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Abstract

Periodic travelling waves are considered in the class of reduced Ostrovsky equations that
describe low-frequency internal waves in the presence of rotation. The reduced Ostrovsky
equations with either quadratic or cubic nonlinearities can be transformed to integrable equa-
tions of the Klein–Gordon type by means of a change of coordinates. By using the conserved
momentum and energy as well as an additional conserved quantity due to integrability, we
prove that small-amplitude periodic waves are orbitally stable with respect to subharmonic
perturbations, with period equal to an integer multiple of the period of the wave. The proof
is based on construction of a Lyapunov functional, which is convex at the periodic wave and
is conserved in the time evolution. We also show numerically that convexity of the Lyapunov
functional holds for periodic waves of arbitrary amplitudes.

1 Introduction

The Ostrovsky equation with the quadratic nonlinearity was originally derived by L.A. Ostrovsky
[31] to model small-amplitude long waves in a rotating fluid of finite depth. The same model was
extended to include the cubic nonlinearities in the context of the internal gravity waves [18, 20].

We consider the class of reduced Ostrovsky equations, for which the high-frequency disper-
sion is neglected. In particular, we are interested in the models with either quadratic or cubic
nonlinearities. When a suitable scaling is selected, the two different evolution equations can be
written in the normalized forms

(ut + uux)x = u (1.1)

and (
ut +

1

2
u2ux

)
x

= u, (1.2)

where u(x, t);R× R→ R. The modified reduced Ostrovsky equation (1.2) can be considered as
the defocusing version of the short pulse equation(

ut −
1

2
u2ux

)
x

= u. (1.3)

The short-pulse equation was derived in [11, 35, 33] in the context of propagation of ultra-short
pulses with few cycles on the pulse width.
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Local solutions of the Cauchy problem associated with the class of reduced Ostrovsky equa-
tions exist in the space Hs(R) ∩ Ḣ−1(R) for s > 3

2 [36]. For the sufficiently large initial data,
the local solutions break in a finite time, similar to the inviscid Burgers equation with quadratic
or cubic nonlinearities [26, 27]. However, if the initial data u0 is small in a suitable norm, then
local solutions are continued for all times in the same space. For the quadratic equation (1.1),
the global solutions exist if u0 ∈ H3(R) with 1 − 3u′′0(x) > 0 for every x ∈ R [19, 21]. For the
cubic equation (1.2), the global solutions exist if u0 ∈ H2(R) with |u′0(x)| < 1 for every x ∈ R
[14, 32].

This work is devoted to the orbital stability analysis of periodic travelling waves of the reduced
Ostrovsky equations (1.1) and (1.2). Periodic travelling waves can be found in the explicit form
of the Jacobi elliptic functions, after a change of coordinates [19]. Alternatively, the periodic
waves can be characterized as critical points of the conserved energy [3]. If the periodic waves are
constrained minimizers of energy with respect to the perturbations of the same period subject to
the fixed conserved momentum, then they are orbitally stable with respect to such perturbations
(see, e.g., the recent works [4, 5, 15, 16, 24, 28, 29]).

Unfortunately, the periodic waves are not typically constrained minimizers of energy with
respect to perturbations with period equal to an integer multiple of the wave period (such per-
turbations are called subharmonic). It becomes therefore difficult (if not impossible) to prove
the nonlinear orbital stability of periodic waves with respect to subharmonic perturbations even
if the spectral stability of the periodic waves is established (e.g., by computing numerically the
Floquet–Bloch spectrum of the linearization at the periodic wave).

However, the reduced Ostrovsky equations (1.1) and (1.2) can be transformed to the integrable
equations of the Klein–Gordon type with a change of coordinates [19, 14]. As a result, these
evolution equations have a bi-infinite sequence of conserved quantities beyond the conserved
energy and momentum. By combining several conserved quantities in a linear combination,
one can try obtaining a conserved quantity, for which the periodic waves are unconstrained
minimizers with respect to subharmonic perturbations. These minimizers are degenerate due
to the spatial translation symmetry, but the degeneracy can be overcome by using the spatial
translation parameter.

These ideas to obtain nonlinear orbital stability of periodic waves in integrable equations
have been developed in the works of B. Deconinck and his collaborators [6, 7, 12, 13, 30]. Using
the eigenfunctions of Lax operators arising in the inverse scattering method, a complete set
of Floquet–Bloch eigenfunctions satisfying the linearization of the integrable equations at the
periodic wave is constructed and the quadratic forms associated with the higher-order energy
functionals are computed at the Floquet–Bloch eigenfunctions. If the quadratic form for a linear
combination of the higher-order energy functionals is shown to be positive for every Floquet–Bloch
eigenfunction of the linearized integrable equation, then one can conjecture that the corresponding
energy functional can be used as the Lyapunov function in the proof of the orbital stability of
unconstrained minimizers. In such a way, the nonlinear orbital stability of periodic waves with
respect to subharmonic perturbations was obtained for the Korteweg–de Vries [6, 30, 12], modified
Korteweg–de Vries [13], and the defocusing nonlinear Schrödinger [7] equations.

In the recent work [17], the proof of nonlinear orbital stability was revisited for the periodic
waves in the defocusing nonlinear Schrödinger equation. In particular, it was proven rigorously
that the periodic waves are unconstrained minimizers for a linear combination of two natural
energy functionals, one of which is defined in H1 and the other one is defined in H2. Compared
to the work [7], the proof was developed directly for the Hessian operators associated with the
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higher-order Lyapunov functional. Positivity of the corresponding quadratic form is proved for
small-amplitude periodic waves by means of the perturbation theory and for large-amplitude
periodic waves by means of new factorization identities for the defocusing NLS equation and a
continuation argument.

In this work, we extend the nonlinear orbital stability analysis to the class of reduced Ostro-
vsky equations, which include the integrable equations (1.1) and (1.2). Similarly to the scopes of
[17], we would like to work with a linear combination of two energy functionals, one of which is
the energy of the reduced Ostrovsky equations defined in H−1∩Lp space with p = 3 for (1.1) and
p = 4 for (1.2). The other energy functional is a subject of the free will. No general theory exists
that can be used to suggest a suitable choice of the other conserved quantity. For instance, we
could look at the higher-order energy defined in a subset of H−2 space or the higher-order energy
defined in Hs with s = 3 for (1.1) or s = 2 for (1.2). The choice we are making in this work
is less conventional. We will show that the Casimir-type functional, which is the main building
block for integrability of the corresponding equations [9, 10], can be chosen in the construction of
the Lyapunov functional for the periodic wave. The second variation of the Lyapunov functional
is positive for the Hs ∩H−1 perturbations to the periodic wave with s = 2 for (1.1) and s = 1
for (1.2), thus providing stability of the periodic waves in the reduced Ostrovsky equations (1.1)
and (1.2).

We prove the main result for the small-amplitude periodic waves, when computations are
performed by the perturbation theory and do not require a heavy use of integrability technique.
We also show numerically that convexity of the Lyapunov functional extend to the periodic
waves of larger amplitudes until the terminal amplitude is reached, where the periodic wave
profile becomes piecewise smooth.

When this work was complete, we became aware of the recent study of spectral stability of
periodic waves in the reduced Ostrovsky equations (1.1) and (1.2) in [23]. Compared to our study,
the spectral stability is established with respect to co-periodic perturbations and the result of
the latter work holds for periodic waves of arbitrary amplitudes.

The paper is organized as follows. The conserved quantities and the main stability result for
the reduced Ostrovsky equations are described in Section 2 for (1.1) and in Section 3 for (1.2).
The general proof of positivity of a linear combination of two energy functionals for the small-
amplitude periodic waves is developed in Section 4, where applications of the general method to
the two integrable equations (1.1) and (1.2) are also given. Section 5 reports numerical results
for the periodic waves of arbitrary amplitudes. In the concluding Section 6, we discuss how the
stability analysis based on higher-order conserved quantities fails for the short-pulse equation
(1.3), where the small-amplitude periodic waves are known to be unstable with respect to side-
band modulations.

2 Main result for the reduced Ostrovsky equation (1.1)

In the context of the reduced Ostrovsky equation (1.1), we define travelling periodic wave solutions
and conserved quantities, compute the second variation of the energy functional at the periodic
wave profile, and present the main result on positivity of the second variation for a certain linear
combination of the energy functionals. The proof of the main result is postponed until Section
4, where it is given as an application of a general perturbation method.
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2.1 Travelling waves

Travelling 2L-periodic solutions of the reduced Ostrovsky equation (1.1) can be expressed in the
normalized form

u(x, t) =
L2

π2
U(z), z =

π

L
x− L

π
γt, (2.1)

where U(z) is a 2π-periodic solution of the second-order differential equation

d

dz

[
(γ − U)

dU

dz

]
+ U(z) = 0, (2.2)

and the parameter γ is proportional to the wave speed. Note that the 2π-periodic function U
satisfying (2.2) has the zero mean value. By the translational invariance and reversibility of the
differential equation (2.2), U can be selected to be an even function of z.

The second-order equation (2.2) can be integrated with the first-order invariant

I =
1

2
(γ − U)2

(
dU

dz

)2

+
γ

2
U2 − 1

3
U3 = const. (2.3)

The following result defines a family of the 2π-periodic even solutions U of the differential equation
(2.2) in the small-amplitude limit.

Lemma 2.1. For every γ > 1 such that |γ − 1| is sufficiently small, there exists a unique 2π-
periodic, even, smooth solution U , which can be parameterized by the amplitude parameter a, such
that

U(z) = a cos(z) +
1

3
a2 cos(2z) +

3

16
a3 cos(3z) +OC∞

per
(a4) as a→ 0, (2.4)

where parameter a determines unique values of the parameters γ and I given by the asymptotic
expansions

γ = 1 +
1

6
a2 +O(a4) as a→ 0 (2.5)

and

I =
1

2
a2 +O(a4) as a→ 0. (2.6)

Proof. Justification of the asymptotic expansions (2.4), (2.5), and (2.6) and the proof of existence
of the 2π-periodic even solutions U of the differential equation (2.2) can be achieved by the
standard method of Lyapunov–Schmidt reductions, see, e.g., the proof of Proposition 2.1 in [17].
The solution U is smooth both in variables z and a because the differential equation (2.2) is
smooth in U and the wave profile satisfies U(z) < γ for every z ∈ R and for small amplitudes a.

The representation (2.4) is typically referred to as the Stokes expansion of a small-amplitude
periodic wave. Since the period of the periodic wave has been normalized to 2π, the parameter a
of the wave amplitude also parameterize the wave speed γ > 1 and the first-order invariant I > 0
according to the asymptotic expansions (2.5) and (2.6).

Computations of the coefficients in the expansions (2.4), (2.5), and (2.6) are straightforward
and hence omitted.

