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Abstract 

This work investigates the applicability of (time-dependent) Density Functional Theory, 

(TD)DFT, for the description of the excited state properties of MgO, and other inorganic 

nanoparticles exhibiting the rocksalt structure. Firstly, the excitation behaviour of MgO 

nanoparticles is studied and it is shown that the commonly used exchange-correlation (xc)-

functional B3LYP severely underestimates the lowest vertical excitation energies (LVEE) 

in these systems. It is demonstrated that TD-B3LYP erroneously stabilises those 

excitations with charge-transfer (CT) character. The use of different approximations to the 

exchange-correlation functional, such as the long-range corrected xc-functional CAM-

B3LYP or the hybrid xc-functional BHLYP, significantly improves the energetic 

description of excited states with CT character. 

Different inorganic nanoparticles exhibiting the rocksalt structure, such as those of the 

alkaline earth chalcogenides CaO, SrO, BaO, MgS and MgSe as well as CdO and PbS, 

are investigated and found to behave similarly to MgO in that their localised excited states 

are poorly described with the TD-B3LYP xc-functional. It is demonstrated that the 

concept of CT character is not binary. Nanoparticles of both the CdO and PbS materials 

have delocalised excited electrons and a high dielectric constant: in these systems the 

excited state appears to be suitably described using TD-B3LYP. 

The lowest excited states of a series of MgO nanoparticles are optimised and it is found 

that, despite providing a different description of the excitation character, all investigated 

xc-functionals optimise to a similar lowest lying excited singlet state. The larger particles 

studied exhibit an excited electron localised on a magnesium corner site and the 

corresponding hole localised on an oxygen corner site. The magnesium and oxygen 

corners lie along the same edge of a given particle. TD-B3LYP is found to underestimate 

the experimentally observed photoluminescence peak, reminiscent of the results obtained 

for the vertical excitation energies. In contrast to the LVEE results, TD-BHLYP and TD-

CAM-B3LYP also underestimate the experimental photoluminescence peak. 
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Finally, doped MgO nanoparticles are studied. The dopants include alkaline earth 

elements Be, Ca, Sr and Ba as well as group 12 elements Zn and Cd. It is found that the 

experimental absorption spectra are not replicated by the computational model of just one 

dopant present in the system and it is suggested that the experimental absorption peaks 

attributed to the dopants in the system appear to result from dopant clusters on the particle 

or that the dopants are not evenly distributed throughout the particle. Furthermore, the 

preliminary photoluminescence results show that the exciton behaves differently in doped 

nanoparticles when compared to pure MgO nanoparticles in that the electron and hole 

remain more localised, yielding higher photoluminescence energies, in-line with 

experimental observations. 
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1. Introduction 

The aim of this chapter is to introduce many of the chemical and physical concepts that 

are important in this study, and to make the reader aware of commonly used notations and 

ideas discussed in this thesis. 

 

1.1  Basic Quantum Chemical Concepts 

A key difference between classical mechanics and quantum mechanics is the concept of 

energy quantisation. In the “macro world” that humans inhabit, any energy level of a 

system is conceivable and physically possible. On an atomistic and molecular level, 

however, only certain energy levels are accessible, with these energy levels defined by the 

environment of a particle. With this in mind, and considering that the excited state 

properties of molecules are to be studied, the energy levels comprising the states are 

inherently important properties of systems to be studied.  

 

 

Figure 1-1: Qualitative diagram showing the relative energies of the ground and the first three 

excited electronic states. 
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When the lowest possible electronic state is occupied, a system is said to be in its ‘ground 

state’. If at least one electron is not at the lowest energy level, then the system is said to 

be in an excited state, which is higher in energy than the ground state (see figure 1-1). 

Depending on how much additional energy the electron(s) in question have, the system 

might be in its first, second, or nth excited state. 

Within each of these electronic energy levels are many more levels which are accessible: 

Every electronic level has vibrational sub-levels, each of which themselves containing 

multiple rotational sub-levels. These two sets of sub-levels are not electronic in nature but 

are instead related to nuclear motion. Within the framework of this study, only electronic 

levels and their relative energies are considered.  

Electronic states can have different spin multiplicities, depending on the number of 

unpaired electrons. Spin multiplicity is defined as 2S + 1, where S is the sum of unpaired 

electron spins, each of which is equal to ½ .When there are no unpaired electrons, S = 0, 

so the multiplicity is one (i.e. a singlet state). With one unpaired electron the multiplicity 

is two (a doublet state), two unpaired electrons give rise to a triplet state, etc. For a system 

with no unpaired electrons, the ground state is a singlet state, denoted by a 0 subscript, S0. 

If, instead, the ground state is a triplet state, the notation T0 is used. The subscript 1 is used 

to denote the first excited state, etc.  

A selection rule that partially determines whether an electronic excitation is optically 

allowed is that ΔS = 0. This means that if the ground state is a singlet, the excited state 

must be a singlet state too, i.e. the excited electron cannot change spin. This implies that 

the excited state is an open-shell singlet. Only when there is significant amount of spin-

orbit coupling can there be optical excitations from the formally singlet to the formally 

triplet state. 
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1.2  The optical gap 

The research presented in this thesis focusses on modelling the optical properties of 

magnesium oxide (MgO) and other inorganic particles. Optical behaviour results from the 

change in the electronic structure of a system. An ‘optical gap’ can be defined, and the 

difference between the fundamental and optical gap is outlined below. Two definitions 

that need to be discussed first though are the Ionisation Potential (IP) and the Electron 

Affinity (EA). The former is the energy difference between a system with N-1 electrons 

and N electrons, i.e. the energy associated with removing an electron from the system, 

whereas the latter is a measure of the energy change when an electron is added to the 

system, i.e. the energy difference between an N+1 electron system and an N electron 

system: 

IP =  𝐸𝑁−1 −  𝐸𝑁                                                                                                        (1-1) 

and 

EA =  𝐸𝑁+1 −  𝐸𝑁                                                                                             (1-2) 

where E𝑁 is the energy of the neutral system with N electrons, E𝑁−1 the energy of the 

same system but with one electron removed and E𝑁+1 is the energy of the system when 

an electron has been added. 

The fundamental gap, E𝑓𝑢𝑛𝑑 is defined as follows: 

𝐸𝑓𝑢𝑛𝑑 = IP − EA                                                                                                        (1-3) 

To obtain an experimental value for this energy, a combination of photoelectron 

spectroscopy and electron attachment spectroscopy can be used.1  

The optical gap, Δo, is defined as the lowest possible energy electronic transition of a 

system into a higher lying state via the absorption of a photon. In some instances, the 

lowest energy excitation might be forbidden by the selection rules and therefore does not 

define the optical gap. However, it can generally be referred to as the ‘lowest vertical 

excitation energy’ (LVEE), without making the distinction as to whether the transition is 
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optically allowed or not. The optical gap is lower in energy than the fundamental gap, as 

the electron-hole pair (or exciton) created by the excitation remains electrostatically 

bound, whereas in the case of the fundamental gap, the electron-hole pair is assumed to 

be infinitely separated. It follows that the exciton energy is the energy difference between 

the fundamental and optical gap.  

 

1.3 Photochemistry and Photophysics 

The process of photon absorption as discussed in section 1.2 falls under the labels of 

photochemistry and photophysics. The former encompasses all phenomena occurring 

when systems interact with light and a subsequent chemical change occurs. The term 

‘photophysics’, on the other hand, implies no net chemical change after a photon is 

absorbed, i.e. 

A +  ℎ𝜈 →  A∗  →  A                                                                                         (1-4) 

where A∗ denotes the electronically excited molecule A and ℎ𝜈 is a photon of sufficient 

energy to electronically excite molecule A. After excitation, A* returns to its original state 

A via internal conversion (or light emission). 

In contrast, photochemistry refers to the process when after a photon is absorbed, there is 

a net chemical change, i.e. 

A + ℎ𝜈 →  A∗  → B                                                                                                   (1-5) 

where molecule B is chemically different from molecule A. 

There are different processes that can occur within photochemistry and photophysics, as 

seen in figure 1-2, where process ‘1’ represents light absorption by the particle, ‘2’ 

represents luminescence (light emission by the particle), ‘3’ is an excited state barrier, ‘4’ 

is a conical intersection and ‘5’ represents product formation.  
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 Figure 1-2: Ground (blue) and excited (red) potential energy surfaces, showing possible 

photochemical and photophysical phenomena. 

 

When two potential energy surfaces cross at any point, they are energetically degenerate 

and this region is called a ‘conical intersection’ (process ‘4’ in figure 1-2). Very fast, 

radiationless electronic transitions often occur due to these conical intersections. An 

alternative explanation for radiationless transitions would be that there is an excited state 

minimum with the same geometry as a maximum on a lower potential energy surface, but 

the wavefunctions are not degenerate at that point, so the potential energy surfaces do not 

touch.  

Photon absorption and photon emission (or photoluminescence) can both occur for spin-

allowed as well as spin-forbidden processes, although the latter is only possible if 

intersystem crossing can take place, mediated by e.g. spin-orbit coupling. The spin 

allowed processes would be from singlet to singlet state or triplet to triplet states: an 
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example of a spin-allowed absorption process is given below, where S0 is the ground state 

and S1 the first excited state. 

S0 + hν → S1                                                                                                                (1-6) 

Similarly, a spin-forbidden transition can be described in the following way: 

S0 + hν → T1                                                                                                                    (1-7) 

where T1 is the first excited triplet state. 

The same logic holds for luminescence, although there is a distinction as to which state 

the photon was emitted from: if it is a singlet state, it is referred to as fluorescence: 

S1 → S0 + hν                                                                                                                     (1-8) 

The spin-forbidden counterpart, an emission from a triplet state, is called 

phosphorescence. 

T1 → S0 + hν                                                                                                                (1-9) 

As a result of the spin selection rule ΔS = 0, fluorescence tends to be a faster process than 

phosphorescence, although lifetimes are, of course, system dependent: as a general rule, 

fluorescence occurs within nanoseconds whereas phosphorescence can occur as slowly as 

seconds after the photon excitation.2–5 

The energy of the photon emitted during luminescence is lower than that used to excite 

the system. This is because of the energy dissipated while the excited state relaxes between 

the absorption and emission of the photon. A measure of this loss of energy is the Stokes 

shift, which is the difference between the excitation energy (the energy associated with 

the process of electron absorption) and the photoluminescence energy (the energy 

associated with the process of electron emission). 

A more detailed diagram outlining the different types of energy processes that can occur 

are shown in figure 1-3, which is generally known as a Jablonski diagram. In this diagram, 
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the light blue arrow shows absorption, while the dark blue and yellow arrows illustrate 

luminescence: fluorescence and phosphorescence respectively. The orange arrow shows 

internal conversion, the green vibrational relaxation and the grey arrow illustrates 

intersystem crossing. 

Internal conversion is a radiationless transition between states with the same spin, whereas 

an intersystem crossing occurs between states with a different spins, but is also 

radiationless. Phosphorescence is a special case of intersystem crossing between the 

lowest triplet state T1 and the ground state S0. 

It is noticeable that only the lowest electronically excited states are depicted to emit 

photons in this diagram and this is due to Kasha’s rule.6 This rule states that 

photoluminescence occurs in substantial yield only from the lowest excited states of a 

given multiplicity. This is due to the fact that higher-energy excitation typically results in 

internal conversion to the S1 and/or T1 states, which then fluoresce or phosphoresce. 

Internal conversion from higher lying states to S1 or T1 is very fast,7,8 so that 

fluorescence/phosphorescence cannot compete with this process kinetically as the S1 or 

T1 states typically lie further away from S0. This means that the rate of internal conversion 

is slowed down, and fluorescence/phosphorescence can compete kinetically. There are, 

however, exceptions to this rule.9  
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Figure 1-3: Jablonski diagram showing ground and excited electronic (thick lines) and 

vibrational (thin lines, with (some) numbering) states. The light blue arrow shows absorption, 

the dark blue and yellow arrows illustrate luminescence: fluorescence and phosphorescence 

respectively. The orange arrow shows internal conversion, the green vibrational relaxation and 

the grey arrow illustrates intersystem crossing.  

 

1.4 Magnesium and Magnesium oxide 

Magnesium is the second lightest alkaline earth metal in the periodic table of the elements. 

It has been used since the time of the ancient Greeks in the form of the mineral talc. The 

chemistry of the element could be studied after its discovery by Humphrey Davy in 1808. 

That year was truly fascinating: Davy isolated pure magnesium as well as calcium, 

strontium and barium by electrolytic methods.10 It is now known that magnesium is one 

of the most abundant elements on earth by weight and mainly occurs in the earth’s crust 

in the form of insoluble carbonates, sulfates and silicates.10,11 The oxides of alkaline earth 
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metals are relatively easily obtained by calcination of the carbonates or by dehydration of 

the hydroxides.10,12,13  

MgO is used in refractory applications, as it is a good thermal conductor and electrical 

insulator.14 Crystalline MgO (along with other alkaline earth oxides) is usually found to 

crystallise in the rocksalt structure, first described for NaCl, and white in colour. Figure 

1-4 shows an example of a nanoparticle with the rocksalt structure. Due to the regular 

ordering of the ions, the lattice energies are very high, which means that the oxides are 

relatively unreactive. However, it has been shown that, in-line with nanoparticles in 

general, as the particles become smaller, the more reactive they tend to be.15 This is due 

to the fact that there is an increased number of coordinatively unsaturated ions on the 

surface compared to the number of ions in the bulk. The ions in the bulk have a 

coordination number of 6, whereas those on the surface have a coordination number of 5. 

The coordination number is reduced by one for an edge ion and by one more for corner 

ions, which means that edge ions have a coordination number of just 3. 

 

 

Figure 1-4: (MgO)48 nanoparticle as an example of the rocksalt structure. 

 

 

 

 



Introduction 

 

37 
 

1.5 The role of Computational Chemistry 

Magnesium oxide is the proverbial guinea pig for inorganic computational chemists due 

to its low computational cost, closed-shell configuration and the structural similarities 

between small nanoparticles and the bulk. These are all properties that will prove to be 

very useful for this project since the material is studied computationally in terms of its 

photophysical properties and these are then compared to experiment. 

Apart from its computational advantages, MgO displays technologically interesting 

behaviour, such as lithium-doped MgO that is used as a catalyst for the oxidative coupling 

of methane.16–18 In addition, it has been found experimentally that MgO nanoparticles 

absorb ultraviolet light and reemit partially in the visible spectrum19 and the absorption 

and photoluminescence properties can be tuned by when varying the particle size20 or 

doping nanoparticles, substituting Mg2+ ions with other divalent cations, such as Zn2+.21 

The question that arises is whether computational simulation can be used to predict 

experimental unknowns, rather than focussing solely on explaining experimental 

observables and trends. MgO is a good candidate with regard to tackling this question: 

due to its relatively simple electronic structure, computational effort can be spent 

investigating the complex processes involved in its interaction with radiation, rather than 

on the optimisation of the electronic structure of a more complex system. The electronic 

structure of MgO can be described with greater accuracy than if heavier elements were 

studied, leading to it being an ideal material to begin studying the photophysics of 

inorganic materials.  

The advantage of applying the approximations used in this project (discussed in chapter 

2) is that a detailed description of the electron distribution in the particles can be given to 

explain the processes of interest, such as electronic excitation through photon absorption, 

excited state relaxation, and photon-emission. Such details cannot be obtained 

experimentally and it is fascinating to combine the knowledge gained by experiment and 

computation to paint a complete picture of the process. Experiments can give scientists a 

wealth of knowledge of a system, such as the characterisation of crystals through their 

morphology and size distribution, along with the absorption and emission properties of 
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these crystals. However, only computational models can give detailed microscopic insight 

into the latter processes. Furthermore, computational chemistry can also investigate the 

size dependence of properties, such as the already mentioned absorption and emission, or 

the relative stabilities of different morphologies. The knowledge gained through 

experiments is substantial and impressive, but computation can give complimentary 

insight. Only by establishing suitable approximations for chemical systems and testing 

their validity can the field of computational chemistry move to the realm of predicting 

chemical properties of systems. When this is achieved successfully, computation could 

direct aspects of experimental research. 

Currently, many approximations must be made when using any computational 

methodology, which means that the suitability of the chosen approximations need to be 

tested. For any practical electronic structure method, electron-electron interactions must 

be modelled approximately. The approximations are incredibly important, as unsuitable 

approximations can lead to incorrect conclusions. This is further discussed in chapters 5 

and 6. 

 

1.6 Objectives 

The objectives of this thesis are to advance the knowledge of the system of interest, MgO, 

and its interaction with light. Currently, the details of emission processes of materials are 

elusive. This is a new field of study and the methodology of choice, Time Dependent 

Density Functional Theory (TDDFT), needs to be tested rigorously before making 

trustworthy predictions. 

This thesis is structured in the following way: firstly, a discussion of the methodology and 

computational details is presented in chapter 2. This is followed in chapter 3 by a 

discussion of previously published experimental and computational studies.  

This leads naturally to the four chapters discussing the results obtained by the author 

during her studies. Firstly, in chapter 5, the ground state structures of MgO nanoparticles 

are presented and compared, before the excitation behaviour of said particles are discussed 
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in detail in terms of atomic charges and differences in ground and excited state electron 

densities. The main focus is on the density functional dependence of the results obtained.  

The same density functional dependence has been investigated on different systems 

exhibiting the rocksalt structure, to investigate whether failures in the prediction of photon 

absorption energies using certain approximations extend to different materials, such as 

other alkaline earth oxides, magnesium chalcogens, CdO and PbS nanoparticles, as 

discussed in chapter 6. These two chapters lead to similar conclusions and it is clear that 

only certain approximations are appropriate to study the photophysics of (MgO) 

nanoparticles.  

This leaves the question, which is addressed in chapter 7, as to whether the computational 

approaches that can be used to accurately describe the excitation behaviour of MgO 

nanoparticles can also be used to model their photoluminescence behaviour. As excited 

state relaxation is a very complex process, one major simplification had to be made, 

namely that only the lowest excited singlet state is investigated. The minima on the first 

excited singlet state surfaces are studied and the corresponding photoluminescence 

energies are obtained and compared to experiment. 

The question arises whether the photoluminescence energies can be tuned, and chapter 8 

investigates the effect doping has on the absorption and photoluminescence energies. The 

chosen dopants are alkaline earth elements beryllium, calcium, strontium and barium as 

well as group 12 elements zinc and cadmium.  
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2.  Methodology 

Computational modelling has one aim: obtaining the most accurate electronic structure as 

cheaply as possible, i.e. at the least computational cost. The perfect solution would, of 

course, be if realistic systems could be studied with no approximations, but this is far from 

being possible. Currently, Density Functional Theory22,23 (DFT) can deal with systems of 

a few hundreds of atoms, but the largest systems may need smaller basis sets. Quantum 

chemical calculations, such as those outlined in this thesis, are approximate solutions to 

the (time-independent) many-electron Schrödinger equation. The fundamental 

approximations made to solve this equation are outlined in this chapter. 

 

2.1 Preliminaries 

2.1.1 The Schrödinger Equation  

The time-independent Schrödinger equation24 (SE) is one of the most famous quantum 

mechanical equations, providing together with its time-dependent variant and is 

relativistic version, the Dirac equation, the quantum mechanical framework underlying 

Chemistry.  In its most general form, the SE can be expressed as follows: 

�̂� 𝛹 = 𝐸 𝛹                                                                                                         (2-1) 

𝛹 is the wavefunction, whose square modulus yields the electron density, providing a 

direct link to a physical observable of the system in question. Equation (2-1) is an example 

of an eigenvalue equation, which means that, in simplified terms, the results of the 

Hamiltonian �̂� acting on the wavefunction is equal to a multiple of the same 

wavefunction, where the multiplication factor corresponds to the energy. When the 

Hamiltonian operator is applied to a wavefunction, the energy of the system, 𝐸, can be 

determined. 
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2.1.2 The Many-Body Problem 

The wavefunction contains all the information about a system, the only problem is that 

the SE can merely be solved for one-electron systems without approximations. As soon 

as more electrons are considered, the description of how they interact with each other 

becomes too complicated to solve analytically with the complexity increasing with the 

number of electrons involved. From a chemical perspective, it is fair to say that in any 

system of real interest (apart from, say, the hydrogen atom, the helium cation, or H2
+) 

approximations must be made to the SE.  

 

2.1.3 The Variational Principle 

One very important principle (albeit one not true for all methodologies) is that the energy 

of any trial wavefunction (i.e. an approximation to the exact solution) must be higher or 

equal in energy to that of the exact wavefunction. Without this principle, it would be 

possible for the energy of a trial wavefunction to tend to −∞, which is unphysical. The 

consequence of this principle is that improving the description of the wavefunction leads 

to a better description of the energy. The simplest way to improve the description of the 

wavefunction is to systematically improve the basis set (sections 2.1.7 and 2.2.4.2.2) used. 

Both Hartree-Fock (HF) theory25,26 and DFT are methodologies based around this 

principle. 

 

2.1.4 The Born-Oppenheimer Approximation 

The Born-Oppenheimer (BO) Approximation27 is fundamental to most quantum 

chemistry calculations. It assumes that electronic and nuclear motion can be treated 

separately due to their very different masses: electrons being much lighter than nuclei 

adapt their positions with respect to the positions of the nuclei almost instantly, whereas 

the nuclei move on potential energy surfaces defined by the electronic structure. 

Application of this BO approximation means that the Hamiltonian used in a quantum 
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chemical calculation can be a purely electronic one, where the positions of the nuclei can 

be approximated as being fixed: the nuclei are treated as classical point charges. 

The BO approximation is a good assumption to make about chemical systems apart from 

in specific circumstances and makes the computation of chemical systems considerably 

less complex. Examples where the BO approximation might break down are conical 

intersections, where the ground and excited state potential energy surface touch and/or 

cross, or highly excited rotational states where the orbital angular momentum is decoupled 

from the nuclear axis. 

 

2.1.5 The Orbital Approximation 

For reasons of computational tractability the orbital approximation is made, where the 

wavefunction can be written as a product of one-electron wavefunctions (one-electron 

orbitals), which is known as the Hartree Product (equation (2-3)). These one-electron 

orbitals are exact for one electron systems but not for systems with many electrons. This 

approximation, however, is the underlying assumption of most modern computational 

chemistry as it makes the modelling of chemical systems a possibility. One should bear in 

mind that these orbitals, which are a result of these calculations where the degrees of 

freedom of the electrons have been decoupled for computational feasibility, therefore 

neglecting some electron-electron interactions, are not in fact chemically meaningful.  

The Anti-Symmetry Principle states that the wavefunction must change sign (i.e. 

antisymmetric) with respect to the interchange of two electrons, which are of fermionic 

character. One way to insure that the Anti-Symmetry Principle, imposed by the Pauli 

Exclusion Principle, is obeyed, is to write the wavefunction as a single Slater determinant. 

This determinant is a linear combination of Hartree Products. This ensures automatic anti-

symmetry and the Pauli Exclusion Principle is obeyed, as no two one-electron orbitals are 

the same. 
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2.1.6 LCAO Approach 

The Linear Combination of Atomic Orbitals (LCAO) approach is fundamental to many 

quantum chemical approaches to describing molecular orbitals (MOs). It is the same 

thought process behind molecular orbital diagrams: atomic orbitals (AOs) are used to form 

MOs. The LCAO procedure is formalised in the following way: 

𝜑𝑖 =  ∑ 𝑐𝑎𝑖𝑎 𝜙𝑎                                                                                                  (2-2) 

where 𝜑𝑖 is a molecular orbital, 𝜙𝑎are atomic orbitals and 𝑐𝑎𝑖 are coefficients which are 

optimised to obtain the lowest energy solution for the system studied. 

 

2.1.7 Basis Set Introduction 

It is important at this stage to introduce the concept of basis sets. MOs are a linear 

combination of AOs but how are AOs described? The way this is done is by employing 

one-electron basis functions, which are centred on the atomic nuclei. One of these 

functions is not enough to describe any AO properly, therefore a set of basis functions are 

used to describe each AO. If each set were complete, i.e. an infinite number of basis 

functions were used, the basis set could describe each AO exactly. However, in practise, 

any basis set is ‘truncated’, and only a finite number of functions is used to describe an 

AO. More detail is given in section (2.2.4.2.2). 

 

2.1.8 Self-Consistent Field Procedure 

The self-consistent field (SCF) approach is used to solve the Schrödinger equation in DFT 

and HF theory. The need for this procedure is clear once one realises that in order to 

determine any given electron orbital, all other orbitals need to be considered. This cannot 

be done directly, but rather an iterative process needs to be started by using an educated 

guess to approximate all orbitals. From this initial guess, the MOs can be calculated and 

an approximation for the wavefunction can be obtained, and this process is repeated and 
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is only stopped when the total energy of the system (which itself is dependent on the 

orbitals) does not change within the tolerance of the convergence criteria: 

1- Initial guess for the wavefunction/electron density 

2- Evaluate effective potential and therefore MOs 

3- New electron density is calculated using MOs from step 2 

4- Repeat steps 2 and 3 until no more change in MOs. 

At step 3, the total energy of the system is calculated, which is used to establish whether 

self-consistency is reached or not. It should be borne in mind that within this procedure, 

the orthonormality of the orbitals must be enforced. 

 

2.1.9 Correlation Energy 

Both DFT and HF theory use a mean-field approach to describing electron-electron 

interactions: one electron interacts with an average potential defined by the other 

electrons. If all electrons interacted explicitly with each other, their average separation 

would be greater than that predicted by HF theory. This avoidance would result in a 

change in the kinetic energy and the electron-electron repulsion would diminish, hence a 

variation in the potential energy. If the result of the HF calculation (in the complete basis 

set limit, section 2.2.4.2.2) were to be compared to the real system, the difference in energy 

would be precisely the correlation energy, comprising about 1% of the total.28 Although 

this might seem small, it is actually important: in Chemistry, energy differences are of 

interest, and as correlation contributes differently to different states, an error significantly 

larger than 1% may result - therefore correlation energy may be comparable in magnitude 

to chemically relevant energy scales. 

Being able to describe the electron correlation energy is the holy grail of computational 

chemistry: HF theory does not take electron correlation into account*, Kohn-Sham DFT 

(which will be described in section 2.2.4.1.2) tries to mimic (dynamic) correlation (and 

                                                
* Strictly speaking, HF theory includes correlation between like-spin electrons, although the 
origin of this is the exclusion principle, rather than the Coulomb interaction. 
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neglects static correlation) and post-HF methods sometimes make the distinction between 

dynamic and static correlation, both described below. 

Dynamic correlation, which is the more obvious energy contribution, is normally meant 

when ‘correlation’ is discussed. This energy describes the relative motion of the electrons 

and is important if there is a large number of electrons occupying different orbitals in a 

similar spatial region. One obvious example are electrons occupying the px, py and pz 

orbitals. This type of correlation increases as the number of electrons increases. Dynamic 

correlation is a direct consequence of making the orbital approximation (section 2.1.5). 

Static correlation, on the other hand, is important when there are different possibilities in 

how electrons can populate different orbitals, with the corresponding electronic 

configurations having similar energies, i.e. in a multiconfigurational system. This form of 

correlation energy is normally a smaller contribution to the total correlation of the system, 

and is only of concern for valence electrons, or a subset thereof. However, to accurately 

describe this type of correlation, more than one Slater determinant is needed to describe 

the total wavefunction (as done in post-Hartree-Fock methodologies). The Kohn-Sham 

approach to DFT does not take static correlation into account, so from this point onwards, 

when correlation energy is mentioned, it refers to dynamic correlation unless otherwise 

stated. 

 

2.2 Computational Details 

As discussed in section 1.6, this work has been performed within the framework of DFT 

and TDDFT due to the reasonable compromise between the size of the system studied and 

the accuracy. Before these two methods can be studied in more detail, some background 

should be given on the Thomas-Fermi model (section 2.2.1) and Hartree-Fock Theory 

(section 2.2.2), as the former is a ‘frontrunner’ of DFT and the latter is based on similar 

concepts and equations, which are the basis on which current implementations of DFT are 

built up on.  
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2.2.1 The Thomas-Fermi and Thomas-Fermi-Dirac Model 

The Thomas-Fermi (TF) model29,30 is the ‘forefather’ of DFT as we know it today. In fact, 

the TF model is a density functional theory formulated in 1927, as it was developed to 

obtain information about a chemical system from a physical observable, namely the 

electron density (and not from the wavefunction directly). The basic ideas behind the 

theory is discussed in this section, without going into the (mathematical) details of the 

theory. 

