this study (6) 

Type of building Percentage of occurrence in 
English housing stock (%) 

Number of dwellings 

End-terrace 3.8 874,000 

Mid-terrace 7.5 1,725,000 

Semi-detached 5.5 1,265,000 

Detached 2.6 598,000 

Bungalow 0.6 138,000 

 

The building geometries and dimensions of the archetypes were determined through the 

implementation of statistical analysis on the dimensions of typical English dwellings from the 

English Housing Survey (EHS) (10) and details of the methods used are presented elsewhere (41). 

In brief, the internal layout for each archetype was determined using typical floor plans and facades 

of dwellings with the same age and built form (43–47). The area and orientation of the windows of 

each dwelling were estimated as a function of the dwelling’s floor area, age and built form, using a 

geometrical model of UK dwellings (48). The construction details for the different construction 

elements were defined using the EHS (10).  

 

2.2. Building fabric characteristics 

The same construction details were assumed for all archetypes, since they were all assumed 

to be of the same age. All construction elements apart from the external walls were assumed to be 

insulated as part of a whole house retrofit package, to the level required by the current Building 
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Regulations (15) under the assumption of an ideal retrofit scenario that includes other potentially 

invasive retrofits (e.g. floor insulation). The construction details of each construction element are 

illustrated in Table 4. The glazing area and its orientation for each archetype are illustrated in Table 

5. Building ventilation was modelled using an assumed infiltration rate, which was taken as the 

average for dwellings built prior to 1920 (11 ac/h at 50 Pa) based on Stephen’s monitored work 

(49). The pre-retrofit thermal characteristics of the building fabric were obtained from RdSAP-2009 

(13), again by considering the age of the dwellings. A summary of the geometric characteristics of 

the modelled archetypes is provided in Table 6. 

    
Table 4. Details of the construction elements inputs used in EDSL TAS and resultant U-value for each construction 
element prior to wall insulation installation. 

Construction Element Construction details U-value (W/m2K) 

External wall 180 mm brick – 10 mm gypsum 2.10 

Internal wall 10 mm gypsum – 100 mm brick – 10 mm gypsum 1.90 

Loft floor 20 mm gypsum – 230 mm mineral wool insulation 0.16 

Suspended wooden floor 10 mm gypsum – 100 mm air gap – 50 mm wooden floor 1.10 

Ground floor 400 mm concrete – 105 mm Expanded Polystyrene (EPS) 
insulation – 75 mm gypsum 

0.25 

Window 6 mm glass pane – 12mm air gap – 6 mm glass pane 1.80 

Door 40 mm wooden door 1.80 

Note 1: Loft, ground floor, doors and glazing were insulated to the level required by current Building Regulations.  
Note 2: Load bearing components such as floor or loft joists were not required for EDSL TAS thermal simulations  
 

 

Table 5. Glazing area and orientation for each dwelling 

Dwelling type  Glazing area (m2) 

North East West South Total 

End-terrace 7.9 - - 5.3 13.2 

Mid-terrace 7.9 - - 6.7 14.6 

Semi-detached 9.6 - - 8.2 17.8 

Detached 14.8 0.9 8.6 7.9 32.2 

Bungalow 7.4 1.1 2.2 7.0 17.7 
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Table 6. Area of exposed external walls (excluding windows area), exposed surface area, treated floor area and internal 
volume of each type of dwelling  

Dwelling type 
code 

Net area of external 
walls to be 

retrofitted (m2) 

Exposed 
surface area 

(m2) 

Floor area 
(m2) 

Internal 
volume (m3) 

Exposed surface to 
internal volume ratio 

End-terrace 80 138 90 203 1.47 

Mid-terrace 44 103 90 203 1.97 

Semi-detached 91 159 102 255 1.60 

Detached 141 257 153 341 1.33 

Bungalow 64 152 69 154 1.01 

 

The insulation scenarios tested are presented in Table 7. The application of 90 mm of 

expanded polystyrene (EPS) insulation would decrease the U-value of a solid wall with a pre-

insulation U-value of 2.10 W/m2K to 0.30 W/m2K, as required by the UK Building Regulations 