Remark 2.2. In the statement of Lemma 2.1 and further on, we will use the following notations,
which are typical in the asymptotic analysis. If I depends smoothly on the small parameter a,
then I = O(a2) means that the limit I/a2 as a→ 0 exists. Similarly, if U ∈ C∞per is a 2π-periodic

4



smooth function that also depends smoothly on the small parameter a, then U = OC∞
per

(a2) means

that the limit supz∈[0,2π] |U (n)(z)|/a2 as a→ 0 exists for every n ∈ Z (the limiting value as a→ 0
may depend on n).

Remark 2.3. The 2π-periodic solution of the second-order equation (2.2) can be expressed in the
closed analytical form by using a change of coordinates [19, 23]. The transformation is given by

U(z) = u(ζ), z =

∫ ζ

0
(γ − u(ζ ′))dζ ′, (2.7)

where u satisfies the following second-order equation

d2u

dζ2
+ (γ − u)u = 0. (2.8)

The latter equation arises for travelling waves of the KdV equation and it admits explicit solutions
for periodic waves given by the Jacobi elliptic cn functions [19, 23]. The family of 2π-periodic
smooth solutions of the differential equation (2.2) exists in variables U and z as long as the
transformation (2.7) is invertible, that is, as long as u(ζ) < γ for every ζ.

Remark 2.4. The periodic wave with profile U exists for every γ ∈
(

1, π
2

9

)
. As γ → π2

9 , the

periodic wave is no longer smooth at the end points of the fundamental period. In variables U
and z, the limiting wave has the parabolic profile:

γ =
π2

9
: U(z) =

3z2 − π2

18
, (2.9)

such that U(±π) = γ. As γ → π2

9 , the parabolic wave profile (2.9) yields the value

I =
1

6
γ3 =

π6

4374
. (2.10)

From the first-order invariant (2.3) at the solutions of the second-order equation (2.2), we deduce
that

1− 3U ′′ =
γ3 − 6I

(γ − U)3
. (2.11)

The 2π-periodic solution U of the second-order equation (2.2) with γ ∈
(

1, π
2

9

)
satisfies the

constraint γ3 > 6I. This follows from the identity (2.11) since 1− 3U ′′(z) > 0 and U(z) < γ for

all z if γ ∈
(

1, π
2

9

)
[19].

2.2 Conserved quantities

Let us now recall [26] that local solutions u of the reduced Ostrovsky equation (1.1) in the space
Hs ∩ Ḣ−1 with s > 3

2 has conserved momentum Q(u) = ‖u‖2L2 and energy

E(u) = ‖∂−1
x u‖2L2 +

1

3

∫
u3dx, (2.12)

where the integration is extended over the wave period and ∂−1
x denotes the zero-mean anti-

derivative of the function u. Writing all the integrals in the normalized variable z and neglecting
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the scaling factors (which is equivalent to the choice L = π), we consider the first energy functional
in the form

Sγ(u) := E(u)− γQ(u). (2.13)

The following result establishes equivalence between the Euler–Lagrange equations for Sγ and
the second-order differential equation (2.2). The result is proved by a non-trivial adaptation of
the variational calculus in the space of 2π-periodic functions with zero mean.

Lemma 2.5. The set of critical points of the energy functional Sγ(u) in the space L2
per,zero∩L∞per

such that u(z) < γ for every z ∈ R is equivalent to the set of 2π-periodic smooth solutions of the
differential equation (2.2), where L2

per,zero denotes the space of square-integrable, 2π-periodic, and
zero-mean functions.

Proof. Let us consider the function U and its perturbation v in the space L2
per,zero. We represent

these functions in the Fourier form with zero mean

U(z) =
∑
n∈N

An cos(nz) +Bn sin(nz), (2.14)

and

v(z) =
∑
n∈N

an cos(nz) + bn sin(nz).

Similarly, we expand

U2(z) = C0 +
∑
n∈N

Cn cos(nz) +Dn sin(nz),

where C0 6= 0. Expanding Sγ(U+v)−Sγ(U) to the linear order in v and using Parseval’s equality,
we obtain the first variation of Sγ , denoted by δSγ , in the explicit form

δSγ = π
∑
n∈N

an
[
2n−2An − 2γAn + Cn

]
+ bn

[
2n−2Bn − 2γBn +Dn

]
.

Although C0 6= 0, it does not enter to the first variation δSγ . The Euler–Lagrange equations for
vanishing first variation in the Fourier coefficients take the form

2n−2An − 2γAn + Cn = 0, 2n−2Bn − 2γBn +Dn = 0, n ∈ N. (2.15)

Note that these equations are not equivalent to the integral equation

U(U − 2γ)− 2∂−2
z U = 0,

because the mean value of U2 is nonzero. They are, however, equivalent to the equation

P0U
2 − 2γU − 2∂−2

z U = 0, (2.16)

where ∂−2
z denotes the zero-mean second anti-derivative of the 2π-periodic function U and P0 is

the projection operator from L2
per to L2

per,zero.
Multiplying (2.15) by n

2 for n ∈ N and taking the inverse Fourier transform, we obtain

(U − γ)U ′(z)− ∂−1
z U = 0, (2.17)
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which is well-defined in L2
per,zero if U ∈ L2

per,zero. Equation (2.17) is nothing but the derivative
of (2.16) in z. By bootstrapping arguments, if U(z) < γ for every z ∈ R, then the solution U is
actually smooth in z. Hence, equation (2.17) can be differentiated with respect to z, after which
it becomes the second-order differential equation (2.2). Thus, the equivalence is established in
one direction.

In the opposite direction, if U is a 2π-periodic smooth solution of the differential equation
(2.2), then it has zero mean and belongs to the space L2

per,zero ∩ L∞per. Then, working backwards
from (2.2) to (2.17), (2.16), and (2.15), we obtain δSγ = 0 for every perturbation in L2

per,zero.

Let us now consider the other conserved quantities of the reduced Ostrovsky equation (1.1)
[10, 21]. If u ∈ H3 with 1 − 3uxx ≥ F0 > 0 for every x ∈ R and some constant F0, then the
reduced Ostrovsky equation (1.1) has conserved higher-order energy given by

H(u) =

∫
(uxxx)2

(1− 3uxx)7/3
dx, (2.18)

as well as the conserved Casimir-type functional

C(u) =

∫
(1− 3uxx)1/3dx. (2.19)

The conserved quantity C(u) is a mass integral associated to the quantity f := (1−3uxx)1/3, which
determines the Jacobian of the coordinate transformation that brings the reduced Ostrovsky
equation to the integrable Klein–Gordon-type equation [10, 19, 21].

Let us define the second energy functional in the form

RΓ(u) := C(u)− ΓQ(u), (2.20)

where parameter Γ should be chosen in such a way that the same periodic wave U given by
solution of the second-order equation (2.2) becomes a critical point of RΓ(u) in function space
Hs

per with s > 5
2 (so that uzz is a bounded and continuous function by Sobolev’s embedding).

The following lemma specified the proper definition of Γ.

Lemma 2.6. The set of 2π-periodic smooth solutions U of the differential equation (2.2) such
that U(z) < γ and 1− 3U ′′(z) > 0 for every z ∈ R yields critical points of the energy functional
RΓ(u) in the space Hs

per with s > 5
2 if and only if

Γ :=
−1

(γ3 − 6I)2/3
, (2.21)

where γ3 − 6I > 0.

Proof. The Euler–Lagrange equation for RΓ(u) is given by the fourth-order differential equation

(1− 3u′′)u′′′′ + 5(u′′′)2 + Γu(1− 3u′′)8/3 = 0. (2.22)

Solutions to equation (2.22) are smooth in z as long as 1− 3u′′(z) > 0 for every z ∈ R. Differen-
tiating (2.2) for smooth solutions U , we obtain

(γ − U)U ′′′ = −U ′(1− 3U ′′) (2.23)
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and
(γ − U)U ′′′′ = −U ′′(1− 3U ′′) + 4U ′U ′′′. (2.24)

Also recall from (2.11) that if U(z) < γ and 1 − 3U ′′(z) > 0 for every z ∈ R, then γ3 − 6I > 0.
Substituting (2.11), (2.23), and (2.24) to equation (2.22) for u = U , we obtain the identity if and
only if Γ is given by (2.21).

2.3 Second variation of the energy functionals

The 2π-periodic solution U of the differential equation (2.2) is a critical point of either the
standard energy functional Sγ(u) or the alternative energy functional RΓ(u) given by (2.13) or
(2.20) respectively, see Lemmas 2.1, 2.5, and 2.6. In order to study extremal properties of the
energy functionals at U , we shall study their second variation at U in appropriate function spaces.

Using a perturbation v ∈ L2
per,zero to the periodic wave U and expanding Sγ(U + v)− Sγ(U)

to the quadratic order in v, we obtain the second variation of Sγ , denoted by δ2Sγ , in the explicit
form

δ2Sγ =

∫ [
(∂−1
z v)2 − (γ − U)v2

]
dz. (2.25)

The domain of the integral depends on the properties of the perturbation v. In what follows, we
assume that v is periodic with the period 2πN for an integer N , so that L2

per,zero denotes now
the space of square integrable 2πN -periodic functions with the zero mean value.

Since the first term of δ2Sγ is positive and the second term is negative, the sign of δ2Sγ is
not generally defined. In order to characterize δ2Sγ , we write (2.25) as the quadratic form

δ2Sγ = 〈Lγv, v〉L2 , (2.26)

where
Lγ := −∂−2

z − γ + U : L2
per,zero → L2

per,zero. (2.27)

Note that the range of Lγ is defined in L2
per,zero by using the projection operator P0 from the

proof of Lemma 2.5. The following lemma characterizes the spectrum of the self-adjoint operator
Lγ in space L2

per,zero given by (2.27).

Lemma 2.7. For every integer N ≥ 1 and every γ > 1 such that |γ− 1| is sufficiently small, the
spectrum of Lγ in L2

per,zero consists of 2N − 1 positive eigenvalues (counted by their multiplicity),
a simple zero eigenvalue, and an infinite number of negative eigenvalues.

Proof. For a = 0, γ = 1 and U(z) = 0, the spectrum of Lγ=1 consists of a sequence of double
eigenvalues

a = 0 : σ(Lγ=1) =

{
−1 +

N2

n2
, n ∈ N

}
, (2.28)

as follows from Fourier series solutions. If N = 1, all double eigenvalues but one are negative and
the only remaining double eigenvalue is zero.

Note that Lγ=1 + 1 = −∂−2
z : L2

per,zero → L2
per,zero is a compact operator. If a 6= 0 but small,

the nonzero eigenvalues split generally but remain in the negative domain, as it follows from the
perturbation theory for compact operators under bounded perturbations. In particular, if A(ε)
is an analytic family of self-adjoint operators and if the spectrum of A(0) is separated into two
parts, then this remains true also for A(ε) with ε sufficiently small (see Theorem VII.1.7 in [25]).
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The zero eigenvalue splits generally if γ 6= 1, but one eigenvalue remains at zero because of
the translational invariance of the differential equation (2.2) resulting in the relation LγU

′ = 0

that holds for every γ ∈
(

1, π
2

9

)
. Therefore, we only need to check what happens with the other

eigenvalue bifurcating from zero if a 6= 0. This is done with the regular perturbation expansions.
We expand the operator Lγ in powers of a:

Lγ = −∂−2
z − 1 + a cos(z) +

a2

6
(2 cos(2z)− 1) +OL2

per,zero→L2
per,zero

(a3).