The first assumption behind this model is that the kinetic energy is based on an expression 

for a uniform electron gas. This kinetic energy in this theory is a function of the density 

and becomes a functional. A functional is a function which itself is dependent on a 

function, rather than a variable. In this example, the kinetic energy is dependent on the 

electron density approximated as non-interacting electrons in a homogeneous gas, itself is 

dependent on the spatial coordinates. Electron correlation and electron exchange† were 

not taken into account in the original formulation. However, in 1930 Dirac added a term 

approximating local exchange, which gives rise to the Thomas-Fermi-Dirac Theory31 

(TFD). The name given to this theory is a bit unfortunate, as it was in fact Bloch who first 

derived a term for including the electron exchange energy in 1929.32  

The advantage of this approach is its computational simplicity: there are only 4 variables 

(the three spatial coordinates and the spin), which makes any calculation very fast 

compared to a calculation which takes every electron into account. However, the 

approximation of a uniform electron gas in the expression for the kinetic energy, is 

unphysical: It may sometimes be adequate for the description of valence electrons in 

metallic systems when they contain a “sea of delocalised electrons”, but in general is not 

suitable. The main issue with this methodology is that neither TF to TFD theory predict 

any type of bonding, due to the electron gas being assumed to be uniform. The result of 

this is, of course, that molecules are predicted to not exist, as shown by Teller et al..33 

                                                
† The energy associated with electron exchange is the measure of how the energy of a system 
changes when two electrons are interchanged. This is discussed further in the section on HF 
and DFT. 



Methodology 

 

47 
 

2.2.2 Hartree-Fock Theory    

Hartree-Fock theory is a wavefunction based method, which generally yields satisfactory 

results but is outperformed by DFT (section 2.2.4) in terms of cost and efficiency.  

   

2.2.2.1 Hartree Theory 

Unlike TF and TFD theories (and, ultimately DFT), Hartree-Fock (HF) theory is not a 

density functional method but rather a wavefunction method. This means that this 

methodology attempts to solve the (many-electron) Schrödinger equation directly, albeit 

with some major approximations.  

The general approach to solving the Schrödinger equation is to find a solution to equation 

(2-3). The simplest way to write an N-electron wavefunction is to do so as a simple product 

of one-electron functions, or orbitals: 

𝛹HP =  𝜓1 𝜓2 𝜓3 … 𝜓𝑁                                                                                     (2-3) 

As discussed previously, 𝛹𝐻𝑃 is the ‘Hartree-product’ wavefunction with the 𝜓𝑖 being 

one-electron functions. Although only exactly solvable for a non-interacting system, this 

crude approximation forms the basis of Hartree theory. Assuming, in first instance, that 

the electrons are non-interacting, the Hamiltonian can be separated: 

�̂� =  ∑ ℎ̂𝑖
𝑁
𝑖                                                                                                          (2-4) 

where ℎ̂𝑖 is the one-electron Hamiltonian which, for non-interacting electrons, can be 

expressed as: 

ℎ̂𝑖 =  − 
1

2
 ∇𝑖

2 −  ∑
𝑍𝑘

𝑟𝑖𝑘

𝑀
𝑘=1                                                                                            (2-5) 

where 𝛻𝑖
2 is the kinetic energy operator in atomic units and the second term represents the 

Coulomb interaction between electron i and each nucleus k, with k ranging from 1 to M, 
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the total number of nuclei. The Coulomb interaction consists of the nuclear charge 𝑍𝑘 and 

the electron-nuclear separation 𝑟𝑖𝑘. 

To find the energy of the system (equation (2-1)), a series of N eigenvalue problems needs 

to be solved: 

ℎ̂𝑖  𝜓𝑖 =  𝜀𝑖  𝜓𝑖                                                                                                              (2-6) 

where 𝜀𝑖 are the energies of the one-electron orbitals and 𝜓𝑖 are the one-electron 

wavefunctions as seen in equation (2-3). 

This means that the many-electron Schrödinger equation has been simplified to a series of 

one-electron eigenvalue problems. 

The one-electron Hamiltonian can be improved upon by including an interaction term 

𝑉𝑖{𝑗}, representing the interaction of electron i with all other electrons j. 

ℎ̂𝑖 =  − 
1

2
 ∇𝑖

2 −  ∑
𝑍𝑘

𝑟𝑖𝑘

𝑀
𝑘=1 +  𝑉𝑖{𝑗}                                                                            (2-7) 

The interaction between electron i and all other electrons can be expressed in the following 

way: 

𝑉𝑖{𝑗} =  ∑ ∫
𝜌𝑗

𝑟𝑖𝑗
 𝑑𝐫𝑗 ≠𝑖                                                                                          (2-8) 

This equation defines the Coulomb interaction between electron i and each other electron, 

j, in terms of the charge density 𝜌𝑗 and the inter-electron separation 𝑟𝑖𝑗. These interactions 

are evaluated over all space. This shows that the electron interaction is included as a mean 

field external potential, i.e. electron i is only interacting with the average field of all other 

electrons. This means that Hartree (and Hartree-Fock, as it uses the same Coulomb 

potential) theory is a mean field theory.  

The aim of a quantum chemical calculation is to find the eigenfunction that satisfies the 

many-electron eigenvalue problem (minimising the energy). As the density 𝜌𝑗 from 
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equation (2-8) is equal to |𝜓𝑗|
2
, and the equations above are linked to each other, the ‘self-

consistent field’ approach (section 2.1.8) is used to solve the set of equations. The total 

energy is related to the one-electron energies in the following way: 

𝐸 =  ∑ 𝜀𝑖𝑖 −  
1

2
 ∑ ∬

𝜌𝑖𝜌𝑗

𝑟𝑖𝑗
𝑖 ≠𝑗  𝑑𝐫𝑖𝑑𝐫𝑗                                                                         (2-9) 

The final term in this equations corrects for the fact that every ℎ̂𝑖 contains an electron-

electron repulsion term. This repulsion is between electron i and the mean field generated 

by all other electrons. When another electron j is considered, part of the repulsion it 

experiences is from electron i, but this repulsion has already been accounted for when 

electron i was considered. 

The wavefunction is the final thing that needs to be considered in order to understand how 

to solve the Schrödinger equation using Hartree Theory. As formalised in Pauli’s 

exclusion principle34, no two electrons can have the same set of quantum numbers, so in 

a given molecular orbital, an electron can either have α (“up”) or β (“down”) spin. This 

means that Hartree theory considers a wavefunction of the following form to create the 

Hartree Product: 

𝛹HP =  𝜓𝑎(𝐫1)3 𝛼(1) 𝜓𝑏(𝐫2)𝛼(2)                                                                   (2-10) 

The superscript indicates a triplet electronic state (as there are two electrons with the same 

spin), and the orbitals 𝜓𝑎 and 𝜓𝑏 must differ from each other, as the Pauli Exclusion 

Principle would be violated otherwise.  

The main problem with equation (2-10) is that it does not satisfy the anti-symmetry 

requirement imposed by QM, so this is not a suitable trial wavefunction. The anti-

symmetry requirement imposes that any wavefunction used in quantum chemistry must 

change sign when the coordinates of two electrons are interchanged. For the purpose of 

clarity, a wavefunction that would be suitable is shown below. However, this is not a 

Hartree Product. 

𝛹3 =  
1

√2
 [𝜓𝑎(𝐫1)𝛼(1)𝜓𝑏(𝐫2)𝛼(2) −  𝜓𝑎(𝐫2)𝛼(2)𝜓𝑏(𝐫1)𝛼(1)]                   (2-11) 
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The factor of 
1

√2
 is used to satisfy the normalisation requirement: 

∫ |𝜓|2 𝑑𝛕 = 1                                                                                                   (2-12) 

 

2.2.2.2 The Hartree-Fock Approximation 

As described above, the type of wavefunction used in Hartree theory does not obey the 

anti-symmetry principle, something noted by Fock in 1930.26 Fock suggested the use of 

Slater determinant wavefunctions in Hartree’s SCF formulation, which is the simplest way 

to construct a many-electron wavefunction that satisfied the anti-symmetry principle. The 

anti-symmetrical wavefunction of equation (2-11) would be written in Slater-determinant 

form as seen below. The wavefunction is being written as the determinant of a matrix, as 

the horizontal bars indicate: 

𝛹SD
3 =  

1

√2
 |

𝜓𝑎(𝐫1)𝛼(1) 𝜓𝑏(𝐫1)𝛼(1)
𝜓𝑎(𝐫2)𝛼(2) 𝜓𝑏(𝐫2)𝛼(2)

|                                                        (2-13) 

The main underlying assumption in Hartree-Fock (HF) theory is that the wavefunction of 

an N electron system can be approximated by a single Slater determinant. Inherently in 

this formulation, the effects of electron exchange are included in the calculations. The 

electron exchange energy is linked to the anti-symmetry principle, as it is an energy that 

stems from the fact that all electrons are indistinguishable from each other, which means 

that the associated wavefunction needs to be anti-symmetric with respect  to the exchange 

of electrons. In essence, HF theory is the extension of Hartree SCF theory to include 

electron exchange. However, no Coulomb correlation is included in this formalism. 

In 1951 Roothaan35 suggested that any molecular orbital (MO), which is the eigenfunction 

of a one-electron operators, can be represented using a set of basis functions. This set of 

one-electron orbitals (basis functions) can be combined using the Linear Combination of 

Atomic Orbitals (LCAO) method to obtain the characteristics of the MO in question 

(section 2.1.6). In theory, this is exact as any function of n-variables can be decomposed 
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into a complete set of n one-variable functions. In practise, finite basis sets need to be used 

to approximate orbitals in HF calculations (or any calculation for that matter).  

There are two different formalisms of HF theory that can be used, namely “Restricted” 

and “Unrestricted” HF. The difference between them is that the former can only be used 

when there are no unpaired electrons, i.e. when all occupied molecular orbitals have 

exactly two electrons in them. On the other hand, unrestricted HF theory can be used with 

any orbital occupation. 

An interesting note is that HF theory is a variational method (section 2.1.3), which means 

that with an infinite basis set, the HF energy would be a minimum with respect to the 

approximations made: this minimum energy is called the Hartree-Fock limit. However, in 

practise any results obtained from HF calculations are going to be higher in energy than 

the HF limit. This limiting energy, however, is not that corresponding to the exact 

eigenvalue to the non-relativistic Schrödinger equation because the approximation of 

expressing the wavefunction as a single Slater determinant is insufficient since it does not 

take electron correlation (section 2.1.9) into account. Electron correlation is defined by 

how all electrons are interacting with one another. HF theory can only approximate this 

electron-electron interaction by using a mean-field interaction between one electron and 

all others. This means that the difference between the HF limit and the eigenvalue to the 

Schrödinger equation are only separated by the correlation energy, which cannot be solved 

mathematically, as it is a many-body problem. 

 

2.2.3 Post-Hartree-Fock Methodologies 

Hartree-Fock theory is still widely used as a starting point for further calculations, which 

aim to correct for the lack of (static or dynamic) correlation in HF theory, by using virtual 

orbitals to improve the wavefunction and energy. So-called post-HF methods can be very 

accurate but are computationally expensive, and can only treat small systems. Only one 

methodology is introduced, as it is used in chapter 5 to compare (TD)DFT results obtained 

in this study.  
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2.2.3.1 Coupled Cluster Method 

Coupled Cluster (CC) methods36,37 are based on the idea of improving the HF 

wavefunction with the inclusion of excited configurations. These corrections, whether 

incorporating single, double or higher excitations, can be added to the reference wave 

function. CC includes all excitations of a given type to infinite order, as CC can be defined 

in terms of an exponential operator acting upon the reference wavefunction (the HF 

wavefunction 𝛹HF) which can be expanded in an infinite power series:  

𝛹CC =  𝑒�̂� 𝛹HF                                                                                                          (2-14) 

where 𝛹CC is the coupled-cluster wavefunction and �̂� the cluster operator. The CC 

wavefunction is in principle exact. However, CC needs to be truncated for computational 

tractability and the full power series cannot be incorporated. The way the truncation is 

implemented in CC theory is part of the reason why this theory is so popular. The cluster 

operator �̂� is defined as follows: 

�̂� =  �̂�1 +  �̂�2 +  �̂�3 + ⋯ +  �̂�𝑛                                                                         (2-15) 

where 𝑛 is the total number of electrons. The �̂�𝑖 operators generate all possible 

determinants with 𝑖 excitations from the reference wavefunction. The addition of only the 

singly excited configurations (�̂� =  �̂�1) does not improve on HF results and the lowest 

useful approximation would be CCD (�̂� =  �̂�2). Incorporating the singly excited 

configurations to CCD is, in computational terms, only slightly more demanding, yet it 

describes a more complete model, known as CCSD (�̂� =  �̂�1 + �̂�2): due to the exponential 

nature of the CC expansion, not only are �̂�1and �̂�2 considered but also the rest of the 

expansion, as shown below: 

𝛹CCSD =  𝑒(�̂�1+�̂�2)𝛹HF =  [

1 +  �̂�1 + (�̂�2 +
1

2
�̂�1

2) + (�̂�1�̂�2 +
1

6
�̂�1

3 +

(
1

2
�̂�2

2 +
1

6
�̂�1

2�̂�2 +
1

24
�̂�1

4 + ⋯

] 𝛹HF      (2-16)      
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Both CCD and CCSD methods scale as M6, with M being the number of basis functions. 

The triplet (and higher) excitations can be included perturbatively, written as e.g. 

CCSD(T) and if this is done, the scaling is similar to CCSD. If triplets are included non-

perturbatively (known as CCSDT), the scaling is M8, so this method can only be used on 

very small systems. This shows that CCSD and CCSD(T) are the most practically 

applicable approximations within the coupled cluster model to retrieve part of the dynamic 

correlation.  

To find the excitation energies within CC theory, the equation-of-motion coupled-cluster 

formalism (EOM-CC) is often used.38 It is a linear response excited state version of CC 

theory.  

Despite the success of this methodology and its accuracy, it should be borne in mind that 

CC methods are non-variational.39 

 

2.2.4 Density Functional Theory 

Similarly to Thomas-Fermi Theory (section 2.2.1), DFT uses the fact that the density 𝜌(𝐫) 

is sufficient to obtain all the information of a system, as shown by the Hohenberg-Kohn 

theorems22 in the 1964. In contrast to HF theory, this means that fewer variables are 

needed to approximate the solution to the (many-electron) Schrödinger equation, as only 

the spatial coordinates and the electron spin are needed rather than 4N for an N electron 

system, which makes it a very efficient methodology. However, only after the Kohn-Sham 

equations were introduced in 1965,23 meaning that the variables in DFT increase again 

from 4 to 4N, by expressing the electron density using a set of molecular orbitals (which 

are not to be confused with the ‘real’ set of orbitals), has the method been computationally 

viable. In principle, DFT is an exact theory. However, introducing Kohn-Sham orbitals 

means that it no longer is, as it makes the assumption that we can represent our electronic 

state in terms of a single configuration. 

Although the DFT formalism has been in the scientific community since the 1960s, it took 

30 years for it to become a popular method in computational chemistry. Work by, e.g. 
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Becke,40,41 has played an important role in bringing DFT to the masses. Nowadays, DFT 

is one of the most widely used methodologies in quantum chemistry and a large amount 

of research is based on its results. It is probably fair to say that DFT has even driven 

experimental work (e.g. references 42 and 43 as well as references therein), which is a 

huge success for any computational modelling tool.  

 

2.2.4.1 Basic Ideas and Formalisms 

2.2.4.1.1 The Hohenberg-Kohn Theorem 

DFT is based on two main theorems, known as the Hohenberg-Kohn (HK) theorems. The 

first states that the ground state electronic structure is determined completely by the 

electron density, 𝜌(𝐫).22 The second theorem demonstrates that there is a variational 

principle associated with the density, 𝜌(𝐫).22  

The first theorem means that the electron density determines the energy of the system and 

vice versa: There is a one-to-one relationship between the energy and the electron density. 

It also follows that 𝜌(𝐫) is sufficient to describe all physical observables associated with 

the system. It means that a system of N electrons, otherwise described by 4N variables 

(the three spatial coordinates and one spin coordinate for each electron in the system) can 

be described by only four variables: the three spatial coordinates and the spin, as the 

electron density is no longer separated into that of individual electrons but rather 

considered as a whole. The only, and substantial, problem is that the functional linking 

the density and energy is not known.  

It follows from the second theorem that any trial density used results in an (ground state) 

expectation energy that is always higher or equal to the actual, true energy of the system 

– i.e. DFT is a variational method (section 2.1.3).  

The DFT energy can be expressed, in terms of the density 𝜌(𝐫), in the following way: 

𝐸DFT[𝜌(𝐫)] = 𝑇[𝜌(𝐫)] + 𝐸ne[𝜌(𝐫)] + 𝐽[𝜌(𝐫)] + 𝐸xc[𝜌(𝐫)]                            (2-17) 
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where 𝑇 is the kinetic energy, 𝐸ne the potential energy of the nuclei-electron attraction, 𝐽 

is the Coulomb energy and 𝐸xc is the exchange-correlation part of the energy. All these 

terms are known exactly within the KS-DFT formalism, apart from the 𝐸xc[𝜌(𝐫)] term, 

which, in practise, cannot be calculated without approximations as the exact functional 

form is unknown. This means that any inaccuracies and incorrect predictions are most 

likely due to this energy term. All energy terms in equation (2-17) are a function of the 

density, which in itself is a function on the spatial coordinates. This is where the name 

‘Density Functional Theory’ derives from. 

 

2.2.4.1.2 The Kohn-Sham Theory 

The HK-formalism of DFT strongly resembles Thomas-Fermi theory, in that a suitable 

expression for the energy based on the electron density is sought. TF theory was shown to 

be unsuitable to describe any form of chemical system, so a new approach to solving the 

problem was required. Kohn and Sham did just that: they developed the idea of 

reintroducing orbitals in order to solve the Schrödinger equation (SE) within the HK 

formalism.23 These so-called Kohn-Sham (KS) orbitals are not necessarily physically 

meaningful orbitals (although some properties can be approximated well by KS orbitals44) 

but instead represent a set of non-interacting electrons in a fictitious system, such that their 

electron density gives rise to the exact same density as that of the real, interacting system.23 

The total electron density is obtained as the sum of the square of one-electron functions: 

𝜌(𝐫) =  ∑ 𝜑𝑖(𝐫)2
𝑖                                                                                              (2-18) 

The one electron functions form a set of eigenvalue equations, known as the Kohn-Sham 

equations, where ℎ̂𝑖
KS is the KS operator, 𝜑𝑖 the one-electron orbitals, known as the KS 

orbitals and 𝑒𝑖  is the energy of orbital 𝑖. 

ℎ̂𝑖
KS𝜑𝑖(𝐫) =  𝑒𝑖𝜑𝑖(𝐫)                                                                                        (2-19) 

The KS operator is also defined as: 
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ℎ̂𝑖
KS =  −

1

2
∇𝑖

2 −  ∑
𝑍𝑘

|𝐫𝑖−𝐫𝑘|
+  ∫

𝜌(𝐫′)

|𝐫𝑖−𝐫′|
𝑑𝐫′𝑚

𝑘 +  
𝜕𝐸xc

𝜕𝜌(𝐫)
                                              (2-20) 

where 𝑘 is the label for the 𝑚 nuclei with effective nuclear charge 𝑍𝑘. The positions 𝐫 

have the subscript 𝑖 if the KS orbital is considered, 𝑘 the nuclei and 𝐫′ represents the 

position in question. The last term is known as the functional derivative of the exchange-

correlation energy with respect to the density, i.e. the xc-functional. Choices for 𝐸xc are 

discussed in section (2.2.4.2.1). 

The KS formalism means that the simplicity of the electron density being represented by 

only 4 variables disappears, as the number of variables for an N-electron system again 

becomes 4N. However, the accuracy is much improved over the TF model, which suffers 

from an extremely poor representation of the kinetic energy (section 2.2.1). In KS-DFT, 

the kinetic energy has been split into two and the component due to correlation has been 

taken out of the kinetic energy term. This means that the 𝑇[𝜌(𝐫)] term can be calculated 

exactly (for the fictitious system) and the term due to correlation is approximated. The 

latter is a relatively small contribution to the kinetic energy but is chemically important, 

i.e. on an energy scale which is comparable to those seen in chemistry in e.g. deciding the 

energy ordering of different conformers or on a similar scale to energy barriers.45 This 

energy term, which is the bane of every computational chemist using DFT, consists of two 

unknowns: the exchange part of the energy, which stems from the fermionic character of 

the electrons (which have a spin of ½) and describes the variation in energy due to the 

exchange of two electrons and is accurately described within the HF formalism (section 

2.2.2). This non-classical correction to the Coulomb interaction is normally difficult to 

quantify in an N-electron system. 

The (dynamic) correlation part of the xc-energy has its roots in the electron-electron 

interaction: KS-DFT uses the average repulsion between the electrons, not allowing the 

electrons to instantaneously react to each other. This results in DFT being unable to 

correctly quantify the effect on all other electrons if one single electron moves. In essence, 

as this is a many-body problem which has been simplified by a mean-field, these effects 

are not fully accounted for.  
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Once the electron density is described, a suitable Hamiltonian needs to be found, and the 

Hamiltonian used in DFT is similar to HF theory: 

�̂�𝜆 = 𝑇 +  𝑉ext(𝜆) +  𝜆𝑉ee                                                                                (2-21) 

where T is the kinetic energy, 𝑉ext the external potential, 𝑉eethe electron-electron potential 

and λ is a measure of how much the system is interacting: 0 ≤ λ ≤ 1; when λ = 1 the system 

is fully interacting and when λ = 0 the system is non-interacting. For the case of λ = 0, the 

exact solution to the SE can be found by using a Slater determinant representing the 

molecular orbitals to express the kinetic energy. 

This is where Kohn and Sham made a breakthrough: if the real, interacting system was 

replaced by a non-interacting system which gives the same solution to the energy, the 

mathematical aspect would be simplified: the Hamiltonian would be the sum of one-

electron operators, the eigenfunctions are Slater determinants of the one-electron orbitals 

and the eigenvalue is the sum over all one-electron eigenvalues.  

The DFT energy of any system can be divided into several aspects, which can be evaluated 

separately, as seen in equation (2-22), where the 𝐸xc[𝜌(𝐫)] can be expanded further: 

𝐸xc[𝜌(𝐫)] =  ∆𝑇[𝜌(𝐫)] +  ∆𝑉[𝜌(𝐫)]                                                                (2-22) 

where ∆𝑇 is the correction to the kinetic energy, which arises due to the fact that the 

system actually is interacting and ∆𝑉 the term encompassing all quantum effects due to 

electron-electron interaction. Finding an expression for this 𝐸xc energy is the Holy Grail 

for DFT, as it is is unknown and therefore cannot be solved exactly. 

 

2.2.4.2 DFT Approximations 

2.2.4.2.1 Functionals 

Currently, 𝐸xc cannot be evaluated without approximations, and these approximations are 

expressed in terms of ‘functionals’. Every functional uses a different approximation to 
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describe 𝐸xc but there are classes of functionals which have similar starting points. The 

choice of functional is crucial to the accuracy of the results. The exchange-correlation 

energy is often expressed in terms of the density as seen below: 

𝐸xc[𝜌(𝐫)] =  ∫ 𝜌(𝐫) 𝜀xc[𝜌(𝐫)]𝑑𝐫                                                                      (2-23) 

where εxc is the exchange-correlation energy density, which in itself is dependent on the 

electron density but generally treated as sum of individual exchange and correlation 

contributions. It should be noted that the energy density is a density calculated in terms of 

particles and not per unit volume. Generally, 𝐸xc is expressed as the sum of the exchange 

(𝐸x) and the correlation (𝐸c) contributions, as can be seen below. 

𝐸xc =  𝐸x +  𝐸c                                                                                                 (2-24) 

Unfortunately there is no ‘best’ functional that yields the most accurate results for all 

systems. However, there is a broad guideline as to how accurate a certain group of 

functionals are: Perdew devised the concept of the ‘Jacob’s ladder’, which is a 

visualisation of how functionals perform and, broadly speaking, their accuracy.46 The idea 

behind this classification is that the higher up the ladder a given class of functionals 

resides, the closer the solution is to the exact solution (albeit at increasing computational 

cost!), which is represented by ‘Heaven of chemical accuracy’. The following section is 

written in such a way that functionals at the bottom rung are discussed first and then the 

different groups are mentioned, going one rung up at a time. 
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 Figure 2-1: Jacob’s Ladder, adapted from reference 47.  

 

 

The simplest working approximation to the exchange-correlation functional 𝐸xc is the 

‘Local Density Approximation’ (LDA), where the density is treated locally at any given 

point as a uniform electron gas. In the context of equation (2-23) it would mean that 𝜀xc 

would depend solely on the value of 𝜌(𝐫) at any given point r.   

LDA makes use of the following expression for the exchange part of the energy: 

𝐸x
LDA[𝜌(𝐫)] =  −𝐶x ∫ 𝜌(𝐫)

4

3 𝑑𝐫                                                                         (2-25) 

Where 𝑪𝒙 =  
𝟑

𝟒
 (

𝟑

𝝅
)

𝟏

𝟑
. This equation can be generalised to take the difference between 

alpha and beta spin densities into account. When this is done, the approximation is referred 

to as the ‘Local Spin Density Approximation’ (LSDA). The density 𝝆(𝐫) is no longer 

given as one density but rather as the sum of α and β densities, as can be seen from the 

equation below: 
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𝐸x
LDSA[𝜌(𝐫)] =  −2

1

3𝐶x ∫ (𝜌𝛼(𝐫)
4

3 +  𝜌𝛽(𝐫)
4

3) 𝑑𝐫                                        (2-26) 

In a closed-shell system, i.e. a system without unpaired electrons, the results obtained from 

LDA and LSDA are equivalent. 

A problem with an analytical expression for the correlation energy is that one that is 

suitable for all cases is not known. There is a need for different expressions for high48 and 

low49 density and functionals are used to interpolate between these two starting points. So, 

despite the fact that LDA functionals are based on the simple approximation of a uniform 

electron gas, no analytical expression is known for the correlation energy. This, to some 

extent, demonstrates just how difficult the quest for suitable functionals is.  

As LDA functionals only consider the local density and approximate the xc-energy 

obtained from a uniform electron gas, they are most suited to systems where the electron 

density varies slowly; valence electrons in metals would be such a system where this 

would be the case. An example to study these systems using the LDA is the VWN 

functional.50 

One rung up on Jacob’s ladder, so one step closer to DFT heaven, is the Generalized 

Gradient Approximation (GGA). The improvement over LDA is that it assumes a non-

uniform electron gas and at any given point, does not only take the electron density into 

account but also the first derivative (the gradient).51 The name given to LDA is slightly 

misleading: it implies that all other functionals are not local, but in fact GGA is still a local 

density approximation, in that it evaluates the xc-energy at any given point and describes 

the local changes to the electron density. 

The general approach to GGA functionals is outlined below, i.e. as a correction term to 

the LDA energy functional: 

𝜀xc
GGA[𝜌(𝐫)] =  𝜀xc

LDA[𝜌(𝐫)] +  ∆𝜀xc [
∇𝜌(𝐫)

𝜌
4
3(𝐫)

]                                                        (2-27) 

This approach has been taken in functionals devised by Perdew, such as PBE52 that is an 

example of a functional that includes no empirical parametrisation and is rather defined 
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as an expansion of the reduced gradient. Performing DFT calculations using GGAs rather 

than LDAs is slightly more expensive. However, results are substantially improved, 

especially for non-metallic systems. 

There are also GGA correlation functionals that do not correct the LDA expression but 

rather compute the correlation energy in a different way. A commonly used form is that 

of the LYP correlation functional53 devised by Lee, Yang and Parr. This functional 

contains empirical parametrisation (to the Helium atom), so is not an ab-initio method but 

it has the advantage of completely cancelling out the self-interaction error54 in one-

electron systems.‡ When Becke’s GGA exchange expression40  is combined with the LYP 

GGA correlation expression, the xc-functional is called BLYP. 

On the third rung of Jacob’s ladder (figure 2-1) are meta-GGA (MGGA) functionals, such 

as B9555 and TPSS.46 These functionals are an extension of GGA functionals in that they 

do not take just the local density and its first derivative into account but also its second 

derivative the Laplacian. However, the Laplacian is not always numerically stable and the 

easiest way to circumvent this is to calculate the kinetic energy density, τ, which is still 

dependent on the Laplacian but numerically more stable and can be expressed as follows: 

𝜏(𝐫) =  ∑
1

2
|∇𝜓𝑖(𝐫)|2𝑜𝑐𝑐

𝑖                                                                                   (2-28) 

where 𝜓𝑖 are self-consistent Kohn-Sham orbitals. Again, meta-GGAs improve results but 

require slightly more computational resources.  

