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Abstract
We provide new insights into the area of combining abstract
argumentation frameworks with probabilistic reasoning. In
particular, we consider the scenario when assessments on the
probabilities of a subset of the arguments is given and the
probabilities of the remaining arguments have to be derived,
taking both the topology of the argumentation framework
and principles of probabilistic reasoning into account. We
generalize this scenario by also considering inconsistent as-
sessments, i. e., assessments that contradict the topology of
the argumentation framework. Building on approaches to in-
consistency measurement, we present a general framework
to measure the amount of conflict of these assessments and
provide a method for inconsistent-tolerant reasoning.

1 Introduction
Combining approaches to qualitative and quantitative uncer-
tain reasoning seems to be a natural way to benefit from
the advantages of both areas. In this paper, we address
the challenge of combining abstract argumentation frame-
works (Dung 1995) with probabilistic reasoning capabilit-
ies, which has recently gained some attention in the com-
munity of formal argumentation (Dung and Thang 2010;
Li, Oren, and Norman 2011; Hunter 2012; Rienstra 2012;
Thimm 2012; Hunter 2013; Fazzinga, Flesca, and Parisi
2013; Li, Oren, and Norman 2013; Verheij 2014; Dondio
2014; Baroni, Giacomin, and Vicig 2014; Polberg and Doder
2014; Doder and Woltran 2014; Hunter 2014b; Hunter
and Thimm 2014c; 2014b; 2014d; 2014a; Hunter 2014a;
Timmer et al. 2015; Hunter 2015; Hadoux et al. 2015;
Gabbay and Rodrigues 2015). An abstract argumentation
framework is a directed graph with the nodes being the argu-
ments and edges indicating attack between arguments. Work
in this field w. r. t. probabilistic reasoning can be divided
(Hunter 2013) into the constellations approach (see e. g. (Li,
Oren, and Norman 2011)) and the epistemic approach (see
e. g. (Thimm 2012)).

In the constellations approach, uncertainty in the topology
of the graph (probabilities on arguments and attacks) is used
to make probabilistic assessments on the acceptance of argu-
ments. In the epistemic approach, the topology of the graph
is fixed but probabilistic assessments on the acceptance of
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arguments are evaluated w. r. t. the relations of the arguments
in the graph. The core idea of the epistemic approach is that
the more likely it is to believe in an argument, the less likely
it is to believe in an argument attacking it.

The epistemic approach is useful for modeling the belief
that an opponent might have in the arguments that could be
presented, which is useful for example when deciding on the
best arguments to present in order to persuade that opponent,
see e. g. (Hunter 2015). The approach is also useful for mod-
eling agents who are unable to directly add or change the ar-
gument graph, for instance when considering the beliefs of
the audience of a debate.

Here we follow the epistemic approach to probabilistic
argumentation and continue previous works (Thimm 2012;
Hunter 2014a; Hunter and Thimm 2014c; 2014b; 2014d). In
(Hunter and Thimm 2014d) we presented rationality condi-
tions for epistemic probabilities on arguments based on the
topology of the argumentation graph that describe when a
probability assessment on arguments complies with the at-
tack relation in an argumentation framework. In the present
paper, we consider the case when these probability assess-
ments are either incomplete or contradictory (or both) and
the challenge is to complete and consolidate them. This has
not been considered in the works cited above so far, with the
exception of our previous work (Hunter and Thimm 2014d)
where we initiated this discussion.

The central challenge in our investigation is, given prob-
abilistic assessments on arguments that are not meaning-
ful w. r. t. the rationality conditions of (Hunter and Thimm
2014d), how can these probabilities be modified to comply
with these conditions? For this purpose and motivated by
similar approaches to inconsistency measurement for clas-
sical and probabilistic logics (Hunter and Konieczny 2010;
Thimm 2013; De Bona and Finger 2015), we present in-
consistency measures for evaluating the appropriateness of
(partial) probability assessments and a general approach to
use those measures to consolidate these assessments.

The contributions of this paper are as follows.

1. We present the concept of partial probability assessments
and an approach to complete them by using the principle
of maximum entropy (Section 3).

2. We introduce inconsistency measures for evaluating the
significance of a partial probability assessment violating



the rationality conditions (Section 4.1).

3. We use the inconsistency measures to define consolid-
ation operators for partial probability assessments (Sec-
tions 4.2 and 4.3).

Furthermore, we provide some necessary preliminaries in
Section 2, discuss related works in Section 5, and conclude
with a discussion in Section 6. Proofs of technical results
can be found in an online appendix1.

2 Preliminaries
In the following, we introduce the background on abstract
argumentation (Dung 1995) and the epistemic approach to
probabilistic argumentation (Hunter and Thimm 2014d).

2.1 Abstract Argumentation
An abstract argumentation framework AF is a tuple AF =
(Arg,→) where Arg is a set of arguments and→ is a relation
→⊆ Arg×Arg. For two argumentsA,B ∈ Arg the relation
A → B means that argument A attacks argument B. For
A ∈ Arg define A− = {B | B → A}.

Semantics are given to abstract argumentation frame-
works by means of extensions (Dung 1995) or labelings (Wu
and Caminada 2010). In this work, we use the latter. A la-
beling L is a function L : Arg → {in, out, undec} that as-
signs to each argumentA ∈ Arg either the value in, meaning
that the argument is accepted, out, meaning that the argu-
ment is not accepted, or undec, meaning that the status of the
argument is undecided. Let in(L) = {A | L(A) = in} and
out(L) resp. undec(L) be defined analogously. A labeling
L is called conflict-free if for no A,B ∈ in(L), A → B.