Since U ′(z) = −a sin(z) + O(a2) persists as the eigenfunction of Lγ for zero eigenvalue, we are
looking for the perturbation expansion starting with the eigenfunction V0 = cos(z):

λ = aλ1 + a2λ2 +O(a3), V = V0 + aV1 + a2V2 +OL2
per,zero

(a3), (2.29)

where corrections V1,2 are uniquely defined under the orthogonality constraints 〈V0, V1,2〉L2 = 0.
At the linear order in a, we obtain

(1 + ∂−2
z )V1 = P0

(
cos2(z)− λ1 cos(z)

)
=

1

2
cos(2z)− λ1 cos(z),

where P0 is the projection operator from L2
per to L2

per,zero. Fredholm’s solvability condition and
orthogonality for V1 yields the unique solution

λ1 = 0, V1(z) =
2

3
cos(2z). (2.30)

At the order of a2, we obtain

(1 + ∂−2
z )V2 = cos(z) cos(2z)− 1

6
cos(z)− λ2 cos(z).

Fredholm’s solvability condition yields

λ2 =
1

3
, (2.31)

hence, the zero eigenvalue associated with the even eigenfunction V0 for a = 0 becomes positive
eigenvalue for nonzero but small values of a. This proves the assertion of the lemma for N = 1.

From the explicit representation (2.28) for a = 0, we realize that there are additional 2(N−1)
positive eigenvalues of Lγ=1 ifN ≥ 2 (counting with their multiplicity). These positive eigenvalues
remain positive for nonzero but small values of a. In addition, the perturbation expansions (2.29),
(2.30), and (2.31). show that an additional positive eigenvalue of Lγ bifurcates from zero for any
N ≥ 1. The assertion of the lemma is proved.

Remark 2.8. The result of Lemma 2.7 is typical for periodic waves. For N = 1, the positive
eigenvalue can be removed under the constraint that the perturbation v does not change the
momentum functional Q(u) = ‖u‖2L2 . As a result, one can use −Sγ as a Lyapunov functional
in the proof of orbital stability of the periodic waves with respect to the perturbations of the
same period [3]. The constraint is used to specify a varying wave speed as a function of time. In
addition, one needs to introduce a varying parameter of spatial translation as a function of time
to remove the degeneracy of the quadratic form at the zero eigenvalue of Lγ .

On the other hand, for N ≥ 2, the additional positive eigenvalues of Lγ cannot be removed by
one constraint on the momentum functional Q, so that −Sγ can not be chosen as the Lyapunov
functional in the proof of orbital stability of the periodic waves with respect to the subharmonic
perturbations.
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Let us now inspect the second variation of the alternative energy functional RΓ(u) given by
(2.20). Using a perturbation v ∈ H2

per,zero to the periodic wave U and expanding RΓ(U + v) −
RΓ(U) to the quadratic order in v, we obtain

δ2RΓ :=

∫ [
v2

(γ3 − 6I)2/3
− v2

zz

(1− 3U ′′)5/3

]
dz. (2.32)

Note that 1 − 3U ′′(z) > 0 for every z and γ3 − 6I > 0 if γ ∈
(

1, π
2

9

)
. The first term of δ2RΓ is

again positive and the second term is negative, so that the sign of δ2RΓ is not generally defined.
In order to characterize δ2RΓ, we write (2.32) as the quadratic form

δ2RΓ = 〈Mγv, v〉L2 , (2.33)

where
Mγ := −∂2

z (1− 3U ′′)−5/3∂2
z + (γ3 − 6I)−2/3 : H4

per,zero → L2
per,zero. (2.34)

The following lemma characterizes the spectrum of Mγ given by (2.34).

Lemma 2.9. For every integer N ≥ 1 and every γ > 1 such that |γ− 1| is sufficiently small, the
spectrum of Mγ in L2

per,zero consists of 2N −2 positive eigenvalues (counted by their multiplicity),
a simple zero eigenvalue, and an infinite number of negative eigenvalues.

Proof. For a = 0, γ = 1, I = 0, and U(z) = 0, the spectrum of Mγ=1 in L2
per,zero consists of a

sequence of double eigenvalues

a = 0 : σ(Mγ=1) =

{
1− n4

N4
, n ∈ N

}
. (2.35)

If N = 1, all double eigenvalues but one are negative and the only remaining eigenvalue is zero.
The zero eigenvalue splits again, but one eigenvalue remains at zero because of the exact relation

MγU
′ = 0 that holds for every γ ∈

(
1, π

2

9

)
. Indeed, using (2.11), we check that MγU

′ = 0 is

equivalent to the differential equation

−∂2
z (γ − U)5U ′′′ + (γ3 − 6I)U ′ = 0.

Integrating once with zero mean and using (2.23), we obtain the differential equation

∂z(γ − U)4(1− 3U ′′)U ′ + (γ3 − 6I)U = 0,

which is equivalent to the differential equation (2.2) due to the identity (2.11).
Let us now show that the zero eigenvalue of Mγ=1 associated with the even function V0(z) =

cos(z) at a = 0 becomes negative for nonzero but small values of a. This is done by the regular
perturbation expansions. We expand the operator Mγ in powers of a:

Mγ = −∂4
z + 1 + 5a∂2

z cos(z)∂2
z +

5a2

3
− 10a2∂4

z −
10a2

3
∂2
z cos(2z)∂2

z +OH4
per,zero→L2

per,zero
(a3).

We are looking for the perturbation expansion starting with the eigenfunction V0 = cos(z):

λ = aλ1 + a2λ2 +O(a3), V = V0 + aV1 + a2V2 +OL2
per,zero

(a3), (2.36)
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where corrections V1,2 are uniquely defined under the orthogonality constraints 〈V0, V1,2〉L2 = 0.
At the linear order in a, we obtain

(1− ∂4
z )V1 = −5P0

(
∂2
z cos(z)∂2

z cos(z)
)

+ λ1 cos(z) = −10 cos(2z) + λ1 cos(z).

Fredholm’s solvability condition and orthogonality for V1 yields the unique solution

λ1 = 0, V1(z) =
2

3
cos(2z). (2.37)

At the order of a2, we obtain

(1− ∂4
z )V2 = −10

3
∂2
z cos(z)∂2

z cos(2z) +
10

3
∂2
z cos(2z)∂2

z cos(z) +
25

3
cos(z) + λ2 cos(z).

Fredholm’s solvability condition yields

λ2 = −10

3
, (2.38)

hence, the assertion of the lemma is proved for N = 1. The proof for N ≥ 2 is similar to that of
Lemma 2.7.

Remark 2.10. Compared to the functional −Sγ , periodic waves are unconstrained minimizers of
the functional −RΓ with respect to perturbations of the same period. Therefore, −RΓ can be
used as a Lyapunov functional in the proof of orbital stability of periodic waves and the only
varying parameter of spatial translation is needed to remove the degeneracy of the quadratic form
for the zero eigenvalue of Mγ , see, e.g., the proof of Theorem 1.8 in [17].

2.4 Positivity of a linear combination of the second variations δ2Sγ and δ2RΓ

From Lemmas 2.7 and 2.9, we can see that properties of the operator Mγ are similar to those of the
operator Lγ with the exception of one small eigenvalue, which is positive for Lγ and negative for
Mγ . Let us define the Lyapunov functional by a linear combination of the two energy functionals
Sγ(u) and RΓ(u) given by (2.13) and (2.20) respectively:

Λc,γ(u) := Sγ(u)− cRΓ(u), (2.39)

where c ∈ R is a parameter to be defined within an appropriate interval. The energy function
Λc,γ(u) is defined for u ∈ Hs

per,zero with s > 5
2 . By Lemmas 2.5 and 2.6, the 2π-periodic smooth

solution U of the differential equation (2.2) is a critical point of Λc,γ for every c ∈ R. The second
variation of Λc,γ , denoted by δ2Λc,γ , is defined for the perturbation v in H2

per,zero, which may have
period 2πN for an integer N .

The following result shows that the second variation δ2Λc,γ=1 is positive for a particular value
of the parameter c.

Lemma 2.11. δ2Λc,γ=1 ≥ 0 for every v ∈ H2
per,zero and every N ≥ 1 if and only if c = 1

2 .

Proof. We substitute a = 0, γ = 1, I = 0, and U(z) = 0 in (2.25) and (2.32) and obtain

a = 0 : δ2Λc,γ=1 =

∫ [
(∂−1
z v)2 − (1 + c)v2 + c(∂2

zv)2
]
dz. (2.40)
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The second variation δ2Λc,γ=1 is well-defined for v ∈ H2
per,zero, e.g., in the space of 2πN -periodic

functions with zero mean for an integer N . To deal with every integer N , we are looking for the
values of c, for which δ2Λc,γ=1 ≥ 0 for every v ∈ H2(R) ∩ Ḣ−1(R).

By the Fourier transform on the line, the problem of determining if δ2Λc,γ=1 ≥ 0 in (2.40) is
identical to the problem of finding c for which

Dc(k) := ck4 − (1 + c) + k−2 ≥ 0, k ∈ R.

The values c = 0 and c < 0 do not provide positivity of Dc(k) as |k| → ∞. Therefore, we consider
c > 0 only.

Since D′c(k) = 4ck3 − 2k−3, the critical points of Dc exist if c > 0 and correspond to k6
c =

(2c)−1. Since D′′c (k) = 12ck2 + 6k−4 > 0, the critical points of Dc at k = ±kc are the points of
minimum of Dc. Therefore, we can compute

F (c) := Dc(kc) = ck4
c − (1 + c) + k−2

c =
3

22/3
c1/3 − 1− c.

We are looking for the values of c for which F (c) ≥ 0, so that Dc(k) ≥ 0 for all k ∈ R. Since
F ′(c) = (2c)−2/3 − 1, the only critical point of F occurs at c0 = 1

2 . Since F ′′(c) < 0, c0 is the
point of maximum of F , for which we have F (c0) = 0. Therefore, F (c) ≤ 0 and the only possible
value of c for which Dc(k) ≥ 0 for every k ∈ R is the value c = c0 = 1

2 . Indeed, in this case, we
can factorize the dispersion relation in the form

Dc=c0(k) =
1

2
k4 − 3

2
+

1

k2
=

(1− k2)2(2 + k2)

2k2
≥ 0. (2.41)

The statement of the lemma is proved.