Moving away from the idea of local (LDA) or semi-local (GGA and MGGA) and climbing 

the next rung on Jacob’s ladder, another concept is used for hybrid functionals. These are 

so-called as they include some percentage of exact exchange from HF theory (discussed 

in section 2.2.2) in their expression for the xc-energy, with the other component being that 

of either L(S)DA or GGA. These types of functionals are a popular choice for applications 

to chemical systems. The idea behind this hybridisation of two theories is that if the HF 

orbitals were the same as the KS orbitals, the HF solution and KS solution would be the 

                                                
‡ The self-interaction error is the unphysical description of an electron interacting with 

itself. 
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same and therefore the HF solution would give the exact exchange energy for the KS case. 

Unfortunately, the HF and KS orbitals are different, but this approximation still seems to 

be suitable in many cases. Some prefer to say that hybrid functionals contain HF-like 

exchange, as the HF exchange expression is evaluated with the KS orbitals, but it is 

generally referred to as HF exchange (HFE). 

Hybrid functionals are based on the ‘adiabatic connection method’ (ACM).56,57 The idea 

behind this is that an expression needs to be evaluated, which links the non-interacting KS 

system to the fully interacting system, by varying the electron-electron interaction. Using 

the Hellman-Feynman theorem,58,59 the exchange correlation energy can be computed as  

𝐸xc =  〈𝛹(𝜆)|�̂�xc(𝜆)|𝛹(𝜆)〉                                                                              (2-29) 

where λ is an integration variable and the quantitative measure of the electron-electron 

interaction, ranging from 𝜆 = 0 for no interaction (equivalent to the KS system) and 𝜆 =

1 for fully interacting (the ‘real’ system) and �̂�xc is a ‘functional derivative’ (a measure 

relating the change in the functional to the change in the function that the functional 

depends on), and in this case it would be best described as a one-electron operator which 

yields the expectation value of 𝐸xc for the KS Slater determinant.  

Equation (2-29) is an integral to be evaluated; the region of interest is the area under the 

curve. The end points (at 𝜆 = 0 and 𝜆 = 1), are known/approximated, so it is the curve 

itself that needs to be established, which can be achieved by including a certain amount 

of HF-like exchange. The amount of HF-like exchange added is determined  by 

parametrisation to available experimental data, see e.g. B3LYP40,53,60 as an example, 

whose definition in given in equation (2-31). 

The Half-and-Half method 41,61 defines the xc-energy in the following way: 

𝐸xc
H+H =  

1

2
(𝐸x

exact +  𝐸x
LDSA) +  𝐸c

LDSA                                                            (2-30) 

It is clear that the exchange term is composed of 50% exact HF exchange and 50% 

exchange as defined by the LSDA approximation. As HF theory does not take correlation 
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into account, the correlation contribution to the xc-functionals is purely from Kohn-Sham 

DFT (KS-DFT).  

A widely used hybrid functional is the B3LYP functional which includes 20% of exact 

HF-like exchange(𝐸x
HF), the Becke 88 GGA-exchange term62 (∆𝐸x

B), the LSDA-exchange 

term (𝐸x
LSDA), the VWN LSDA exchange and correlation50 term (𝐸c

LSDA), the LYP GGA-

correlation53 (𝐸c
LYP) and its parametrisation as discussed in the ACM is as follows: 

𝐸xc
B3LYP = 0.8𝐸x

LDSA + 0.2𝐸x
HF + 0.72∆𝐸x

B + 0.19𝐸c
LDSA + 0.81𝐸c

LYP            (2-31) 

The BHLYP40,53,61 functional has 50% exact exchange and, like B3LYP, a GGA 

expression for the other component of the exchange and the entire correlation energy. It 

should be noted that the mixing parameters used in hybrid functionals have been fitted to 

a set of experimental values (different functionals are fitted to different values) from 

experiment, such as ionisation energies, so care must be taken in their application, as not 

all elements or properties have been considered in the fitting. The ‘optimal’ amount of HF 

exchange depends on the property of interest, and increasing the amount of HF exchange 

does not necessarily improve results. However, as a general rule, hybrid functionals tend 

to yield results closer to experimental values, as the self-interaction error commonly found 

in DFT calculations, is reduced because HF theory is free from self-interaction: in HF 

theory and more advanced methods (see, e.g. reference 63) the Coulomb self-interaction 

and exchange self-interaction cancel each other out. However, as DFT only uses an 

approximate expression for the exchange energy, it no longer cancels with the Coulomb 

self-interaction, resulting in the self-interaction error. 

A class of functionals which offer further improvements over hybrid GGAs (or hybrid 

functionals in general) are range-separated hybrid functionals. They do not appear on the 

original Jacob’s ladder, as they were devised around the same time as the schematic 

ladder. These functionals vary the degree of HF exchange, depending on the inter-

electronic separation. Using CAM-B3LYP60,61,64 as an example, 19% of HF exchange is 

included at small separations and a larger correction of 65% HF exchange is employed at 

larger separations, in addition to the correlation contribution of B3LYP. This improves 

the description of both Rydberg states and excitation energies as virtual orbitals can be 
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highly delocalised and are further from the nucleus: the inclusion of exact exchange 

improves the description of these higher energy states. In most cases, range-separated 

functionals have also improved the description of charge transfer (CT) excitations, a 

problem found in some time dependent density functional theory (TDDFT) calculations.65 

Another, fairly recent, extension of hybrid functionals are the double hybrid (DH) 

functionals, first devised in 2004 by Truhlar and co-workers.66 These are not very widely 

used, as they require a lot of computational time due to PT2 scaling and the fact that bigger 

basis sets are needed. These functionals use a certain amount of HF exchange and a certain 

amount of exact ‘PT2’ correlation. The latter result is obtained from 2nd order Perturbation 

Theory, which is a post-HF theory. The expression can generalised as: 

𝐸xc
DH = (1 − 𝑎x)𝐸x

DFT +  𝑎x𝐸x
HF + (1 − 𝑏c)𝐸c

DFT +  𝑏c𝐸c
PT2                             (2-32) 

where 𝑎x is the amount of HF exchange and 𝑏c the amount of correlation included. 

The functionals on the top rung of Jacob’s ladder are known as ‘Generalized Random 

Phase Approximation’ (RPA) functionals,67–70 which take not only the occupied but also 

virtual KS orbitals into account. This is thought to improve the description of dispersion 

interactions, such as van der Waals interactions. These functionals require large basis sets, 

are computationally very expensive and therefore not widely used. 

 

2.2.4.2.1.1 Philosophies of Different Functionals 

There are different schools of thoughts in computational chemistry and in the 

computational chemistry community in general. As it has been shown, different 

functionals are constructed from different starting points. The parametrisation of hybrid 

functionals results in not an ab-initio but a semi-empirical calculation. Some researchers 

feel that the latter is somehow worse and arbitrary. However, the results and accuracy, in 

terms of agreement with experimental data, of these functionals are good, if used well, 

and often better than more ab-initio methods. One reason for this is that GGAs are known 

to underestimate barrier heights and energetics of ionic bonds71 for chemical reaction 
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whereas HF theory tends to overestimate these.72–75 Some might feel that this accuracy is 

not real but rather a fortunate cancellation of errors; as although energetics might be 

improved, geometries and atomisation energies could, for example, be described less 

accurately using hybrid functionals as pure GGA functionals.76 This is the issue with 

parametrisation: One property can be calculated accurately but when the parametrisation 

has not been optimised for another property, the functional might lead to poorer results. 

The problem is that there is no one best answer in general: if the atoms and their chemical 

environment of the system studied were part of a parametrisation process for a certain 

functional, said function should be a good starting point for calculation. However, if a 

certain atom in a specific chemical environment was not part of the parametrisation 

process, then a hybrid functional might not be a very good functional to use. This is 

particularly true for elements that are not widely studied, such as f-elements. In general, 

scientists who prefer to stay away from empirical parametrisation avoid hybrid functionals 

(and sometimes GGAs) despite their many advantages, as a more systematic approach to 

solving the KS equations is favoured. However, in this project, it has been found that 

(some) hybrid functionals perform well and the predictions of excitation energies agree 

well with experiment, as discussed later on. 

 

2.2.4.2.2 Basis Sets 

In DFT (section 2.2.4), the many-electron eigenfunctions are expressed at Slater 

determinants, which represent the anti-symmetrised product of the (KS) molecular orbitals 

(MOs) of the system of interest. The aim of this section is to go into more detail (compared 

to section 2.1.7) as to how these eigenfunctions are constructed. MOs are linear 

combinations of basis functions (typically, but not always, atomic orbitals, AOs). 

Theoretically, it is possible to express any MO as a linear combination of known basis 

functions with only one condition: the basis functions must form a complete set. This one 

condition, however, is not practically feasible, as only finite basis sets can be used in 

quantum chemistry calculations. It is obvious that the better, or rather, more accurate one 

single basis function is in its description of an (atomic) orbital, the fewer such functions 

are needed to represent the MOs to a certain level of accuracy and therefore the more 
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efficient the calculation becomes. It is also useful when the atomic orbitals have a 

chemically meaningful form: the amplitude of the function should be large where the 

electron density is high (such as near nuclei) and the amplitude should be small where the 

electron density is small, e.g. in regions furthest away from any nuclei.  

This section only considers basis sets that are centred on atoms, and does not discuss plane 

wave basis sets which are used for periodic calculations due to their delocalised nature. 

There are two main types of basis functions used in non-periodic DFT calculations: Slater-

type orbitals77 (STO) and Gaussian-type Orbitals78 (GTO). The choice of basis function 

type is normally restricted: a quantum chemical code normally only offers STOs or GTOs 

within its implementation. 

 

2.2.4.2.2.1 Slater Type Orbitals 

STOs are very accurate basis functions to use, in the sense that their functional form 

closely resembles that of hydrogenic AOs. Their form is the following: 

𝑋𝜁,𝑛,𝑙,𝑚(𝑟, 𝜃, 𝜑) = 𝑁 𝑌𝑙,𝑚(𝜃, 𝜑) 𝑟𝑛−1 𝑒−𝜁𝑟                                                           (2-33) 

where N is a normalisation factor; Yl,m are spherical harmonic functions; 𝑟, 𝛩, 𝜑 represent 

the polar coordinates with 𝑟 being the distance to the atomic nucleus; 𝑛 the principal 

quantum number, 𝑙, the angular quantum number, 𝑚 the electron spin quantum number 

and 𝜁(greek zeta, which is where the ‘zeta’ comes from in basis set names) is related to 

the effective nuclear charge. 

STOs represent the exponential decay of electron density with increasing distance from 

the nucleus, well. Furthermore, the 1s orbital has a cusp at the nucleus, which is the correct 

interpretation of said orbital. However, these types of functions do not yield radial nodes, 

although they can be introduced by taking the linear combinations of STOs. 

Due to the exponential term in equation (2-33), STOs reach the basis set limit with fewer 

functions than GTOs. However, integrals involving STOs are complex to solve, which 
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means that many computational chemistry codes favour GTOs (section below), and 

therefore the use of STOs is less widespread. 

 

2.2.4.2.2.2 Gaussian Type Orbitals 

GTOs are usually expressed using Cartesian coordinates: 

𝑋𝜁,𝑙𝑥,𝑙𝑦,𝑙𝑧
(𝑥, 𝑦, 𝑧) = 𝑁 𝑥𝑙𝑥  𝑦𝑙𝑦  𝑧𝑙𝑧  𝑒−𝜁𝐫2

                                                            (2-34) 

where 𝑁 is a normalisation factor, and 𝑙 is the angular moment quantum number. When 

all 𝑙 indices are equal to zero, a GTO has spherical symmetry, like an s orbital. When only 

one of these indices is equal to one, the GTOs have an axial symmetry, like a p type orbital. 

When the sum of the 𝑙 is equal to two we have a d orbital, and so on. 

Basis functions are said to be ‘contracted’ when they are represented as a linear 

combination of ‘fixed’, or ‘primitive’ GTOs. Due to the exponential r2 dependence which 

is typical of Gaussian functions, GTOs have a zero slope at the nucleus, and not a 

discontinuous derivative as STOs do. This means that GTOs do not represent the physical 

behaviour near the nucleus well. In addition, GTO functions fall too rapidly at larger 

distances from the nucleus (when compared to physical behaviour or to STOs). However, 

integrals involving GTOs are mathematically much easier to solve, as analytical solutions 

are available. Another advantage is that the product of GTOs is again a GTO, which means 

that its application in quantum chemical calculations is much easier. In themselves, GTOs 

are less accurate than STOs. Their ease of calculation makes GTOs much more widely 

used than STOs. Due to the fact that STOs mimic the physical behaviour of atoms better, 

GTOs are combined to behave similarly to STOs, or more often AOs themselves. When 

this is done, a common notation for such basis sets is STO-MG, which means ‘STO 

approximated by M GTOs’.79 
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2.2.4.2.2.3 Nomenclature and General Notes on Basis Sets 

A few more basis set related ideas are worth considering. As mentioned above, the choice 

between STOs and GTOs is normally made within a code package, so the end user does 

not have the choice between the two different types of basis sets. However, within every 

code there is a huge variety of basis sets available and some of the more common 

distinctions are discussed below. 

A ‘minimal’ basis set is one where the least number of basis functions possible is used, 

i.e. only one s-function is used for H and He, two s-functions (1s and 2s) and one set of p-

functions (px, py, pz) for the first row elements and so on.  

As previously stated, when using GTO basis sets, contracted basis functions are typically 

used. The idea behind this is simple: the basis sets used in quantum chemical calculations 

are sets of AOs. A linear combination, or contraction, of primitive GTOs can be used to 

approximate each AO: such orbitals are known as ‘Contracted Gaussian Type Orbitals’ 

(CGTO). The contraction coefficients are chosen such that the shape of the CGTOs 

resemble the AOs. CGTOs are more often used than uncontracted GTOs. So the entire 

basis set for one atom using contracted basis functions is computationally cheaper to 

evaluate than the basis set that does not contract basis functions. There are two types of 

contraction schemes: segmented contraction and general contraction. In the former 

method each primitive GTOs is used by only one CGTO, whereas the latter uses all 

primitive GTOs to form all CGTOs, only with different contraction coefficients. 

A double zeta (DZ) basis set doubles the amount of functions employed - it uses two s-

functions for the hydrogen atom and the helium atom (1s and 1s’) and for 1st row elements 

it uses four s-functions (1s, 1s’, 2s, 2s’) and two sets of p-functions (2p and 2p’), etc. 

Triple zeta (TZ) basis sets have three basis functions, and the trend continues to quadruple 

zeta (QZ) and quintuple or pentuple zeta (5Z or PZ) sets. Typically, a more efficient way 

of using DZ is by having a split valence basis, so a valence double zeta (VDZ), which 

means that only the valence orbital functions are doubled and the core orbitals are 

represented by a single basis function, which makes the calculation more tractable.  



Methodology 

 

69 
 

Higher angular momentum functions are often considered and are known as polarization 

functions, so p-functions are used to allow an s-type orbital to be polarised, d for p-type 

orbitals, f for d-type orbitals, etc. Polarisation means that the function distort slightly, e.g. 

a p polarisation function would allow an s-function to distort from its spherical symmetry 

to allow for stronger bonding or stronger interaction with an external field, like a ligand 

field. It is also possible to add a second set of higher angular momentum polarisation 

functions, however the first set is the most chemically important. When polarisation 

functions are added to, for example, a double zeta basis set, it is referred to as a DZP basis 

set (double zeta plus polarization). Double polarisation results in a 2P or PP addition to 

the name of the basis set. Care must be taken to have balanced set of basis functions - 

when too much polarisation is added then false artefacts may be seen in the results. A rule 

of thumb says that the number of polarisation functions should be at most one less than 

the amount of functions used for one lower angular momentum, i.e. a 4s3p2d1f basis 

function would be well-balanced whereas a 4s3p4d3f basis function would be considered 

over-polarised. 

It is also possible to use different basis sets for different parts of a molecule - if the 

molecule is large but only a fraction of it needs to be described accurately, that fraction 

could have a better basis set than the rest of the molecule.80 This is particularly useful if 

the studied molecule is rather large, as the speed of the calculation can be increased 

dramatically.  

Diffuse functions can, and should, be added when there are regions of electron density 

further away from the nuclei, such as in the case of anions, highly excited states or weakly 

bound electrons. Without diffuse functions, these kinds of interactions may not be 

represented well and may not result in very accurate energetics. When basis sets have 

diffuse functions included, they are known as ‘augmented basis sets’. 

Adding more functions so as to be able to describe more complex chemical systems is 

good however, without adaptation, it is not suitable for heavier elements, which have more 

and more core electrons, needing correspondingly more GTOs. As core electrons do not 

contribute much to the chemistry but more to the energetics of a system, an alternative 

solution to contracting orbitals was proposed in 1935.81 Instead of representing the core 
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electrons by many GTOs, an analytical function can replace all chemically unimportant 

core electrons, mimicking their behaviour. These analytical functions are called ‘effective 

core potentials’ (ECP).81 ECPs represent the Coulomb repulsion accurately and can even 

be used to describe relativistic effects. There is generally a choice between ‘large-core’ 

and ‘small core’ ECPs, the former representing all electrons apart from the valence shell 

as a pseudopotential and the latter only replacing the deeper lying core orbitals. The small 

core pseudopotentials are, of course, more computationally demanding but can improve 

on the chemical model of the system as the shell just below the valence shell in energy 

can contribute to, for example, polarisation effects. 

There is a wide variety of basis sets available, which this section showed. It is quite 

important to choose a suitable size basis set for a given calculation: what is the point of 

using a highly developed basis set for a HF calculation, or a small basis set for an 

expensive post HF calculation? Computational costs can vary hugely between different 

basis sets, which can have an impact on whether a calculation is tractable. In this study, 

two main basis sets are used, namely the def2-TZVP82 basis set, which is a basis set 

proposed by Ahlrichs and co-workers, with a triple-ζ, split-valence and polarisation 

functions§ and the DZDP (all-electron, double-ζ plus double polarisation) for Mg83 and 

DZP (all-electron, double-ζ plus polarisation functions) for O.83 

 

2.2.5 Excited State Calculations 

There are several ways of calculating the excited state properties of a system, i.e. a system 

where not all electrons are at their lowest possible energy. This is typically associated with 

a molecule after it has absorbed a photon and before the molecule has had a chance to 

relax its electronic configuration back to that of the ground state. Modelling this behaviour 

is very useful, due to the transient nature of the excited state. Excited state calculations 

tend to be more complex and expensive than ground state calculations and the focus of 

the next section is mainly on the application of time dependent functional theory (TDDFT) 

                                                
§ The ‘def2’ stands for ‘default 2’, to differentiate these basis sets from previously published 
basis sets with similar names. 



Methodology 

 

71 
 

and its formalisms, as used in this project to model excited states. As the name suggests, 

TDDFT is an extension of ground state DFT. 

 

2.2.5.1 Delta-SCF (Δ-SCF) 

Δ-SCF is an approximate method of obtaining excited state energies within DFT and has 

been justified for the lowest state for a given set of quantum numbers.84,85,86 Δ-SCF works 

as long as one can perform a (constrained) optimisation in a (sub)space that doesn't involve 

the true SCF minimum (i.e., the ground state). This method works when the true ground 

state has a different symmetry, or multiplicity, to the state in question. Excitation energies 

are obtained by subtracting the ground state energy from the excited state energy. Orbital 

relaxation is taken into account within the limits of DFT. This is a very easy and reliable 

route for atomic excitation energies and ionisation energies. However, its application in 

the case of molecules generally, is limited to the lowest excitation energies between triplet 

and singlet states.87  

 

2.2.5.2 Time Dependent Density Functional Theory 

Time dependent density functional theory is most commonly used for the calculation of 

excitation energies, as it has a good balance between computational expense and accuracy 

(of around 0.25 - 0.55 eV compared to experiment, depending on the functional used).88–

90 The calculation of excitation energies is typically based on linear response theory; it 

calculates the response of a system after perturbation in the electric field. Calculating 

vertical absorption energies in TDDFT does not necessarily give any information about 

the electronic excited state density.15,88  

In DFT, an external potential determines the density. This mapping is possible in the time 

dependent case as well; the time dependent density is determined by the time dependent 

potential. It is shown by the Runge-Gross Theorem91 that the correspondence between a 

time-dependent density and a time-dependent potential is one-to-one, which forms the 
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basis of TDDFT. The van Leeuwen theorem 92 then shows that the interacting system can 

be replaced with an auxiliary non-interacting system. This is the time dependent analogue 

of the Kohn-Sham approach. 

From here, a time dependent version for the Kohn Sham (TDKS) formalism can be 

produced, which, in principle just like DFT, produces the exact (time dependent) density 

for the N-electron system. In reality, approximations need to be made, mainly to the 

exchange and correlation term in the functionals used and the perturbation. For the latter, 

only the linear response approximation has been used in this project. Like DFT, TDDFT 

is in principle exact, but in practice approximate.88  

Just like in ground state DFT, there is a problem in TDDFT of finding suitable functionals 

- (most) functionals do not have a memory; but a time dependent functional should 

describe the effective potential, which depends on the density at all previous times.93 This 

memory dependence is usually ignored (see section 2.2.5.2.4). To the author’s knowledge, 

no memory dependent functional is available in standard quantum chemical codes. 

One of the most well-known approximations in TDDFT is the adiabatic approximation. 

This approximation uses the ground state exchange-correlation functional to approximate 

the excited state, or rather the excited state xc-functional. This is a reasonable 

approximation if the external potential varies slowly in time and the system studied begins 

in the ground state. 

Despite all the approximations made within the TDDFT framework, TDDFT tends to 

work well in many cases, especially when calculating excitation energies using the 

Casida’s equation (section 2.2.5.2.5),94–96 leading to its success in computational 

chemistry. 

 

2.2.5.2.1 The Runge-Gross Theorem 

The Runge-Gross Theorem91 lays the foundations of time dependent density functional 

theory by showing that there is a one-to-one correspondence between the density and the 
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external potential for a system: let us assume that there is a many-body state 𝜓0 with two 

densities 𝑛(𝐫, 𝑡) and 𝑛′(𝐫, 𝑡), each influenced by potentials 𝑣(𝐫, 𝑡) and 𝑣′(𝐫, 𝑡) 

respectively, with 𝑣′(𝐫, 𝑡) ≠ 𝑣(𝐫, 𝑡) + 𝑐(𝑡) and the condition that both potentials are 

Taylor-expandable around 𝑡0. This scenario would lead to the densities becoming different 

at 𝑡1, which is a time infinitesimally later than 𝑡0. The consequence of this is that there is 

a one-to-one correspondence between densities and potentials, when there is a fixed initial 

many-body state. The function 𝑐(𝑡) is a time dependent scalar function, i.e. the two 

potentials are not linked to each other by a scalar function. 

The proof for this theorem is typically performed in two steps: a one-to-one 

correspondence between the current densities and the potentials is first established, which 

is achieved by starting from the equation of motion for the current density 𝑗̂(𝑡). The second 

step then shows that having different current densities implies that the corresponding 

densities are different.  

It should be noted that the Runge-Gross theorem only deals with scalar potentials, which 

means that it does not hold for some phenomena, such as time-varying magnetic fields. 

Also, the theorem is restricted to finite systems, as there is a surface integral in the second 

step of the proof which is required to vanish.  

 

2.2.5.2.2 The Van Leeuwen Theorem 

The Runge-Gross Theorem shows that there is a one-to-one dependence between the 

density and the potential in the time-dependent case, which is analogous to that shown by 

Hohenberg and Kohn for the time-independent ground state. What is now needed is a way 

to calculate the time-dependent densities without having to solve the time-dependent 

Schrödinger equation; ideally, a time-dependent version of the static Kohn-Sham 

formalism. The van Leeuwen theorem describes exactly this: an auxiliary set of non-

interacting orbitals that produce the exact same density as the interacting system can be 

found: Any density 𝑛(𝐫, 𝑡) of a many-body system with initial state 𝜓0, external potential 

𝑣(𝐫, 𝑡) and particle-particle interaction 𝑤(|𝐫 − 𝐫′|) can be reproduced by a different 
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many-body system with a unique external potential 𝑣′(𝐫, 𝑡) (up to a time-dependent factor 

𝑐(𝑡)), and interactions 𝑤′(|𝐫 − 𝐫′|) with initial state 𝜓′0 such that the it yields the same 

density, and time derivative, as 𝜓0 at 𝑡 = 0. Importantly, the interaction 𝑤′ can be chosen 

to equal zero, corresponding to a non-interacting system. Under the condition that there 

exists a non-interacting initial state 𝜓′0, the van Leuuwen theorem states that there is a 

unique potential 𝑣𝑠(𝐫, 𝑡), in addition to the time-dependent function 𝑐(𝑡), which gives rise 

to the density 𝑛(𝐫, 𝑡) for 𝑡 > 𝑡0. This is the time-dependent equivalent of the Hohenberg-

Kohn theorem in static DFT. 

 

2.2.5.2.3 The Time-Dependent Kohn-Sham Equations 

A system that is in its ground state until a time 𝑡0 and then evolves under a time-dependent 

external potential can be described using static DFT for the initial state at 𝑡0. This means 

that both the wave function of the interacting and non-interacting systems, 𝜓0 and 𝜙0, 

respectively, define the ground state density.51 The non-interacting system is evolving 

under the following effective potential, 𝑣𝑠, dependent on the time-dependent density 

𝜌(𝐫, 𝑡), the initial state of the interacting system 𝜓0(𝐫, 𝑡) and the initial state of the non-

interacting system 𝜙0(𝐫, 𝑡). 

𝑣𝑠[𝜌(𝐫, 𝑡), 𝜓0(𝐫, 𝑡), 𝜙0(𝐫, 𝑡)]                                                                            (2-35) 

and the time-dependent external potential can be written as: 

𝑣(𝐫, 𝑡) =  𝑣0(𝐫) +  𝑣1(𝐫, 𝑡)𝜃(𝑡 − 𝑡0)                                                               (2-36) 

where 𝜃(𝑡 −  𝑡0) is a Heaviside step function, taking the value of 1 for a positive argument 

and the value of 0 for a negative argument. This means that the effective potential 𝑣𝑠 from 

equation (2-35) can be simplified to a potential which is dependent only on the time-

dependent density, as the initial states 𝜓0(𝐫, 𝑡)  and 𝜙0(𝐫, 𝑡) partially define 𝑣0(𝐫). 

At any time after 𝑡0, the time dependent potential, 𝑣1, comes into effect and produces the 

time dependent density: 
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𝜌(𝐫, 𝑡) =  ∑ |𝜑𝑗(𝐫, 𝑡)|
2𝑁

𝑗=1                                                                                 (2-37) 

with the single-particle orbitals 𝜑𝑗 coming from the time-dependent Kohn Sham equation:  

[−
∇2

2
+  𝑣𝑠[𝜌(𝐫, 𝑡)]] 𝜑𝑗(𝐫, 𝑡) = 𝑖

𝜕

𝜕𝑡
𝜑𝑗(𝐫, 𝑡)                                                    (2-38) 

where the initial condition is 𝜑𝑗(𝐫, 𝑡0) =  𝜑𝑗
0(𝐫).   

The effective potential, as seen in the Time Dependent Kohn-Sham (TDKS) equation is 

given by:  

𝑣𝑠[𝜌(𝐫, 𝑡)] = 𝑣(𝐫, 𝑡) +  ∫ 𝑑3𝐫′
𝑛(𝐫′,𝑡)

|𝐫−𝐫′|
+ 𝑣xc[𝜌(𝐫, 𝑡)                                              (2-39) 

With the integral being the Hartree potential 𝑣H(𝐫, 𝑡) with the addition of the xc-functional 

(discussed in more detail in section 2.2.4.2.1) 𝑣xc[𝜌(𝐫, 𝑡)]. 

In principle, the exact time-dependent density of an N-electron system can be reproduced 

by these equations. However, as in static DFT, approximations must be made. The 

approximation to the time-dependent xc-potential 𝑣xc[𝑛(𝐫, 𝑡)] needs to be made to solve 

the time-independent KS equations. Most commonly, and in this project, the adiabatic 

approximation is used to find an expression for the time-dependent xc-potential, discussed 

below. 