(15). It was assumed that the application of insulation would not only affect the wall thermal 

performance but the building fabric air infiltration as well. There is a great deal of uncertainty in 

post-retrofit airtightness and infiltration. In this case, post-retrofit infiltration rates were estimated 

based on the 10 m3/h/m2 @ 50 Pa best-practice guidance (15), converted to infiltration rate for each 

building using the ‘rule of 20’(50). The resulting post-retrofit infiltration rates and U-values for 

each insulation scenario are provided in Table 8.   

The models were simulated with their rear façade, which involved the highest glazing ratio 

for all archetypes, facing west. In this way the dwellings would be exposed to higher solar gains. By 

maximising solar gains, the dwellings’ space heating demand would reduce, enabling the modelling 

of the worst case scenario in terms of energy savings arising from solid wall insulation. 

Table 7. The different insulation scenarios tested 

Insulation Scenario Intervention 

1 No insulation applied to external walls  

2A Adding 90mm of EPS external wall insulation  

2B Adding 90mm of EPS internal wall insulation  

Note: Insulation density is equal to 30 kg/m3 and thermal conductivity is equal to 0.033 W/mK (51) 
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Table 8. Dwellings’ infiltration rate and external wall U-value 

Dwelling type  
External wall U-value (W/m2K) Infiltration rate at 50Pa pressure difference 

(ach) 

Scenario 1 Scenario 2A,B Scenario 1 Scenario 2A,B 

End terrace 2.1 0.30 11.00 6.79 

Mid-terrace 2.1 0.30 11.00 5.07 

Semi-detached 2.1 0.30 11.00 6.24 

Detached 2.1 0.30 11.00 7.52 

Bungalow 2.1 0.30 11.00 9.84 

Note: Scenario 2A refers to external wall insulation, and scenario 2B to internal wall insulation 

 

 

2.3. Building systems and fuel intensity factors 

Although the vast majority of English dwellings are served by gas central heating, electric 

heating was assumed to avoid additional uncertainty imposed by the efficiency of gas boilers. 

Nevertheless, many of these dwellings will use natural gas, which is characterised by a different 

carbon factor that will lead to different carbon savings. To estimate the operational carbon 

emissions, a carbon emission factor of 0.519 kg/kWh was used as provided in SAP-2012 (29).  

 

2.4. External climate 

All simulations were carried out for the London climate. This is because London as 

illustrated in Table 9 below has the highest solid wall distribution of all the English regions, thus 

this weather file would characterise the majority of solid properties in England (10).  The Chartered 

Institution of Building Services Engineers’ (CIBSE) Test Reference Year (TRY) weather file was 

used (52) for the calculation of the dwelling annual energy consumption. Additionally, since 

London is one of the warmest English cities, this represents a ‘worst-case’ scenario for energy 

savings. This allows us to see whether retrofit would be a viable option in these ‘worst-case’ 

scenarios. 
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Table 9. Distribution of different wall types among different English regions 
 
 