By a perturbation argument, we shall verify that δ2Λc,γ remains nonnegative for every γ such
that |γ − 1| is sufficiently small, provided the parameter c is close enough to c0. Although δ2Λc,γ

still vanishes for v(z) = U ′(z) for every γ ∈
(

1, π
2

9

)
due to the translational symmetry, we will

show that the zero eigenvalue is simple and δ2Λc,γ > 0 if v ∈ H2
per,zero is nonzero and orthogonal

to U ′, provided that |γ − 1| and |c− c0| are sufficiently small. The following theorem represents
the main result of this paper for the reduced Ostrovsky equation (1.1). The theorem is proved
in Section 4.2 below.

Theorem 2.12. There exists γ0 ∈
(

1, π
2

9

)
and C > 0 such that δ2Λc,γ ≥ C‖v‖2H2

per
for every

γ ∈ (1, γ0) and every v ∈ H2
per,zero such that 〈U ′, v〉L2

per
= 0, if c ∈ (c−, c+), where c± are given

by the asymptotic expansion

c± =
1

2
±
√

3a

2
+O(a2), as a→ 0, (2.42)

where a determines γ and I in the Stokes expansions (2.5) and (2.6).

Remark 2.13. Since 1−3U ′′(z) > 0 for every z ∈ R if γ ∈
(

1, π
2

9

)
, a global solution to the reduced

Ostrovsky equation (1.1) exists for sufficiently small v ∈ Hs
per,zero with s > 5

2 [21, 26]. The value
of Λc,γ conserves in the time evolution of the reduced Ostrovsky equation (1.1). Orbital stability
of the periodic wave with profile U with respect to subharmonic perturbations v ∈ Hs

per,zero with

s > 5
2 follows from the positivity of δ2Λc,γ [17]. The choice of Hs

per,zero with s > 5
2 is explained

by the necessity to control vzz ∈ L∞per by Sobolev’s embedding.
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Remark 2.14. Using numerical computations, we will show in Section 5 that the result of The-

orem 2.12 extends to every γ in the interval
(

1, π
2

9

)
. The boundaries c± will be approximated

numerically. It is quite possible that analytical expressions for c± exist, but obtaining analytical
expressions requires a heavy use of integrability features of the reduced Ostrovsky equation (1.1).

3 Main result for the modified reduced Ostrovsky equation (1.2)

Here we obtain similar results for the modified reduced Ostrovsky equation (1.2). For the sake
of brevity, we only outline the results and skip proofs which follow those in Section 2.

3.1 Travelling waves

Travelling 2L-periodic solutions of the modified reduced Ostrovsky equation (1.2) can be ex-
pressed in the normalized form

u(x, t) =
L

π
U(z), z =

π

L
x− L

π
γt, (3.1)

where U(z) is a 2π-periodic, zero-mean solution of the second-order differential equation

d

dz

[(
γ − 1

2
U2

)
dU

dz

]
+ U(z) = 0, (3.2)

and the parameter γ is proportional to the wave speed. The second-order equation (3.2) can be
integrated with the first-order invariant

I =
1

2

(
γ − 1

2
U2

)2(dU
dz

)2

+
γ

2
U2 − 1

8
U4 = const. (3.3)

By the translational invariance and reversibility of the differential equation (3.2), U is selected
to be an even function of z. The following lemma reports an analogue of Lemma 2.1. The proof
is similar, so it will be omitted.

Lemma 3.1. For every γ > 1 such that |γ − 1| is sufficiently small, there exists a unique 2π-
periodic, even, smooth solution U , which can be parameterized by the amplitude parameter a, such
that

U(z) = a cos(z) +
3

64
a3 cos(3z) +OC∞

per
(a5) as a→ 0, (3.4)

where parameter a determines the asymptotic expansions

γ = 1 +
1

8
a2 +O(a4) (3.5)

and

I =
1

2
a2 +O(a4) as a→ 0. (3.6)

Remark 3.2. The transformation

U(z) = u(ζ), z =

∫ ζ

0

(
γ − 1

2
u(ζ ′)2

)
dζ ′ (3.7)
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reduces(3.2) to the second-order equation

d2u

dζ2
+

(
γ − 1

2
u2

)
u = 0. (3.8)

The latter equation arises for travelling waves of the modified KdV equation and it admits explicit
solutions for periodic waves given by the Jacobi elliptic sn functions. The family of 2π-periodic
waves exists in variables U and z as long as the transformation (3.7) is invertible, that is, as long
as |u(ζ)| <

√
2γ for every ζ.

Remark 3.3. The periodic wave with profile U exists for every γ ∈
(

1, π
2

8

)
[14]. As γ → π2

8 , the

periodic wave is no longer smooth at the end points of the fundamental period. The limiting
wave has the piecewise linear profile:

γ =
π2

8
: U(z) = |z| − π

2
, (3.9)

such that U(±π) =
√

2γ. As γ → π2

8 , the piecewise linear wave profile (3.9) yields the value

I =
1

2
γ2 =

π4

128
. (3.10)

From the first-order invariant (3.3), we deduce that

1−
(
dU

dz

)2

=
γ2 − 2I

(γ − 1
2U

2)2
. (3.11)

Since |U ′(z)| < 1 and |U(z)| <
√

2γ for every z ∈ R if γ ∈
(

1, π
2

8

)
, we have γ2− 2I > 0 for every

γ ∈
(

1, π
2

8

)
[14].

3.2 Conserved quantities

Local solutions u of the modified reduced Ostrovsky equation (1.2) in the space Hs ∩ Ḣ−1 with
s > 3

2 [27] have conserved momentum Q(u) = ‖u‖2L2 and energy

E(u) = ‖∂−1
x u‖2L2 +

1

12
‖u‖4L4 , (3.12)

so that the first energy functional Sγ(u) can be considered in the same form (2.13). The periodic
wave profile U satisfying the differential equation (3.2) is a critical point of the energy functional
Sγ(u). The proof is similar to the one in Lemma 2.5.

The other two conserved quantities of the modified reduced Ostrovsky equation (1.2) [9, 14, 32]
are defined if u ∈ H2 with 1−u2

x ≥ F0 > 0 for every x ∈ R and some constant F0, The conserved
higher-order energy is given by

H(u) =

∫
R

u2
xx

(1− u2
x)5/2

dx (3.13)

where the conserved Casimir-type functional is given by

C(u) =

∫
(1− u2

x)1/2dx. (3.14)
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The conserved quantity C(u) is a mass integral associated to the quantity f := (1 − u2
x)1/2,

which determines the Jacobian of the coordinate transformation that brings the reduced modified
Ostrovsky equation to the integrable Klein–Gordon-type equation [9, 14].

Let us define the second energy functionalRΓ(u) by the same expression (2.20). The functional
RΓ(u) is well defined in function space Hs

per with s > 3
2 (so that uz is a bounded and continuous

function by Sobolev’s embedding). The following lemma gives an analogue of Lemma 2.6.

Lemma 3.4. The set of 2π-periodic smooth solutions U of the differential equation (3.2) such
that |U ′(z)| < 1 and |U(z)| <

√
2γ for every z ∈ R yields critical points of the energy functional

RΓ(u) given by (2.20) in the space Hs
per with s > 3

2 if and only if

Γ :=
−1

2(γ2 − 2I)1/2
, (3.15)

where γ2 − 2I > 0.

Proof. The Euler–Lagrange equation for the second energy functional RΓ(u) yields another
second-order differential equation

d

dz

[
u′√

1− (u′)2

]
− 2Γu = 0 ⇒ d2u

dz2
= 2Γu(1− (u′)2)3/2. (3.16)

Substituting the second and first derivatives from (3.2) and (3.11) to equation (3.16) with u = U ,
we obtain an identity if and only if Γ is given by (3.15).

3.3 Second variation of the energy functionals

Adding a perturbation v ∈ L2
per,zero to the periodic wave U and expanding Sγ(U + v)− Sγ(U) to

the quadratic order in v, we obtain the second variation in the form

δ2Sγ =

∫ [
(∂−1
z v)2 −

(
γ − 1

2
U2

)
v2

]
dz. (3.17)

As previously, we assume that v is the 2πN -periodic function with zero mean, where N is a
positive integer. The second variation δ2Sγ is sign-indefinite, because the first term of δ2Sγ is
positive and the second term is negative.

Similarly, adding a perturbation v ∈ H1
per,zero and expanding RΓ(U + v) − RΓ(U) to the

quadratic order in v, we obtain the second variation in the form

δ2RΓ =

∫ [
v2

2(γ2 − 2I)1/2
− v2

z

2(1− (U ′)2)3/2

]
dz. (3.18)

Again, the second variation δ2RΓ is sign-indefinite, because the first term of δ2RΓ is positive and
the second term is negative.

The second variations δ2Sγ and δ2RΓ can be expressed as quadratic forms (2.26) and (2.33)
associated with the operators

Lγ := −∂−2
z − γ +

1

2
U2 : L2

per,zero → L2
per,zero.

and

Mγ :=
1

2
(γ2 − 2I)−1/2 +

1

2
∂z(1− (U ′)2)−3/2∂z : H2

per,zero → L2
per,zero.

The following two lemmas report analogues of Lemmas 2.7 and 2.9.

15



Lemma 3.5. For every integer N ≥ 1 and every γ > 1 such that |γ− 1| is sufficiently small, the
spectrum of Lγ in L2

per,zero consists of 2N − 1 positive eigenvalues (counted by their multiplicity),
a simple zero eigenvalue, and an infinite number of negative eigenvalues.

Proof. For a = 0, γ = 1 and U(z) = 0, the spectrum of Lγ=1 is given by the same formula (2.28)
as in the proof of Lemma 2.7. Therefore, it is only necessary to develop the regular perturbation
theory for the splitting of the double zero eigenvalue as a 6= 0. We expand the operator Lγ in
powers of a:

Lγ = −∂−2
z − 1 +

a2

8
(4 cos2(z)− 1) +OL2

per,zero→L2
per,zero

(a4).

Since the OL2
per,zero→L2

per,zero
(a) term is absent in the expansion of Lγ , the perturbation expansion

starting with the eigenfunction V0 = cos(z) is shorter than in the case of Lemma 2.7:

λ = a2λ2 +O(a4), V = V0 + a2V2 +OL2
per,zero

(a4), (3.19)

where the linear inhomogeneous equation at the order of a2 bears the form

(1 + ∂−2
z )V2 =

1

2
cos3(z)−

(
1

8
+ λ2

)
cos(z).

Fredholm’s solvability condition yields

λ2 =
1

4
, (3.20)

hence, the zero eigenvalue of Lγ=1 associated with the even eigenfunction V0 for a = 0 becomes
a positive eigenvalue of Lγ for nonzero but small values of a.

Lemma 3.6. For every integer N ≥ 1 and every γ > 1 such that |γ− 1| is sufficiently small, the
spectrum of Mγ in L2

per,zero consists of 2N −2 positive eigenvalues (counted by their multiplicity),
a simple zero eigenvalue, and an infinite number of negative eigenvalues.