 

2.2.5.2.4 The Adiabatic Approximation 

Static DFT is in principle exact. However, an approximation is needed for the exchange 

correlation potential. The equivalent to the exchange-correlation potential in TDDFT 

would be 𝑣xc[𝜌(𝐫, 𝑡)]. The adiabatic approximation uses the xc-potential 𝑣xc
0  from static 

DFT and applies it to the time-dependent Kohn-Sham equations, using, instead of the 

ground state density 𝜌0(𝐫), the time-dependent density 𝜌(𝐫, 𝑡) and therefore obtaining the 

adiabatic xc-potential 𝑣xc
A .45 This is formalised as:  
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𝑣xc
A (𝐫, 𝑡) =  𝑣xc

0 [𝜌0(𝐫)]|𝜌0(𝐫) → 𝜌(𝐫,𝑡)                                                                  (2-40) 

This approximation is exact when the time-dependent perturbation is slow enough that the 

system remains in its instantaneous eigenstate. This means that the xc-potential at time t 

is only dependent on the density at time t, i.e. no previous densities are of interest. It is 

said that there is ‘no memory’. However, the majority of physical systems are non-

adiabatic. Nevertheless, the approximation still works in most cases and is the default 

approximation made in most TDDFT calculations in computational chemistry.88 

However, when simulating the oscillatory motion of the nucleus, the density deforms and 

the system does not return to its ground state after the external field oscillates once. This 

means that neither the density nor the correlation potentials agree, which shows that the 

adiabatic approximation is not suitable in this case.97 If the oscillation or external potential 

varies so rapidly that the electronic wave function cannot react fast enough and instead 

finds itself in quasi-stationary** states, then the adiabatic approximation has been shown 

to yield satisfactory results (even though the system is not adiabatic).98 

 

2.2.5.2.5 The Casida Equations 

Finding the TDDFT excitation energies can be expressed within linear response theory as 

an eigenvalue problem, as shown by Casida in 1995 and 1996.95,99 The Casida equations, 

which is the most common approach to calculating excitation energies within linear 

response theory, involve moving an electron from an occupied KS orbital to an 

unoccupied KS orbital and the eigenvalue problem can be solved self-consistently in the 

form of a matrix problem. Within the adiabatic approximation, the eigenvalue equation is 

a matrix problem, as shown below:100 

(
𝐀 𝐁
𝐁∗ 𝐀∗) (𝐗

𝐘
) = 𝛀 (

−𝟏 𝟎
𝟎 𝟏

) (𝐗
𝐘
)                                                                    (2-41) 

                                                
** Non-equilibrium, time-independent states 
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A and B are matrixes themselves, also known as the ‘Orbital Rotation Hessians’101 and Ω 

the diagonal matrix with the diagonal element being the square of the excitation energies. 

This equation results in paired excitation (Ω > 0) and de-excitations (Ω < 0).  

In practise, the Casida equations would yield the exact excitation energies of any system, 

but for this to be true, certain conditions must be met, such as obtaining the exact KS 

ground state of the system. The fact that Casida’s equation is infinite-dimensional, also 

leads to the necessity of approximations, and therefore not exact solutions. One issue with 

the application of this formalism is that it relies on non-zero transition densities, so 

excitations without oscillator strength might not be calculated accurately.102 

The excitation energies obtained through Casida’s approach lead to the calculation of 

excited state properties: the total excited state energy can be obtained by taking the sum 

of the ground state energy and the excitation energy. As excited state properties are 

calculated as the derivate of the excited state energy with respect to an external 

perturbation,101 it means that any excited state property is the sum of the corresponding 

ground state property and an excitation part, which is the derivative of the excitation 

energy.101,103 

 

2.2.5.2.6 The Tamm-Dancoff Approximation 

A useful and rather efficient approximation in TDDFT is the Tamm-Dancoff 

approximation.104 This formalism uses a truncated form of the Casida equation (section 

2.2.5.2.5) to calculate the excitation energies. The excitation energies from the Casida 

equation are the square roots of the eigenvalues, which means that there are both positive 

negative energy solutions. The Tamm-Dancoff approximation ignores the negative energy 

solution from the excitation energy pair, which in practise involves setting the B matrix 

(equation (2-41)) to zero. Physically, this approximation neglects the de-excitation part of 

the excitation energy. This approximation is particularly useful if the calculation suffers 

from the ‘triplet instability’ problem. 
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2.2.6 Limitations of DFT and TDDFT 

There are many chemical phenomena that (TD)DFT cannot predict accurately enough or 

where (TD)DFT even fails.105 The most important issues related to the project discussed 

in this thesis are outlined below. 

 -  An issue related to excited states is that the excitation energies calculated with 

TDDFT are usually only accurate to within ~ 0.4 eV of the experimental results, but only 

when using hybrid functionals – non-hybrid functionals tend to perform worse.88,90,106,107 

In fact, this accuracy typically only holds for valence states, not those involving diffuse 

orbitals, like Rydberg states. When these states are the basis of a (TD)DFT study, 

asymptotically corrected functionals such as LB94108 or range-separated functionals such 

as CAM-B3LYP64 ought to be used. This is because the standard exchange correlation 

functionals generally decay too quickly with inter-electronic separation: Rydberg states 

are weakly bound, therefore having a greater spatial extent which means that the poor 

long-range behaviour of the functional has a more pronounced effect, and asymptotic 

corrected functionals enforce the correct asymptotically behaviour. 

 - In addition to the above, it has been found that charge transfer (CT) excitations 

are often predicted by TDDFT to have excitation energies several eV below experimental 

values. The problem, from a computational perspective, is that electron excitations can be 

non-local phenomena. However, LDA and GGA functionals are local functionals, 

depending only on the density and its derivative(s) at a certain point, meaning that non-

local excitations, such as charge transfer excitations, are not well described. Tozer and co-

workers 65,87,109–111 have shown that if the overlap between the initial and final orbitals 

associated with the electronic excitation is too small, then TDDFT does not predict the 

excitation energy accurately. Functionals with high amounts of exact exchange at long 

distance (such as CAM-B3LYP, which has 65% of exact exchange), significantly 

improves the description of such CT excitations, as it improves the behaviour of the 

functional at long-range. The likelihood of having an accurate result with TDDFT 

increases when this overlap is larger but is still not guaranteed. CT problems are not 

uncommon and this is one issue that is addressed further within this thesis. 
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-  The adiabatic approximation generally employed in TDDFT and the resulting 

lack of memory in the calculations mean that double-excited states are fundamentally not 

well reproduced.87,112 

 - The adiabatic approximation also means that the topology of conical intersections 

tend not to be very well reproduced by TDDFT. However, their location on the potential 

energy surface tends to be described rather well.113–115  

  -  It should also be noted that (TD)DFT is a formulation of non-relativistic quantum 

mechanics, so calculations treating heavier elements need to include additional 

approximations to model relativistic effects, such as spin-orbit coupling. 

 

2.2.7 Applied Quantum Chemistry 

This section is concerned with the question of what a quantum chemical code actually 

calculates. As the Born-Oppenheimer approximation (section 2.1.4) is assumed to hold, 

the calculation always begins with the molecular geometry given in the input file as the 

coordinates for the nuclei, about which the electron density is evaluated. 

 

2.2.7.1 Single-point energy calculations 

Single-point calculations are calculations with the aim of finding out the minimum, or 

ground state, energy of the system at a given geometry. This is nothing more than going 

through the SCF cycle (section 2.1.8) at a certain geometry: finding an initial guess of the 

electron density, and improving it iteratively until self-consistency is achieved  

 

2.2.7.2 Geometry Optimisations 

Geometry optimisations are more complicated than a single-point calculation: the starting 

point is a set of coordinates for the nuclei. The aim of the calculation is to find the 
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geometry with the lowest possible energy. The starting geometry can be thought of being 

on a 3M-dimensional potential energy surface, with M being the number of nuclei. This 

potential energy surface is defined by the electronic structure, being dependent on the 

electronic and nuclear degrees of freedom. In the first instance, a single point energy 

calculation is performed on the input structure, to obtain the potential energy surface. The 

next step is to evaluate the gradients at the point on the energy surface (which define the 

internal forces acting upon the nuclei) present at that geometry. Distorting the structure 

slightly along the most negative gradient should lower the energy. A single point 

calculation is then performed on this new structure, its gradients evaluated and the 

structure is modified again according to the gradients. This cycle is repeated until the 

gradients vanish, (to within a threshold defined by the convergence criteria). There is one 

issue, however: the structure found might not actually be the lowest energy structure but 

it may be a ‘local minimum’ (or, a saddle point).  

 

2.2.7.3 Frequency Analysis 

As mentioned in the geometry optimisation section, all nuclei have forces acting upon 

them (however small) apart from at the extrema where the forces exactly vanish. A 

(vibrational) frequency analysis calculation looks at the second derivatives of the energy 

with respect to nuclear positions at a stationary point, and determines whether the 

molecule is truly at a minimum on the potential energy surface or at a different kind of 

extremum. To calculate the vibrational frequencies, it is assumed that the nuclei interact 

harmonically; the coordinates are mass-weighted and a set of eigenvalue problems is 

constructed for the second derivative of the energy. The square-roots of the eigenvalues 

are related to the vibrational frequencies. Three of these eigenvalue equations describe 

molecular translation (one in the x direction, one in the y direction, one in the z direction), 

and three (two for linear molecules) describing molecular rotation. These six (or five for 

a linear molecules) should all produce an eigenvalue of zero, while all other equations 

should yield a real (positive) frequency eigenvalue. However, due to the fact that the 

frequencies are derived from the square-roots of the eigenvalues, imaginary solutions are 

also possible. The number of imaginary frequencies corresponds to the number of negative 
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second derivatives of the energy (giving information about the curvature of the potential 

energy surface). If exactly one imaginary frequency is present, the structure is said to be 

in a transition state.  

 

2.2.8 Analysis Tools 

2.2.8.1 Mulliken and Löwdin Population Analysis 

To calculate the partial atomic charges in a molecule, Mulliken population analysis 116–119 

is often used. To calculate the charges of the atoms, it looks at the density matrix (the way 

the density is distributed over the whole molecule) and the off-diagonal gives the overlap 

population of two AOs. Mulliken analysis divides the overlap population in half and 

attributes half to each contributing AO, giving the atomic populations. To find the total 

population for each AO, all of the attributed overlap population is summed up for each 

AO. To find the partial charges, all of the atomic populations corresponding to one atom 

are added and from that, the nuclear charge is subtracted. Mulliken population analysis 

suffers from several problems, such as a strong dependence on the basis set used for the 

calculation, and its result sometimes seem unphysical. However, due to its simplicity of 

implementation, it is still widely used and usually yields qualitatively correct trends. 

However, its numerical values should not be trusted.  

Löwdin analysis120 is very similar to Mulliken analysis but its main advantage is that it 

employs an orthogonal basis set while calculating the partial charges, which improves on 

the results somewhat. Although both methodologies are dependent on the basis set 

employed in the calculation. 

 

2.2.8.2 Natural Bond Orbitals Analysis 

The idea behind the Natural Bond Orbital (NBO) model 121 is that the density matrix of 

the system of interest can be divided into atomic blocks, each of which is diagonalised to 

give a set of natural atomic orbitals, NAOs. Taking a linear combination of these NAOs 
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is thought of as ‘catching the essence of bonding’: the density matrix is re-expressed in 

terms of these NAOs and re-diagonalised in order to obtain the NBOs. The NBOs with 

the highest occupation can be associated with the localised electron pairs associated with 

the Lewis model. In this way the electron population associated with each atom can be 

more accurately described than with Mulliken Population Analysis.  

 

2.2.8.3 Quantum Theory of Atoms and Molecules 

Quantum Theory of Atoms and Molecules (QTAIM or AIM) is a topological method of 

analysis derived by Richard Bader122–124 and is thought to be a very rigorous way of 

describing the electron density. Orbitals are not considered and the system is only studied 

in terms of its electron density. Maxima in electron density are called attractors and tend 

to coincide with nuclei. Bader stated that the only necessary and sufficient condition for a 

chemical bond to be present is a bond path, so a path of maximum electron density 

between two ‘attractors’. The point of lowest electron density along a bond path is called 

a ‘bond critical point’, if it lies on the interatomic surface. Properties of the electron 

topology are derived for ring and cage critical points (the latter being a minima in the 

electron density). The bond critical points can give information about the bonding 

interactions, in particular their degree of covalency.  

 

2.2.8.4 Lambda () Analysis 

This analysis tool was devised by Peach et al.89,125 to identify potentially problematic 

charge-transfer excitation. It is a measure of the spatial overlap between the occupied and 

unoccupied Kohn-Sham orbitals contributing to an excitation. A  value of 0 corresponds 

to no overlap and 1 to complete overlap. A quantitative measure for CT has been devised 

using the B3LYP xc-functional, with any excitation resulting in a  value below 0.3 

certain to suffer from the CT problem. This means that, using TDDFT, the excitation is 

problematic to describe using xc-functionals with no or low HF exchange. In contrast, any 

value above 0.3 suggests that the excitation is not problematic due to (lack of) overlap, 
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but TDDFT might still not describe this excitation accurately. However, this numerical 

cut-off has been formulated for organic systems, and past studies126–128 show that this 

number might need to be adapted depending on the system, including inorganic materials. 

It should also be noted that this number has only been devised with and for the B3LYP 

functional; other functionals have been tested and a link between  and CT character has 

been established, but this is not investigated, and applied, further in this study. 

 

2.2.9 Codes 

2.2.9.1 TURBOMOLE 

TURBOMOLE129,130 is a quantum chemistry package which offers a range of molecular 

calculation options, including DFT and TDDFT. It uses Gaussian type orbitals (as 

discussed in section 2.2.4.2.2.2). This package contains excited state gradients for many 

commonly used functionals, which is needed for this study. 

 

2.2.9.2 GAMESS-US 

GAMESS-US131,132 is, like TURBOMOLE, capable of different types of molecular 

calculations. However, this code generally required more computing resources than 

TURBOMOLE. Yet, GAMESS-US was used because it allows for calculations using the 

range-separated CAM-B3LYP64 functional (section 2.2.4.2.1) and as well as obtaining  

values, neither being available within the TURBOMOLE package. GAMESS-US uses, 

like TURBOMOLE, Gaussian type orbitals. 

 

2.2.9.3 DGrid 

This programme133 is used to calculate QTAIM properties. It uses slightly modified 

TURBOMOLE output files as input.  
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2.2.9.4 Others 

The VMD (Visual Molecular Dynamics) package134 is used for visualisation of clusters, 

orbitals and electron densities. A custom made script by Enrico Berardo has been used to 

create absorption spectra. This script performs the following task: it takes the excitation 

energies and their oscillator strengths and describes these in terms of Gaussian function 

centred on the value of each excitation energy: the width of the Gaussians can be 

customised.  
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3. Literature Review  

The aim of this chapter is to provide a discussion of previous work performed on the 

systems studied, as well as defining the approach used in tackling outstanding problems. 

 

3.1 Previous Work 

After the discussion of the basic concepts that this research is founded upon in the 

introductory chapter, the previous research that has been completed on these and similar 

systems can be presented. The focus of this work is on computing the photophysical 

properties of nanoparticles and nanoclusters, so an experimental overview must be given 

to put this work into context.  As MgO, which is the focus of the research described in this 

thesis, is a computationally well-studied system due to relatively low mass of the 

constituting atoms (which means fewer electrons to take into account), its closed shell 

electronic structure and its rocksalt morphology, an overview of previous computational 

research is also given.  

Computational limitations meant that the largest systems that was studied in most detail 

has the chemical formula (MgO)32, which is a cube with approximate side lengths of 0.6 

Å, and so the experimental results most relevant to this thesis are those obtained from 

studies on as small systems as possible since the size of the particle can determine the 

absorption and emission behaviour. 

 

3.1.1 Magnesium oxide 

3.1.1.1 Experimental studies 

The experimental literature regarding MgO and other nanoparticles is vast and cannot be 

covered fully here. The interested reader is directed to references 135–145 and references 
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therein for a more complete review. Here, the focus is on experimental work most 

amenable to comparison with the simulations reported in this thesis. 

Nanoparticles are of particular interest when it comes to their interaction with light. 

Semiconductors generally adhere to general excitation behaviour as follows: due to the 

effect of quantum confinement, the excitation energy increases as the size of the particle 

decreases.146 This effect only becomes apparent when the electron and hole are confined 

in a space that is close to the exciton Bohr radius (the separation of the electron-hole pair): 

in this situation, the valence and conductions bands transition from continuous bands into 

discrete energy levels, which widens the band gap. However, the excitation behaviour in 

insulator materials, such as MgO, is different: the energy required to create an exciton (an 

electron-hole pair) in the bulk is typically much larger than in particles with a high surface-

to-volume ratio, due to fewer unsaturated surface atoms in the former. This means that the 

energy required to photo-excite an electron can be much lower in a nanoparticle.15 Bulk 

MgO crystals exhibit absorption starting at only 7.68 eV 147 but this is not the case for 

MgO nanoparticles. It has been proposed that the energy required to excite an electron 

from an anion to its immediate surroundings is dependent on the coordination number of 

the anion (O2- in the case of MgO) - i.e. the more nearest neighbours an anion has, the 

higher the excitation energy.148 This also means that corner site anions are the first sites 

to be excited compared to edge, face or bulk sites.  

MgO nanoparticles intended for use in photoluminescence can be produced in two 

different ways: either through the decomposition of hydroxides and carbonates 148 or via 

Chemical Vapour Deposition (CVD), both under vacuum conditions (or via annealing 

under vacuum) so that there are a larger number of under-coordinated surface sites 

available.149 CVD is a clean, solvent-free approach that can offer a good amount of control 

over the particle, its size and potential dopants.19,21 Furthermore, CVD does not require 

expensive equipment in itself. 

In the case of MgO, CVD can produce particles with the cubic rocksalt structure, which 

has been shown to be the most stable conformation.150–153 This demonstrates that MgO 

takes on its bulk crystalline structure, even in smaller samples. The nanoparticles are 

created using a flow system:154 high purity magnesium is added to a carrier gas (often 
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argon or other inert gas) and is then brought into contact with oxygen gas (or another 

oxygen carrier). Then, with the aid of the carrier gas, this is added to the reaction chamber 

where the MgO nanoparticles deposit onto a chemically inert surface. To avoid any 

surface contamination of the samples themselves, they are annealed to around 1173 K, in 

a high vacuum of pressure below 1 x 10-5 mbar.20 Subsequent photon absorption 

experiments, such as UV diffuse reflectance spectra and the photoluminescence spectra, 

are normally performed at room temperature but in vacuum. To test that the recorded 

spectra do not show any unwanted photoluminescence (i.e. that the light emitted by the 

particles is not re-absorbed and leads to further photoluminescence), gaseous oxygen is 

added to the reaction chamber and this quenches the photoluminescence from emitted 

light. This means that all photoluminescence recorded occurs on surface sites, and no 

photoluminescence arises from photo-emitted light during the process. Furthermore, 

gaseous oxygen can also be added at the stage of the photon absorption measurements, to 

ensure that no photoluminescence is recorded within the absorption spectrum. 

Stankic et al.148,149 find, using CVD methods outlined above, that the average particle size 

for MgO is about 3 to 5 nm (depending on the experimental conditions), with a cubic 

morphology (see figure 3-1) and the (100) and symmetry equivalent planes usually 

exposed. Under certain conditions, e.g. with the use of N2O as an oxidising agent, Stankic 

et al.20 show that it is possible to synthesise MgO nanocubes which have edge lengths as 

short as 2 nm. Despite the fact that these clusters can be synthesised, they are unstable and 

very reactive due to their high surface area.15 It is, of course, possible to produce larger 

particles: Mageshwari et al.155 use a reflux-condensation approach to synthesising MgO 

nanoparticles. However, these experiments offer less control over the final product and 

the optical properties are less defined: the absorption spectra show a peak between 5.39 

eV and 6.20 eV (200 - 230 nm) and the photoluminescence spectrum for samples with an 

average crystalline size of 6 nm show peaks as low as 464 nm (2.67 eV), whereas samples 

of 8 nm size exhibit peaks from 454 nm (2.73 eV). Both samples exhibit very similar 

luminescence spectra. However, the authors themselves attribute these peaks with defects 

sites, such as oxygen vacancies, indicating that these samples are less clean than the CVD 

samples produced by Stankic et al. This shows that it is imperative to choose the 

experimental data the computational model is trying to reproduce carefully.  
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Figure 3-1: Transition electron microscope images of differently sized MgO nanoparticles: A 

shows particles with an average length of 10 nm, B of 5 nm and C of 3 nm. All have cubic 

morphologies. Reproduced from reference 20. 

 

 

 

Figure 3-2: i) The reflectance spectra and ii) the photoluminescence spectra for three different 

MgO nanoparticles: sample A is 10 nm long, sample B 5nm and sample C 3nm, at two different 

excitation energies: 5.2 eV (240 nm) and 4.6 eV (270 nm). Both reproduced from reference 20. 

 

The particles synthesized by Stankic et al.20 with an average length of 3 nm (sample C in 

figure 3-1), show absorption peaks at both 4.4 eV and 5.4 eV (figure 3-2 i)20. The authors 
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attribute the lower excitation to ‘corner’ excitations and the higher one to ‘edge’ 

excitations, electronic excitations from 3- and 4-coordinated oxygen anions, respectively. 

This assignment has been inferred from the relative intensities of the peaks on the 

differently sized particles: the smaller particles have relatively more corner atoms, 

therefore the peak, which disappears for the larger particles, is presumed to be due to 

corner excitation, which gets masked as the intensity of the 4-coordinated excitation 

increases. From a theoretical point of view, this is overly simplistic, as any excitation 

involves more than one site, as has been shown in computational studies.127,156 

Stankic et al.20 found that the 3 nm MgO particles, obtained through CVD, give rise to 

particular peaks in the photoluminescence spectrum. The photoluminescence spectrum is 

dependent on the energy of the light used to excite an electron: if an excitation energy of 

5.2 eV (240 nm) is used, the resulting photoluminescence spectrum shows a broad 

emission band which has a full widths at half maximum (FWHMs) of 0.8 eV. The peak 

value is found at 3.4 eV (370 nm), a value reported previously.151,157–159 This corresponds 

to a Stokes shift (the difference between the excitation and luminescence energy) of 1.8 

eV. A second luminescence peak can also be observed in these 3 nm - sized particles from 

Stankic et al.,20 at 3.3 eV (380 nm), observed when an excitation energy of 4.6 eV (270 

nm) is used. This peak is also part of a broad emission band, with FWHM of 0.8 eV. It 

should be noted that the both photoluminescence spectra are asymmetric, and some 

luminescence can be detected as low as 500 nm (~ 2.47 eV), which might explain the 

general low luminescence behaviour discussed in chapter 7. 

The broadness of the photoluminescence spectra can be seen in figure 3-2 ii. A 

fundamental issue here is that computational simulations only give a single value; the 

value of the lowest possible luminescence energy. This is due to the fact that only the 

potential energy surface of the lowest excited state can be defined explicitly at all points: 

if, for example, the surface of the 6th excited state (at the ground state structure) were to 

be followed and it were to cross with the 5th excited energy surface, then the simulation 

would then follow the formerly 5th-lowest surface, although the formerly 6th lowest (and 

now 5th lowest surface) should be followed. This problem is not present in excitation 

energy calculations, as, in principle, any excitation can be calculated, allowing full 
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absorption spectra to be modelled. So how can a luminescence spectrum be 

computationally predicted? How can the experimental and computational values be 

compared? Comparison is extremely difficult: does the broad peak in the experimental 

luminescence spectrum stem from different excited states (i.e. in a deviation from Kasha’s 

rule) or are there different minima on the lowest potential energy surface from which 

emission occurs? Throughout this thesis, it will be assumed that Kasha’s rule (section 1.3) 

is applicable to these systems, and results will be considered within the limitations defined 

by the methodology. 

 

3.1.1.2 Computational Studies 

A number of previous computational studies have been performed on similar clusters. 

However, the approach taken in previous work has been significantly different to that 

presented in this thesis: the emphasis has been on maximising cluster size and, to increase 

this, a methodology often referred to as QM/MM160 (quantum mechanics/ molecular 

mechanics), has been used. This methodology has been hugely important in advancing 

computational chemistry and three of its developers were awarded the Nobel Prize for 

Chemistry in 2013. The approach has its basis in the fact that the chemically most relevant 

part of a large system (e.g. the polar region of a protein or the surface of an adsorbing 

material) can be modelled quantum mechanically (using, e.g. DFT) and the remainder of 

the system, which is not expected to play a chemically important role, can be modelled 

using molecular mechanics (a computationally cheaper approach, using empirical or 

parametrised force fields). As the part of a system treated quantum mechanically can be 

thought of as a cluster, and this cluster is ‘embedded’ into a molecular mechanical system, 

this method is also known as an ‘Embedded Cluster’ method, as visualised in figure 3-3. 

One major problem with this approach is that it restricts the description of the excitations 

modelled: by only modelling one area quantum mechanically, the chemistry is restricted 

to this part of the cluster (usually a region surrounding a corner site when studying MgO 

particles); no overall delocalisation of the electron density is possible. It is obvious that 

this approach is only suitable for systems where the excitation is limited to a region small 

enough that it can be fully described within the quantum mechanical cluster.  
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Shluger et al.161 considered different quantum mechanical clusters of up to 12 atoms 

within a larger molecular mechanical cluster, giving a total of 512 atoms and looked into 

the effect of changing the site of the quantum cluster within the larger cluster (i.e. 

comparing corner, edge, etc. sites) and the resulting absorption spectra. The quantum 

mechanical clusters differ in their location and arrangement within the larger cluster: a 

cubic edge site was described using 8 atoms, and this same sized cube was also located in 

the bulk. Further, linear edge sites were described quantum mechanically: terrace sites 

were also considered. The quantum mechanical clusters were described using the all-

electron 6-311+G basis sets within the Hartree-Fock approximation. The rest of the 

particle was described using pair potentials of non-polarisable ions, with a layer of atoms 

described by pseudopotential between the quantum cluster and the rest, as to avoid 

artificial polarisation of the density due to the point charges. Excitation energies were 

calculated using the Configuration Interaction Singles (CIS) approach, as well as the 

difference between the triplet and singlet energy states, as calculated using Configuration 

Interaction Singles and Doubles (CISD). These calculations support the experimental 

assignment of excitations from 3-coordinated ions at 4.9 eV and 4-coordinated excitations 

at 5.6 eV, in agreement with Garrone et al.162 

Trevisanutto et al.163 used a QM cluster of 26 atoms, centred on an oxygen corner, using 

DFT, the 6-31G basis set and the B3LYP exchange-correlation functional. Excitation 

energies were calculated using TDDFT, as well as the difference between the triplet and 

singlet state (using Δ-SCF). The authors claimed that the use of a larger QM cluster or 

more flexible basis sets does not affect the results for excitation energies considerably. 

The rest of the cluster, which incorporated 1000 ions in total, was modelled using inter-

atomic potentials. An interface region was also defined using pseudo-potentials for the 48 

Mg ions nearest to the QM cluster. The results showed that the hole is mainly localised on 

the corner oxygen and the electron is mainly localised on the magnesium ions nearest the 

oxygen corners. The aim of the paper was to find a process which described the desorption 

of an oxygen corner atom: the corner oxygen absorbs a photon of energy equal to 4.7 eV, 

which results in an exciton localised over the corner oxygen and neighbouring ions. This 

exciton is allowed to relax on the triplet surface, and becomes an asymmetrically localised 

exciton. After absorption of a second 4.7 eV photon, the oxygen corner desorbs. Of course, 
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this work is looking at a singlet to triplet excitation (through the Δ-SCF) to model a singlet 

to singlet excitation, so it should be borne in mind that the numerical solution might not 

actually yield a correct physical description of the excitation and de-excitation process. 

Trevisanutto et al.164 looked into the desorption properties further using the above 

mentioned methodology, and also applies the same approach to study CaO clusters. The 

kinetic energy of the desorbed oxygen is calculated to be about 0.5 eV, after its bond to 

the cation has been broken through light absorption. The researchers noted that the 

TDDFT results may not be sufficient in describing all of the properties of the clusters, due 

to potential issues with charge-transfer transitions, and suggest that more accurate 

methods should be used when modelling the QM cluster. However, the research by 

Trevisanutto et al.164 showed that surface modification in MgO and CaO via relatively 

low-energy photon absorption is possible. 

Müller et al.156 have performed a combined experimental and computational study into 

site-specific hydroxylation of MgO nanocubes. Particles of sizes ranging from 3-10 nm 

have been synthesised using CVD, as described above. The computational approach was 

the same as described for Trevisanutto et al.163 and the QM corner oxygen was 

hydroxylated. Both the clean and hydroxylated particles show absorption at 4.6 eV, which 

brought the authors to the conclusion that 4-coordinated atoms, i.e. the edge sites directly 

linked to the corner oxygen, are involved in the absorption. This hypothesis was confirmed 

by computation. The photoluminescence spectra of hydroxylated and non-hydroxylated 

MgO was compared, assuming excitation at 4.6 eV: both spectra are asymmetric, but the 

hydroxylated spectrum is more intense and shows a peak at 2.9 eV compared to 3.2 eV 

for the clean cluster, but the feature ranges from 2 to 4 eV. The photoluminescence was 

calculated using the Δ-SCF approach. The non-protonated cluster is predicted to exhibit 

photoluminescence at 2.6 eV, compared to 2.3 eV for the cluster with protonated corner 

oxygens. These computed predictions correspond to the lowest transition and not the most 

intense but seem to be in agreement with experimental observation. 