Arguably, the most important property of a semantics is
its admissibility. A labeling L is called admissible if and
only if for all arguments A ∈ Arg

1. if L(A) = out then there is B ∈ Arg with L(B) = in and
B → A, and

2. if L(A) = in then L(B) = out for all B ∈ Arg with
B → A,

and it is called complete if, additionally, it satisfies

3. if L(A) = undec then there is no B ∈ Arg with B → A
and L(B) = in and there is a B′ ∈ Arg with B′ → A and
L(B′) 6= out.

The intuition behind admissibility is that an argument can
only be accepted if there are no attackers that are accepted
and if an argument is not accepted then there has to be some
reasonable grounds. The idea behind the completeness prop-
erty is that the status of an argument is only undec if it can-
not be classified as in or out. Different types of classical
semantics can be phrased by imposing further constraints.
In particular, a complete labelling L is grounded if and only
if in(L) is minimal, it is preferred if and only if in(L) is
maximal, and it is stable if and only if undec(L) = ∅ (all
statements on minimality/maximality are meant to be with
respect to set inclusion).

1mthimm.de/misc/probarg_kr2016_proofs.pdf

2.2 Probabilistic Abstract Argumentation
Let 2X denote the power set of a set X . A probability func-
tion P on some finite set X is a function P : 2X → [0, 1]
with

∑
X⊆X P (X) = 1. Let P : 2Arg → [0, 1] be a probab-

ility function on Arg. We abbreviate

P (A) =
∑

A∈E⊆Arg

P (E)

This means that the probability of an argument is the sum of
the probabilities of all sets of arguments that contain that ar-
gument. A probability function P on Arg can be regarded as
a generalization of a labelling (Thimm 2012) where probab-
ility 1 suggests strong acceptance of an argument, 0 means
strong rejection of an argument, and values strictly between
0 and 1 model tendencies between acceptance and rejec-
tion while probability 0.5 models undecidedness. In order
to assess whether a probability function is meaningful in
the context of an argumentation framework, in (Hunter and
Thimm 2014d) several rationality conditions where presen-
ted. Some of them are the following:
RAT P is rational w. r. t. AF if for every A,B ∈ Arg, if
A → B then P (A) > 0.5 implies P (B) ≤ 0.5.

COH P is coherent w. r. t. AF if for every A,B ∈ Arg, if
A → B then P (A) ≤ 1− P (B).

SFOU P is semi-founded w. r. t. AF if P (A) ≥ 0.5 for
every A ∈ Arg with A− = ∅.

FOU P is founded w. r. t. AF if P (A) = 1 for every A ∈
Arg with A− = ∅.

SOPT P is semi-optimistic w. r. t. AF if P (A) ≥ 1 −∑
B∈A− P (B) for every A ∈ Arg with A− 6= ∅.

OPT P is optimistic w. r. t. AF if P (A) ≥ 1 −∑
B∈A− P (B) for every A ∈ Arg.

JUS P is justifiable w. r. t. AF if P is coherent and optim-
istic.

RAT ensures that if argument A attacks argument B, and A
is believed (i. e. P (A) > 0.5), then B is not believed (i. e.
P (B) ≤ 0.5); COH ensures that if argumentA attacks argu-
ment B, then the degree to which A is believed caps the de-
gree to which B can be believed; SFOU ensures that if an ar-
gument is not attacked, then the argument is not disbelieved
(i. e. P (A) ≥ 0.5); FOU ensures that if an argument is not
attacked, then the argument is believed without doubt (i. e.
P (A) = 1); SOPT ensures that the belief in A is bounded
from below if the belief in its attackers is not high; OPT en-
sures that if an argument is not attacked, then the argument
is believed without doubt (i. e. P (A) = 1) and that the belief
inA is bounded from below if the belief in its attackers is not
high; and JUS combines COH and OPT to provide bounds
on the belief in an argument based on the belief in its at-
tackers and attackees. We refer the reader to (Thimm 2012;
Hunter 2013; Hunter and Thimm 2014c) for some more de-
tailed discussion of theses rationality conditions.

Let P be the set of all probability functions, P(AF)
be the set of all probability functions on Arg, and
Pt(AF) be the set of all t-probability functions with t ∈
{RAT,COH,SFOU,FOU, OPT,SOPT,JUS}.



A1 A2 A3 A4 A5 A6

P1 0.7 0.4 0.8 0.3 0.5 0.6
P2 0.6 0.3 0.6 0.3 0.4 0.6
P3 0.2 0.7 0.6 0.3 0.6 1
P4 0.7 0.3 0.5 0.5 0.2 0.5
P5 0.7 0.3 0.7 0.3 0 1
P6 0.7 0.8 0.9 0.8 0.7 1

Table 1: Some probability functions for Example 1

Example 1. ] Consider the abstract argumentation frame-
work AF = (Arg,→) depicted in Fig. 1 and the probabil-
ity functions depicted in Table 1 (note that the probability
functions there are only partially defined by giving the prob-
abilities of arguments). The following observations can be
made:

• P1 is rational and semi-founded, but neither coherent,
founded, optimistic, semi-optimistic, nor justifiable.

• P2 is rational,semi-founded, and coherent, but neither
founded, optimistic, semi-optimistic, nor justifiable.

• P3 is semi-founded, founded, but neither rational, coher-
ent, optimistic, semi-optimistic, nor justifiable.

• P4 is rational, coherent, and semi-optimistic, but neither
semi-founded, founded, optimistic, nor justifiable.