Proof. For a = 0, γ = 1, I = 0, and U(z) = 0, the spectrum of Mγ=1 is given by

a = 0 : σ(Mγ=1) =

{
1

2

(
1− n2

N2

)
, n ∈ N

}
. (3.21)

The zero is again a double eigenvalue, whereas the spectrum of Mγ=1 is similar to the one given
by (2.35). Therefore, we again apply the regular perturbation theory to check the splitting of the
double zero eigenvalue. We expand the operator Mγ in powers of a:

Mγ =
1

2
(1 + ∂2

z ) +
3a2

16

[
1 + 4∂z sin2(z)∂z

]
+OH2

per,zero→L2
per,zero

(a4).

Using the same asymptotic expansion (3.19), we obtain the linear inhomogeneous equation at
O(a2):

1

2
(1 + ∂2

z )V2 = −3

4
∂z sin2(z)∂z cos(z) +

(
λ2 −

3

16

)
cos(z).

Fredholm’s solvability condition yields

λ2 = −3

8
, (3.22)

hence, the zero eigenvalue of Mγ=1 associated with the even eigenfunction V0 for a = 0 becomes
a negative eigenvalue of Mγ for nonzero but small values of a.
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3.4 Positivity of a linear combination of the second variations δ2Sγ and δ2RΓ

Let us define the Lyapunov functional Λc,γ(u) by using the same linear combination (2.39) of
the energy functionals Sγ(u) and RΓ(u) given by (2.13) and (2.20), where parameter c ∈ R is
to be defined within an appropriate interval. The second variation of Λc,γ , denoted by δ2Λc,γ , is
defined for the perturbation v in H1

per,zero. The following result shows that the second variation
δ2Λc,γ=1 is positive for a particular value of the parameter c.

Lemma 3.7. δ2Λc,γ=1 ≥ 0 for every v ∈ H1
per,zero and every N ≥ 1 if and only if c = 2.

Proof. We substitute a = 0, γ = 1, I = 0, and U(z) = 0 to δ2Λc,γ=1 and obtain

a = 0 : δ2Λc,γ=1 =

∫ [
(∂−1
z v)2 −

(
1 +

c

2

)
v2 +

c

2
(∂zv)2

]
dz. (3.23)

Performing the Fourier transform on the line, we reduce the problem of positivity of δ2Λc,γ=1 to
the search of values of c, for which

Dc(k) :=
c

2
k2 − 1− c

2
+ k−2 ≥ 0, k ∈ R.

Again, only values c > 0 need to be considered. Since D′c(k) = ck − 2k−3, the critical points of
Dc correspond to k4

c = 2
c and exist if c > 0. Since D′′c (k) = c + 6k−4 > 0, the critical points of

Dc at k = ±kc are the points of minimum of Dc. Therefore, we can compute

F (c) := Dc(kc) =
c

2
k2
c − 1− c

2
+ k−2

c = (2c)1/2 − 1− c

2
.

Since F ′(c) = 1
(2c)1/2

− 1
2 , the only critical point of F occurs at c0 = 2. Since F ′′(c) < 0, c0 is the

point of maximum of F , for which we have F (c0) = 0. Therefore, F (c) ≤ 0 and the only possible
value of c for which Dc(k) ≥ 0 for every k ∈ R is the value c = c0 = 2. Indeed, in this case, we
can factorize the dispersion relation in the form

Dc=c0(k) = k2 − 2 +
1

k2
=

(1− k2)2

k2
≥ 0. (3.24)

The statement of the lemma is proved.

The following theorem represents the main result of this paper for the modified reduced
Ostrovsky equation (1.2). It shows that the second variation of δ2Λc,γ is positive for every
v ∈ H1

per,zero and every γ > 1 such that |γ − 1| is sufficiently small, if c is chosen within an
appropriate interval. The theorem is proved in Section 4.3 below.

Theorem 3.8. There exists γ0 ∈
(

1, π
2

8

)
and C > 0 such that δ2Λc,γ ≥ C‖v‖2H1

per
for every

γ ∈ (1, γ0) and every v ∈ H1
per,zero such that 〈U ′, v〉L2

per
= 0, if c ∈ (c−, c+), where c± are given

by the asymptotic expansion
c± = 2± 2a+O(a2), (3.25)

where a determines γ and I in the Stokes expansions (3.5) and (3.6).
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Remark 3.9. Since |U ′(z)| < 1 for every z ∈ R if γ ∈
(

1, π
2

8

)
, a global solution to the reduced

modified Ostrovsky equation (1.2) exists for sufficiently small v ∈ Hs
per,zero with s > 3

2 [27, 32].
The value of Λc,γ conserves in the time evolution of the reduced modified Ostrovsky equation (1.2).
Orbital stability of the periodic wave with profile U with respect to subharmonic perturbations
v ∈ Hs

per,zero with s > 3
2 follows from the positivity of δ2Λc,γ [17]. The choice of Hs

per,zero with

s > 3
2 is explained by the necessity to control vz ∈ L∞per by Sobolev’s embedding.

Remark 3.10. Using numerical computations, we will show in Section 5 that the result of Theorem

3.8 extends to every γ in the interval
(

1, π
2

8

)
.

4 Floquet–Bloch bands for periodic waves of small amplitudes

We consider the second variation of the Lyapunov functional Λc,γ defined by (2.39) at the periodic
wave profile U for nonzero but small amplitude parameter a. In order to prove positivity of δ2Λc,γ
and thus to prove Theorems 2.12 and 3.8, we develop a general perturbation method, which is
applied to both versions of the reduced Ostrovsky equations.

4.1 General perturbation method

We are interested to characterize the spectrum of the linear operator Kc,γ := Lγ−cMγ in L2
per,zero

with the domain Xper,zero ⊂ L2
per,zero, where the linear operators Lγ and Mγ define the quadratic

forms (2.26) and (2.33). The parameter c ∈ R is to be defined within an appropriate interval.
Here L2

per,zero denotes the space of 2πN -periodic functions with zero mean, where N is a positive
integer, whereas Xper,zero is the domain of the linear operator Kc,γ given by a Sobolev space
Hs

per,zero for some s ≥ 0. In order to obtain results uniformly in N , we consider the Floquet–
Bloch spectrum of Kc,γ in L2(R) with the domain X(R) ⊂ L2(R).

By construction, Kc,γ is a self-adjoint operator in L2(R) with 2π-periodic coefficients. By
the Floquet–Bloch theory, we look for 2π-periodic Bloch wave functions w(·, κ) ∈ Xper with the
quasi-momentum parameter κ defined in the Brillouin zone T =

[
−1

2 ,
1
2

]
such that

eiκzw(z, κ) ∈ L∞(R) ∩Xloc(R)

is an eigenfunction of Kc,γ for an eigenvalue λ(κ). We say that λ(κ) belongs to the Floquet–Bloch
spectrum of Kc,γ in L2(R). Both w(z, κ) and λ(κ) depend also on parameters c and γ but we
neglect listing this dependence explicitly.

Let us further postulate the Stokes expansion for the periodic wave profile U in the normalized
form:

U(z) = a cos(z) + a2Ũa(z), γ = 1 + a2γ̃a, (4.1)

where Ũa is an even 2π-periodic function such that 〈cos(·), Ũa〉L2
per

= 0 and a2Ũa = OL2
per

(a2) as

a→ 0, whereas a2γ̃a = O(a2) as a→ 0.
Let us denote Pc,γ(κ) := e−iκzKc,γe

iκz. Assuming smoothness of Pc,γ(κ) with respect to the
small amplitude parameter a, we expand it in powers of a:

Pc,γ(κ) = P (0)
c (κ) + aP (1)

c (κ) + a2P (2)
c (κ) +OXper→L2

per
(a3). (4.2)

The operator P
(0)
c (κ) has constant coefficients, and its spectrum in the space L2

per consists of a

countable family of real eigenvalues {λ(0)
n (κ)}n∈Z. The following assumption ensures that there
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exist two unperturbed Floquet–Bloch bands, which touch zero at κ = 0 as convex functions, if
c = c0, whereas all other bands are bounded away from zero by a positive number, see, e.g., the
results of Lemmas 2.11 and 3.7.

Assumption 4.1. There exists c0 such that for c = c0, we have λ
(0)
n (κ) ≥ 0 for all n ∈ Z and

all κ ∈ T. Moreover, there exist exactly two bands λ
(0)
±1(κ) which are smooth functions in κ and

behave like

λ
(0)
±1(κ) =

1

2
λ′′(0)κ2 +O(κ3) as κ→ 0, (4.3)

where λ′′(0) > 0. Furthermore, there exists C > 0 such that

λ(0)
n (κ) ≥ C, for all n ∈ Z\{+1,−1} and all κ ∈ T. (4.4)

By translational symmetry, we know that Pc,γ(0)U ′ = 0 for every c ∈ R and every γ such
that |γ − 1| is sufficiently small, see, e.g., the proofs of Lemmas 2.7 and 2.9. As a result, there
exists at least one Floquet–Bloch band of Pc,γ(κ) that touches zero at κ = 0 for every c and γ.
The other zero eigenvalue of Kc,γ = Pc,γ(0) exists at a = 0 but is supposed to shift to a small
positive number for nonzero but small a, according to the following assumption.

Assumption 4.2. For every c such that |c− c0| is sufficiently small, there exists two eigenvalues
of Kc,γ = Pc,γ(0) in L2

per in the neighborhood of zero. One eigenvalue is identically zero for
every small nonzero a, whereas the other eigenvalue λ(a, c) is strictly positive and satisfies the
asymptotic expansion

λ(a, c) = λ2(c)a2 + a3λ̃(a, c), (4.5)

where λ2(c) is smooth in c with λ2(c0) > 0, whereas λ̃(a, c) is smooth in (a, c) and bounded as
a→ 0 and c→ c0.

Let Wa be the eigenfunction of Kc,γ for the zero eigenvalue, which is independent of c. Let
Va,c be the eigenfunction of Kc,γ for the eigenvalue λ(a, c) given by (4.5) in Assumption 4.2. From
the Stokes expansion (4.1), we can set the normalized eigenfunctions to the form

Wa(z) := −a−1U ′(z) = sin(z) + aW̃a(z), Va,c(z) = cos(z) + aṼa,c(z), (4.6)

where the correction terms W̃a and Ṽa,c are uniquely defined and bounded in L2
per as a→ 0 and

c→ c0. Finally, we assume a technical non-degeneracy condition.

Assumption 4.3. Besides Pc,γ(0)Wa = 0 and Pc,γ(0)Va,c = λ(a, c)Va,c, we have

P ′c,γ(0)Wa = −iµ1(c− c0) cos(z) + aFc(z) + a2Ga,c(z), (4.7)

and
P ′c,γ(0)Va,c = iµ1(c− c0) sin(z) + aF̃c(z) + a2G̃a,c(z), (4.8)

where µ1 is a real nonzero number, Fc and F̃c are respectively even and odd functions such that

〈cos(·), Fc〉L2
per

= 0 and 〈sin(·), Fc〉L2
per

= 0,

both functions are bounded in L2
per as c → c0, whereas Ga,c and G̃a,c are bounded functions in

L2
per as a→ 0 and c→ c0.
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Under Assumptions 4.1, 4.2, and 4.3, we obtain a sufficient condition that the two bands in
Assumption 4.1 separate from each other for nonzero but small values of a. If c is selected near
c0, one band still touches the origin at κ = 0 while the other one remains strictly positive for
all κ ∈ T, with both bands remaining convex functions of κ. The following proposition gives the
general result.