Region 

 
Predominant type of wall structure 

 
Solid 
Walls 
Total 

Frequency  
mixed 
types 

masonry 
cavity 

masonry 
single 
leaf 

9 inch 
solid 

greater 
than 9 

inch solid 

in situ 
concrete 

concrete 
panels 

timber 
panels 

metal 
sheet 

North East 6.2% 6.7% 1.5% 2.3% 4.5% 7.2% 4.4% 1.7% 4.8% 8.3% 

Yorkshire 
and the 
Humber 

11.8% 12.4% 11.9% 9.3% 17.7% 12.0% 12.7% 2.3% 11.9% 38.9% 

North 
West 

14.9% 16.3% 10.4% 10.7% 12.2% 18.7% 10.2% 6.8% 9.5% 33.3% 

East 
Midlands 

8.1% 8.5% 11.9% 11.6% 4.9% 13.9% 6.8% 8.0% 7.1% 28.4% 

West 
Midlands 

9.3% 9.4% 4.5% 12.1% 4.2% 15.8% 9.8% 10.8% 2.4% 20.8% 

South 
West 

10.2% 11.1% 9.0% 3.2% 22.8% 7.2% 15.6% 10.2% 14.3% 35.0% 

East 
England 

12.7% 11.3% 9.0% 11.6% 5.5% 5.3% 7.3% 26.7% 11.9% 26.1% 

South East 12.1% 16.8% 23.9% 10.3% 6.8% 8.6% 8.8% 21.0% 16.7% 41.0% 

London 14.6% 7.5% 17.9% 29.0% 21.4% 11.5% 24.4% 12.5% 21.4% 68.3% 

Note: the types of walls considered as solid walls are a) masonry single leaf, b) 9 inch solid and c) greater than 9 inch 
solid 

 

2.5. Occupancy patterns and behaviour 

Existing assumptions on typical occupancy patterns in UK dwellings from a previously 

published study were applied (53). A family occupancy of five was assumed for dwellings with 

more than 3-bedrooms and occupancy of four for dwellings with 2-bedrooms. Details regarding the 

daily occupancy schedule during weekdays are provided in Table 9. Internal heat gains arising from 

the occupants metabolic rates were calculated using data from CIBSE (54) while standard family 

occupancy, lights, appliances and window opening schedules were assumed based on various 

studies (54–61). Internal gains assigned for each zone are illustrated in Table 10. However, it is 

expected that there will be wide distribution of occupancy patterns across solid wall dwellings over 

England. Differences in occupancy patterns and indoor temperature preferences will have an 

immediate impact upon the dwelling’s space heat demand. All dwellings were modelled as naturally 

ventilated, in line with the CIBSE Guide A recommendations (54).  



15	  
	  

Table 10. The weekday occupancy schedule for each space. During weekends, the living room is occupied by 2 people 
between 10:00-12:00 & 18:00-20:00. Where less than four bedrooms were available, a double occupancy was assumed 
in more than one bedroom.   

 

00
:0

0 

01
:0

0 

02
:0

0 

03
:0

0 

04
:0

0 

05
:0

0 

06
:0

0 

07
:0

0 

08
:0

0 

09
:0

0 

10
:0

0 

11
:0

0 

12
:0

0 

13
:0

0 

14
:0

0 

15
:0

0 

16
:0

0 

17
:0

0 

18
:0

0 

19
:0

0 

20
:0

0 

21
:0

0 

22
:0

0 

23
:0

0 

Kitchen         x          x      
Bathroom        x x x           x x x  
Living Room                   x x x    
Bedroom 1 x x x x x x x x                x 
Bedroom 2 x x x x x x x x x          x x  x x x 
Bedroom 3 x x x x x x x x x          x x  x x x 
Bedroom 4 x x x x x x x x x          x x  x x x 

 

Table 11. Internal heat gains 

Type of space 
Internal (sensible) heat gains 

Occupancy (W) Equipment (W) Lights (W/m2) 

Kitchen 60 70 10 

Bathroom 60 - 10 

Living room 120 150 10 

Bedroom 1 110 - 10 

Bedroom 2 55 - 10 

Bedroom 3 55 - 10 

Bedroom 4 55 - 10 

 

2.6. Statistical analysis 

To assess the impact of uncertainties arising from modelling assumptions, Differential 

Sensitivity Analysis (DSA) was carried out. DSA is commonly used to examine directly the effect 

that different input variants will have upon the output (62). Repeated simulations in which one input 

parameter is changed each time allow the individual effects of all the input variations to be 

determined. The process in determining individual sensitivities from each input is described in 

Equation 1: 

ΔPi = Pi - PB   (Eq. 1) 

where Pi refers to the predicted output using a modified value of input i, PB refers to the predicted 

output when using base case inputs and ΔPi refers to the individual effect of each input variation.  
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DSA was carried out to assess the impact of uncertainties upon the dwelling’s energy and 

carbon emissions savings post-retrofit. Variations in the following modelling inputs were tested:  