• P5 is rational, coherent, semi-optimistic, semi-founded,
founded, optimistic, and justifiable.

• P6 is semi-founded, founded, optimistic, and semi-
optimistic, but neither rational, coherent, nor justifiable.

A1 A2 A3

A4

A5 A6

Figure 1: The argumentation framework from Example 1

A labeling L and a probability function P are congruent,
denoted by L ∼ P , if for all A ∈ Arg we have L(A) =
in ⇔ P (A) = 1, L(A) = out ⇔ P (A) = 0, and L(A) =
undec ⇔ P (A) = 0.5. The entropy H(P ) of a probability
function P (Jaynes 1957; Paris 1994) is defined via

H(P ) = −
∑
E⊆Arg

P (E) logP (E)

With these notations some relationships between probabil-
istic and classical abstract argumentation can be identified
as follows.

Theorem 1. Let P ∈ P(AF) and L a labelling with L ∼ P .

1. If L is admissible then P ∈ PSFOU(AF).

S1 S2

I G

Figure 2: The argumentation framework from Example 2

2. If L is complete then P ∈ PCOH(AF) ∩ PFOU(AF).
3. L is grounded iff {P} = arg maxQ∈PJUS(Arg)H(Q).
4. If L is stable then P ∈ arg minQ∈PJUS(Arg)H(Q).

For the proofs of statements 2–4 see (Thimm 2012),
the proof of statement 1 is straightforward. The uniquely
defined probability function with maximum entropy (see
item 3 in Theorem 1) has also a specific meaning in probab-
ilistic reasoning. Given a set of probability functions which
are compliant with a given set of constraints (the explicit
knowledge in a knowledge base), the probability function
with maximum entropy PME completes this knowledge in
the most unbiased manner possible. That is, PME represents
the explicit knowledge but adds as little knowledge as ne-
cessary in order to obtain a complete probability function.
It can be characterized as the only approach satisfying some
very simple rationality conditions (such as syntax insensit-
ivity and decomposability on disjunct sub-bases), see e. g.
(Paris 1994; Kern-Isberner 2001) for some details.

3 Partial Probability Assessments
The framework outlined so far allows us to assess whether
probability functions are somewhat adequately reflecting the
topology of an argumentation framework and, thus, can be
used for uncertain reasoning based on argumentation. In the
following, we will investigate the case when we already have
probabilistic information on some arguments and need to in-
fer meaningful probabilities for the remaining arguments.
Example 2. Consider a court case where the defendant John
is either innocent (I) or guilty (G) to have committed the
murder of Frank. Footage from a surveillance camera at
the crime scene (S1) gives evidence that a person looking
like John was present at the time of the crime, giving a
reason that John is not innocent. However, footage from
another surveillance camera far away from the crime scene
(S2) gives evidence that a person looking like John was not
present at the time of the crime, giving a reason that John is
not guilty. This scenario can be modeled with the argument-
ation framework depicted in Figure 2. Note that there is no
attack from G to I as a person is assumed to be innocent by
default and I has to be defeated explicitly to prove guilt.

Now the footage from the camera S1 is examined by a
lab which assesses that the probability of the person in the
pictures is indeed John is 0.7. So given P (S1) = 0.7 what
are now adequate probabilities for the remaining arguments?

A partial function β : Arg → [0, 1] on Arg is called a
partial probability assignment. Let domβ ⊆ Arg be the
domain of β, i. e., the arguments for which a probabilistic



assessment is available. We are now interested in deriving
probabilities for the remaining arguments Arg \ domβ, tak-
ing the information we already have in β and the argument-
ation framework AF into account.

A probability function P ∈ P(AF) is β-compliant if for
every A ∈ domβ we have β(A) = P (A). Let Pβ(AF) ⊆
P(AF) be the set of all β-compliant probability functions.
Observe that Pβ(AF) is always non-empty.
Proposition 1. For all partial β : Arg → [0, 1], Pβ(AF) 6=
∅.

Of course, not all probability functions in Pβ(AF) are
adequate for reasoning as they may not take the ac-
tual argumentation framework into account. Let T ⊆
{RAT,COH,SFOU,FOU, OPT,SOPT,JUS} be a set of ra-
tionality conditions we wish to take into account for probab-
ilistic reasoning on argumentation frameworks and define

PT (AF) =
⋂
t∈T
Pt(AF)

The set PT (AF) contains all probability functions which
comply with all considered rationality conditions. Given a
partial probability assessment β and some rationality con-
ditions T , for the remainder of this section we assume
PT (AF) ∩ Pβ(AF) 6= ∅, i. e., there is at least one prob-
ability function that is both β-compliant and adheres to the
set of rationality conditions (we address the case PT (AF) ∩
Pβ(AF) = ∅ in the next section).

Define PβT (AF) = PT (AF) ∩ Pβ(AF).
Definition 1. Let β be a partial probability assignment and
T a set of rationality conditions. Then the possible probab-
ilities of A ∈ Arg \ domβ, denoted as pβT,AF(A), is defined
as pβT,AF(A) = {P (A) | P ∈ PβT (AF)}.

Under the assumption PβT (AF) 6= ∅, it is clear that
pβT,AF(A) 6= ∅ as well.

Example 3. We continue Example 2 with β1(S1) = 0.7
and assume T1 = {COH}. Then for the arguments S2, I,G
we obtain pβ1

T1,AF
(S2) = [0, 0.3], pβ1

T1,AF
(I) = [0, 0.3], and

pβ1

T1,AF
(G) = [0, 0.7].