Sushko et al.165 reported photoluminescence further, using the same experimental and 

theoretical approach as above, although the QM cluster contained 14 Mg ions and 13 O 

ions. The QM cluster was also modelled using CIS and corrected using CISD. The 
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excitation results match experiments rather well, predicting absorption at 4.5 eV for 

‘corner’ (compared to 4.6 eV experimentally) and 5.7 eV for edge excitations (5.7 eV 

experimentally, although this can decrease to 5.3 eV as the edge length decreases). The 

photoluminescence was calculated using the Δ-SCF approach, and when the triplet state 

was allowed to relax symmetrically, photoluminescence was predicted to occur at 2.6 eV 

(3.2 eV experimentally), but when the corner site is allowed to relax further (anti-

symmetrically), the photo-emission lowers to approximately 1 eV. This approach has also 

been applied to other materials, namely CaO, SrO and BaO (discussed below). 

Sternig et al.166 have also compared the experimental photoluminescence spectra to the 

results obtained from the coupled cluster approach, described above. The 

photoluminescence energy has been calculated using a delta-SCF type approach (using 

the difference between 𝑇1 and 𝑆0) and was found to be 2.6 eV.165 This has been calculated 

as the difference between the total energies of the singlet and triplet states. Although the 

calculated value of 2.6 eV is in reasonable agreement to the experimental peak value of 

3.2 eV (based on an excitation energy of 4.6 eV, and photoluminescence can be as low at 

2 eV), it does not seem to be a wholly accurate representation of the physics behind the 

process: the closed-shell nature of this system in addition to the relatively low mass of the 

atomic components means that little spin-orbit coupling is expected for this material, 

which means that no, or very little, phosphorescence would occur. However, the excited 

triplet state (with both unpaired electrons having the same spin) might be similar in energy 

to the lowest excited singlet state (with electrons having opposite spin), so this is an 

approximation which might be quantitatively satisfactory. 
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Figure 3-3: An example set-up of an embedded cluster calculation: the grey area shows the part 

of the model which is treated by molecular mechanics, the blue region is an interface region, 

which is needed to stabilise the calculation, and the red region is the area representing the 

quantum mechanical cluster. This cluster is shown in more detail on the right. Reproduced from 

reference 165. 

 

The problem with the embedded cluster calculations described above is that they force the 

exciton to be localised on just the quantum mechanical cluster comprising of 26 atoms (in 

figure 3-3). However, when full DFT calculations are performed, it is found that the 

exciton delocalises over the entire cluster, especially when the B3LYP exchange-

correlation functional is used.127 Furthermore, the proposed match to experimental spectra 

might not actually be valid: McKenna et al.,167 using the embedded cluster method, with 

1000 atoms as described above and a 26-atom QM cluster described using B3LYP and 

the 6-311G* basis set, predicted, using TDDFT, two major absorption peaks, at 3.7 eV 

and 4.7 eV (figure 3-4). As the 4.7 eV peak is very close to the experimentally observed 

peak at 4.6 eV, it was hypothesised that the predicted peak at 3.7 eV is a ‘dark’ excitation, 

or is at least too weak to be observed experimentally. However, Wobbe et al. have shown 

that DFT typically underestimates the energy of charge transfer excitations and that MgO 

excitations, when modelled using B3LYP, suffer from poor overlap, meaning that the 

agreement with experiment may be coincidental, i.e. the predicted 3.7 eV excitation is 

actually an under-prediction of the experimental 4.6 eV excitation, further discusses in 

chapter 5. 
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Figure 3-4: i) Calculated absorption spectra for MgO nanoparticles, using the embedded cluster 

method. Reproduced from reference 167, ii) Calculated absorption spectra compared to 

experimental results. Reproduced from reference 166. 

 

 

3.1.1.3 Other Nanoparticles with the rocksalt structure 

This work does not only comprise a study of MgO but also investigates excitations of 

other nanoparticles which exist in the rocksalt configuration, namely CaO, SrO, BaO, 

MgS, MgSe, CdO and PbS. Unfortunately, none of these materials exhibit the regular 

cubic nanoscale structure found in MgO. Below, this is further discussed for each material. 

 

3.1.1.4 CaO 

Glascock et al.168 have studied the absorption spectrum of thin-film CaO, and have found 

that the lowest absorption peak, in the energy range of 5.5 – 11.3 eV, is at 7.0 eV. 

However, the same spectrum showed peaks at higher energy that, according to Whited et 

al.169 are not reproducible, and the latter team have found that, using crystalline CaO, an 

absorption peak at room temperature is found at 6.8 eV is found. Zecchina et al.170 have 

measured the reflectance spectrum of CaO, and have found that fluorescence must be 

quenched with outgassing of the reaction chambers with molecular oxygen. The 
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reflectance spectrum shows absorption at energies above 40000 cm-1 (4.95 eV), which is 

in-line with previous work from Whited et al.169 These studies have shown that bulk CaO 

has an absorption peak at 6.80 eV (compared to 7.68 eV for MgO). On the nanoscale, 

however, CaO is less easy to study  than MgO: unlike the cubic structure found in CVD-

MgO, Sternig et al.19 have shown that CVD-CaO undergoes coalescence, resulting in 

nanoparticles with a diameter of around 27 nm (figure 3-5).19 The peak of the excitation 

spectrum is centred around 325 nm (3.81 eV) whereas luminescence after excitation using 

a 282 nm (4.40 eV) light source is observed around a peak at 416 nm (2.98 eV). This 

corresponds to a Stokes shift of 0.83 eV. CaO therefore exhibits photoluminescence in the 

visible spectrum (~ 1.7 – 3.1 eV), showing its potential as a nanomaterial that can be used 

for optical applications. 

 

 

Figure 3-5: The difference in morphology between MgO, CaO and SrO. Reproduced from 

reference 19. 

 

3.1.1.5 SrO 

Sternig et al.19 have shown that CVD-SrO nanoparticles completely lose the well-defined 

cubic topology found for MgO, as seen in figure 3-5: the SrO particles are between 20 and 

200 nm in size. These SrO particles have been studied using transmission electron 

miscroscopy (TEM) and it has been shown that the individual grains are made up of 

several nanocrystals, which have colesced. The lowest absorption peak is centred at 340 
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nm (3.65 eV), and the photoluminescence spectrum shows a peak at 2.55 eV (486 nm) 

when incident radiation of 318 nm (3.90 eV) is used. Stankic et al.171 studied the 

photoluminescence of the same CVD-SrO nanoparticles (referred to as ‘polycrystals‘), 

and have found that use of a lightsource of 3.5 eV also results in an emission peak at 2.55 

eV. This work on SrO is an expansion of the work by Coluccia et al.151, who have prepared 

SrO samples in vacuum which show an absorption peak at 3.96 eV and photoluminescence 

at 2.64 eV. Similarly to CaO, the luminescence energies of the nanoparticles are in the 

visible spectrum, which means that these would also be potential candidates for optical 

applications. The band gap for bulk SrO is 5.68 eV,172,173 which is higher than the values 

obtained for nanoparticles. This follows the same trend as found in MgO and CaO 

particles.  

 

3.1.1.6 BaO 

No experimental studies of pure BaO nanoparticles are known to the author, and it has 

been suggested that these are not thermodynamically stable due to coalescence into 

millimeter-sized grains, which has been shown using TEM.19 However, Zecchina et al.147 

have observed absorption maxima at 4.15 eV and 4.34 eV for bulk BaO, which has been 

prepared by decomposition of BaCO3 (as Ba(OH)2 melts before decomposition can take 

place). Coluccia et al.151 have studied BaO samples further, and found that 

photoluminescene at 2.67 eV occurs when a light source of 4.59 eV (270 nm) is used. 

 

3.1.1.7 MgS and MgSe 

Another pathway of investigation within this project was to replace the oxygen in MgO 

by other chalcogens, namely S and Se. One important condition was that, for the sake of 

comparison,  the clusters should crystallise in the rocksalt structure, as alkaline earth 

oxides do. Unfortunately, no literature regarding MgS or MgSe nanoparticles small 

enough for comparison to the calculations performed could be found by the author. 

However, computational work studying the phase stability of MgS and MgSe is available. 
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This is interesting in terms of the study discussed in chapter 6: only materials that 

crystallise in the rocksalt structure are of interest within this thesis. Rabah et al.174 have 

computationally studied both MgS and MgSe, using the scalar-relativistic full potential 

linear-augmented plane wave method (FP-LAPW) within the local spin density 

approximation (LSDA) and find that the total energies are lower in the rocksalt 

configuration when compared to the zinc blende structure, although the energy gap 

between the two topologies is smaller in MgSe (~0.04 eV) than it is for MgS (~0.14 eV). 

However, under certain conditions, as Okuyama et al.175 have shown experimentally 

through epitaxial growth, both materials grow as films with zinc blende structure on GaAs 

using molecular beam epitaxy. It is obvious then that the energetic differences calculated 

by Rabah et al. are not definitive in terms of predicting the lowest energy conformation, 

and care must be taken not to put too much trust into these calculations, especially 

considering the small energy differences: the result of 0.04 eV difference obtained for 

MgSe (and arguably also 0.14 eV for MgS) in total energies is not big enough to draw any 

conclusion. Another computational study by Drief et al.176 using the LDA and the FP-

LAPW model confirmed that for MgS the rocksalt structure is about 0.2 eV more stable 

than the zinc blende form, but also calculated the energy for the MgSe zinc blende 

structure to be ~0.15 eV lower in energy when compared to the rocksalt form. Finally, 

Gökoğlu et al.177 have investigated  the energetics of these systems using DFT with 

projector augmented waves (PAW) using both GGA and LDA functionals. As with the 

two previous studies, the case for MgS is simpler, and both LDA- and GGA-DFT predict 

the rocksalt structure to be lowest in energy, by 0.049 eV and 0.006 eV respectively. The 

latter energy difference is so small that is neglible. For MgSe, LDA predicts the rocksalt 

structure to be 0.017 eV lower than the NiAs structure††, whereas GGA-DFT predicts the 

wurtzite configuration to be lowest, and lower than the rocksalt one by 0.037 eV. Again, 

the energy differences are so small, and possibly even smaller than the accuracy of the 

calculation, that it seems to be challenging to determine the true ground state structure of 

MgSe. Despite this, MgSe is still included in this study, as, based on the data presented 

                                                
†† This structure is built in the following way: The anions (arsenide / chalcogen) are arranged in a 

hexagonal close-packed structure and the centre of these hexagons are filled with the metal (nickel / 

magnesium). 
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above, it is not unreasonable to assume that the rocksalt conformation to be a low energy 

structure for MgSe. 

 

3.1.1.8 CdO and PbS 

CdO and PbS are both semiconductor materials that crystallise in the rocksalt structure,178–

180 and are therfore interesting materials to contrast the behaviour seen for alkaline earth 

oxides and magnesium chalcogenides.  

Kaviyarasu et al.181 have synthesised CdO nanoparticles by placing cadmiun nitrate and 

NaOH into a beaker and dried at 90 ˚C in vacuum in a solvothermal recrystallisation 

approach. The samples coalesce into an average size of 50 nm. The optical absorption 

spectrum shows a low intensity peak at 3.35 – 3.75 eV (330 – 370 nm) and several more 

intense peaks from 4.95 eV – 6.19 eV (200 – 250 nm), although these are not seperable 

from each other and might be, in part at least, from impurities. It does not seem apparent 

how impure these samples are and what properties are due to these impurities. The author 

is not aware of any other pure CdO naoparticles study or photoluminescence data.  

Lü et al.182 have synthezised PbS nanoparticles in DMSO solvent, where the particles 

aggregrate into clusters with a diamater of less than 10 nm, although the particles are then 

added to polythiourethane (PTU) to form composite films and further analysis has been 

performed on said film rather than on the particles. However, Pawar et al.183 have 

deposited a thin film of PbS onto a soda-lime substrate, via chemical bath deposition. This 

method works in the following way: a precursor solution is made, in which the substrate 

is immersed for a set priod of time. The tresulting thin-films obtained in the study by 

Pawar et al.183 were at least 712 nm thick, although individual particles of 23 – 34 nm 

were seen using scanning electron microscopy. The optical properties of these structures 

is interesting, as the authors observe the effects of quantum confinement: the thicker the 

thin-film, the lower the absorption onset measured. The thinnest film exhibits an 

absorption onset at approximately 1.55 eV (800 nm), whereas the thickest film  shows this 

at 0.99 eV (1250 nm). The photoluminescence spectra is very similar for all samples, and 
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the only change between the spectra is the intensity of the peaks: excitation with a 2.98 

eV (214 nm) photon result in twin peaks at 3.06 eV (405 nm)  and 3.15 eV (393 nm), as 

well as a low intensity peak at 2.69 eV (460 nm), which means that the samples should 

emit blue light. Similar photoluminescence has been observed previously by Cao et al.184 

on particles of aproximately 60 nm. 

 

3.1.1.9 General Remarks 

As experimental absorption data is not always available, a comparison to the experimental 

band gap for bulk particles is used to determine whether the simulations presented in 

chapter 6 are reasonable. We find that as either the anion or cation increases in atomic 

mass, the band gap decreases. The experimental values used for comparison are as 

follows: 7.8 eV for MgO,172,185 7.1 eV for CaO,172,186 5.9 eV for SrO,172 4.3 for BaO,172,187 

4.6 eV for MgS,175,188 4.0 eV for MgSe,189 2.3 eV for CdO,178,187 and 0.4 for eV PbS179. 

Furthermore, as Catlow et al.190 have concluded from the work of Penn,191 Phillips192–195 

and van Vechten,196 that the values of the optical dielectric constant‡‡ of the bulk material 

in question, are linked to the electronic band structure and therefore, also the extent of 

iconicity of the chemical bond. In addition, these constant can also help the prediction on 

the (de)localisation behaviour of an excitation, as hypothesised in chapter 6: the optical 

dielectric constant determines the extent of the electronic interaction between electron and 

hole is screened: alkaline earth oxides have a rather low optical dielectric constant (MgO 

3.0; CaO; 3.3; SrO 3.2-3.5)196,197 and seem to yield a very localised excitation behaviour, 

whereas magnesium chalcogens have been found to have a higher optical dielectric 

constant (MgS 5.1; MgSe 5.9)196 giving rise to more delocalised excitation behaviour, and 

thus not suffering from the CT-problem as much as alkaline earth oxides. The transition 

metal chalcogenides and semiconductors CdO and PbS, which exhibit a delocalised 

excited state and therefore do not seem to suffer from CT-behaviour at all, are made of 

                                                
‡‡ A measure of the coulomb interaction of the point charges, specifically how much the Coulomb 

interaction of the point charges in a material decreases relative to vacuum. 
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materials which have a higher optical dielectric constant values at 5.5 – 6.2 and 17.2 for 

CdO and PbS respectively.196,198 

 

3.1.2 Doped MgO nanoparticles 

Another pathway of investigation are doped MgO particles, where one or more Mg2+ 

cation is replaced by another alkaline earth element (Be, Ca, Sr, Ba) or Zn2+ and Cd2+, 

although experimental data is only available for some. A large amount of previous 

research has focussed on Lithium doped MgO (see, for example, references 

16,17,145,199) due to its potential in catalysis but this is not the focus of this thesis: neither 

are the studies of doped single-crystals200–203 or ceramic materials204,205, neither of which 

are nanoparticles. 

Doping is interesting, as it can change the optical properties of a material, which in the 

case of MgO nanoparticles can be intriguing: MgO particles are cheap to prepare via CVD, 

but their optical applications are limited as their photoluminescence is not in the visible 

region. However, MgO particles have advantages over CaO or SrO in that their structure 

is consistent and relatively easy to predict, whereas the other particles have a less well-

defined morphology. Doping can be achieved within CVD by altering the chemical 

composition of the input into the reaction chamber: in addition to a magnesium and 

oxygen source, another inlet is needed to carry the dopant into the reaction chamber.206 

 

3.1.2.1 Ca-doped MgO 

Kohan et al.207 have shown that, from a thermodynamic perspective for the infinite bulk, 

ordered Ca-doped MgO particles are unstable, and Müller et al.208 have studied CaO 

nanoparticles on top of MgO nanoparticles. However, Stankic et al.149 have shown that 

Ca-doping of MgO is possible on the nanoscale using CVD. Tran et al.209 have synthesised 

Ca-doped MgO samples that are highly transparent by spark plasma sintering. A 

computational study by Sushko et al.165 using the embedded cluster methodology 
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described previously, reveals that the dopant can occupy 3-coordinates sites (corners), 4-

coordinated sites (edges) and 5 coordinate sites, although the dopant tends to aggregate at 

the lower coordination sites. Sternig et al.19 have produced Ca-doped MgO and have found 

that up to 10% substitution is possible in nanoparticles, although this results in particles 

with less regular size distribution compared to pure MgO.  

The absorption spectra of the samples made by Stankic et al.149 have been compared to 

those obtained from pure MgO and CaO (both found in e.g. reference 19): MgO absorption 

spectra show peaks around 4.6, 5.5 eV and 6.6 eV, whereas for pure CaO three peaks can 

also be seen, namely at 3.8 eV, 4.4 eV and 5.3 eV. The doped materials with stoichiometry 

of Ca0.1Mg0.9O, share the peak at 5.3 eV with pure CaO particles, but the peak is broad, 

with no other distinct peaks. The absorption onset is at 3.6 eV, which is lower than that of 

MgO, so the decrease in excitation energies predicted computationally165 using embedded 

cluster (and Δ-SCF)) calculations can also be seen experimentally. The absorption spectra 

can be seen in figure 3-6. 

The photoluminescence of the doped particles synthesised by Stankic et al.149 is more 

intense than that for pure MgO when an excitation wavelength of 290 nm (4.28 eV) is 

used. The resulting peak is around 425 nm (2.92 eV) but, as is the case for the pure 

materials, is broad, ranging from approximately 2.25 – 3.54 eV, overlapping with the 

visible spectrum and with a photoluminescence onset at approximately 575 nm (2.16 

eV).149  
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Figure 3-6: Showing the absorption spectra for pure MgO, pure CaO and two stoichiometrically 

different Ca-doped MgO nanoparticles. Adapted from reference 149. 

 

3.1.2.2 Sr- and Ba-doped MgO 

As well as calcium ions, other alkaline earth oxide ions, such as strontium and barium, are 

also suitable dopants. These dopants can be used to substitute up to 6% and 3% 

substitution respectively of magnesium ions, as can be seen in the study by Sternig et al.19 

As opposed to calcium dopants,165 Sr and Ba can only be seen at 3- and 4-coordinated 

sites, and not at 5-coordinated sites. The singlet to triplet excitation energy, discussed 

above for calcium-doped and pure MgO, decreases for Sr-doped MgO to 3.87 eV but 

increases again for BaO-doped MgO to 3.98 eV, as Sushko et al.165 show, using the 

embedded cluster methodology, described above.  

Unfortunately, no experimental photoluminescence data is available for Sr-doped MgO 

nanoparticles. However, Sternig et al.206 have obtained BaO aggregated on MgO 

nanoparticles, obtained through CVD. It has been found that these powders are not cubic 

but hemispherical (due to the growth process; although the bulk is still found to be of 

rocksalt structure) with an average size of 30 nm, although the size range is broader than 

for pure MgO particles. According to Sushko et al.,165 only small amounts of Ba2+ ends 

up being used as the dopant, as most of the Ba2+ is a surface aggregate, in line with the 

fact that the energetic cost of replacing a magnesium ion is calculated to be 5.64 eV. 
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Sternig et al.210 have also studied the optical properties of BaO nanocubes on MgO 

clusters: barium oxide dopants add additional peaks to the MgO absorption spectra: at 4.3 

eV and 4.8 eV. Using an excitation energy of 5.2 eV, the broad photoluminescence 

spectrum is observed to contain an additional peak at 2.7 eV, attributed to the barium 

dopant, as well as the peak at 3.4 eV, which is also observed for pure MgO particles. 

Similarly, when an excitation energy of 4.6 eV is used to obtain the photoluminescence 

spectrum, a broad peak at 2.7 eV is observed, which is significantly more intense than the 

peak observed for pure MgO at 3.3 eV. This means that the MgO luminescence peak is 

not seen. 

Sternig et al.211 have, as a joint experimental and computational embedded cluster study, 

substituted Mg2+ with Ba2+ in MgO nanoparticles, to study the potential application in 

solid-state lighting. As found previously, samples with 6% substitution exhibit phase 

separation. However, the study also shows that for samples Ba0.02Mg0.98O, phase 

separation does not occur but the average size increases from 6 nm for pure MgO to 7 nm 

in addition to slight loss of the definition of the highly cubic morphology seen for pure 

MgO. The average particle size increases further to 8 nm for samples with stoichiometry 

Ba0.04Mg0.96O. The UV diffuse reflectance spectra of the differently doped particles can 

be seen in figure 3-7, where the increasing amount of Ba2+ redshifts the absorption onset. 

This is explained theoretically by the fact that the Ba perturbs the electronic states: the 

holes are more strongly bound and the electron affinity generally increases in features 

containing Ba meaning that the excitation energies are lower compared to those of pure 

MgO as the highest occupied molecular orbital (HOMO) increases in energy and the 

lowest unoccupied molecular orbital (LUMO) decreases in energy. 
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Figure 3-7: Showing the UV diffuse reflectance spectra of pure MgO as well as three 

stoichiometrically different Ba-doped MgO nanoparticles. Adapted from reference 211. 

 

The corresponding photoluminescence spectra obtained by Sternig et al.,211 show the 

asymmetrical peaks as seen in previous nanoparticles. The luminescence can be recorded 

to be as low as 1.77 eV with a peak at ~ 2.38 eV, when an excitation photon of 3.20 eV is 

used. The peak increases in intensity and decreases its luminescence energy to 2.30 eV 

and the luminescence onset decreases to 1.55 eV when the spectra is not taken at room 

temperature (298 K) but at 77 K. The same pattern can be found for all different Ba-doped 

MgO samples. When the excitation photon increases to 3.6 eV, the luminescence peak of 

2.70 eV remains unchanged in position but becomes more intense as the temperature is 

decreased. The luminescence onset is reduced from 1.91 eV to 1.74 eV. Similarly, the 

spectra remain mostly unchanged as the amount of Ba increases. The photoluminescence 

has also been modelled but in rather a qualitative way to experiment, as the qualitative 

change between MgO and Ba-doped MgO luminescence is given meaning. The modelled 

change is about 1 eV, compared to 0.6 eV seen experimentally. The computational 

approach to obtaining the photoluminescence was to calculate the difference between the 

S0 and T1 surface, after allowing for relaxation on the triplet potential energy surface. The 

potential problems with this approach have previously been discussed. 
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3.1.2.3 Zn-doped MgO 

Ohira et al.212  have shown that doping MgO powders with Zn2+ ions is interesting for 

mainly anti-bacterial applications against e.g. E.coli. The problem is that ZnO 

nanoparticles are toxic to humans but show good anti-bacterial properties, while MgO is 

non-toxic but neither does it show anti-bacterial properties, so Zn-doped MgO is an 

interesting alternative. Vidic et al.213 and Stankic et al.21 have demonstrated that preparing 

nano-sized samples via CVD means that as the amount of zinc increases, so does not only 

the particle size range but also the average particle size: the size range for Zn0.05Mg0.95O 

is 5 – 15 nm with an average size of about 8 nm, whereas the particle size ranges from 

about 8 – 25 nm for Zn0.1Mg0.9O with most particles being found to be about 16 nm in 

size. Similarly to what is observed for the other doped MgO clusters, the dopant is 

energetically favoured to occupy low coordination sites, and in the case of Zn0.1Mg0.9O 

most low coordination sites are occupied by a zinc cation. The advantage of these doped 

materials is that they are not showing signs of being toxic. The absorption spectrum for 

Zn-doped MgO is broad but peaks can be identified at 3.7 eV and 5.4 eV, the latter being 

due to MgO. The photoluminescence spectrum after 4.6 eV excitation exhibits peaks at 

3.2 eV, where Zn0.05Mg0.95O samples have one additional peak over pure MgO, namely at 

3.9 eV, obtained from 5.2 eV excitation, both with an absorption onset at approximately 

650 nm (1.90 eV).21 When this 5.2 eV photon is used, the peak found for pure MgO at 3.4 

eV becomes less intense as the dopant concentration increases, and disappears for 

Zn0.1Mg0.9O. This sample shows additional peaks at 2.4 eV and 3.8 eV in a very broad 

spectrum ranging from about 1.5 eV to 4 eV.  
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4. This work in context 

Research into nanomaterials is very exciting and novel applications have been found, so 

it is therefore useful to study known materials, comparing their behaviour to the bulk to 

investigate whether new applications might result. Examples are the anti-bacterial 

properties of Zn-doped MgO nanoparticles or the potential applications of alkaline earth 

doped MgO nanoparticles in Light Emitting Diodes (LEDs) or lasers.  

As the previous section showed, a lot of work has been performed in this area both 

experimentally and computationally. However, the approach taken in previous modelling 

studies may be insufficient to fully understand the excitation behaviour of inorganic 

nanoparticles. The limitation of simulating only one part of a cluster quantum 

mechanically has effects on the predicted excitation energies as well as excitation 

character: e.g. corner to corner excitations cannot be studied appropriately, as the model 

does not necessarily allow for a complete description of this. 

The work performed here aims to describe the entire isolated cluster, giving the 

methodology more freedom to describe any relevant excitation and luminescence 

properties of the particles, with the drawback that only smaller particles can be studied. 

Furthermore, the model employed here can avoid using T1 to S0 transitions which are 

optically forbidden, rather modelling S1 to S0 transitions, which are predicted to be more 

prominent in materials such as MgO, due to the lack of spin-orbit coupling. This should 

give more accurate results, and a better description of the excited state, although the size 

of the cluster studied is the drawback when using TDDFT (section 2.2.5.2).  

To test the validity of TDDFT on these systems, we begin by looking at very small DFT-

optimised ground state structures, such as (MgO)4 and (MgO)6, where we can compare 

results with a very accurate computational method, namely Equation of Motion (EOM) 

Coupled Cluster (CC) Theory, as discussed in section (2.2.3.1), performed by Dr. Martijn 

Zwijnenburg, although co-interpreted by the author. As satisfactory agreement has been 

found (discussed in results section 5.4.1), larger clusters were optimised using DFT 

(section 5.3), namely (MgO)n where n = 9, 12, 18, 24, 32, 40, 50, 108. Frequencies have 
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been calculated to confirm ground state structures and from there, vertical excitation 

energies were obtained by applying TDDFT at these minima.  

As the computational modelling of the absorption spectra for MgO nanoparticles has 

proven to be less straightforward, due to the charge-transfer behaviour of the larger 

particles, a study has been performed to see whether or not other rocksalt structures suffer 

from this particular issue as well, as discussed in chapter 6. The materials studied are CaO, 

SrO, BaO, CdO, PbS, MgS and MgSe. 

TDDFT was also used to optimise the excited state geometry on the S1 potential energy 

surface for each cluster, as shown in chapter 7. This optimisation step simulates the excited 

state relaxation. Where computationally feasible (up to n = 12), the excited state 

frequencies are calculated to check that the stationary points obtained actually correspond 

to minima and not another type of extrema, such as saddle points. From the excited state 

minimum, the cluster is allowed to relax electronically back to the ground state, giving a 

value for the fluorescence energy. 

The excited state geometrical structure is then allowed to relax on the electronic ground 

state surface, to see if there are any energy barriers, but none have been found: all studied 

clusters optimise back to the original ground state structure. Due to the absence of ground 

state barriers, this aspect is not discussed further in this thesis.  

Finally, the effects of substituting Mg2+ ions by other alkaline earth ions, as well as Zn2+ 

and Cd2+, have been investigated and preliminary results are presented in chapter 8. This 

is of particular interest, as doping is a widely used method to tune optical properties of 

materials. 
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5. MgO ground state structures and vertical 

excitation energies 

5.1 Introduction 

The optical properties of MgO nanoclusters have previously been studied 

computationally, as discussed in section 3.1.1.2. However, the difference in this study is 

that the whole particle is modelled quantum mechanically, as opposed to a small area 

which is described quantum mechanically and embedded in a larger cluster of classical 

point charges.167,214,215 The problem with the latter approach is that it fails to predict certain 

low-energy excitations, due to the nature of the assumptions made within the 

methodology. Treating the whole system quantum mechanically removes this problem. 

However, it limits the size of the system that can be considered. The largest cluster that 

has been studied in this project is (MgO)108, which is a cubic cluster with approximately 

1 nm long sides. However, for calculations to be tractable, some compromises (e.g. with 

regards to the basis set) have had to be made and, despite these compromises, 

computational costs remained high. It follows that the systems that can be studied more 

accurately must be smaller and, because of the tight-packing of the atoms in the rocksalt 

structure, a lot of the computational cost is associated with modelling bulk atoms (more 

and more so for the larger computational models). Therefore the largest particle that has 

been studied in detail is that of (MgO)32, a cubic cluster with sides of approximately 0.6 

nm. These size limitations mean that the experimental particles these calculations are 

compared to should be as small as possible to allow for the best possible comparison.  