Proposition 4.4. Consider expansion (4.2) of the self-adjoint operator Pc,γ(κ) for sufficiently
small amplitude a and assume that Assumptions 4.1, 4.2, and 4.3 are true. Then, for every c
satisfying |c − c0| ≤ C|a|, where C is a positive a-independent constant, the two lowest spectral
bands of the operator Pc,γ(κ) denoted by λgr(κ) and λex(κ) satisfy the asymptotic expansions

λgr(κ) =

(
1

2
λ′′(0)− µ2

1(c− c0)2

λ2(c0)a2
+O(a)

)
κ2 + κ3λ̃gr (4.9)

and

λex(κ) = λ2(c0)a2 +O(a3) +

(
1

2
λ′′(0) +

µ2
1(c− c0)2

λ2(c0)a2
+O(a)

)
κ2 + κ3λ̃ex, (4.10)

where λ̃gr and λ̃ex are bounded as a→ 0 and κ→ 0.

Proof. From (4.4) we know that, if |c − c0| is sufficiently small, there exists a constant C > 0
(independent of c) such that

0 <
[
λ(0)
n (κ)

]−1
≤ C for all n ∈ Z \ {+1,−1} and all κ ∈ T. (4.11)

By the regular perturbation theory, this bound remains true (with possibly a larger constant C)
for all the perturbed spectral bands with n 6= ±1 if a and |c− c0| are small enough. For the other
two spectral bands in (4.3), the same perturbation argument shows that they are bounded away
from zero if |κ| ≥ κ0 for a and |c−c0| being sufficiently small, where κ0 > 0 is fixed independently
of a. It remains to study the two spectral bands near κ = 0.

To simplify details, we consider each spectral band λ± separately from each other. At the first
glance, this approach does not look justified because the kernel of Pc=c0,γ=1(0) is two-dimensional.
However, due to Assumption 4.2, the double zero eigenvalue is broken into two simple eigenvalues
of Pc=c0,γ for every γ such that γ − 1 = O(a2) is sufficiently small. Therefore, we can proceed
with the perturbation expansions in κ, which are singular as a→ 0 if κ 6= 0 is fixed independently
of a. However, if κ is as small as O(a2), all terms of the asymptotic expansions (4.9) and (4.10)
are controlled in the limit a→ 0.

First, we derive the expansion (4.9) formally. Since Pc,γ(0)Wa = 0, we consider the following
expansion for the band λgr(κ) that touches the zero eigenvalue:

λgr(κ) = Λ1κ+ Λ2κ
2 +O(κ3), w(z, κ) = Wa(z) + κW1(z) + κ2W2(z) +OL2

per
(κ3), (4.12)

where correctionsW1,2 are to be determined by a projection algorithm subject to the orthogonality
conditions 〈Wa,W1,2〉L2

per
= 0. At the first order in κ, we obtain the linear inhomogeneous

equation

Pc,γ(0)W1 + P ′c,γ(0)Wa = Λ1Wa. (4.13)
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We note that P ′c,γ(0) = iQc,γ , where Qc,γ := Kc,γz− zKc,γ is skew-adjoint in L2
per. Since Wa and

Qc,γ are real, we have

Λ1‖Wa‖2L2
per

= i〈Qc,γWa,Wa〉L2
per

= −i〈Wa, Qc,γWa〉L2
per

= 0,

so that Λ1 = 0.
From the asymptotic expansions (4.5) in Assumption 4.2 and (4.7) in Assumption 4.3, we

obtain the unique solution of the inhomogeneous equation (4.13) with Λ1 = 0 in the form

W1 := −[Pc,γ(0)]−1P ′c,γ(0)Wa

=
iµ1(c− c0)

λ2(c)a2
[1 +O(a)] cos(z) + W̃ (1)

a,c , (4.14)

where W̃
(1)
a,c is bounded in L2

per as a → 0 and c → c0. If |c − c0| ≤ C|a| and |κ| ≤ Ca2 for an
a-independent positive constant C, then κW1 = OL2

per
(a) is small.

At the second order in κ, we obtain the linear inhomogeneous equation

Pc,γ(0)W2 + P ′c,γ(0)W1 +
1

2
P ′′c,γ(0)Wa = Λ2Wa. (4.15)

Projection to Wa now yields

Λ2‖Wa‖2L2
per

= 〈P ′c,γ(0)W1,Wa〉L2
per

+
1

2
〈P ′′c,γ(0)Wa,Wa〉L2

per
. (4.16)

Assumption 4.1 implies that

1

2
〈P ′′c,γ(0)Wa,Wa〉L2

per
=

1

2
λ′′(0)‖Wa‖2L2

per
[1 +O(a, c− c0)] . (4.17)

On the other hand, the explicit expressions (4.7) and (4.14) imply that

〈P ′c,γ(0)W1,Wa〉L2
per

= 〈W1, P
′
c,γ(0)Wa〉L2

per

= −µ
2
1(c− c0)2

λ2(c0)a2
‖Va,c‖2L2

per
[1 +O(a)] +O(a, c− c0), (4.18)

where the leading term of the expansion is bounded as a→ 0 if |c−c0| ≤ C|a| for an a-independent
positive constant C.

From (4.6), we have ‖Wa‖2L2
per

= π + O(a) and ‖Va,c‖2L2
per

= π + O(a). Combining (4.12),

(4.16), (4.17), and (4.18), we obtain (4.9).
Next, we derive the expansion (4.10) formally. Since Pc,γ(0)Va,c = λ(a, c)Va,c, we consider the

following expansion for the band λex(κ):

λex(κ) = λ(a, c)+Λ1κ+Λ2κ
2 +O(κ3), w(z, κ) = Va,c(z)+κV1(z)+κ2V2(z)+OL2

per
(κ3), (4.19)

where corrections V1,2 are to be determined by a projection algorithm subject to the orthogonality
conditions 〈Va,c, V1,2〉L2

per
= 0. At the first order in κ, we obtain the linear inhomogeneous equation

[Pc,γ(0)− λ(a, c)]V1 + P ′c,γ(0)Va,c = Λ1Va,c. (4.20)
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Recalling that P ′c,γ(0) = iQc,γ , projection to Va,c yields

Λ1‖Va,c‖2L2
per

= i〈Qc,γVa,c, Va,c〉L2
per

= −i〈Va,c, Qc,γVa,c〉L2
per

= 0,

so that Λ1 = 0. From the asymptotic expansions (4.5) in Assumption 4.2 and (4.8) in Assumption
4.3, we obtain the solution of the inhomogeneous equation (4.20) with Λ1 = 0 in the form

V1 := −[Pc,γ(0)− λ(a, c)]−1P ′c,γ(0)Va,c

=
iµ1(c− c0)

λ2(c)a2
[1 +O(a)] sin(z) + Ṽ (1)

a,c , (4.21)

where Ṽ
(1)
a,c is bounded in L2

per as a→ 0 and c→ c0. Again, the correction term κV1 = OL2
per

(a)

is small, if |c− c0| ≤ C|a| and |κ| ≤ Ca2 for an a-independent positive constant C.
At the second order in κ, we obtain the linear inhomogeneous equation

[Pc,γ(0)− λ(a, c)]V2 + P ′c,γ(0)V1 +
1

2
P ′′c,γ(0)Va,c = Λ2Va,c. (4.22)

Projection to Va,c yields

Λ2‖Va,c‖2L2
per

= 〈P ′c,γ(0)V1, Va,c〉L2
per

+
1

2
〈P ′′c,γ(0)Va,c, Va,c〉L2

per
. (4.23)

Assumption 4.1 implies that

1

2
〈P ′′c,γ(0)Va,c, Va,c〉L2

per
=

1

2
λ′′(0)‖Va,c‖2L2

per
[1 +O(a, c− c0)] . (4.24)

On the other hand, the explicit expressions (4.8) and (4.21) imply that

〈P ′c,γ(0)V1, Va,c〉L2
per

= 〈V1, P
′
c,γ(0)Va,c〉L2

per

=
µ2

1(c− c0)2

λ2(c0)a2
‖Wa‖2L2

per
[1 +O(a)] +O(a, c− c0), (4.25)

where the leading term of the expansion is bounded as a→ 0 if |c−c0| ≤ C|a| for an a-independent
positive constant C. Combining (4.19), (4.23), (4.24), and (4.25), we obtain (4.10).

It remains to justify the expansions (4.9) and (4.10). Since the method is similar, we only re-
port justification of the expansion (4.9). Using scaling λgr(κ) = κ2Λ, we substitute the orthogonal
decomposition

w = Wa(z) + bVa,c(z) + w̃(z), 〈Wa, w̃〉L2
per

= 〈Va,c, w̃〉L2
per

= 0, (4.26)

to the spectral problem Pc,γ(κ)w = κ2Λw. By projecting the spectral problem to Wa and Va,c
and using the previous relations, we obtain two equations

κ2Λ‖Wa‖2L2
per

= 〈
(

1

2
κ2P ′′c,γ(0) +O(κ3)

)
Wa,Wa〉L2

per
+ b〈

(
κP ′c,γ(0) +O(κ2)

)
Va,c,Wa〉L2

per

+〈
(
κP ′c,γ(0) +O(κ2)

)
w̃,Wa〉L2

per
(4.27)

22



and

κ2Λb‖Va,c‖2L2
per

= 〈
(
κP ′c,γ(0) +O(κ2)

)
Wa, Va,c〉L2

per
+ b〈(Pc,γ(0) +O(κ))Va,c, Va,c〉L2

per

+〈(Pc,γ(0) +O(κ)) w̃, Va,c〉L2
per
, (4.28)

where all correction terms to the linear operators from Xper to L2
per are defined in the operator

norm. The residual problem for w̃ is written in the form(
Pc,γ(κ)− κ2Λ

)
w̃ = κ2Λ(Wa + bVa,c)− Pc,γ(κ)(Wa + bVa,c). (4.29)

Let us now assume that c and κ satisfy |c− c0| ≤ C|a| and |κ| ≤ Ca2, where C is a positive
a-independent constant. Thanks to the bound (4.11), the orthogonal decomposition (4.26), and
the projection equations (4.27) and (4.28), for every Λ = O(1) and b = O(1) as a → 0, we have
a unique solution to the linear inhomogeneous equation (4.29) for w̃ satisfying the bound

‖w̃‖L2
per
≤ C

(
(|κ||c− c0|+ |κ||a|+ κ2)(1 + |b|) + |b|a2

)
, (4.30)

where the positive constant C is a-independent. With the account of Assumptions 4.1, 4.2, 4.3,
as well as the bound (4.30), we obtain a unique expression for b from the projection equation
(4.28) for every |Λ| = O(1) as a→ 0:

b
(
λ2(c0)a2 +O(a3, a2|c− c0|, κ2)

)
‖Va,c‖2L2

per
= iµ1(c− c0)κ‖Va,c‖2L2

per
+O(a2κ, κ2). (4.31)

In view of the constraints on c and κ, this yields

b =
iµ1(c− c0)κ

λ2(c0)a2
(1 +O(a)) , (4.32)

so that b = O(a) as a → 0. Finally, substituting w̃ and b satisfying (4.30) and (4.32) to the
projection equation (4.27) yields the unique expressions for Λ:

Λ =
1

2
λ′′(0)− µ2

1(c− c0)2

λ2(c0)a2
+O(a, κ), (4.33)

from which the expansion (4.9) follows. In particular, we see that

λ′′gr(0) = λ′′(0)− 2µ2
1(c− c0)2

λ2(c0)a2
+O(a),

where the leading term is O(1) as a→ 0. From smoothness of λgr in κ for every a 6= 0 sufficiently
small, the expansion (4.9) is justified for every κ 6= 0 sufficiently small. Justification of the
expansion (4.10) for λex is analogous.