• Solid wall pre-insulation U-value 

• Insulation thickness 

  For the base case, the pre-insulation U-value of the solid wall was set at 2.10 W/m2K and 

the thickness of EPS insulation to be added at 90 mm. The 2.10 W/m2K refers to the solid wall U-

value specified in RdSAP (13) and the 90 mm of insulation refers to the thickness of EPS insulation 

required to drop the U-value of a solid wall to 0.30 W/m2K, as required by the UK Building 

Regulations (15). The lower and upper limits of the pre-insulation wall U-value, were obtained 

using the minimum (0.64 W/m2K) and maximum (2.52 W/m2K) U-values reported in existing in-

situ measurements (28). The energy savings arising from these U-values were calculated and were 

subsequently converted to carbon savings. The process followed for this sensitivity analysis is 

illustrated schematically in Figure 2.  

For the insulation thickness the upper value was assumed after considering the U-values of 

external walls of different Passivhaus dwellings (63). Passivhaus dwellings involve external walls 

of U-values of 0.10 W/m2K. Thus, an insulation thickness of 310 mm of EPS, required to drop the 

solid wall U-value from 2.10 W/m2K to 0.10 W/m2K was used. For the lower value, an insulation 

thickness of 30 mm of EPS, required to drop the solid walls U-value from 2.10 W/m2K to 0.70 

W/m2K. According to Building Regulations, this represents the threshold U-value that should be 

achieved from a solid wall retrofit, if a U-value of 0.30 W/m2K is not technically, functionally or 

economically feasible to achieve (15). Input variants tested are provided in Table 11.  

Additional analysis was carried out to assess a further hypothesis. This hypothesis 

considered a pre-insulation solid wall U-value of 0.64 W/m2K and estimated the carbon savings 

arising if 310 mm of EPS external insulation were installed. The carbon savings arising from this 

hypothesis were then compared to the carbon savings estimated using the base-case values. The 
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purpose of this analysis was to determine if thicker insulation could recover the ‘lost’ carbon 

savings if lower solid wall U-values actually applied. However, it needs to be highlighted here that 

this is just an indicative comparison due to significant uncertainties stemming mainly from the lack 

of knowledge about the actual occupant patterns, occupant behaviour and the rebound effect2. 

 

Table 12. Base case values and variations tested for the two inputs: a) solid wall pre-insulation U-value, b) insulation 
thickness. Base case refers to the energy savings estimated by RdSAP, if dwellings are retrofitted according to Building 
Regulations 

Perturbed  input Solid wall pre-retrofit U-
value (W/m2K) 

Solid wall added 
insulation thickness 

(mm) 

Solid wall post-retrofit 
U-value (W/m2K) 

Solid wall pre-retrofit U-
value (W/m2K) 

2.10  
90 

0.30 
0.64 0.23 
2.52 0.32 

Solid wall added 
insulation thickness 

(mm) 

 
2.10 

90 0.30 
30 0.70 

310 0.10 
 

Regression analysis was carried out to assess the correlation between the external 

temperature, the external walls U-value and heating loads. The analysis was performed using results 

arising from the external insulation scenario. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 There is also the ‘rebound effect’ that refers to post-retrofit changes on the thermal comfort levels that instead of 
reducing energy demand they use the energy saved to raise indoor temperature, leading to lower energy savings than the 
ones expected (UKERC 2007). 
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           Figure 2. Implementation of the DSA process for the solid wall’s pre-insulation U-value 
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3.  Results  

3.1. Modelled thermal performance  

The annual space heat demand was estimated for the pre-insulation (Scenario 1) and the two 

post-insulation scenarios (Scenarios 2A &2B) for each dwelling archetype. Caution is advised in the 

interpretation of absolute values given the level of uncertainty that lies in the assumptions made in 

this study, however, the relative changes offer valuable insights in the performance of the dwelling 

pre- and post-retrofit. The installation of insulation, either externally or internally, reduced the 

annual space heat demand substantially, although internal insulation was found to be slightly more 

effective. The percentage reduction in space heat demand ranged from 60% to 66% when compared 

to the pre-insulation baseline condition for the external insulation scenario and from 62% to 68% 

for the internal insulation scenario. The absolute energy and carbon savings were affected by the 

exposed wall surface area of each dwelling. The greatest savings were achieved in the detached 

house while the lowest in the mid-terrace house, as illustrated in Figure 3.  