We need some set theoretical notions before we can state
our next result. A subset X of a topological space is
(path-)connected, if for every two elements x, y ∈ X there
is a continuous function f : [0, 1] → X with f(0) = x and
f(1) = y.2 A set X is called convex, if for every two ele-
ments x, y ∈ X and δ ∈ [0, 1] we also have δx+ (1− δ)y ∈
X . A set X is closed if for every sequence x1, x2, . . . ∈ X ,
if limn→∞ xi exists then limn→∞ xi ∈ X .
Proposition 2. Let AF be an abstract argumentation frame-
work and β a partial probability assignment.

1. The set Pβ(AF) is connected, convex, and closed.
2. The sets P(AF), PCOH(AF), PSFOU(AF), PFOU(AF),
POPT(AF), PSOPT(AF), PJUS(AF) are connected, con-
vex, and closed.
2Note that P(AF) is a topological space as it can be identified

with a subspace of [0, 1]n with n = |2Arg|.

3. The setPRAT(AF) is connected and closed, but not convex
in general.

4. For every T ⊆ {COH,SFOU,FOU, OPT,SOPT,JUS}
the sets PT (AF) and PβT (AF) are connected, convex, and
closed.

5. For every T ⊆ {COH,SFOU,FOU, OPT,SOPT,JUS}
and A ∈ Arg the set pβT,AF(A) is connected, convex, and
closed.

The final statement above is equivalent to saying that
pβT,AF(A) is an interval. Note also, that if RAT ∈ T the
set PT (AF) is closed, but not necessarily connected or con-
vex. In the following, we focus on the cases where T ⊆
{COH,SFOU,FOU, OPT,SOPT,JUS}.

Proposition 2 implies that the problem of determin-
ing pβT,AF(A) is equivalent to the classical probabilistic
entailment problem (Jaumard, Hansen, and Poggi 1991;
Lukasiewicz 2000). Due to space limitations, we do not go
into more details here regarding this relationship but only
exploit it to make some observations on the computational
complexity of some problems related to pβT,AF(A).

Proposition 3. Let AF be an abstract argumentation frame-
work, β a partial probability assignment, and T ⊆
{COH,SFOU,FOU, OPT,SOPT,JUS}.

1. Deciding p ∈ pβT,AF(A) for some p ∈ [0, 1] is NP-
complete.

2. Deciding [l, u] = pβT,AF(A) for some l, u ∈ [0, 1] is DP-
complete.

3. Computing l, u ∈ [0, 1] such that [l, u] = pβT,AF(A) is
FPNP-complete.

Besides using pβT,AF(A) to obtain bounds on the probabil-
ities of the remaining arguments, we might also be interested
in obtaining point probabilities for the remaining arguments
that are as unbiased as possible, giving the probabilistic in-
formation of β. One can use the principle of maximum en-
tropy (see also Section 2.2) for this purpose, which is thanks
to Proposition 2 also applicable in our context.

Definition 2. Let AF be an abstract argumentation frame-
work, β a partial probability assignment, and T ⊆
{COH,SFOU,FOU, OPT,SOPT,JUS}. Define the set
Pβ,AF,TME via

Pβ,AF,TME = arg max
Q∈PβT (AF)

H(Q)

Proposition 4. The set Pβ,AF,TME contains exactly one
uniquely defined probability function.

Due to the above proposition we identify the singleton set
Pβ,AF,TME with its only element, e. g., we write Pβ,AF,TME (A) to
denote the probability P (A) with {P} = Pβ,AF,TME .

Example 4. We continue Examples 2 and 3 with
β1(S1) = 0.7 and assume T1 = {COH}. Then we
have Pβ1,AF,T1

ME (S2) = 0.3, Pβ1,AF,T1

ME (I) = 0.3, and



Pβ1,AF,T1

ME (G) = 0.5. Recall that pβ1

T1,AF
(I) = [0, 0.3] (Ex-

ample 3) and observe that Pβ1,AF,T1

ME (I) = 0.3 which is
the maximal probability that can be assigned to I. How-
ever, note also that this value is closest to 0.5 which is the
probability value with the least amount of information (in
the information-theoretic sense). Indeed, it can be observed
that all probabilities assigned above are those closest to 0.5
which is a general feature of reasoning based on the prin-
ciple of maximum entropy (note, however, that in more com-
plex settings involving other rationality conditions the func-
tion Pβ,AF,TME is not always characterized as easily as that).

Theorem 1 already pointed out the relationship of the
principle of maximum entropy to grounded semantics. Note
also that for β with domβ = ∅ and T = {JUS}we have that
Pβ,AF,TME corresponds to the grounded labelling of AF. Tak-
ing into account partial probabilistic information we there-
fore extended the notion of a grounded labelling and obtain a
probability function that is “as grounded as possible”. Sim-
ilarly, if we exchange the maximum in Definition 2 by a
minimum, we obtain a generalization of the notion of stable
labelings, cf. Theorem 1 item 4.

4 Contradictory Probability Assessments
So far we assumed PβT (AF) 6= ∅. In this section, we invest-
igate the general scenario without this assumption. Consider
the following example.

Example 5. We continue Example 2. New evidence ob-
tained by analyzing the footage from camera S2 suggests
that the probability of the person in those pictures is indeed
John is 0.4. Therefore, the partial probability assessment β′1
is defined by β′1(S1) = 0.7 and β′1(S2) = 0.4. Considering
the set of rationality conditions T = {COH} one can see
that Pβ

′
1

T (AF) = PT (AF) ∩ Pβ′1(AF) = ∅ as the condition

P (S1) ≤ 1− P (S2), (1)

which is necessary for having P ∈ PT (AF), cannot be sat-
isfied for any β′1-compliant P . In this case, one would still
be interested in obtaining a “reasonable” probability for e. g.
I.