Corollary 4.5. It follows from the asymptotic expansions (4.9) and (4.10) of Proposition 4.4
that the self-adjoint operator Kc,γ is positive if c ∈ (c−, c+), where c± satisfy the asymptotic
expansion

c± = c0 +

√
λ2(c0)λ′′(0)√

2µ1

a+O(a2) as a→ 0. (4.34)
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Remark 4.6. Note that the proof of Proposition 4.4 does not rely on the Lyapunov–Schmidt

method applied to the two-dimensional kernel of P
(0)
c (0) spanned by {cos(·), sin(·)} ⊂ L2

per,
compared to the one used in the recent work [17]. Although the same two-dimensional Lyapunov–
Schmidt method applies relatively easy for the case of cubic nonlinearities, where the terms of
the order O(a2) are missing in the Stokes expansion (3.4), the method becomes messy and
requires an additional near-identity transformation for the case of quadratic nonlinearities, which
is associated with the Stokes expansion (2.4).

4.2 Proof of Theorem 2.12

Here we report computations, which verify Assumptions 4.1, 4.2, and 4.3 for the case of the
reduced Ostrovsky equation (1.1). Let U be the 2π-periodic smooth solutions of the differential
equation (2.2) given by Lemma 2.1. The Stokes expansion (4.1) is satisfied with

Ũa(z) =
1

3
cos(2z) +

3

16
a cos(3z) +OC∞

per
(a2), γ̃a =

1

6
+O(a2).

The second variation of the Lyapunov functional Λc,γ defined by (2.39) is given by

δ2Λc,γ =

∫ [
(∂−1
z v)2 − (γ − U)v2 − c

(γ3 − 6I)2/3
v2 +

c(γ − U)5

(γ3 − 6I)5/3
(∂2
zv)2

]
dz, (4.35)

where we have used (2.11), (2.25), and (2.32). The second variation is generated by the self-adjoint
operator Kc,γ with the domain Xper,zero = H4

per,zero ⊂ L2
per,zero, where Kc,γ is given explicitly by

Kc,γ := −∂−2
z − (γ − U)− c

(γ3 − 6I)2/3
+

c

(γ3 − 6I)5/3
∂2
z (γ − U)5∂2

z . (4.36)

From here, we define Pc,γ(κ) = e−iκzKc,γe
iκz, or explicitly,

Pc,γ(κ) = −(∂z+iκ)−2−(γ−U)− c

(γ3 − 6I)2/3
+

c

(γ3 − 6I)5/3
(∂z+iκ)2(γ−U)5(∂z+iκ)2. (4.37)

By using expansion (4.2), we obtain the unperturbed operator

P (0)
c (κ) := −(∂z + iκ)−2 − 1− c+ c(∂z + iκ)4, (4.38)

which corresponds to the quadratic form (2.40) modified with the Floquet–Bloch parameter
κ ∈ T. Assumption 4.1 is verified by Lemma 2.11 with c0 = 1

2 . We obtain from (2.41) with
κ := k ∓ 1,

λ
(0)
±1(κ) =

(2± κ)2(3± 2κ+ κ2)

2(1± κ)2
κ2,

from which we have λ′′(0) = 12.
Assumption 4.2 is verified by Lemmas 2.7 and 2.9. Since the correction term V1 is the same

in the asymptotic expansions (2.29) and (2.36), see expressions (2.30) and (2.37), we obtain λ2(c)
by the linear superposition of (2.31) and (2.38):

λ2(c) =
1 + 10c

3
.
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In particular, we have λ2(c0) = 2. The expansions (4.6) hold with

W̃a(z) =
2

3
sin(2z) +OL2

per
(a), Ṽa,c(z) =

2

3
cos(2z) +OL2

per
(a).

In order to verify Assumption 4.3, we differentiate (4.37) in κ and obtain

P ′c,γ(0) = 2i∂−3
z +

2ic

(γ3 − 6I)5/3

[
∂z(γ − U)5∂2

z + ∂2
z (γ − U)5∂z

]
. (4.39)

Applying P ′c,γ=1(0) to Wa and Va,c given by the expansions (4.6), we obtain expansions (4.7) and
(4.8) with µ1 = 4 and

Fc(z) =
i

6
(1 + 52c) cos(2z), F̃c(z) = − i

6
(1 + 52c) sin(2z).

Combining all together, we apply the result of Proposition 4.4 and obtain the expansion (4.9)
for the spectral band λgr in the explicit form

λgr(κ) =

(
6− 2(2c− 1)2

a2
+O(a)

)
κ2 +O(κ3) as κ→ 0, a→ 0. (4.40)

Therefore, the positivity is proved for (2c− 1)2 < 3a2 +O(a3) or |2c− 1| <
√

3|a|+O(a3), which
proves the expansion (2.42) in Theorem 2.12. The other spectral band λex with the expansion
(4.10) is strictly positive if a 6= 0 is sufficiently small.

4.3 Proof of Theorem 3.8

Here we report computations, which verify Assumptions 4.1, 4.2, and 4.3 for the case of the
reduced modified Ostrovsky equation (1.2). Let U be the 2π-periodic smooth solution of the
differential equation (3.2) given by Lemma 3.1. The Stokes expansion (4.1) is satisfied with

Ũa(z) =
3

64
a cos(3z) +OC∞

per
(a3), γ̃a =

1

8
+O(a2).

The second variation of the Lyapunov functional Λc,γ defined by (2.39) is given by

δ2Λc,γ =

∫ [
(∂−1
z v)2 −

(
γ − 1

2
U2

)
v2 − c

2(γ2 − 2I)1/2
v2 +

c

2(1− (U ′)2)3/2
(∂zv)2

]
dz, (4.41)

where we have used (3.17) and (3.18). The second variation is generated by the self-adjoint
operator Kc,γ with the domain Xper.zero = H2

per,zero ⊂ L2
per,zero, where Kc,γ is given explicitly by

Kc,γ := −∂−2
z −

(
γ − 1

2
U2

)
− c

2(γ2 − 2I)1/2
− c

2
∂z(1− (U ′)2)−3/2∂z. (4.42)

From here, we define Pc,γ(κ) = e−iκzKc,γe
iκz, or explicitly,

Pc,γ(κ) = −(∂z+iκ)−2−
(
γ − 1

2
U2

)
− c

2(γ2 − 2I)1/2
− c

2
(∂z+iκ)(1−(U ′)2)−3/2(∂z+iκ). (4.43)
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By using expansion (4.2), we obtain the unperturbed operator

P (0)
c (κ) := −(∂z + iκ)−2 − 1− c

2
− c

2
(∂z + iκ)2, (4.44)

which corresponds to the quadratic form (3.23) modified with the Floquet–Bloch parameter
κ ∈ T. Assumption 4.1 is verified by Lemma 2.11 with c0 = 2. We obtain from (3.24) with
κ := k ∓ 1,

λ
(0)
±1(κ) =

(2± κ)2

(1± κ)2
κ2,

from which we have λ′′(0) = 8.
Assumption 4.2 is verified by Lemmas 3.5 and 3.6. With the linear superposition of (3.20)

and (3.22), we obtain

λ2(c) =
2 + 3c

8
.

In particular, we have λ2(c0) = 1. The expansions (4.6) hold with W̃a = OL2
per

(a), and Ṽa,c =

OL2
per

(a) as a→ 0.
Assumption 4.3 is verified by using the derivative operator

P ′c,γ(0) = 2i∂−3
z −

ic

2

[
(1− (U ′)2)−3/2∂z + ∂z(1− (U ′)2)−3/2

]
. (4.45)

Applying P ′c,γ(0) to Wa and Va,c given by the expansions (4.6), we obtain expansions (4.7) and

(4.8) with µ1 = 1, Fc ≡ 0, and F̃c ≡ 0.
Combining all together, we apply the result of Proposition 4.4 and obtain the expansion (4.9)

for the spectral band λgr in the explicit form

λgr(κ) =

(
4− (c− 2)2

a2
+O(a)

)
κ2 +O(κ3) as κ→ 0, a→ 0. (4.46)

Therefore, the positivity is proved for (c − 2)2 < 4a2 + O(a3) or |c − 2| < 2|a| + O(a3), which
proves the expansion (3.25) in Theorem 3.8. The other spectral band λex with the expansion
(4.10) is strictly positive if a 6= 0 is sufficiently small.

5 Numerical results for periodic waves of large amplitudes

Here we approximate the periodic waves and the spectral bands of the linear operators Kγ,c in
L2(R) numerically for both versions of the reduced Ostrovsky equations.

Although explicit solutions to the second-order equation (2.2) are known in the parametric
form (2.7), it is more convenient to construct the solution profile U numerically. We use the
Fourier series and follow Newton-Kantorovich iterations [8]. Denote the m-th iterate for the
solution (U , γ) by (Um, γm) and introduce the increments (v, g), through Um+1 = Um + v,
γm+1 = γm + g. Then, at the linearized approximation, (v, g) satisfy the linear equation

(γm − Um)v′′ − 2U ′mv
′ + (1− U ′′m)v + U ′′mg = −[(γm − Um)U ′′m − (U ′m)2 + Um]. (5.1)
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This equation is solved pseudo-spectrally. The even solution U is approximated by the N -th
partial sum of the Fourier cosine series:

U(z) =

N∑
n=1

An cos(nz). (5.2)

We normalize A1 = a for a given a ∈ R and select g from the orthogonality condition

〈cos(·), v〉L2
per

= 0. (5.3)

Then, the value A1 = a is preserved in iterations in m. The partial sum (5.2) is evaluated at 2N
evenly spaced points on [−π, π) to give the vectors z and Um and the matrix equation(

diag(γm −Um)D2 − 2(DUm)D + (I −D2Um) D2Um

cos z 0

)(
v

g

)
=

(
diag(γm −Um)D2Um − (DUm)2 + Um

0

)
, (5.4)

where D is the 2N × 2N Fourier differentiation matrix, I the 2N × 2N identity matrix, diag
denotes the 2N × 2N matrix with the specified diagonal, and v gives the increment at the points
z. The final row represents the orthogonality condition (5.3) numerically.