Figure 4a shows the energy savings achieved per exposed wall surface area and Figure 4b 

the exposed surface area to volume ratio of each dwelling. It was found that the mid-terrace house 

achieved the highest energy savings per m2 of insulation applied while the detached and the 

bungalow the lowest. In addition, it was observed that as the exposed surface area to volume ratio 

of a dwelling increased, the energy savings arising per m2 of insulation applied decreased.    
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Figure 3. Annual carbon savings expected for each archetype as a result of external wall insulation (EWI) and internal 
wall insulation (IWI) 
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(a) 

 
(b) 

Figure 4. The relationship between (a) the energy savings produced per m2 exposed wall surface area and (b) the 
exposed wall surface area-to-volume ratio for each dwelling archetype 
 
 
3.2. Differential sensitivity analysis 

The results of the sensitivity analysis for the pre-retrofit wall U-value are illustrated in 

Figure 5. The graph illustrates how the energy savings anticipated for the base case values could be 

affected if the pre-insulation U-value of the solid wall is equal to 0.64 W/m2K or 2.52 W/m2K 

instead of 2.10 W/m2K. Energy savings seem to be approximately 3 times more sensitive when the 

solid wall U-value is equal to 0.64 W/m2K rather than 2.52 W/m2K. Although the change in 

absolute energy savings was greater for the detached dwelling and lower for the mid-terrace 

dwelling, the greatest percentage decrease/increase was observed in the mid-terrace dwelling. 
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Consequently, the most sensitive archetype to these changes, as illustrated in Figure 5b was by a 

small margin the mid-terrace house and the least sensitive the bungalow. It was also observed that 

the anticipated savings seemed to be slightly (but not significantly) more sensitive for the scenario 

where insulation was applied externally.  

 
(a) 

 
(b) 

Figure 5. The impact on energy savings due to external (2A) and internal (2B) wall insulation, if the actual solid wall 
U-value is lower or higher than the 2.1 W/m2K value assumed for solid walls in the UK. More specifically, results 
display how the annual energy savings achieved by the addition of 90mm of EPS insulation (base case assumption) 
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would be affected, if the actual uninsulated solid wall U-value was 0.64 W/m2K or 2.52 W/m2K instead of 2.1 W/m2K. 
Figure (a) illustrates the change in annual energy savings as absolute values in kWh and Figure (b) as percentage 
increase or decrease.   

 

The insulation thickness sensitivity analysis results are illustrated in Figure 6. This graph 

explores how the energy savings could be affected if the thickness of the insulation added was 

reduced from 90 mm to 30 mm or increased to 310 mm. It is indicated that savings are more 

sensitive to the reduced rather than to the increased insulation thickness, even if the change in the 

insulation thickness was less for decreased thickness (60mm), than the increased in thickness 

(220mm). The dwelling that was found to be the most sensitive to changes in the insulation 

thickness was the detached house and the least sensitive the mid-terrace house. As with the U-value 

sensitivity analysis, it was observed that the anticipated savings seemed to be slightly more 

sensitive where insulation was applied externally.  
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(b) 

Figure 6. The impact on energy savings, if the insulation applied externally (2A) or internally (2B) is either thicker or 
thinner than the 90mm of insulation used for the base case, needed to drop the wall’s U-value to 0.3 W/m2K, as 
required by Building Regulations. More specifically, results display how the annual energy savings would be affected, 
if instead of 90mm, 30mm and 310mm of EPS insulation were added on an uninsulated solid wall of a U-value of 2.1 
W/m2K. Figure (a) illustrates the change in annual energy savings as absolute values in kWh and Figure (b) as 
percentage increase or decrease.   
 