We address the issue outlined in the example above by,
first, analyzing in a quantitative manner how much a partial
probability assessment deviates from satisfying a given set
of rationality conditions, and afterwards using this analysis
to provide reasonable probabilities for the remaining argu-
ments.

4.1 Inconsistency Measures for Contradictory
Probability Assessments

We first address the question of how to measure the dis-
tance (or inconsistency) of a given partial probability as-
signment β : Arg → [0, 1] to the set PT (AF) of prob-
ability functions. As before we restrict our attention to
T ⊆ {COH,SFOU,FOU,OPT,SOPT, JUS}). Let Π de-
note the set of all partial probability assignments and let A
denote the set of all abstract argumentation frameworks.

Definition 3. An inconsistency measure IT is a function
IT : Π× A→ [0,∞).

The intuition behind an inconsistency measure IT is that
for a partial probability assessment β and an argumentation
framework AF, the value IT (β,AF) quantitatively assesses
the severity of β violating the rationality conditions imposed
by T in AF. In particular, larger values indicate greater viol-
ation while attaining the minimum IT (β,AF) suggests that
β does not violate the rationality conditions imposed by T
in AF at all. Note that inconsistency measures have been in-
vestigated before mostly in the context of classical logic, see
e. g. (Hunter and Konieczny 2010).

Before formalizing the intuition behind an inconsistency
measure, we need some further notation. Let β, β′ be par-
tial probability assignments. We say that β′ is an expan-
sion of β if domβ ⊆ domβ′ and β(A) = β′(A) for all
A ∈ domβ. If domβ∩domβ′ = ∅ then define (β◦β′) with
domβ ◦ β′ = domβ ∪ domβ′ via (β ◦ β′)(A) = β(A) for
A ∈ domβ and (β ◦ β′)(A) = β′(A) for A ∈ domβ′. Two
arguments A,B ∈ Arg are (indirectly) connected if there
is an undirected path between them. Let CC(AF) be the
connected components of AF w. r. t. this notion of connec-
tedness.

Now, some desirable properties for an inconsistency
measure in our context—motivated by similar properties
for inconsistency measures in classical logics (Hunter and
Konieczny 2010)—are as follows.

Consistency IT (β,AF) = 0 iff PT (AF) ∩ Pβ(AF) 6= ∅.
Monotonicity If β′ is an expansion of β then IT (β,AF) ≤
IT (β′,AF).

Super-additivity If domβ ∩ domβ′ = ∅ then IT (β ◦
β′,AF) ≥ IT (β,AF) + IT (β′,AF).

Separability IT (β,AF) =
∑

AF′∈CC(AF) IT (β,AF′).

The property consistency states that an inconsistency meas-
ure must attain its minimal value if and only if there is at
least one β-compliant probability function P that satisfies
all conditions T w. r. t. AF. The property monotonicity states
that the inconsistency cannot decrease when adding further
constraints to a partial probability assessment. The property
super-additivity means that the sum of the inconsistency val-
ues of two independent probability assessments cannot be
larger than the inconsistency value of the joint probability
assessment. Finally, the property separability demands that
the inconsistency value decomposes on the connected com-
ponents of an argumentation framework.

In order to implement inconsistency measures for our
setting of probabilistic argumentation, we base our meas-
ures on metrics on probability functions, cf. (Thimm 2013;
De Bona and Finger 2015; Grant and Hunter 2013).

Definition 4. A function d : P × P → [0,∞) is called a
pre-metrical distance measure if it satisfies d(P, P ′) = 0 if
and only if P = P ′.

In the following, we refer to pre-metrical distance meas-
ures simply by distance measures (note that we do not im-
pose the properties symmetry and triangle equality of full



distance measures). Examples of such distance measures
are (let p ≥ 1)

dKL(P, P ′) =
∑

x∈domP∩domP ′
P (x) log

P (x)

P ′(x)

dp(P, P
′) = p

√ ∑
x∈domP∩domP ′

|P (x)− P ′(x)|p

In the definition of dKL, if x = 0 we assume x log x/y = 0
and if x 6= 0 but y = 0 we assume x log x/y = x. The
measure dKL is also called the Kullback-Leibler divergence
(or relative entropy). The measure dp is called the p-norm
distance. In the following, we will use these two distance
measures as examples to illustrate our approach. Note that
any other pre-metrical distance measure can be used instead.

Note that both measures dKL and dp are defined over the
set domP ∩ domP ′. This is only a technical necessity in
order to have well-defined measures for all pairs of probab-
ility functions. In the following, distance measures are only
applied on pairs of probability functions P and P ′ such that
P, P ′ ∈ P(AF) for some AF, i. e., domP = domP ′.