The aim of this project is to study the excited state properties of MgO nanoparticles, which 

has been done by initially studying the ground state structures, from which the excitation 

energies have been obtained. 
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5.2 Methodology 

Density Functional Theory (DFT) and Time-Dependent Density Functional Theory 

TDDFT (section 2.2.5.2) have been used to calculate the ground state structures and 

vertical excitation energies of (MgO)n, respectively. The basis sets utilised to perform this 

study were DZDP for magnesium in combination with DZP for oxygen: this combination 

is referred to as DZ(D)P for MgO particles from now on. The basis sets are of double-ζ 

quality, and also include double polarisation§§ for magnesium and single polarisation for 

oxygen. Furthermore, the calculations have also been performed using the triple-ζ quality 

basis set def2-TZVP, which has single polarisation. The latter basis set has only been used 

for particles with n ≤ 32. The xc-functionals employed were PBE, B3LYP, BHLYP and 

CAM-B3LYP, which differ in the amount of Hartree-Fock exchange (HFE) included: 0% 

for PBE, 20% for B3LYP, 50% for BHLYP and 19% at short range in addition to 65% at 

long range for CAM-B3LYP. The latter xc-functional is only available in the GAMESS-

US package, whereas all the other calculations have been performed using the 

TURBOMOLE suite. The former is a more expensive code to run, which means that the 

whole range of particles could not be studied. The absorption spectra have been obtained 

using a custom script, which creates Gaussian functions over every excitation. The 

standard deviation for these Gaussian functions has been set to 0.1 eV.  

 

5.3 Ground state structures 

As discussed in chapter 3, MgO nanoclusters have previously been studied 

computationally and, in general, the most stable isomer for 3n clusters (i.e. (MgO)3, 

(MgO)6, (MgO)9, …) has a hexagonal tube configuration, for values of n that are smaller 

than 6.216 Other structures are found in the rocksalt configuration14,15,216–218, i.e. cubic 

structures resembling the bulk crystal structure. Figure 5-1 shows the lowest energy 

conformations for the MgO clusters studied, namely n = 1, 2, 4, 6, 9, 24, 32, 40, 48, 108 

for (MgO)n, as well as the cubic structure for (MgO)6. The ground state structures for 

                                                
§§§§ Polarisation refers to polarisation functions, and the polarisation is applied to each shell. 
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(MgO)12 and (MgO)18 are discussed separately (section 5.3.1 and 5.3.2 respectively). The 

reason for a separate discussion is that no clear ground state global minimum can be 

determined or that the ground state structure displays unexpected behaviour, as discussed 

below.  

 

 

Figure 5-1: B3LYP/def2-TZVP optimised ground state (likely) global minimum structures for 

A (MgO)1, B (MgO)2, C (MgO)4, D (MgO)6 cubic, E (MgO)6 hexagonal, F (MgO)9, G (MgO)24, 

H (MgO)32, I (MgO)40, J (MgO)48 and K (MgO)108. The latter is the DZ(D)P optimised struture. 

Oxygens are the red sphered, magnesium the brown ones. 

 

Figure 5-1 shows that the particles corresponding to the (likely) global ground state 

minimum are relatively regular, although angles on corner sites are larger than 90˚. 

Furthermore, it can also be seen that (MgO)n, n = 24, 32, 40, 48, 108 all exhibit the rocksalt 

structure, where (MgO)32 and (MgO)108 are cubic, and the other clusters are cuboids. The 
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edge lengths of these rocksalt clusters are tabulated in table 5-1. (MgO)18 is not included 

here, due to its dipole, discussed in section (5.3.2). 

 

Table 5-1: Edge lengths of (MgO)n nanocuboids, optimised at the B3LYP/def2-TZVP level. 

 

Cluster Edges /nm Body diagonal / nm 

(MgO)24 0.59  0.59   0.40 0.94 

(MgO)32 0.59  0.59  0.59 1.02 

(MgO)40 0.79  0.59  0.59 1.16 

(MgO)48 1.01  0.59  0.59 1.32 

(MgO)108 0.99  0.99  0.99 1.72 

 

5.3.1 (MgO)12 particles 

Even in the literature,216,219–221 the theoretical structure of the global minimum structure 

(MgO)12 is found to be method dependent. In this study, three different structures were 

initially optimised, namely the rocksalt, hexagonal tube and spherical, bubble-like 

‘sodalite’ structure, as shown in figure 5-2. The ‘true’ ground state global minimum 

structure cannot be determined and these clusters are too small to be synthesised but too 

large to be studied with more accurate post-HF methods. 

 

 



MgO ground state structures and vertical excitation energies 

 

113 
 

 

Figure 5-2: B3LYP def2-TZVP structures for (MgO)12 A sodalite, B hexagonal tube and C 

rocksalt structure. Oxygens are the red cirles, magnesium the brown ones. 

 

Using the def2-TZVP basis set, table 5-2 shows the relative energies of the different 

structures that have been studied: each structure has been optimised with each of the three 

functionals PBE, B3LYP and BHLYP, and the relative energies are tabulated.  

 

Table 5-2: Relative energies of the (MgO)12 sodalite, hexagonal tube and rocksalt strucutre for 

xc-functionals PBE, B3LYP and BHLYP. All energies are in eV. 

 Sodalite Hexagonal Tube Rocksalt 

PBE 0.29 0.00 0.50 

B3LYP 0.00 0.03 0.73 

BHLYP 0.00 0.42 2.67 

 

It can be seen that neither of these three functionals describes the rocksalt structure as the 

energetically lowest lying structure, and the differences are larger than that of DFT 

uncertainty (approximately 0.25 eV,222–224 although likely to be smaller in this case due to 

potential error cancellations). When HF exchange is included, the bubble-like structure 

(sodalite) is predicted to be lowest in energy. However, for B3LYP, the hexagonal tube 

has a total energy just 0.03 eV above that of the sodalite structure, which means that it is 

unclear whether the latter truly is the lowest lying structure. BHLYP predicts the 
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hexagonal tube to be 0.42 eV higher in energy than the sodalite structure, which is a clearer 

energy difference and just larger than the DFT ‘error’. In general, it can be said that 

increasing the amount of HFE percentage leads to a stabilisation of sodalite relative to the 

hexagonal tube, as well as a destabilisation of the rocksalt relative to the hexagonal tube. 

As the sodalite has six 6-membered rings, the hexagonal tube has four 6-membered rings 

and the rocksalt has no 6-membered rings, it could be said that including (and increasing) 

HFE stabilises 6-membered rings, leading to the energy variation. 

Due to the strong functional dependence, these energy differences should be treated with 

caution. Furthermore, if these clusters existed experimentally, it would be possible that 

both the sodalite and hexagonal tube (and possibly even the rocksalt one) isomers would 

be present. Due to the similar electronic energies of the two structures, both the sodalite 

and hexagonal tube clusters were taken into account in this work. 

 

5.3.2 (MgO)18 particles 

The study of (MgO)18 revealed some unexpected behaviour. Energy differences between 

different clusters have been calculated (hexagonal tube, rocksalt and ‘slab’: a more 

elongated rocksalt structure (see figure 5-3 C). The rocksalt structure was found to be the 

lowest energy structure for all xc-functionals, which was also previously found in the 

literature.15,216,219 Yet, we have found that this structure exhibits a considerable dipole 

moment of 17 Debye.*** Looking at the images of the two faces (figure 5-4) between 

which the dipole is defined, it can be seen that both faces are made up of 9 ions, with 

either a Mg2+ or O2- ion at the centre. The total charge on these faces creates said dipole. 

This effect can even be increased when the distance between the two faces is increased, 

and this results in the rocksalt cluster (MgO)27, which has a dipole of 31 Debye. For the 

latter particle, a further study to find a lower conformation has not been undertaken. It is, 

of course, possible that there is a lower energy structure for (MgO)18, which is as yet 

unknown. Due to the dipole moment, the (MgO)18 cluster gives anomalous results in 

                                                
*** For comparison, (MgO)1 (in the gas phase) has a dipole moment of 9.0 Debye, and CaO has 
a dipole of 10 Deybe.263 



MgO ground state structures and vertical excitation energies 

 

115 
 

context of the data obtained from the other clusters, but this cluster is still taken into 

account for the rest of the study. 

While these faces seen in figure 5-4 are non-polar in the traditional sense225 and this 

structure cannot be describes as a classically polar surface, as this dipole would not exist 

in a periodic system, the fact that the surfaces are comprised of an odd number of atoms 

makes them effectively behave as if polar;  similar to an effect induced by polar surfaces, 

as described by Melnikov et al.226 

 

 

Figure 5-3: B3LYP/def2-TZVP optimised structuresof (MgO)18.  A rocksalt (cuboid), B 

hexagonal tube and C ‘slab’ structure. Oxygens are the red spheres, magnesium the brown ones. 

 

 

Figure 5-4: Opposite faces of the B3LYP/def2-TZVP optimised (MgO)18 rocksalt structure, the 

centre atoms of which generate the dipole moment of the structure, highlighted by black circles. 

Oxygens are the red spheres, magnesium the brown ones. 
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5.4 Validation of TDDFT 

This project is looking at modelling gas-phase clusters and their optical properties. The 

methodology of choice is TDDFT, as already discussed, as it offers a good compromise 

between accuracy and computational efficiency. To validate the quality of TDDFT, two 

comparisons have been made: one for small clusters, which can also be modelled with 

inherently more accurate (coupled cluster) methods. These small clusters are, of course, 

unrealistic, as clusters of this size have never been synthesised (and probably never will). 

In addition, the comparison of the results obtained with the bigger particles ((MgO)24 and 

larger) and experiment has been made. Unfortunately the experimental data is based on 

particles that are larger than the ones used in this study, but this comparison can still be 

useful.  

 

5.4.1 Comparison of TDDFT with CC 

A common issue in computational chemistry is the size of the cluster that can be modelled 

and the level of theory that can be applied to it. In this particular case, a comparison with 

high-level CC calculations, performed by Dr. M. Zwijnenburg, can be made for the small 

clusters (n = 1, 2, 4, 6), and as the larger clusters approach experimental size, experimental 

absorption spectra may be used for comparison. However, clusters with sizes in between 

these two extremes cannot practically be compared to other methods. It is therefore 

important to make sure that the approach taken for the clusters where no comparison is 

feasible, is reasonable. This can be achieved by applying the xc-functional approximations 

which yield good agreement with CC calculation. It is not unreasonable to assume that the 

xc-functionals that were found to be suitable for the smaller clusters, can be equally well 

applied to the larger ones.  

The approach to comparing these TDDFT results with EOM-CC is to focus on five small 

clusters, namely (MgO)1, (MgO)2, (MgO)4 and (MgO)6, the latter being studied both in its 

cubic and hexagonal configurations (see figures 5-1 A - E). For this part of the study, the 

structures used for the excited state calculations are those of the B3LYP/def2-TZVP 
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optimised ground state geometry: the same basis set has been used for both the CC and 

TDDFT calculations. Clusters (MgO)1 and (MgO)2 have been studied at the EOM-CCSDT 

as well as EOM-CCSD level of theory, whereas only the latter has been used for the 

(MgO)4 and (MgO)6 clusters, due to computational expense of the methodology. The 

TDDFT calculations have been performed with four different xc-functionals, namely PBE, 

B3LYP, BHLYP and CAM-B3LYP.  

Firstly, a detailed study of the first five excitations of (MgO)2 was undertaken, as seen in 

figure 5-5. This is so that the suitability of TDDFT can be established via comparison to 

high level coupled cluster calculations. (MgO)2 is found to be in the abelian D2h point 

group, and is therefore suitable to study. What can be seen is that all methods agree on the 

energetic ordering of the lowest two excited states, as well as a gap of 0.5 – 0.7 eV between 

these and the next set of excited states. There is some disagreement with regards to the 

character of the third and fourth excited states, which most likely stems from the fact that 

there are many excited states present, all of which lie within 0.1 eV of each other. The 

values show that the TD-CAM-B3LYP values agree best with the EOM-CCSDT results, 

with an average error of approximately 0.1 eV, compared to a difference of ~ 0.4 eV for 

TD-BHLYP and TD-B3LYP, where the former lies higher and the latter lower with 

respect to the EOM-CCSDT results. The TD-PBE values are calculated to be considerably 

lower than the reference result (EOM-CCSDT), with a discrepancy of ~ 0.7 eV. These 

results are representative of all other clusters considered, as the comparison between xc-

functionals and the EOM-CC results follow the same trend: a corresponding analysis has 

been made for the (MgO)4 and both (MgO)6 clusters, and the same conclusions can be 

drawn. These data are not shown here, as they do not offer any further insight. It should 

be noted that the results presented in figure 5-5 are obtained using the frozen core 

approximation where the 1s core electrons are frozen, although a small investigation 

performed by Dr. M. Zwijnenburg suggests that an all-electron calculation for (MgO)2 

lowers the excitation energies by up to 0.1 eV of those reported here, justifying the use of 

the approximation. 
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Figure 5-5: Excitation energies of the five lowest vertical excitations of the (MgO)2 cluster as 

calculated using TD-DFT and EOM-CC. Blue diamonds correspond to the excitation to the 

lowest 1b1g state, orange squares to the lowest 1b3u state, green crosses to the lowest 1b1u state, 

yellow circles to the lowest 1au state, and grey triangles to the lowest 1b1g state. 

 

Further to analysis of the individual clusters, figure 5-6 shows the trend of the lowest 

vertical excitation energy (LVEE) for the five small clusters, indicating that both EOM-

CCSD and TDDFT agree that the LVEE increases smoothly as the size of the cluster (n) 

increases and, furthermore, in the case of the cubic (MgO)6 cluster, the LVEE lies below 

that of the (MgO)6 hexagonal cluster. Due to computational expense, which meant that 

the EOM-CCSDT methodology could be applied to clusters where n < 2, and the fact that 

a consistent methodology is sought for comparison, only the EOM-CCSD data is 

considered here. The EOM-CCSD data lies between that of the TD-BHLYP and TD-

CAM-B3LYP data (above and below, respectively), showing that TDDFT using these xc-

functionals, is a reasonable approach to describing the excitation energies of the small 

clusters. 
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Figure 5-6: Lowest vertical excitation energies as a function of cluster size and xc-functional (or 

EOM-CCSD). 

 

5.4.2 Comparison of TDDFT with experiment 

As established above, TDDFT is a good method for calculating vertical excitation energies 

for very small clusters, although they are unlikely to be realised experimentally due to 

their small size. At the other end of the scale are the experimental structures, which 

TDDFT cannot currently model. However, TDDFT results for particles that approach the 

experimental size-range can be compared to experimental absorption spectra. The 

properties of experimentally realised particles are discussed in more detail in section 3.1.1, 

but the particles most suitable for comparing the TDDFT results with particles that have 

an average size of 3 nm. The experimental sample does contain smaller particles, possibly 

as small as 2 or even 1 nm.19,20 This experimental data has been compared to the absorption 

onset of particles (MgO)24, (MgO)32 and (MgO)40. For those four particles, the lowest 

vertical excitation energy (LVEE) corresponds to the theoretically predicted absorption 
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onset, as the lowest excitation is dipole-allowed in all cases. Figure 5-7 shows the 

dependence of the LVEE on the particle size n for the range of xc-functionals used above, 

as well as the experimental absorption onset. In this figure, the cubic cluster for n = 6 is 

represented, as only cuboid clusters are displayed in this figure. This has been done to 

show the LVEE trend with particle size, and not have potentially different trends for 

different structures in the same figure. Furthermore, only the results for clusters up to n = 

32 are included for TD-CAM-B3LYP, as the xc-functional is not implemented in a 

computationally cost effective code, which means that the computational cost using (TD-

)CAM-B3LYP is considerably higher than that the equivalent calculation with (TD-)PBE, 

(TD-)B3LYP or (TD-)BHLYP. 

 

 

Figure 5-7: Lowest vertical excitation energy (LVEE) of (MgO)n (n = 2, 4, 6, 24, 32, 40) 

nanocuboids calculated  using TD-DFT with different xc-functionals. Red circles represent TD-

PBE results, orange squares TD-B3LYP results, green diamonds TD-CAM-B3LYP results, grey 

triangles TD-BHLYP results and the dashed line the experimental absorption onset of 3 nm 

particles. 
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The behaviour of the xc-functionals seen in figure 5-7 can be divided up into two different 

groups: both xc-functionals with no or low percentage of HFE, i.e. TD-PBE and TD-

B3LYP, fail to show a smooth trend as n increases, where there is a dip in the value of the 

LVEE for (MgO)24. Also, the apparent converged value of the LVEE is considerably 

below the dashed line, which represents the experimental value. On the other hand, the 

two xc-functionals with either high percentage of HFE or range-separated HFE, BHLYP 

and CAM-B3LYP, show a smooth trend and a convergence to the values of 5.1 eV and 

4.7 eV respectively, matching the experimental value of 4.6 eV relatively well, and do not 

show the dip in value for (MgO)24. However, it should be borne in mind that the largest 

particle studied within this context, (MgO)40, is only approximately 0.8 nm in its largest 

dimension, so it still considerably smaller than the experimental particles, although the 

plateau calculated for n  24 would suggest that the comparison is valid. Furthermore, 

when using a smaller basis set (namely DZDP), the LVEE increases by only 0.01 eV for 

TD-B3LYP and 0.09 eV for TD-BHLYP when comparing the values of (MgO)32 and 

(MgO)108 (going from a cube with lengths of 0.6 nm to 1 nm).  

It appears that TD-CAM-B3LYP gives the best match to both the coupled cluster results 

as well as the experimental absorption on-set for larger particles. TD-BHLYP, when 

compared to the TD-CAMB3LYP values, predicts LVEEs blue-shifted (i.e. higher in 

energy) by about 0.4 – 0.5 eV over the whole size range. This is different from the 

behaviour of TD-PBE and TD-B3LYP, where the difference in the predicted LVEE values 

to TD-CAMB-3LYP increases with particle size. For example, in the case of the small 

clusters, the difference in the LVEE between TD-CAM-B3LYP and TD-B3LYP is similar 

in magnitude (~ 0.4 eV) to that between TD-CAM-B3LYP and TD-BHLYP but opposite 

in sign, while for the larger particles, the difference between TD-CAM-B3LYP and TD-

B3LYP increases to more than 1 eV. In the case of TD-PBE the difference increases from 

0.7 eV to over 2 eV. Both TD-B3LYP and TD-PBE also severely underestimate the 

experimental absorption on-set (at 4.6 eV). This underestimation, as well as the mismatch 

to the TD-CAM-B3LYP values for larger clusters, suggests that the accuracy of TD-

B3LYP and TD-PBE declines dramatically with increasing particle size, further discussed 

below. 
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5.5 Origin of the problematic description of excitations in 

MgO nanocuboids 

As discussed above, the use of TD-PBE and TD-B3LYP yields excitation energies that 

are consistently too low. A potential origin for this underestimation may lie in the nature 

of the excitation process. It has previously been found that charge transfer (CT) excitations 

occur in organic molecules89,109,110 and also in TiO2 nanoparticles.227 These CT excitations 

result when (i) only a small overlap exists between the initial and the final orbitals 

involved in the electronic excitation and (ii) xc-functionals are used that are either non-

hybrid functionals (such as PBE) or a hybrid functional with a low percentage of HFE 

(such as B3LYP). When both (i) and (ii) are present in the same calculation, it is possible 

that the excited states, accessed by an excitation described by (i), are spuriously stabilized, 

relative to more local excitations. Typically, the use of hybrid xc-functionals with a larger 

percentage of HFE (such as BHLYP) or range separated xc-functionals (such as CAM-

B3LYP) minimize the problems related to the description of CT-excitations.65,87,89,125 It is 

possible that the larger MgO systems studied here exhibit this spurious stabilization.  

A suitable diagnostic test to probe potential CT-excitations is in terms of the Λ diagnostic 

of Peach et al.89 and selected systems are studied in terms of this. Application of this test 

gives a diagnostic numerical value ranging from 0 (no overlap between the initial and final 

orbitals involved in the excitations) to 1 (complete overlap). Low values of this Λ 

diagnostic††† suggest that the excitation studied has strong CT character, and therefore 

might be underestimated when using xc-functionals with no or low amounts of HFE. 

 

 

 

                                                
††† It should be noted that the low values, referred to in this work as ‘cut-off’ values are 
dependent on the xc-functional used. The cut-off for B3LYP is 0.3 and 0.4 for PBE, as devised 
by Peach et al. In this work, only B3LYP results have been studied in terms of their Λ value. 
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Table 5-3: TD-B3LYP calculated Λ values of the lowest vertical excitation for a range of 

particles, a denotes cubic structure, b hexagonal structure, c sodalite structure. 

 (MgO)2 (MgO)4 (MgO)6 (MgO)12 (MgO)24 (MgO)32 

Λ 0.30 0.32 0.34b (0.33a) 0.35b (0.34c) 0.15 0.13 

 

Table 5-3 shows that the Λ value is approximately 0.3 for the small clusters, but this value 

decreases considerably to about 0.14 for the larger particles (MgO)24 and (MgO)32. The Λ 

value below which the CT character of a system may lead to spuriously low excitation 

energies, has been proposed by Peach et al. to be about 0.3.109 However, the studies that 

underlie this value have been performed on organic systems and studies of TiO2 

nanoparticles suggest that a lower cut-off value might be more suitable for these particular 

inorganic systems.227 Without providing insight into which cut-off value is more suitable 

for MgO systems, table 5-3 shows a clear trend: the smaller particles (up to (MgO)12) do 

not show enough CT character to lead to significantly underestimated excitation energies, 

whereas the value obtained for the larger, more bulk-like particles are suggestive of a CT-

problem being the origin of the low vertical excitation energies found when employing 

TD-B3LYP (and presumably TD-PBE). It can be seen, therefore, that the TD-PBE and 

TD-B3LYP results may be unreliable in predicting the excitation behavior in MgO 

nanoparticles. For this reason, the focus for the remainder of this work is on (TD-)BHLYP 

and (TD-)CAM-B3LYP. Some results obtained with TD-B3LYP are reported, but only 

with the purpose of portraying the differences between a CT and non-CT excitation. 

 

5.6 Calculated optical absorption spectra 

After studying the more technical aspects of the lowest excitations, the next step was to 

simulate the absorption spectra and compare these to experiment. To model the absorption 

spectra, only the larger clusters were studied, namely (MgO)24, (MgO)32, (MgO)40 and 

(MgO)48, using the TD-BHLYP xc-functional and the def2-TZVP basis set. The simulated 
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spectra are shown in figure 5-8. The spectra in figure 5-8 include a Gaussian smearing of 

0.1 eV and a rigid red-shift of 0.5 eV. This red-shift (lowering of the energy) is included 

since, as seen in figure 5-7 the TD-BHLYP predicted LVEE is overestimated by about 0.5 

eV in comparison to the experimental absorption on-set. The experimental spectrum 

shown in figure 5-8 is the absorption spectrum measured for MgO particles with an 

average size of 3 nm.20 The un-shifted spectra shown are in figure 5-9. 

 

 

Figure 5-8: TD-BHLYP/def2-TZVP calculated absorption spectra (including a 0.5 eV rigid red-

shift) of (MgO)n particles (n = 24, 32, 40, 48). The intensity of the peaks has been normalised to 

the largest intensity peak. Experimental absorption spectrum (dashed line) taken from reference 

20. 
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Figure 5-9: Unshifted TD-BHLYP/def2-TZVP calculated absorption spectra of (MgO)n 

particles for n = 24, 32, 40, 48. The intensity of the peaks has been normalised to the largest 

intensity peak. 

 

The spectra seen in figure 5-8 agree well with the experimentally obtained absorption 

spectra; a peak around ~ 265 – 285 nm (4.4 – 4.7 eV) and a more intense peak around ~ 

220 – 240 nm (5.2 – 5.6 eV). The calculated spectra shows more fine structure, such as 

the shoulders between ~ 240 – 255 nm (4.9 – 5.2 eV), although this is dependent on the 

degree of Gaussian smearing used. It was thought that a higher amount of smearing might 

replicate the experimentally obtained absorption spectra better but it would also lead to 

the loss of some detail: the experimental spectrum is, after all, the absorption measured 

from a wide range of particles which average 3 nm, but the size range is considerably 

larger than that of the calculated spectra, i.e. the finer structure may well be present if it 

were possible to record the experimental spectrum of just one particle, or an ensemble of 

particles of the same size. The inhomogeneous broadening observed experimentally stems 

from the wide range of particles observed. For these reasons, it was decided that the 

Gaussian smearing of 0.1 was a good compromise. 
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As with the LVEE, the calculated spectra of the different particles show that there is a 

slight blue shift of the whole spectrum as the particle size increases: the peak maximum 

of the first low-intensity peak around ~ 265 – 285 nm (4.4 – 4.7 eV) shifts to shorter 

wavelength (higher energy), with increasing particle size.  

The relative intensities of the shoulders in the ~ 235 – 250 nm (5.0 – 5.3 eV) region of the 

spectra compared to the main peak around ~ 225 – 235 nm (5.3 – 5.5 eV) decreases from 

(MgO)24 to (MgO)40 to (MgO)48 to (MgO)32. This decrease in relative intensity for 

(MgO)32 seems to be, at least in part, due to symmetry constraints: all particles considered 

here have D2h symmetry, with the exception of (MgO)32, which has (higher) Td symmetry. 

The result of this is that the lower symmetry have a greater variety of excitations that are 

symmetry- (and potentially dipole-) allowed. 

The data displayed in figure 5-8 shows that the absorption spectra are size- dependent. 

Therefore, further investigation into the effect of particle size on the absorption spectrum 

was undertaken and was achieved by comparing (MgO)32 and (MgO)108 clusters, both of 

Td symmetry. In these calculations the DZ(D)P basis set was used instead of def2-TZVP, 

because the (MgO)108 calculation was not computationally tractable with the larger basis 

set. Both spectra have been obtained using the BHLYP xc-functional. The spectra seen for 

(MgO)32 and (MgO)108 with the DZ(D)P basis set would be expected to be representative 

of the def2-TZVP basis, since the (MgO)32 DZ(D)P and def2-TZVP spectra are very 

similar, as seen from figure 5-10. 
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Figure 5-10: A comparison between TD-BHLYP/def2-TZVP (solid line) and TD-

BHLYP/DZ(DP) (dashed line) absorption spectra for (MgO)32. Both spectra include a 0.5 eV 

rigid red-shift and the intensity of the peaks has been normalised to the largest intensity peak. 
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Figure 5-11: TD-BHLYP/DZ(D)P calculated absorption spectra for (MgO)32 (red line) and 

(MgO)108 (blue line), including a 0.5 eV rigid red-shift. The intensity of the peaks has been 

normalised to the largest intensity peak. Experimental absorption spectrum (grey dashed line) 

from reference 20. 

 

Figure 5-11 shows the TD-BHLYP/DZ(D)P spectra for (MgO)32 and (MgO)108.The low 

intensity peak in the 265 – 285 nm (4.4 – 4.7 eV) region is blue-shifted when going from 

(MgO)32 to (MgO)108. The 235 – 255 nm (4.9 – 5.3 eV) region is similar in both spectra, 

with the shoulder of the peak decreasing in intensity for (MgO)108. When going from n = 

32 to 108, the low energy peak in the region of 265 – 285 nm (4.4 – 4.7 eV) seems to gain 

relative intensity to the high energy peaks in the region of 220 – 235 nm (5.3 – 5.7 eV). 

This, however, is an artifact of the normalization of the peak heights to the largest intensity 

peak: when the ratio, R, of the sum of oscillator strengths above and below 4.8 eV (260 

nm) is taken for (MgO)32 and (MgO)108, it decreases as the particle size increases, in line 

with experimental results.20 R is defined as follows:  
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𝑅 =
∑ 𝑓(𝜆𝑖)𝜈𝑖>260nm

∑ 𝑓(𝜆𝑖)𝜈𝑖<260nm
                                                                                                     (5-1) 

where 𝑓(𝜆𝑖) is the oscillator strength of the transition with wavelength 𝜆𝑖. 

The advantage of evaluating the ratios of the oscillator strengths is that this value is 

independent of the choice of Gaussian broadening parameter. The ratios can be found in 

table 5-4. 

 

Table 5-4: Ratios of summed oscillator strength above and below 260 nm (R) as calculated with 

TD-BHLYP/DZ(D)P. 