 

The carbon savings for each archetype produced from the hypothesis tested and the carbon 

savings estimated using the RdSAP uninsulated solid wall U-value assumption are illustrated in 

Figure 7. As illustrated, the energy savings when 310 mm of EPS insulation was added to a solid 

wall of a U-value of 0.64 W/m2K were significantly less than the savings estimated using the 

RdSAP assumption, with the percentage decrease ranging from 52-57%.  
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Figure 7. Annual carbon savings expected from all the uninsulated English solid wall properties of the archetypes 
analysed; for Hypothesis-1 310mm of EPS insulation were added to a solid wall of pre-insulation U-value of 0.64 
W/m2K, for Hypothesis-2 310mm of EPS insulation were added to a solid wall of pre-insulation U-value of 1.43 
W/m2K and for the RdSAP anticipated savings 90mm of EPS insulation were added to a solid wall of pre-insulation U-
value of 2.1 W/m2K. 

	  

3.3. Regression analysis 

In Figure 8, the results of the regression analysis carried out to assess the relationship 

between heating loads and outdoor temperature are displayed. As the U-value of the external wall 

decreases, the spread of the heating loads also decrease. In Figure 9, the annual space heat demand 

arising from each U-value is plotted. The gradient of each trendline was characteristic of the energy 

savings anticipated for each dwelling; the steeper the gradient the more energy savings anticipated 

for the dwelling. The detached archetype is characterised by a steeper wall U-value – heat load 

relationship indicating that insulation is more effective as the exposed surface area of dwellings 

increases. 
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(a) 

 
(b) 

 
(c) 

Figure 8. Regression analysis showing the correlation between the bungalow’s indoor heating loads and outdoor 
temperature during occupancy hours, when applying different U-values to the external walls. 
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Figure 9. Regression analysis indicating the correlation between the dwellings’ annual space heat demand and their 
external walls U-value. 

 

4. Discussion  
 

4.1. Interpretation of results 

         Unsurprisingly, it was indicated that solid wall insulation can appreciably reduce the space 

heat demand of dwellings verifying findings of previous studies (18). It was also suggested that 

insulation is more effective as a dwelling’s exposed surface area to volume ratio decreases. More 

specifically it was found that savings per m2 of insulation applied were higher for dwellings with 

lower exposed surface area to volume ratio such as the mid-terrace dwelling.  

 

y	  =	  1.2081x	  +	  1.0413	  
R²	  =	  0.99708	  

y	  =	  2.7725x	  +	  2.2513	  
R²	  =	  0.99829	  

y	  =	  2.1355x	  +	  1.3151	  
R²	  =	  0.9978	  

y	  =	  1.8258x	  +	  1.0066	  
R²	  =	  0.99797	  

y	  =	  1.0713x	  +	  0.7297	  
R²	  =	  0.99941	  

0.0	  

1.0	  

2.0	  

3.0	  

4.0	  

5.0	  

6.0	  

7.0	  

8.0	  

9.0	  

0	   0.5	   1	   1.5	   2	   2.5	   3	  

An
nu

al
	  S
pa
ce
	  H
ea
t	  D

em
an
d	  
(M

W
h)
	  

External	  Wall	  U-‐value	  (W/m2K)	  

Bungalow	   Detached	   Semi-‐Detached	   End-‐terrace	   Mid-‐terrace	  



28	  
	  

             Moreover, the findings of this study indicated that inconsistencies between the actual and 

the RdSAP assumed solid wall U-value can have a significant impact upon the anticipated energy 

and carbon savings arising from solid wall insulation. This verifies suggestions from earlier studies 

(38) that indicated that the overestimation of the actual solid wall U-value would overestimate the 

dwellings predicted energy consumption that could significantly reduce the carbon savings 

achievable from solid wall insulation. Additionally, this study went one step further, to reveal the 

impact that both the insulation thickness and the solid wall U-value can have upon the anticipated 

energy and carbon savings of different dwelling archetypes, as a result of solid wall insulation. The 

archetype found to be the most sensitive to variations in the solid wall U-value was the mid-terrace 

house and the least sensitive the bungalow. This suggested that the sensitivity of each archetype is 

again dependant on its exposed surface area and volume. More specifically, archetypes with lower 

exposed surface area to volume ratio were found to be more prone in revealing a performance gap. 