For a distance measure d, a probability function P ∈ P
and closed sets Q,Q′ ⊆ P we abbreviate

d(P,Q) = min
P ′∈Q

d(P, P ′)

d(Q, P ) = min
P ′∈Q

d(P ′, P )

d(Q,Q′) = min
P ′∈Q

d(P ′,Q′)

Using a distance measure d on probability functions we
define a general inconsistency measure as follows.
Definition 5. Let d be a distance measure and T ⊆
{COH,SFOU,FOU,OPT,SOPT, JUS}. The distance-
based inconsistency measure IdT : Π × A → [0,∞) for
T and d is defined via

IdT (β,AF) = d(Pβ(AF),PT (AF))

In other words, IdT (β,AF) is the minimal distance w. r. t.
d of a β-compliant probability function P1 and a probabil-
ity function P2 that satisfies the rationality conditions of T
w. r. t. AF.
Example 6. We continue Example 5 with T1 = {COH} and
β′1 defined by β′1(S1) = 0.7 and β′1(S2) = 0.4. For d1 (the
Manhattan distance) it can be easily seen that Id1T1

(β′1,AF) =
0.1 as this amounts to the absolute amount Equation (1)
is violated. For d2 (the Euclidean distance) we obtain
Id2T1

(β′1,AF) ≈ 0.0373. For dKL (the Kullback-Leibler di-
vergence) we obtain IdKL

T1
(β′1,AF) ≈ 0.625. A geometrical

interpretation for both d2 and dKL is hard to provide but
compare those values to the values obtained for β2 defined
by β2(S1) = 0.8 and β2(S2) = 0.9: Id1T1

(β2,AF) = 0.7,
Id2T1

(β2,AF) ≈ 0.403, and IdKL
T1

(β2,AF) ≈ 0.312. From

3Values of inconsistency measures were determined by us-
ing the OpenOpt optimization package http://openopt.
blogspot.de

an intuitive point of view β2 seems more inconsistent than
β′1 (the constraint (1) is violated to a larger extent) and both
Id1T1

(β2,AF) and Id2T1
(β2,AF) comply with this intuition as

they assign larger inconsistency values to β2 than to β′1. For
IdKL
T1

(β2,AF) we obtain the opposite result, due to the fact
that dKL does not measure distance of probabilities but dis-
tance of information content. However, we leave a deeper
interpretation of this matter for future work.

As can be seen by the following results, the family of in-
consistency measures IdT complies with our formalization of
a meaningful inconsistency measure.
Theorem 2. If d is a pre-metrical distance measure then IdT
satisfies consistency.

Theorem 3. The function IdKL
T satisfies consistency and

monotonicity.

We conjecture that IdKL
T also satisfies super-additivity and

separability (based on experiments), but a formal proof is
yet to be found. For IdpT we have a stronger result as follows.

Theorem 4. For p ≥ 1 the function IdpT satisfies consistency
and monotonicity. For p = 1 the function IdpT also satisfies
separability and super-additivity.

For p > 1 a relaxed version of separability holds.

Theorem 5. For p > 1 the function IdpT satisfies

IdpT (β,AF) ≤
∑

AF′∈CC(AF)

IdpT (β,AF′)

4.2 Distance-based Consolidation
The measure IdT allows to quantitatively assess the violation
of a partial probability assignment in the light of a given set
of rationality conditions. However, Example 5 suggests that
even in the presence of contradictory information, we want
to be able to provide reasonable inference results. Following
the idea of IdT we define the set of reasonable probability
functions as those probability functions in Pβ(AF) that are
closest to satisfying the rationality conditions T .
Definition 6. Define the set ΠT,d,AF(β) ⊆ Pβ(AF) via

ΠT,d,AF(β) = {P ∈ Pβ(AF) | d(P,PT (AF)) minimal}
In other words, the set ΠT,d,AF(β) is the set of “witnesses”

of the inconsistency value IdT (β,AF), i. e., those probability
functions P with d(P,PT (AF)) = IdT (β,AF).

Our idea is now to use ΠT,d,AF(β) in the same way for
reasoning as we used PβT (AF) in Section 3. In fact, it can be
easily seen that under the assumption PβT (AF) 6= ∅ reason-
ing with ΠT,d,AF(β) coincides with our previous approach.

Proposition 5. If PβT (AF) 6= ∅ then ΠT,d,AF(β) = PβT (AF)
for every pre-metrical distance measure d.

Moreover, ΠT,d,AF(β) is a strict generalization of
PβT (AF) as it always contains probability functions, even if
PβT (AF) = ∅. Furthermore, ΠT,d,AF(β) features the same
topological properties as PβT (AF) if the distance measure d
is reasonably chosen.



Proposition 6. ΠT,d,AF(β) 6= ∅.
Proposition 7. For strictly convex d and T ⊆
{COH,SFOU,FOU, OPT,SOPT,JUS} the set ΠT,d,AF(β)
is connected, convex, and closed.

The above statement is true for our examples of distance
measures, except for d1 (the Manhattan distance) which is
not strictly convex.

Corollary 1. For T ⊆ {COH,SFOU,FOU,
OPT,SOPT,JUS} and d ∈ {dKL, dp} (for p > 1)
we have that Πt,d,AF(β) is a connected, convex, and closed
set.

The above results show that ΠT,d,AF(β) behaves exactly
like PβT (AF) (in the topological sense) and is a strict gener-
alization. We therefore extend the notion of possible prob-
abilities pβT,AF(A) to the general case.

Definition 7. Let d be strictly convex and T ⊆
{COH,SFOU,FOU, OPT,SOPT,JUS}. Define

πβ,dT,AF(A) = {P (A) | P ∈ ΠT,d,AF(β)}

Observe that by Proposition 5 we have πβ,dT,AF(A) =

pβT,AF(A) if PβT (AF) 6= ∅ (for every pre-metrical distance
measure d).