 (MgO)32 (MgO)108 

R 0.072 0.062 

 

As mentioned in section 3.1.1.2, previous studies have employed the B3LYP xc-

functional, so it is interesting to compare the unshifted TD-B3LYP spectrum with the red-

shifted TD-BHLYP spectrum, as seen in figure 5-12. The (MgO)32 spectrum calculated 

with TD-B3LYP is similar to that reported by McKenna and co-workers166,167 using the 

embedded cluster methodology to model a cluster centered on an oxygen corner atom. 

McKenna and co-workers spectrum shows a low peak around ~ 335 nm (3.7 eV) and a 

more intense peak at ~ 270 nm (4.6 eV). As the more intense peak is centered at the same 

energy as the experimental shoulder (270 nm, 4.6 eV), the conclusion was made by 

McKenna and co-workers that the calculated peak is the same as the experimental 

shoulder and that the experimentally observed peak at 230 nm (5.4 eV) results from purely 

edge-based excitations. An additional hypothesis was also made, namely that the ~ 335 

nm (3.7 eV) peak was too weak to be observed experimentally. However, from the results 

presented above using an isolated cluster approach, it appears that TD-B3LYP may not 

describe certain excitations well, potentially lowering the energy of charge-transfer 

excitations. McKenna and co-workers have labelled both calculated excitations at 3.7 eV 

and 4.6 eV as local excitations, based around the corner oxygen. However, due to the 
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small size of the region that is described quantum mechanically, the exciton has to be 

localised around the corner atom. Therefore, it might be more accurate to say that the 

calculated peak position at ~ 335 nm (3.7 eV) is a CT artifact. In light of the CT character 

of the excitation, it seems more accurate to say that the calculated low intensity 3.7 eV 

peak corresponds to the erroneously stabilised experimental 4.6 eV peak, and not a 

potential dark excitation, as suggested by McKenna and co-workers.  

 

 

Figure 5-12: Comparison of the absorption spectrum of (MgO)32, as calculated with TD-

B3LYP/def2-TZVP (blue line) and TD-BHLYP/def2-TZVP (red line). The TD-BHLYP 

spectrum is red-shifted by 0.5 eV. 

 

5.7 Character of the excitations 

Having investigated the important aspects of electronic excitations in these MgO 

nanoparticles, and the ability of TDDFT to produce spectra in satisfactory agreement with 

experiment (subject to appropriate choice of xc-functional), it is of interest to study the 
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character of the excitations at an atomistic level, i.e. to investigate which atoms are 

involved in a given excitation. To obtain a quantitative measure of the change in electron 

density upon excitation, it is useful to compare the ground and excited state charges for 

any given excitation. Here, charges have been obtained from Natural Bonding Order 

(NBO) analysis (section 2.2.8.1), as Mulliken charges have been shown to be unreliable 

for MgO by previous tests by the author, especially for (MgO)18: atomic charges of 

unrealistic proportions (~ 18 a.u.) were attributed to the atoms responsible for the dipole 

moment. The NBO charges are obtained for each atom, and the charges can also be 

analysed in terms of how much they contribute to the total charge difference in their sub-

lattice (∆Mg= ∑ ∆𝑞𝑖
𝑛Mg

𝑖=1
, ∆O= ∑ ∆𝑞𝑗

𝑛O
𝑗=1 ). Furthermore, density difference plots, 

describing the redistribution of electronic charge upon excitation, have been generated for 

the different particles. Here, only the character of optically allowed excitations have been 

studied, so as to understand and interpret the absorption spectra more accurately. 

 

5.7.1 Cubic (MgO)32 and (MgO)108 

Both (MgO)32 and (MgO)108 are cubic particles and therefore provide an interesting place 

to begin studying the atomic contribution to the excitations. The ~ 270 nm (4.6 eV) peak 

for (MgO)32 can be attributed to an electronic excitation from the four oxygen corner 

atoms (90% of ∆O) to the twelve magnesium edge atoms coordinated directly to the 

oxygen corners (72% of ∆Mg), along with a small contribution (18% of ∆Mg) from the four 

magnesium corner atoms. This excitation has been visualised in figure 5-13-A, showing 

the electron density difference between the ground and excited states. Both analysis 

methods suggest similar excitation behaviour, although the magnesium density 

differences are less apparent. This is due to the fact that no individual Mg atom contributes 

significantly but the 12 edge and 4 corner Mg atoms combined provide a significant 

contribution to the density difference. 

The higher energy (MgO)32 excitation at ~ 240 nm (5.2 eV) shows a different character to 

the 270 nm (4.6 eV) excitation: an electron is excited mainly from the oxygen corner 
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atoms (84% of ∆O) to the magnesium corners (60% of ∆Mg), with contributions from edge 

atoms being considerably reduced (11% of ∆O and 35% of ∆Mg). This excitation exhibits 

CT- characteristics, with a 0.6 nm separation between the corner sites, i.e. the charge 

accumulation and depletion are spatially separated by the entire length of the cluster. 

The ~ 230 nm (5.4 eV) peak is different in that the electron is excited from oxygen edge 

atoms (70% of ∆O) to magnesium corner atoms (88% of ∆Mg), with a minor contribution 

from the four bulk oxygen atoms in the particle (18% of ∆O). This density difference 

associated with this excitation is visualized in figure 5-13-B. This analysis method is, as 

previously, in agreement with the quantitative NBO data obtained for this excitation.  

The lower energy peak excitations seem to be associated with an excited electron that is 

localised over more atoms than the corresponding hole. In contrast, the higher energy peak 

results from excitations that are based on an excited electron that is localised over fewer 

atoms than the corresponding hole. Apart from the CT character excitation, most of the 

optically allowed excitations for (MgO)32 are local, i.e. the exciton is localized on 

neighbouring atoms, rather than delocalized over spatially well-separated atoms. 
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Figure 5-13: TD-BHLYP/def2-TZVP calculated ground and excited state electron density 

difference for the excitation at 4.6 eV (A) and 5.4 eV (B) of the (MgO)32 particle: blue shows 

charge accumulation (excess of electron density in the excited state), and green shows charge 

depletion (deficit of electron density in the excited state) when an isosurface of 0.01 a.u. is used. 

The numbers indicate the most significant differences in NBO charge of the excited state and 

ground state charge, as well as the multiplicity of each site. Red spheres represent oxygen atoms, 

brown magnesium atoms. 

 

The larger (MgO)108 cluster shows similar excitation behaviour to (MgO)32: the ~ 270 nm 

(4.6 eV) peak results from an electronic excitation from the four oxygen corner atoms 

(86% of ∆O) to the twelve magnesium edge atoms (77% of ∆Mg) directly bonded to the 

oxygen corner atoms. The same behaviour can be attributed to the ~ 240 nm (5.2 eV) peak. 

Looking at the ~ 210 – 240 nm (5.2 – 5.9 eV) part of the spectrum, two distinct peaks can 

be seen. The lower energy peak corresponds to an excitation from the twelve oxygen edge 

atoms bonded to the magnesium corner atoms (60% of ∆O) to the four magnesium corner 

atoms (86% of ∆Mg), as well as a small but noticeable contribution (20% of ∆O) of bulk-

like oxygen atoms near the magnesium corners. The higher energy peak is less well 

defined; it is a combination of different excitations close in energy, although they all have 

the same underlying feature: an electron is excited from a number of oxygen corner (10 – 

30% of ∆O) and edge atoms (~ 60% of ∆O) to magnesium corner (40 – 50% of ∆Mg) and 

edge atoms (30 – 40% of ∆Mg). These excitations are the ones with the most CT character, 
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and appear to be the equivalent to the CT-excitation seen for (MgO)32, although both the 

oxygen as well and magnesium corner atoms contribute more towards the excitations. 

 

5.7.1.1 Cuboid (MgO)n particles and general remarks 

The above analysis has also been performed on other rocksalt particles of cuboid structure, 

i.e. where not all particle sides are equally long. The analysis of charge differences for 

(MgO)24 suggests that the ~ 265 – 285 nm (4.4 – 4.7 eV) peak results from an excitation 

in which an electron is excited from the four corner oxygen atoms (91% of ∆O) to 

magnesium corner (45% of ∆Mg) and edge (44% of ∆Mg) atoms. Comparing this result 

with that of (MgO)32, it can be seen that the magnesium corner atoms are considerably 

more involved at 45%, compared to 18% in the case of (MgO)32. 

The ~ 240 nm (5.2 eV) peak as well as the ~230 nm (5.4 eV) peak correspond to 

excitations in which an electron is transferred from the oxygen corner (30 – 55% of ∆O) 

and edge (30 – 45% of ∆O) atoms to magnesium corner atoms (80 – 95% of ∆Mg). This is 

again different to the excitation for (MgO)32, where the contribution of the oxygen corner 

atoms is reduced form 84% of ∆O to 30 – 55% of ∆O. 

The charge differences for (MgO)40 and (MgO)48 are very similar to that of (MgO)24. 

Nanocuboids, in comparison to (MgO)32 and (MgO)108, are more difficult to characterise 

as one edge site is not symmetry equivalent to another edge site, making the results less 

obvious. What all clusters have in common is that the low energy excitations have the 

electron delocalised over more atoms than the corresponding hole, whereas for the higher 

energy excitations the excited electron is localised over fewer atoms compared to the 

corresponding hole. Furthermore, an interesting observation is that in none of the particles 

studied do the symmetry allowed excitations correspond to pure corner or edge 

excitations, i.e. excitations in which an electron is excited from a corner to a corner (or 

from an edge to an edge) without any other major contributions. In higher energy 

excitations, the edge contributions do increase when going from (MgO)32 to (MgO)108, so 

it would be possible that for considerably larger clusters (>> 1 nm), these become the 
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dominant - and possibly only sites - involved these in excitations. As already stated, this 

cannot be tested with the methodology applied here and is also not very likely as the corner 

involvement might get substituted for face (5-coordinated) atoms or even atoms below the 

surface. Experimental data20,148,228 leads to the conclusion that, on the basis of the 

evolution of the shape of the absorption spectra with particle size, the ~ 270 nm (4.6 eV) 

peak is the result of an excitation from a corner (3-coordinated) atom and the ~ 220 – 240 

nm (5.2 – 5.6 eV) peak is due to excitation from an oxygen edge (4-coordinated) atom. 

As the lower energy peak become less intense, in agreement with the fact that as the 

particle size increases, the relative amount of edge sites decreases. The analysis presented 

above agrees with the experimental analysis. However, from the charge differences, it 

seems that the experimental conclusions are too simplistic: at least for particles up to 1 

nm, it would be misleading to identify these features as exclusively corner or edge 

excitations, depending on the coordination environment of the oxygen atoms involved. 

This work has shown that the centre(s) associated with an electronic excitation tend to 

differ in coordination number, and an excitation involved a mixture of such sites. This has 

previously been hypothesized to explain the experimental luminescence spectrum of MgO 

nanoparticles exposed to H2,
156 but was not demonstrated conclusively. Furthermore, it is 

important to remember that any peak in an absorption spectrum is made out of several 

individual excitations, each varying from the other by a small degree. 

 

5.7.1.2 B3LYP excitation behaviour 

As previous computational work has been performed using the B3LYP xc-functional, it is 

interesting to compare the above analysis of the BHLYP excitations to those obtained with 

B3LYP.  In line with the Λ value of 0.13 from table 5-3, the lowest excitation is a CT-

excitation, where an electron is transferred from the oxygen corner atoms (89% of ∆O) to 

the magnesium corner atoms (71% of ∆Mg), as visualized in figure 5-14. 
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Figure 5-14: TD-B3LYP excited state – ground state density difference for the excitation 

corresponding to the 350 nm charge-transfer peak of (MgO)32 (blue, excess of electrons in the 

excited state; excited electron/ green, deficit of electrons in the excited state; hole) with isovalue 

of 0.01 a.u.. The numbers indicate the most significant differences in NBO charge of the excited 

state and ground state charge, as well as the multiplicity of each site. Red spheres represent 

oxygen atoms, brown magnesium atoms. 

 

As mentioned previously, TD-BHLYP also predicts an excitation with CT character, but 

this is not the lowest excitation. This means that there is a change in character of the lowest 

optically allowed excited state, as well as a change in the ordering of excited states when 

comparing TD-B3LYP and TD-BHLYP. This is further evidence that TD-B3LYP fails in 

correctly describing the excitation spectra for MgO nanocuboids, as it is unable to assign 

accurate energies to locate excited states with CT character. 

To return to previous work performed on MgO excitation via embedded cluster 

calculations centered on an oxygen corner atom, it is impossible for this approximation to 

yield the sort of CT-excited state that can be found in isolated (MgO)32 with TD-B3LYP, 

as the embedded cluster approach does not have any quantum mechanically described 

magnesium corner atoms. It is therefore not surprising that, although the same xc-

functional has been used, the lowest excitation is found to have a different 

character,156,163,166,167 where the corner and the neighbouring oxygen atoms are the main 
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contributors to the excitation. This embedded cluster excitation leads to a peak around 3.6 

– 3.8 eV, i.e. it takes the character of the lowest TD-BHLYP excitation but at energies 

similar to those obtained from TD-B3LYP for (MgO)32. This shows that embedded cluster 

calculations yield an accurate description of the excitation but at spuriously stabilized 

energies. This is presumably due to the fact that the electron in the embedded cluster 

calculation cannot delocalise from corner to corner atom, as only one corner atom is 

described quantum mechanically. 

 

5.8 Beyond Nanocuboids 

As shown in figure 3-1, Transmission Electron Microscopy (TEM) images of MgO 

nanoparticles show mainly nanocuboids. However, in principle, particles with different 

crystal cuts to the above studied (100) are possible. One such example would be a 

cuboctahedral particle, which exhibits a mixture of (100) and (111) surfaces, as shown in 

figure 5-15-A. Atoms on a (111) surface are 3-coordinated, and therefore particles 

exhibiting such surfaces have a much higher concentration of 3-coordinated sites 

compared to nanocuboids. 

To obtain some insight into the effect a different surface can have, the cuboctahedral 

(MgO)28 particle was optimised using the xc-functional BHLYP and the def2-TZVP basis 

set, and vertical excitation energies have been obtained from TD-BHLYP, from the 

BHLYP-optimised geometry. The LVEE for the cuboctahedral (MgO)28 particle is at 3.60 

eV, lower than the LVEE of similar sized nanocuboids (4.96 eV for (MgO)24 and 5.07 for 

(MgO)32). The nature of the excitation of the cuboctahedral particle is also fundamentally 

different compared to that of the cuboid particles, as it involves all atoms on the (111) 

face, as seen in figure 5-15-B. This delocalisation is (presumably) inherently linked to the 

lowering of the excitation energy.  
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Figure 5-15: A shows a BHLYP/def2-TZVP optimized structure of the (MgO)28 cuboctrahedral 

particle and B its TD-BHLYP excited state – ground state density difference for the lowest 

optically allowed excitation (blue, excess of electrons in the excited state; excited electron/ 

green, deficit of electrons in the excited state; hole) with isovalue of 0.01 a.u.. 

  

An increase of 3-coordinated surface sites decreases the LVEE dramatically and it can be 

seen that different morphologies have a considerable effect on the excitation energies. 

Figure 5-16 shows that the previously mentioned hexagonal tube-like clusters ((MgO)6, 

(MgO)9, (MgO)12 and (MgO)18) behave in a similar way to the cuboids in that the LVEE 

increase with particle size, and the LVEE appears to reach a plateau above 5 eV. Figure 

5-16 also shows that the bubble-like clusters exhibit a very different behaviour, which has 

previously been seen for ZnS 229: the LVEE increase from (MgO)8 to (MgO)12, only to 

decrease again when going from (MgO)12 to (MgO)16. Both the ground state geometries 

of the bubble-like structures (MgO)8 and (MgO)16 are shown in figure 5-17. 
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Figure 5-16: Lowest vertical excitation energy (LVEE) of (MgO)1 to (MgO)40 calculated  using 

TD-BHLYP/def2-TZVP. Blue diamonds show rocksalt structures particles, orange square 

hexagonal tubes, grey triangles bubble-like structures. Open symbols correspond to particles 

with faces containing odd number of atoms, i.e. (MgO)18 and (MgO)27. 

 

 

 

Figure 5-17: B3LYP/def2-TZVP optimised structures of A (MgO)8 and B (MgO)16. 
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5.9 Conclusions 

The work presented here is a study of the suitability of TDDFT to predict and rationalise 

the optical absorption spectra of cubic and cuboid MgO nanoparticles. It can be concluded 

that vertical excitations are not as straightforward to predict as previously thought: TD-

B3LYP offers a poor description by underestimating the absorption onset, which is most 

likely due to the fact that the lowest excitation is an erroneously stabilized corner to corner 

excitation which therefore exhibits CT character, which xc-functionals with low HFE 

struggle to describe properly. However, the use of TD-BHLYP, a hybrid xc-functional 

with a high percentage of HFE, seems to predict the absorption spectra of the studied 

(MgO)n particles more reliably, albeit a rigid 0.5 eV red-shift appears to be required to 

obtain good agreement with experiment. The range-separated CAM-B3LYP xc-functional 

also yields good agreement with experiment. The problem with this functional, however, 

is that it is only implemented in less efficient quantum chemistry codes. 

As the character of the excitations were studied in more detail,  an atomistic picture was 

obtained for the excitations that contribute most to the absorption peaks between the range 

of ~ 200 – 300 nm (~ 4 – 6 eV). These excitations typically comprise an exciton that is 

delocalized over 3-coordinated corner and 4-coordinated edge sites. It therefore seems 

overly simplistic to label excitations as simply ‘corner’ or ‘edge’ excitations, as some 

previous experimental studies have done, although it is worth nothing that, for the 

(MgO)108 particle, edge contributions to the excitations become more pronounced.  

Further investigation led to the discovery that particles with different morphologies, such 

as the cuboctahedral particle (MgO)28, have considerably different absorption energies 

and behaviour. This is not studied further in this thesis, although it provides an interesting 

avenue for future investigations.  

This study naturally leads to further questions. Do other rocksalt-structured nanoparticles 

comprised of different materials also exhibit CT-excitations? Is MgO really a useful 

computational model, giving insight into the properties of other similar materials, or is 

MgO the only material in which the accurate description of the excited state needs the use 
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of an xc-functional with high percentage of HF exchange? These questions are considered 

in the next chapter. 
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6. Optical properties of other particles with 

rocksalt structure 

Before the results of this chapter are discussed, it should be noted that all alkaline earth 

oxide calculations, as well as those of magnesium chalcogenides, have been performed by 

the author. However, the optimised geometries of cadmium oxide (CdO) and lead sulphide 

(PbS) have been obtained from Dr. Martijn Zwjnenburg. 

 

6.1 Introduction 

Chapter 5 showed that the absorption spectra of MgO nanoparticles are red-shifted when 

compared to the absorption spectra of the bulk. For semiconductor materials, however, 

the opposite is true: generally, the absorption spectra of the nanoparticles are blue-shifted 

with respect to the absorption spectra of the bulk. This is due to quantum 

confinement146,230–233: the exciton (electron-hole pair) is delocalised over the entire 

particle, which means that as the particle size decreases, the excited state is spatially more 

and more constrained, which results in an increase of the excitation energy. 

The excited state localisation is, as discussed in detail in chapter 5, very different in MgO 

particles: the exciton gets localised on corners (3-coordinated sites) and edges (4-

coordinated sites), resulting in a lowering of the excitation energies to about 4.6 eV for 

the 3 nm particles synthesised by Stankic et al.,20 compared with 7.8 eV in the bulk.186 

The issue with describing the MgO excited states is that the use of the commonly 

employed xc-functional B3LYP (as well as other xc-functionals with no or low amounts 

of HFE), in TDDFT calculations is problematic due to charge transfer (CT) excitations 

that get erroneously stabilised. A CT excitation is characterised by there being no, or 

limited, overlap between the orbitals involved in the excitation. The solution to this 

problem seems to be to employ xc-functionals with an increased amount of HFE, such as 
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BHLYP, or the use of CAM-B3LYP, a range-separated xc-functional, as found in chapter 

5. 

To extend the work from chapter 5, the focus here is on other materials that crystallise 

experimentally in the rocksalt structure, namely calcium oxide (CaO), strontium oxide 

(SrO), barium oxide (BaO), magnesium sulphide (MgS), magnesium selenide (MgSe), 

cadmium oxide (CdO) and lead sulphide (PbS). In this chapter, these materials are studied 

as cubic (MX)32 structures, approximately 0.6 – 0.7 nm in size. These nanoparticles are 

considered in terms of their excitation localisation, as well as the connection between the 

optical properties and surface pinning of the excited state. Furthermore, the theoretically 

predicted absorption spectra  are compared to the measured absorption spectrum for 

experimentally well-defined CaO and SrO nanoparticles.19  

 

6.2 Methodology 

The (MX)32 nanoparticles (MX = BaO, CaO, CdO, MgS, MgSe, SrO, PbS) have been 

optimised using DFT, and the singlet vertical excitation energies have subsequently been 

calculated using TDDFT on the DFT-optimised ground state geometries. 

The xc-functionals used were B3LYP and BHLYP, to outline the differences between the 

use of low (20%) and high (50%) amounts of HFE. The basis set used in all calculations 

is the triple-ζ quality def2-TZVP basis set, as was used in the study of the excitation 

behaviour of MgO nanoparticles in the previous chapter. The basis set includes effective 

core potentials (ECP) for barium, strontium and lead.234,235 

The standard deviation of the Gaussian function used in the custom script to create the 

absorption spectra is 0.1 eV, which has been chosen to approximate experimental peak 

shapes for MgO, as discussed in chapter 5. 

Similarly to previous analysis on MgO discussed in chapter 5, the character of the 

excitation has been analysed by evaluating the difference in the natural bond order (NBO) 
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charges236 between  the ground and excited states. The Λ diagnostic of Peach et al.89 has 

been employed to identify potential CT excitations. 

All calculations have been performed using the TURBOMOLE 6.4 code, apart from the 

TD-B3LYP calculations of Λ, where the GAMESS-US (1 CT 2010 – R1) code has been 

used. Visualisation has been performed using VMD.  

 

6.3 Results 

After the ground state structure determination, the optical properties of these particles are 

studied and a link between the dielectric constants of the corresponding bulk materials 

and the degree to which the Coulombic interaction between the excited electron and the 

excited electron-hole is screened in the different nanoparticles is established. 

 

6.3.1 Ground state structures 

It is useful to examine the general features of the ground state structures of the (MO)32 (M 

= Mg, Ca, Sr, Ba), (MgX)32 (X= O, S, Se), (CdO)32 and (PbS)32 particles, before analysing 

the optical properties. 

 



Optical properties of other particles with rocksalt structure 

 

145 
 

 

Figure 6-1: B3LYP/def2-TZVP optimised structure of the (MgO)32 nanoparticle as an example; 

all other (MX)32 particles studied have the same structure and morphology. 

 

As seen in figure 6-1, the (MX)32 nanoparticles are cubic with high (Td) symmetry. The 

edges consist of four ions and the faces contain sixteen ions. Table 6-1 illustrates the 

particle sizes in terms of the edge lengths, as well as the M – M and X – X body diagonals. 

The values obtained with BHLYP and B3LYP are in good agreement with each other. As 

the magnesium or oxygen ions are replaced by heavier ions, edge lengths and body 

diagonals increase in size, as would be expected based on trends in the ionic radii.  
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Table 6-1: Distances between corner ions on the same face, as calculated for structures 

optimised using the BHLYP xc-functional (B3LYP results in brackets). All values given in Å. 

 MgO CaO SrO BaO MgS MgSe CdO PbS 

M – X 

edge 

5.87 

(5.93) 

6.76 

(6.79) 

7.24 

(7.29) 

7.70 

(7.76) 

7.29 

(7.33) 

7.68 

(7.73) 

6.52 

(6.60) 

8.97 

(8.96) 

X – X 

diagonal 

8.42 

(8.52) 

9.52 

(9.57) 

10.13 

(10.20) 

10.67 

(10.75) 

10.69 

(10.77) 

11.32 

(11.40) 

9.28 

(9.41) 

12.71 

(12.73) 

M – M 

diagonal 

8.17  

(8.26) 

9.59 

(9.64) 

10.34 

(10.41) 

11.11 

(11.19) 

9.89 

(9.94) 

10.35 

(10.41) 

9.16 

(9.26) 

12.67 

(12.62) 

 

6.3.2 Optical gap 

Table 6-2 shows the lowest vertical excitation energies of t2 symmetry for the different 

particles, predicted by TD-B3LYP and TD-BHLYP, in addition to the Λ diagnostic values 

obtained from TD-B3LYP. Unfortunately, convergence could not be reached in the Λ 

calculation for BaO, and so no value is reported. The t2 excitations corresponds to the 

optical gap Δo of the respective particles, as excitations belonging to all other irreducible 

representations are optically forbidden (i.e. are dark excitations) for the electric dipole of 

the transition moment operator. Similarly to what was found for MgO, TD-B3LYP 

calculated Δo values are always lower than those obtained using TD-BHLYP. 

Interestingly, the Δo and Λ values obtained vary considerably between the different 

nanoparticles under consideration. 
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Table 6-2: Optical gap (Δo) for (MX)32 particles calculated using TD-BHLYP and TD-B3LYP, 

as well as the TD-B3LYP Λ values for the lowest t2 excitation. In the case of PbS, the 

calculation was performed with the def2-SVP basis-set by Dr. Berardo.  Δo values are in eV. 

 MgO CaO SrO BaO MgS MgSe CdO PbS 

Δo, B3LYP 3.55 3.30 2.89 2.91 3.62 3.21 1.48 2.71 

Δo, BHLYP 5.08 4.35 3.91 3.86 4.82 4.37 3.01 3.39 

Λ B3LYP 0.130 0.168 0.174 - 0.240 0.373 0.429 0.476 

 

In the case of the (MO)32 particles, Δo also corresponds to the overall lowest vertical 

excitation energy for each of the particles, i.e. all dark excitation have higher excitation 

energies. From table 6-2, it is clear that for both xc-functionals, as magnesium is replaced 

by heavier alkaline earth metals, Δo decreases, in line with what is experimentally 

observed for both bulk systems172,237 and nanoparticles.19 The difference in the optical gap 

between SrO and BaO for TD-B3LYP is so small that the slight increase for BaO is within 

the uncertainty of the methodology. The overall change in Δo when going from MgO to 

BaO is more pronounced when using the xc-functional BHLYP, which includes a greater 

percentage of HFE. The largest variation in the TD-BHLYP (MO)32 data set is between 

MgO and CaO (0.73 eV), whereas the TD-B3LYP data set shows the largest variation to 

be between CaO and SrO (0.41 eV). As already mentioned, Δo is always larger for TD-

BHLYP than it is for TD-B3LYP but the difference between the two decreases as the 

cation mass increases: the value of  Δo calculated for MgO with TD-BHLYP is 1.53 eV 

larger than its TD-B3LYP counterpart, while the difference decreases to 1.05 eV for CaO, 

1.02 eV for SrO and 0.95 eV for BaO. 

The (MgX)32 series in table 6-2 shows that the TD-BHLYP prediction of Δo smoothly 

decreases as the anion becomes heavier, similar to what is found when varying the cation 

in the (MO)32 series. The largest change is between MgS and MgSe, at 0.45 eV (compared 
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to 0.26 eV between MgO and MgS). The predicted values for Δo using TD-B3LYP, 

however, exhibit different behaviour: Δo increases slightly (by 0.07 eV) when going from 

MgO to MgS and then decreases by 0.41 eV when going from MgS to MgSe. It is possible 

that the increase in Δo when going from MgO to MgS is an artefact of TDDFT, as the 

increase is so small. However, it is clear that TD-B3LYP does not follow the same pattern 

as TD-BHLYP. In line with the (MgX)32 TD-BHLYP data, the biggest change in Δo is 

between MgS and MgSe. Interestingly, the lowest t2 excitation for the (MgX)32 materials 

is not always the lowest vertical excitation. In both the TD-BHLYP and TD-B3LYP 

calculations, the lowest a2 excitation decreases in energy when going along the MgX 

series, and becomes lower than the t2 excitation for MgSe in the TD-B3LYP calculations 

(at 3.16 eV for the a2 excitation) and for MgS and MgSe in the TD-BHLYP calculation 

(at 4.57 eV and 4.05 eV respectively for the a2 excitation). The author is not aware of any 

study of MgX nanoparticles or absorption spectra of all (bulk) MgX materials, so it is 

difficult to assess the different trends, as the experimental work has focussed on zinc 

blende structures rather than rocksalt materials.188,238–240 

The Δo for CdO is predicted to be smallest in both the TD-BHLYP and TD-B3LYP series 

and is also the most red-shifted of the (MX)32 series. The difference between the TD-

BHLYP and TD-B3LYP calculated optical gap is similar to that predicted for MgO, both 

at 1.53 eV. The author is, again, not aware of an internally consistent experimental study 

of MgO and CdO nanoparticles, but the calculated red-shift in the optical gap for CdO is 

similar to the red-shift in the experimental absorption onset between bulk MgO at 7.67 eV 

and bulk CdO at 5.9 eV.178 

Finally, the Δo in PbS is predicted both by TD-BHLYP and TD-B3LYP to be second 

lowest of all the (MX)32 particles studied here, with a 0.68 eV difference between the 

calculated values. It should be noted that no spin-orbit coupling effects have been included 

in the calculations, which might be significant in materials containing lead. Although the 

values obtained in this study are consistent within the set of particles studied, it is possible 

that the experimental Δo, and indeed those obtained from calculations including spin-orbit 

coupling, would be significantly lower than predicted here. The lowering of excitation 
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energies upon inclusion of spin-orbit coupling is expected as mixing of singlet and triplet 

excitations could occur.  