Nevertheless, for variations in the insulation thickness, the archetype that was found to be the most 

sensitive was the detached house and the least sensitive the mid-terrace house. In this case it is 

suggested that the sensitivity of different archetypes to variations in the insulation thickness is 

influenced by the archetypes’ exposed wall area. By looking at the results in Figure 6 and Table 6 it 

can be seen that as a dwellings exposed wall area increases, its sensitivity to variations in the 

insulation thickness increase as well. Finally, it was indicated that if the current U-value assumption 

of 2.1 W/m2K is indeed an overestimation of the actual value, then the anticipated carbon savings 

would be much less even if much thicker insulation is applied.  

          The findings of the regression analysis verified the importance of wall insulation in reducing 

a dwelling’s space heat demand. As the wall’s U-value was decreasing, a de-coupling effect was 

revealed between the indoor and the outdoor environment, whilst the relationship between the space 

heat demand and wall U-values seems to be getting stronger. These findings are in accordance with 

previous research, suggesting that the external wall U-value is a key parameter both for reducing 

energy consumption and the de-coupling of the indoor and outdoor environment via passive means.   
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Study implications and future research 

The findings of this study indicated that uncertainties in solid wall U-values could result in a 

substantial performance gap and, more importantly, to significant under-performance of retrofit 

measures.  More specifically, for solid wall dwellings with U-values of as low as 0.64 W/m2K 

savings could be reduced by up to 65%. These findings are in accordance with previous studies (38) 

which indicated that for solid dwellings with U-values of 1.3 W/m2K a change in the mean 

predicted annual heating demand of 16% could occur. This is crucial as it may have serious 

repercussions on the Government’s carbon reduction goals. Firstly, it can result in significantly 

lower carbon savings than expected and, secondly, it may affect the uptake of retrofit measures due 

to doubt about effectiveness of retrofit measures. It is, thus, necessary to undertake extensive 

research to better understand the thermal behaviour of solid walls and obtain more accurate U-

values. The high impact of solid wall U-values upon the dwellings’ energy performance highlighted 

in this study suggest that there is need for a more detailed classification of different solid wall 

archetypes, indicating the thermal characteristics of each wall type. Further work should, therefore, 

focus on the investigation of solid wall U-values across larger housing samples, representative of 

the whole UK solid wall housing stock, using a variety of measurement procedures and equipment. 

Additionally, reviewing and updating current legislation would be required, since the solid wall U-

values specified in RdSAP may be inaccurate, potentially leading to incorrect estimates of the 

effectiveness of retrofit measures. 

 

5.  Conclusion 

The purpose of this study was to evaluate the impact of solid wall insulation on dwellings’ 

energy performance and assess the impact of uncertainties in solid wall U-value assumptions on the 

energy performance gap. The findings of this study confirmed that solid wall insulation can 
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appreciably reduce the space heat demand of dwellings and that insulation seems to be more 

effective as dwellings exposed surface area to volume ratio decreases.  

Moreover, the sensitivity analysis indicated that both the insulation thickness and the pre-

insulation U-value of solid walls have a significant impact upon the anticipated energy savings. The 

lower U-values indicated for solid walls by previous research can offset the energy savings 

estimated by RdSAP in such a degree that even thicker insulation cannot fully recover these 

estimated energy savings. This under-performance of solid wall retrofit needs to be addressed since 

it will not only result to significantly lower carbon savings but it may also affect the uptake of 

retrofit measures. In summary, whilst solid walls provide a great opportunity for reducing the UK’s 

carbon emissions, uncertainties in their pre-retrofit thermal performance should be addressed in 

order for the UK to achieve its housing sector decarbonisation targets.  
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