Example 7. We continue Example 5 with T1 = {COH}
and β′1 defined by β′1(S1) = 0.7 and β′1(S2) = 0.4. For the
Euclidean distance d2 we obtain

π
β′1,d2
T1,AF

(I) ≈ [0.0284, 0.383] π
β′1,d2
T1,AF

(G) ≈ [0.0270, 0.682]

which shows that beliefs in both I and G can be quite low
(due to the conflict in the evidence) but that the belief in G
can be up to 0.682 due to the stronger evidence in S1 and
weaker evidence in S2.

While the problem of determining pβT,AF(A) is equivalent
to the classical probabilistic entailment problem (see Sec-
tion 3) the problem of determining πβ,dT,AF(A) has strong
relationships with the generalized probabilistic entailment
problem of (Potyka and Thimm 2015). In particular, the
work of (Potyka and Thimm 2015) suggests that the com-
putational complexity of determining πβ,dT,AF(A) (and the
other related computational problems) is the same as for
pβT,AF(A), provided that the inconsistency value IdT (β,AF)
has already been determined. We leave a deeper analysis of
this matter for future work.

Similarly as for PβT (AF) we can define reasoning based
on maximum entropy on ΠT,d,AF(β) as follows.

Definition 8. Let d be strictly convex and T ⊆
{COH,SFOU,FOU, OPT,SOPT,JUS}. Define

Pβ,AF,T,dME = arg max
Q∈ΠT,d,AF(β)

H(Q)

The validity of the following proposition follows also
straightforwardly from our previous results.

Proposition 8. Let AF be an abstract argumentation frame-
work, β a partial probability assignment, d be strictly con-
vex, and T ⊆ {COH,SFOU,FOU, OPT,SOPT,JUS}. The
set Pβ,AF,T,dME contains exactly one uniquely defined probab-
ility function.

We also write Pβ,AF,T,dME (A) to denote the probability
P (A) with {P} = Pβ,AF,T,dME .
Example 8. We continue Example 7 with T1 = {COH}
and β′1 defined by β′1(S1) = 0.7 and β′1(S2) = 0.4. For the
Euclidean distance d2 we obtain

Pβ
′
1,AF,T1,d2

ME (I) ≈ 0.3788 Pβ
′
1,AF,T1,d2

ME (G) ≈ 0.4959

which gives an ambiguous picture on the innocence or guilt
of John (due to the contradictory information), with a slight
tendency towards guilt due to the slightly higher belief in
S1.

4.3 An Alternative Point of View
In Definition 6 we defined ΠT,d,AF(β) to be a subset of
probability functions of Pβ(AF) that are closest to the set
PT (AF). The decision of defining ΠT,d,AF(β) like this was
based on the need to consider only probability functions that
are compliant with our observations but as rational as pos-
sible w. r. t. T . Consider now

Π∗T,d,AF(β) = {P ∈ PT (AF) | d(Pβ(AF), P ) minimal}
The set Π∗T,d,AF(β) contains those probability functions in
PT (AF) that are closest to the set Pβ(AF), i. e., probabil-
ity functions that are fully rational w. r. t. T and maximally
compliant with our observations. It can be easily seen that
Π∗T,d,AF(β) behaves exactly like ΠT,d,AF(β) w. r. t. its topo-
logical properties.
Proposition 9.

1. If PβT (AF) 6= ∅ then Π∗T,d,AF(β) = ΠT,d,AF(β) =

PβT (AF) for every pre-metrical distance measure d.
2. Π∗T,d,AF(β) 6= ∅
3. For strictly convex d and T ⊆ {COH,SFOU,FOU,

OPT,SOPT,JUS} the set Π∗T,d,AF(β) is connected, con-
vex, and closed.
Consequently, we can define reasoning based on

Π∗T,d,AF(β) in the same way as we did on ΠT,d,AF(β).
If we view the ΠT,d,AF(β) and Π∗T,d,AF(β) operators as

repair operators, then they offer us two options:
1. ΠT,d,AF(β) is used when we want to preserve the prior in-

formation we have in β but want to get as close as possible
to satisfying the rationality constraints in T ; and

2. Π∗T,d,AF(β) is used when we want to impose the rational-
ity constraints we have in T but want to keep as much as
possible from the prior information we have in β.

We can regard ΠT,d,AF(β) as soft repair as it does not sat-
isfy T but gets closer to it, and we can regard Π∗T,d,AF(β)
as hard repair as it does satisfy T . So hard repairs ensure
conformity with T but at the loss of some the original in-
formation in β, whereas soft repairs ensure no loss of the
original information in β, but at the loss of some conformity
with T .



5 Related Works
The two main approaches to probabilistic argumentation
are the constellations and the epistemic approaches (Hunter
2013).

• In the constellations approach, the uncertainty is in
the topology of the graph (see for example (Dung and
Thang 2010; Li, Oren, and Norman 2011; Hunter 2012;
Fazzinga, Flesca, and Parisi 2013; Li, Oren, and Nor-
man 2013; Hunter and Thimm 2014a; Dondio 2014; Pol-
berg and Doder 2014; Doder and Woltran 2014; Fazzinga,
Flesca, and Parisi 2015). As an example, this approach is
useful when one agent is not sure what arguments and
attacks another agent is aware of, and so this can be cap-
tured by a probability distribution over the space of pos-
sible argument graphs.

• In the epistemic approach, the topology of the argument
graph is fixed, but there is uncertainty about whether an
argument is believed (Thimm 2012; Hunter 2013; Baroni,
Giacomin, and Vicig 2014; Hunter 2014b; 2014a; Hunter
and Thimm 2014d; 2014c; 2014b; Hunter 2015). A core
idea of the epistemic approach is that the more likely an
agent is to believe in an argument, the less likely it is to
believe in an argument attacking it.