The linear algebraic system (5.4) is solved iteratively with N = 2048 until the maximum
absolute value of each increment is less than 10−15, which always required fewer than 10 iterations.
Aliasing in the computation of products was avoided by ensuring that the coefficients satisfied
|An| < 10−14 for n > N/4. The invariant (2.3) was found at each z to deviate from its average
value by less than 10−11, providing an independent check on the accuracy of the solutions. Figure
1 gives typical profiles U(z) and the corresponding coefficients An. Even for the largest amplitude
of a = −0.65 considered here the coefficients An are less than 10−16 for n > 300.

To discuss the eigenvalues of the operator Pc,γ(κ) given by (4.37), it is convenient to write

Pc,γ(κ) = Aγ(κ)− cBγ(κ), (5.5)

where

Aγ(κ) = −(∂z + iκ)−2 − (γ − U),

Bγ(κ) = (γ3 − 6I)−2/3 − (γ3 − 6I)−5/3(∂z + iκ)2(γ − U)5(∂z + iκ)2.

By discretising the linear operators in Fourier space and evaluating products pseudospectrally,
we obtain the discretised forms

Âγ(κ) = diag(k2
1)−F(diag(γ −U)F−1(I)),

B̂γ(κ) = (γ3 − 6I)−2/3I − (γ3 − 6I)−5/3diag(k2)F(diag(γ −U)5F−1(diag(k2)),

where F and F−1 denote the discrete Fourier transform and its inverse, k is the wavenumber
vector with components κ ± n and k1 its component-wise inverse. Eigenvalues were obtained
from the discretized form of the operators using the Matlab subroutines eig and eigs.

Figure 2 compares the computed lowest eigenvalues of the operator (5.5) for amplitudes
a = −0.1 and a = −0.2 with the spectral bands for the unperturbed operator for a = 0 at
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Figure 1: (a) The 2π-periodic solutions of the reduced Ostrovsky equation (2.2) for a =
−0.3,−0.5,−0.6,−0.65. (b) The logarithm of the absolute value of the Fourier cosine coeffi-
cients, An, of the trigonometric approximation (5.2). The limiting piecewise parabolic wave, cor-
responding to a = −2

3 is shown dashed in (a) with the corresponding coefficients An = 2(−1)n/3n2

included in (b).

-0.5 0 0.5

κ

0

0.5

1

1.5

2

2.5

3

3.5

4

λ

n = −2

n = −1

n = 2

n = 1

n = 0 n = 0n = −2

n = −1

n = 2

n = 1

n = 0 n = 0

-0.5 0 0.5

κ

0

0.5

1

1.5

2

2.5

3

3.5

4

λ

(a) (b)

Figure 2: The lowest eigenvalues of the operator (5.5) as a function of κ when c = 0.5 for (a)
a = −0.1 and (b) a = −0.2. The dashed lines (red online) give the lowest eigenvalues of the
unperturbed operator for a = 0 and the computed eigenvalues are shown as diamonds (blue
online). All repeated eigenvalues for a = 0 are split as a 6= 0.
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Figure 3: (a) A detail of figure 2(a) (for c = 0.5 and a = −0.1) in the neighbourhood of the
origin showing the splitting of the two spectral bands at finite a. (b) The ground spectral band
for a = −0.1 but for c = 0.7. (c) The first excited spectral band for a = −0.1 and c = 0.7. The
dashed lines here give the small-κ, small-a asymptotic expansions (4.9) and (4.10) for the two
spectral bands.

c = c0 = 0.5. At finite amplitudes (a 6= 0), all repeated eigenvalues of the unperturbed operator
are split, including the repeated eigenvalue at the origin. Figure 3(a) is a detail of figure 2(a) in the
neighbourhood of the origin, with the dashed lines now giving the small-κ, small-a asymptotic
expansions (4.9) and (4.10) for the ground and first excited spectral bands with λ′′(0) = 12,
µ1 = 4, and λ2(c0) = 2. As predicted, the excited spectral band moves symmetrically upwards
into positive λ, with the asymptotic solution remaining accurate even at significant base-wave
amplitudes. Figure 3(b),(c) gives the ground and excited spectral bands for a = −0.1 and c = 0.7.
In line with the expansion (4.40), the value of c is now sufficiently large that the lowest mode
curve is concave downwards in the neighbourhood of the origin, mirrored by the appearance of
computed eigenvalues with λ negative. The accuracy of the asymptotic forms for a = −0.1 is
remarkable.

Computations for all allowable 0 < a < 0.65 and 0 < c < 0.7 show that the small κ behaviour
of the expansion (4.40) shown on figure 3 is generic. At fixed a the graph of the spectral band
λgr(κ) is concave upwards as a function of κ for c ∈ (c−, c+) and concave downwards outside this
interval. Moreover this change is the first occurrence of a negative eigenvalue for Pc,γ(κ). Thus
the boundaries c± are determined by changes in sign of λ′′gr(0). Since λ′gr(0) = 0, it is convenient
to determine the sign of λ′′gr(0) by the sign of λ′′gr(δκ) for 0 < δκ � 1. The boundaries c± are thus
determined as the values of c for which Pc,γ(δκ) is not invertible, i.e eigenvalues of the generalised
linear eigenvalue problem

Aγ(δκ) = cBγ(δκ). (5.6)

The computations reported here were performed for δκ = 10−2, 10−3, 10−4 and the results were
graphically indistinguishable. Figure 4(a) shows shaded the region of the (c, |a|) plane where the
operator Pc,γ(κ) is positive for all κ, and the accuracy of the asymptotic form for the boundary
for small a given by the expansion (2.42) in Theorem 2.12. Computations for the shaded region
have been performed for all |a| ≤ 0.66 to show that the region of positivity of Pc,γ(κ) extends
effectively to the maximum amplitude of |a| = 2/3.
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Figure 4: The region of the (c, |a|) plane where the operator Pc,γ(κ) is positive for all κ is shown
shaded for the reduced Ostrovsky equation (a) and the reduced modified Ostrovsky equation
(b). The dashed lines show the asymptotic expansions for the boundary for small |a| as given by
(2.42) and (3.25) respectively.

Numerical computations for the modified reduced Ostrovsky equation (1.2) proceed analo-
gously to those for the reduced Ostrovsky equation (1.1). Thus, the results will be omitted here
except for figure 4(b) which gives the region of the (c, |a|) plane in which the operator Pc,γ(κ)
defined by (4.43) is positive for all κ. Again, the asymptotic expansion for the boundary for small
a given by (3.25) in Theorem 3.8 is very accurate. Computations for the shaded region have been
performed for all |a| ≤ 1.27 to show that the region of positivity of Pc,γ(κ) extends effectively to
the maximum amplitude of |a| = 4/π ≈ 1.273.

6 Discussion

The short-pulse equation (1.3) can be considered as the focusing version of the modified reduced
Ostrovsky equation (1.2). The short-pulse equation (1.3) possesses the modulated pulse solutions,
which are localized in space and periodic in time [34]. These solutions can have arbitrary small
amplitude and wide localization in space, when the solution resembles modulated wave packets
governed by the focusing nonlinear Schrödinger equation [22]. Therefore, it is natural to suspect
that the small-amplitude periodic waves are unstable with respect to side-band modulations
[37]. Although the short-pulse equation also possess higher-order conserved quantities [9, 32],
our method relying on construction of a Lyapunov-type energy functional should fail for periodic
waves in the short-pulse equation (1.3). Here we show how precisely the method fails.
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The periodic wave given by (3.1) satisfies the second-order differential equation

d

dz

[(
γ +

1

2
U2

)
dU

dz

]
+ U(z) = 0, (6.1)

which has no constraints on the amplitude of periodic waves. Looking at the Stokes expansions
(3.4), we obtain the existence of 2π-periodic smooth solutions U of the differential equation (6.1)
for parameter γ < 1 satisfying the asymptotic expansion

γ = 1− 1

8
a2 +O(a4). (6.2)

Periodic waves are critical points of the two energy functionals

Sγ(u) := ‖∂−1
x u‖2L2 −

1

12
‖u‖4L4 − γ‖u‖2L2 (6.3)

and

RΓ(u) :=

∫
(1 + u2

x)1/2dz − 1

2(γ2 + 2I)1/2
‖u‖2L2 , (6.4)

where I is the first-order invariant associated with the differential equation (6.1).
The second variations of the energy functionals Sγ and RΓ are defined by the linear operators

Lγ and Mγ in the following explicit form:

Lγ := −∂−2
z − γ −

1

2
U2 : L2

per,zero → L2
per,zero.

and

Mγ := −1

2
(γ2 + 2I)−1/2 − 1

2
∂z(1 + (U ′)2)−3/2∂z : H2

per,zero → L2
per,zero.

Compared to the operators Lγ=1 and Mγ=1 in Lemmas 3.5 and 3.6, the operator Mγ=1 has an
infinite number of positive eigenvalues and a finite number of negative eigenvalues. The splitting
of the zero eigenvalue is studied by the regular asymptotic expansion (3.19). For the operator
Lγ , we obtain λ2 = −1

4 instead of (3.20). For the operator Mγ , we still obtain λ2 = −3
8 as in

(3.22).
Defining Λc,γ(u) := Sγ(u) + cRΓ(u) to reflect the change in the sign for Mγ , we obtain the

result of Lemma 3.7 for c = c0 = 2. Therefore, Assumption 4.1 is still satisfied. However,
expansion (4.5) of Assumption 4.2 gives now the negative eigenvalue λ(a, c) with

λ2(c) = −2 + 3c

8
.

Therefore, one of the spectral bands of the linear operator Kc,γ := Lγ + cMγ is now negative
near κ = 0 for every small nonzero amplitude a of the periodic wave with the profile U . As a
result, Λc,γ is not positive for every c ∈ R if |γ − 1| is sufficiently small. This indicates that Λc,γ
is no longer a Lyapunov-type energy functional for the periodic waves of the short-pulse equation
(1.3). This fact is in agreement with the expected modulational instability of periodic waves in
the short-pulse equation (1.3).

As an open problem, we mention that the modulated pulse solutions of the short-pulse equa-
tion (1.3) are reported to be stable in numerical simulations [11, 27]. Given integrability structure
of the short-pulse equation, it may be possible to prove orbital stability of the modulated pulse

31



solutions analytically. A similar proof of nonlinear orbital stability of breathers in the modified
KdV equation was recently developed in [1]. However, there are technical obstacles to extend
this proof to breathers in the sine–Gordon equation [2], and hence to the short-pulse equation
(1.3), which corresponds to the sine–Gordon equation in characteristic coordinates [32].
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