This paper is a development of the epistemic approach
with a focus on incomplete and inconsistent probability dis-
tributions. These problems were first raised in (Hunter 2013;
Hunter and Thimm 2014d), but no systematic solutions to
the problems were presented. In contrast in this paper, we
have provided solutions based on well-justified notions of
distance between probability distributions.

In quantifying disagreement between argument graphs,
the distance between labellings has been considered in terms
of the weighted sum of the number of labellings that dif-
fer (Booth et al. 2012). Various kinds of distance have also
been considered in methods for epistemic enforcement in
abstract argumentation (Baumann and Brewka 2010; Bau-
mann 2012; Coste-Marquis et al. 2014), for revising argu-
ment graphs (Coste-Marquis, Konieczny, and Maily 2014a;
2014b), and for merging argument graphs (Coste-Marquis
et al. 2007; Delobelle, Konieczny, and Vesic 2015). There
are related proposals for belief revision in argumentation
such as (Cayrol, de Saint-Cyr, and Lagasquie-Schiex 2010;
Gabbay and Rodrigues 2012; Bisquert et al. 2013; Diller et
al. 2015) but they do not use distance measures.

Dung and Thang (Dung and Thang 2010) provided the
first proposal to extend abstract argumentation with a prob-
ability distribution over sets of arguments which they use
with a version of assumption-based argumentation in which
a subset of the rules are probabilistic rules. Another ap-
proach to augmenting abstract argumentation with prob-
abilities has used equations based on the structure of the
graph to constrain the probability assignments, and these can
be solved to calculate probabilities (Gabbay and Rodrigues
2015). In another rule-based system for argumentation, the
belief in the premises of an argument is used to calculate
the belief in the argument (Riveret et al. 2007). However,
the proposal does not investigate further the nature of this

assignment, for example with respect to abstract argument-
ation, but rather its use in dialogue is explored. In a logic-
based approach, Verheij combines qualitative reasoning in
terms of reasons and defeaters, with quantitative reasoning
using argument strength which is modeled as the conditional
probability of the conclusions given the premises (Verheij
2014).

There are other approaches to bringing probability the-
ory into systems for dialogical argumentation. A probab-
ilistic model of the opponent has been used in a dialogue
strategy allowing the selection of moves for an agent based
on what it believes the other agent is aware of and the moves
it might take (Rienstra 2012; Rienstra, Thimm, and Oren
2013). In another approach to probabilistic opponent mod-
eling, the history of previous dialogues is used to predict the
arguments that an opponent might put forward (Hadjinikolis
et al. 2013). For modeling the possible dialogues that might
be generated by a pair of agents, a probabilistic finite state
machine can represent the possible moves that each agent
can make in each state of the dialogue assuming a set of ar-
guments that each agent is aware of (Hunter 2014b). This
has been generalized to POMDPs when there is uncertainty
about what an opponent is aware of (Hadoux et al. 2015).

Some research has investigated relationships between
Bayesian networks and argumentation. Bayesian networks
can be used to model argumentative reasoning with argu-
ments and counterarguments (Vreeswijk 2004). In a similar
vein, Bayesian networks can be used to capture aspects of ar-
gumentation in the Carneades model where the propagation
of argument applicability and statement acceptability can be
expressed through conditional probability tables (Grabmair,
Gordon, and Walton 2010). Going the other way, argu-
ments can be generated from a Bayesian network, and this
can be used to explain the Bayesian network (Timmer et al.
2015), and argumentation can be used to combine multiple
Bayesian networks (Nielsen and Parsons 2007).

6 Discussion and Summary
The epistemic approach provides a finer grained assessment
of an argument graph than given by the basic notions of
extensions. With labellings, arguments are labelled as in,
out, or undec, whereas with the epistemic approach an ar-
gument can take any value in [0, 1]. By adopting constraints
on the probability distribution, we have shown in previ-
ous work how the epistemic approach subsumes Dung’s ap-
proach (Thimm 2012; Hunter and Thimm 2014c). However,
we have also argued that there is a need for a view where
we adopt weaker constraints on the probability distribution.
For instance, an important aspect of the epistemic approach
is the representation of disbelief in arguments even when
they are unattacked. It is not always possible or practical to
identify a counterargument to reject in argumentation, and
often it is quite natural to directly represent the disbelief in
an argument without consideration of the counterargument.

The epistemic approach is also useful for modeling the
belief that an opponent might have in the arguments that
could be presented, which is useful for example when de-
ciding on the best arguments to present in order to persuade
that opponent. Strategies in dialogical argumentation are an



important research issue (Thimm 2014). By harnessing a
model of the beliefs of opponent, better choices can be made
by an agent (see for example (Hunter 2015)).

In this paper, our focus has been on incomplete probabil-
ity distributions and on probability distributions that are in-
consistent with a set of constraints. These issues commonly
arise when considering multiple agents. For instance, when
using a probability distribution to represent the beliefs of an
opponent, the opponent may have made explicit its beliefs in
specific arguments (perhaps by positing them, or by answer-
ing queries regarding them). Normally, what is known about
the beliefs of the opponent will be incomplete. To give an
example of dealing with inconsistency, we can use the prob-
ability distribution to represent the feedback obtained from
an audience of a television debate. Here, the probability dis-
tribution might be inconsistent with the chosen constraints.
If we assume that the audience does conform to the con-
straints, and that probability distribution fails to satisfy the
constraints, then we can “repair” the probability distribution,
using our approaches of “soft” and “hard repair”.
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