The Λ value, as devised by Peach et al.,89,109 is a diagnostic test of the spatial overlap 

between the Kohn-Sham orbitals contributing to the TDDFT excitation. The cut-off value 

below which an excitation is most likely to have CT character is 0.3 for TD-B3LYP, as 

previously mentioned. From the Λ values shown in table 6-2, it can be seen that the Λ 

values for all (MO)32 particles fall below the cut-off value proposed by Peach et al.89 The 

Λ values increases ever so slightly down the series MgO < CaO < SrO but the variation 

in the Λ values between particles with different chemical composition is actually smaller 

than the variation seen in table 5-3, where the Λ values were presented for differently 

sized MgO nanoparticles. In the case of (MgX)32, the link between Λ values and chemical 

composition seems stronger, as the Λ value increases down the series MgO < MgS < 

MgSe, actually becoming slightly larger than the 0.3 cut-off for MgSe. Selenium is a softer 

ion than sulphur, which in turn is softer than oxygen, which leads to a less pronounced CT 

character in any excitation, as the electron density spreads more for a softer ion, and 

therefore increases the orbital overlap (although the bond distance increases from oxygen 

to sulphur to selenium, which potentially reduces the orbital overlap). Both the (CdO)32 

and (PbS)32 Λ values lie clearly above the cut-off. The Λ value for (PbS)32 reported in 

table 6-2 was calculated by Dr. Enrico Berardo using the smaller def2-SVP basis set82 

because of convergence issues when using the def2-TZVP basis set. However, the def2-

TZVP value is likely to be similar to that obtained using  the smaller basis set, as the TD-

B3LYP predicted Δo values are very similar (and still within the accuracy of TDDFT), at 

2.64 eV for def2-SVP and at 2.71 eV for def2-TZVP. This analysis of the orbital overlap 

suggests that for (CaO)32, (SrO)32, (BaO)32 and (MgS)32 particles, the t2 excitation, as 

described by TD-B3LYP, is a spuriously stabilised CT excitation. Without the spurious 

stabilisation of the CT excitation, a local excitation would possibly have been the lowest 

energy excitation, as has been observed for MgO. It is therefore not unreasonable to say 

that the Δo predicted by TD-B3LYP is severely underestimated for these particles. In 

contrast, the TD-B3LYP Δo values for (MgSe)32, (CdO)32 and (PbS)32 and the description 

of these excitations obtained from TD-B3LYP calculations should be more trustworthy. 
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6.3.3 Absorption Spectra for (CaO)32 and (SrO)32 

Before the localisation of the lowest optically allowed excitation is analysed in more 

detail, it is useful to compare the absorption spectra of (CaO)32 and (SrO)32 particles with 

experimental data obtained from reference 19, shown in figure 6-2. This comparison can 

only be done for these two materials, as only for nanoparticles of these systems is 

experimental optical data of comparable quality to that of MgO nanoparticles available. 

Furthermore, this builds on the work on MgO nanoparticles, which shows that TD-

BHLYP predicts the absorption spectra very well after a rigid downwards shift of 0.5 eV 

is applied to the obtained spectrum. This shift is based on the findings in chapter 5 

(specifically figure 5-7), which show that as the HFE is increased to 50% in TD-BHLYP, 

the non-problematic excitations are shifted up in energy by approximately 0.5 eV, while 

correcting the description of CT states. It is interesting to investigate whether this ad-hoc 

shift of 0.5 eV can be applied to other alkaline earth oxides apart from MgO. 
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Figure 6-2: Experimental UV diffuse reflectance spectra for MgO, CaO and SrO CVD-grown 

nanoparticles with average sizes of 6 nm for MgO and average diameters of ≈ 27 nm for CaO 

and diameters between 20 and 200 nm for SrO, obtained from reference 19. The labels ‘‘3C‘‘ 

and ‘‘5C‘‘ show the excitation energies of 3-coordinated and 5-coordinated surface anions, 

respectively. (i), (ii) and (iii) mark the energies chosen to probe photoluminescence emission of 

MgO, CaO and SrO nanoparticles, respectively. 

 

From the experimental absorption spectra for MgO, CaO and SrO nanoparticles, shown 

in figure 6-2, it can be seen that MgO nanoparticles have the highest absorption energy 

onset, at approximately 270 nm (4.59 eV), followed by CaO with an absorption onset at 

approximately 320 nm (3.87 eV) and an absorption onset which is lower in energy than 

the peak at 340 nm (3.65 eV) but a more accurate absorption onset cannot be determined 

from the experimental data provided. This shows that SrO nanoparticles can be optically 

excited at lower energies than CaO nanoparticles, which in turn can be optically excited 

at lower energies than MgO nanoparticles. This ordering is based on the approximation 

that the absorption spectra of the particles are the same if all different particles has the 

same size distribution, which is not the case in the experimental data. 
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The calculated absorption spectra for (MgO)32, (CaO)32 and (SrO)32 can be seen in figure 

6-3. Upon comparing the red-shifted spectra in the range of 200 – 400 nm with the 

experimental spectra, the same trend in absorption onset can be seen: SrO nanoparticles 

have the lowest absorption onset, followed by CaO and then MgO nanoparticles. The 

calculated longest wavelength peaks are predicted to be at 270 nm (4.59 eV), 320 nm (3.87 

eV) and 360 nm (3.44 eV) for (MgO)32, (CaO)32 and (SrO)32 respectively. This trend 

shows the same relative ordering as the optical gap values discussed above; with 

absorption spectra showing excitations that have significant oscillator strength, and not 

the lowest possible bright excitation.  

 

 

Figure 6-3: TD-BHLYP calculated absorption spectra for (MgO)32 (grey line), (CaO)32 (blue 

line) and (SrO)32 (orange line), including a rigid red-shift of 0.5 eV. 
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In terms of absolute values, the rigidly red-shifted spectrum for (MgO)32 is, as expected, 

in excellent agreement with the experimental spectrum for MgO nanoparticles. The 

agreement between experimental and predicted spectra in terms of peak positions is also 

good for the other two particles, as can be seen in table 6-3. 

 

Table 6-3: Experimentally determined lowest peak position, obtained from reference 19, as well 

as the TD-BHLYP (rigidly red-shifted values in brackets) and TD-B3LYP calculated values. 

Material Experimental / nm BHLYP / nm B3LYP / nm 

MgO 270 245  (273) 350 

CaO 320 287  (325) 380 

SrO 340 315 (360) 425 

 

The predicted shifted position of the longest wavelength peak of (CaO)32 at 325 nm (3.81 

eV) is in good agreement with the experimental peak at 320 nm (3.87 eV). For (SrO)32, 

the predicted shifted peak at ~ 360 nm (3.44 eV) agrees well with the experimental value 

of ~ 350 nm (3.54 eV) for the lowest energy absorption peak. The good agreement 

continues for the shorter wavelength features: the experimental shoulders at ~ 270 nm 

(4.59 eV) and ~ 220 nm (5.64 eV) for CaO and the shoulders at ~ 320 nm (3.87 eV) and 

~ 270 nm (4.59 eV) for SrO are mirrored in the calculated spectra in figure 6-3. It appears 

that the empirical red-shifted spectra yield good agreement to experimental absorption 

spectra of CaO and SrO nanoparticles. However, one should be careful with over-

interpreting the good agreement between calculated and measured peak: the CaO and SrO 

nanoparticles synthesised were considerably larger at ~27 nm and 20 – 200 nm, 

respectively, compared to MgO nanoparticles (6 nm) in the same study. 
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Figure 6-4: TD-B3LYP calculated absorption spectra for (MgO)32 (grey line), (CaO)32 (blue 

line) and (SrO)32 (orange line). 

 

The absorption spectra predicted using the B3LYP xc-functional can be seen in figure 6-

4. Similarly to what has been observed for the optical gap values discussed previously, 

the use of TD-B3LYP results in a significant underestimation of the excitation energies of 

the first peak in the absorption spectra, summarised in table 6-3. The lowest absorption 

peak for (MgO)32 lies at 350 nm (3.55 eV) instead of ~ 265 nm (4.68 eV), for CaO at 380 

nm (3.25 eV) instead of ~ 325 nm (3.81 eV) and for SrO at 425 nm (2.91 eV) instead of 

~ 350 nm (3.54 eV). Another difference between the TD-B3LYP and TD-BHLYP 

predicted spectra is that for the former, no single (blue-)shift can be applied to consistently 

bring the values closer to their experimental counterparts. This is not in itself problematic, 

but it does show that there is no systematic approach to obtaining a better fit to experiment, 

as there is with TD-BHLYP. 
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6.3.4 Excited state localisation 

As seen above with the optical gap and the absorption spectra for the (MO)32 and (MgX)32 

particles, there is some discrepancy between the energies of the excited state as obtained 

from TD-BHLYP and TD-B3LYP. To ascertain whether or not this is due to the CT 

character of the TD-B3LYP excitation, the spatial character of the lowest energy to a t2 

state responsible for the optical gap must be considered. Similarly to the analysis on MgO, 

the character of the excitation is considered in terms of the difference in NBO charges 

between the ground and t2-symmetry excited state charges for every atom in the particle. 

All atoms can be labelled as ‘corner’ (3-coordinated), ‘edge’ (4-coordinated), ‘face’ (5-

coordinated), or ‘bulk’ (6-coordinated). Contributions are determined in terms of the 

percentage of the excited electron (hole) localised on a metal (chalcogen) atom, and are 

summed per atom type (e.g. metal corner atom, chalcogen edge atom). 

Tables 6-4, 6-5 and 6-6 show the percentage of the electron (on M / Cd / Pb sites) and 

hole (on O / X sites) that are localised on each of the sites (corner / edge / face / bulk). 

The exciton arises from excitation from the ground state to the lowest state of t2 symmetry, 

in the alkaline earth oxide (MO)32 particles (table 6-4), the magnesium chalcogenide 

(MgX)32 particles (table 6-5) and the post-transition metal chalcogenides (CdO)32 and 

(PbS)32 (table 6-6). Figures 6-5 and 6-6 show the corresponding density differences 

between ground and excited states. 
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Table 6-4: Percentage localisation of the electron (on M sites) and hole (on O sites) of the 

lowest energy t2 TD-BHLYP / TD-B3LYP excitation (corresponding to the optical gap) for the 

different (MO)32 particles. 

 M = Mg M = Ca M = Sr M = Ba 

O corner % 89.52 / 83.51 77.63 / 65.85 71.47 / 59.03 51.24 / 48.62 

O edge % 0.96 / 4.28 4.24 / 1.37 3.49 / 1.46 25.99 / 11.55 

O face % 3.10 / 3.62 9.84 / 16.49 14.34 / 19.05 14.74 / 22.30 

O bulk % 6.42 / 8.59 8.28 / 16.29 10.70 / 20.47 8.03 / 17.53 

M corner % 17.68 / 75.65 7.75 / 76.85 4.19 / 70.12 14.32 / 62.03 

M edge % 72.24 / 7.37 81.25 / 0.29 80.57 / 4.00 73.52 / 9.07 

M face % 5.36 / 9.07 0.52 / 0.37 6.66 / 12.86 7.69 / 12.45 

M bulk % 4.72 / 7.90 10.48 / 22.49 8.58 / 13.02 4.46 / 16.45 

 

Focussing on table 6-4 first, it can be seen that, as for MgO, all alkaline earth oxides have 

different localisation patterns predicted by TD-BHLYP and TD-B3LYP. The lowest 

energy t2 excitations have clear CT character when using the latter xc-functional, with the 

electron-hole predominantly localised on the oxygen corner atoms and the excited electron 

mainly localised on the metal corner atoms. The CT character decreases as the alkaline 

earth metal increases in size. Use of TD-BHLYP leads to a different picture in which the 

electron hole is still localised on the oxygen corner atoms but the excited electron now 

localises on the edge atoms adjacent to these oxygen corners. As magnesium is replaced 

by its heavier alkaline earth analogues, an increased delocalisation of the electron hole 

over the entire particle can again be observed: in the case of (BaO)32, the electron hole is 

delocalised mostly on oxygen corner atoms (51%), and half of the charge again (26%) is 

delocalised over oxygen edge atoms, compared to (MgO)32, where 91% of the hole is 

localised on oxygen corners. 
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Table 6-5: Percentage localisation of the electron (on M sites) and hole (on O sites) of the 

lowest energy t2 TD-BHLYP / TD-B3LYP excitation (corresponding to the optical gap) for the 

different (MgX)32 particles. 

 X = O X = S X = Se 

X corner % 89.52 / 83.51 72.09 / 64.26 56.51 / 52.27 

X edge % 0.96 / 4.28 1.99 / 1.12 6.01 / 2.07 

X face % 3.10 / 3.62 25.73 / 33.96 35.67 / 42.08 

X bulk % 6.42 / 8.59 0.19 / 0.66 1.81 / 3.58 

Mg corner % 17.68 / 75.65 26.22 / 64.96 36.36 / 58.18 

Mg edge % 72.24 / 7.37 65.97 / 24.77 56.17 / 32.34 

Mg face % 5.36 / 9.07 3.57 / 9.52 4.70 / 9.22 

Mg bulk % 4.72 / 7.90 4.24 / 0.75 2.78 / 0.26 

 

Focussing on table 6-5, TD-B3LYP predicts that the lowest t2 excitation for the 

magnesium chalcogenide particles is a CT excitation that predominantly involves electron 

transfer from chalcogen corner sites to magnesium corner sites, similarly to that found for 

alkaline earth oxides. TD-BHLYP predicts a more local behaviour for the lowest t2 

excitation, where the electron transfer occurs mainly from the chalcogen corners to the 

adjacent magnesium edge atoms. The difference between this data set and that for (MO)32 

particles is that the effect of replacing oxygen with the heavier chalcogens leads to an 

increased delocalisation of the excited state electron, in addition to an increased 

delocalisation of the electron hole: for both TD-BHLYP and TD-B3LYP in (MgS)32 and 

(MgSe)32, the hole is delocalised over the corner and face chalcogen atoms, whereas the 

excited electron delocalises over the edge and corner magnesium atoms. This gradual 

delocalisation of the hole seen with both the TD-BHLYP and TD-B3LYP results, means 

that the localisation results become more similar to each other when going from MgO to 



Optical properties of other particles with rocksalt structure 

 

158 
 

MgSe, which is something that does not occur in the alkaline oxide series (with the 

exception of BaO). 

 

Table 6-6: Percentage localisation of the electron (on M sites) and hole (on O sites) of the 

lowest energy t2 TD-BHLYP / TD-B3LYP excitation (corresponding to the optical gap) for the 

post-transition metal particles (CdO)32 and (PbS)32 particles. 

 CdO PbS 

X corner % 22.97 / 24.56 8.73 / 14.40 

X edge % 35.35 / 23.20 40.24 / 35.38 

X face % 40.40 / 50.62 36.69 / 42.70 

X bulk % 1.28 / 1.61 14.33 / 7.52 

M corner % 49.24 / 53.00 2.87 / 2.56 

M edge % 29.61 / 27.04 25.55 / 19.32 

M face % 19.24 / 17.84 54.30 / 55.04 

M bulk % 1.91 / 2.13 17.28 / 23.08 

 

The data for the post-transition metal chalcogenide nanoparticles in table 6-6 show a 

dramatically different picture to the particles in the (MO)32 and (MgX)32 series. For both 

(CdO)32 and (PbS)32, TD-BHLYP and TD-B3LYP give essentially the same description 

of the localisation of the lowest energy t2 excitation, and the data shows that the excited 

state is predicted to be essentially delocalised, in stark contrast to the results obtained for 

the alkaline earth chalcogenides. The difference between the (CdO)32 and (PbS)32 results 

is that the electron and hole of the former are predicted to delocalise over the surface of 

the particle, mainly over edge and face atoms, whereas the (PbS)32 excited state is 
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predicted to also, in addition to delocalisation over surface sites, have significant 

contribution from bulk atoms in the centre of the particle. 

 

 

Figure 6-5: TD-BHLYP-calculated electron density differences between the ground and lowest 

t2 excited state for A: MgO, B: CaO, C: SrO, D: BaO, E: MgS, F: MgSe, G: CdO, and H: PbS. 

Red spheres are oxygen atoms, brown are magnesium /calcium/ strontium/ barium/ cadmium/ 

lead atoms, yellow are sulphur atoms, black are selenium atoms. Green signifies accumulation of 

electron density (excited electron), blue signifies depletion of electron density (hole). An 

isosurface of 0.01 a.u. is used in all figures. 
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Figure 6-6: TD-B3LYP-calculated electron density differences between the ground and lowest 

t2 excited state for A: MgO, B: CaO, C: SrO, D: BaO, E: MgS, F: MgSe, G: CdO, and H: PbS. 

Red spheres are oxygen atoms, brown are magnesium / calcium / strontium / barium / cadmium / 

lead atoms, yellow are sulphur atoms, black are selenium atoms. Green signifies accumulation of 

electron density (excited electron), blue signifies depletion of electron density (hole). An 

isosurface of 0.01 a.u. is used in all figures. 

 

The electron density differences between the ground and lowest t2 excited state are 

visualised in figures 6-5 and 6-6, for TD-BHLYP and TD-B3LYP, respectively. The trend 

seen in these images is similar to that summarised in tables 6-4, 6-5 and 6-6. There are 

minor discrepancies, one of them being that the delocalisation of the electron and hole on 

the (PbS)32 particles is not clearly visible at the contour value used. Furthermore, the 

increase in electron density on the corner metal atoms on the alkaline earth nanoparticles 

does not show up as clearly as the hole in the same image. This has already been discussed 

in the case for MgO and stems from the fact that there are four oxygen corner atoms, with 

twelve adjacent metal edge atoms, and the density difference per unit volume at a metal 

edge atom is approximately a third of what it is at a corner oxygen atom.  

The difference in localisation pattern between the (MX)32 series and the post-transition 

chalcogenides is possibly better seen in HOMO-LUMO images, as seen in figures 6-7 and 

6-8. As both TD-BHLYP and TD-B3LYP produce the same HOMO-LUMO images, only 

one set (TD-BHLYP) is shown. Figures 6-7 and 6-8 shows that the HOMOs and LUMOs 

are most localised for the (MO)32 particles, less so for (MgX)32 and even less for (CdO)32 
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and (PbS)32. It should be noted that the excitations discussed above are not simply HOMO 

to LUMO excitations but those orbitals do play an important role in the excitation: the 

HOMO to LUMO transition accounts for over 50% of the lowest vertical t2 excitation. 

 

 

Figure 6-7: TD-BHLYP-calculated HOMO for A: MgO, B: CaO, C: SrO, D: BaO, E: MgS, F: 

MgSe, G: CdO, and H: PbS. Red spheres are oxygen atoms, brown are magnesium / calcium/ 

strontium / barium/ cadmium / lead) atoms, yellow spheres are sulphur atoms, black spheres are 

selenium atoms. The same contour value (0.01 a.u.) used in all figures. 
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Figure 6-8: TD-BHLYP-calculated LUMO for A: MgO, B: CaO, C: SrO, D: BaO, E: MgS, F: 

MgSe, G: CdO, and H: PbS. Red spheres are oxygen atoms, brown are magnesium / calcium/ 

strontium / barium/ cadmium / lead) atoms, yellow spheres are sulphur atoms, black spheres are 

selenium atoms. The same contour value (0.01 a.u.) used in all figures. 

 

6.4 Discussion 

As seen above, rocksalt structured nanoparticles with different composition have 

distinctly different optical properties. The clearest contrast is between (MgO)32, having a 

very localised excited state, and (CdO)32 and (PbS)32, with excited states that are very 

delocalised. The change in the optical gap between (MgO)32 and (PbS)32 is nearly 2 eV, 

which is also seen in the bulk.179,237 

Of course, the (de)localisation of the particles (apart from (CdO)32 and (PbS)32) differs 

substantially between the predicted  TD-BHLYP and TD-B3LYP results, which raises the 

question as to which xc-functional is to be trusted to describe these nanoparticles most 

accurately. As discussed in chapter 5, the case for MgO is clear-cut: the optical gap and 

overall absorption spectrum predicted by TD-B3LYP is severely red-shifted relative to 

that measured experimentally, albeit the experimental particles are larger in size than those 

used for calculating the computational absorption spectrum.  
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There has been some work suggesting that the Λ cut-off value below which an excitation 

most likely has CT character can be as low as 0.15 for inorganic systems,241 rather than 

the value of 0.3 determined for organic systems. Although the most suitable cut-off for 

inorganic systems has not been tested much, the Λ values obtained for MgO particles are 

rather low (and decrease with increasing particle size): 0.15 for (MgO)24 and 0.13 for 

(MgO)32. In addition to this, the excited state localisation predicted by TD-B3LYP has all 

the characteristics of the CT-excitation (unlike the excited state predicted from TD-

BHLYP), which is sufficient evidence to classify the lowest excitation into a t2 state 

(resulting in the optical gap), as predicted by TD-B3LYP, as a charge transfer state, which 

is spuriously stabilised. This means that TD-B3LYP cannot reliably be used to study the 

optical properties of MgO nanoparticles accurately. This is the conclusion from the results 

of chapter 5. The same reasoning can be applied to the other alkaline earth oxide 

nanoparticles studied in this chapter: (CaO)32, (SrO)32 and, to some extent, (BaO)32. The 

use of TD-B3LYP is clearly problematic for these systems based on the Λ analysis, so it 

is advisable to use an xc-functional with a high percentage of HFE, such as TD-BHLYP. 

A range-separated functional, such as CAM-B3LYP, is also a very good alternative in 

describing the optical properties of alkaline earth nanoparticles, assuming that the 

behaviour seen for MgO in chapter 5 can be extrapolated to other alkaline earth 

nanoparticles. Furthermore, in the case of TD-BHLYP, the ad-hoc recipe developed for 

MgO and applied to the absorption spectra of SrO and CaO nanoparticles, i.e. rigidly 

shifting the spectra downwards by 0.5 eV, yields excellent agreement with experiment. 

However, it is possible that another xc-functional, such as CAM-B3LYP, predicts better 

agreement with the experimental data, without the need for correcting the overestimation 

seen for TD-BHLYP. 

The results obtained for (MgS)32 are similar to those obtained for the alkaline earth metals: 

The Λ value is slightly larger than those obtained for the (MO)32 particles, although still 

below the cut-off of 0.3. Furthermore, the excited state localisation picture for the lowest 

excitation into a t2 state is very similar to that of the (MO)32 particles, so it can be 

concluded that TD-B3LYP may also be unsuitable to study this material at sizes similar 

to those studied here (or, indeed, larger). Slightly different behaviour can be seen for 

(MgSe)32, which appears to be a material which lies between two extremes: a TD-B3LYP 
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calculated Λ value above 0.3, and a similar (but not identical) excited state localisation 

pattern predicted by TD-B3LYP and TD-BHLYP. It shows that the CT character is not 

‘black or white’ behaviour, but is rather a scale on which (MgSe)32 has less CT character 

than (MgS)32, which itself has less CT character than (MgO)32. Furthermore, the trend for 

the optical gap in the (MgX)32 series, where Δo increases when going from (MgO)32 to 

(MgS)32 and then decreases again from (MgS)32 to (MgSe)32, could arise from two 

competing trends in this series of structures. On one hand is the already discussed 

behaviour, the reduction of the CT character, which means that the spurious energetic 

stabilisation of the CT state is less severe and TD-B3LYP is a better approximation for 

(MgSe)32 than for (MgO)32. On the other hand is the decrease in optical gap when going 

from (MgO)32 to (MgSe)32, as seen with TD-BHLYP. 

At the opposite end of the spectrum from the (MO)32 materials are (CdO)32 and (PbS)32, 

for which TD-BHLYP and TD-B3LYP predict a very similar excited state localisation of 

the lowest t2 excitation. Furthermore, these post-transition metal oxides also exhibit large 

TD-B3LYP Λ values, which are considerably larger than the 0.3 cut-off. In theory, this 

means that there should be no issue describing the t2 excitation with either xc-functional, 

and both should work equally well. However, for the remainder of the discussion, only 

TD-BHLYP results are considered, to give a consistent approach for comparison with the 

other particles. 

The trend in the excited state (de)localisation in these nanoparticles possibly stems from 

the differences in the extent to which the excited electron and the hole are screened from 

each other. To a first approximation, this can be understood in term of the dielectric 

constants (𝜀) of the bulk materials the nanoparticles are composed of. The dielectric 

constant, also known as relative permittivity, is a property of a material and can be 

measured as the decrease of the Coulomb forces in the material relative to vacuum, i.e. 

the degree to which electrostatic interactions are screened in the material. 

The (MO)32 series is made up of materials with low dielectric constants (𝜀𝑀𝑔𝑂= 3.0; 𝜀𝐶𝑎𝑂= 

3.3; 𝜀𝑆𝑟𝑂= 3.2 - 3.5; 𝜀𝐵𝑎𝑂= 3.9 - 4.2 ),196,197,242 and also have very localised excited states, 

with the excited electron and the hole being clearly separated in space. As the dielectric 
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constant increases, so does the exciton delocalisation: the dielectric constants are higher 

for the post-transition chalcogenide particles (𝜀𝐶𝑑𝑂= 5.4-6.2; 𝜀𝑃𝑏𝑆= 17.2)196,198, and the 

excited state is much more delocalised, especially for PbS. Both MgS and MgSe are 

materials that have dielectric constants that lie in between hose of alkaline earth oxides 

and post-transition metal chalcogenides, (𝜀𝑀𝑔𝑆= 5.1; 𝜀𝑀𝑔𝑆𝑒= 5.9),196  and also display 

intermediate localisation in the excited state.  

The (de)localisation thus seems to depend on the combination of two competing trends. 

The first is due to the potential energy term, which arises from the electrostatic interaction 

between the excited electron and the electron hole and therefore favours a localised 

excited state, where the electron and hole are in close proximity. The second competing 

factor is the kinetic energy term, which favours a delocalised excited state. This means 

that the degree of screening (and therefore the dielectric constant) between the electron 

and hole is crucial in determining the extent of localisation: the larger the dielectric 

constant, the more the charges are screened and the potential energy term therefore 

decreases: the balance between localisation and delocalisation of the excited state is 

therefore inherently linked to this constant. 

As shown by the works of Penn,191 Phillips192–195 and van Vechten,196 the dielectric 

constant values of the bulk materials are inherently connected to the electronic band 

structure and the degree of covalency and ionicity.190,195 It is therefore not surprising that 

the trend between the bulk dielectric constant and the excited state (de)localisation in the 

nanoparticle also maps onto trends between the bulk band gap and excited state 

(de)localisation in the nanoparticle, with nanoparticles of materials with a smaller band 

gap having more delocalised excited states. Quantum dots, where quantum confinement 

is exploited to tune the optical properties of materials by varying particle size, need a 

delocalised excited state and are, unsurprisingly, often made from materials such as CdSe 

and PbS, which have a small band gap in the bulk.   

Furthermore, the trend shows that the degree of ionic bonding in the bulk material and 

excited state (de)localisation in the nanoparticles is linked, with more ionic materials 

having a more localised excited state. Problems when describing CT excitations by TD-
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B3LYP are most likely to occur in particles with localised excited states, which is likely 

to occur only in nanoparticles of ionic materials with a large band gap.  

 

Table 6-7: Rigidly-red-shifted by 0.5 eVoptical gap (Δo,rs) values for the (MX)32 particles of the 

different compositions calculated using TD-BHLYP. 

 MgO CaO SrO BaO MgS MgSe CdO PbS 

Δo,rs 4.58 3.85 3.41 3.36 4.32 3.87 2.51 2.89 

 

Assuming the 0.5 eV red-shift applied to TD-BHLYP computed absorption spectra for 

MgO (and works well for reproducing the absorption spectra for (CdO)32 and (PbS)32) is 

accurate, then a good approximation to the optical gap for all studied materials would be 

to also red-shift them by 0.5 eV, as seen in table 6-7. The Δo,rs values consistently lie below 

the experimentally determined lowest excitation energies (7.67 eV for MgO, 6.93 eV for 

CaO, 5.68 eV for SrO and 3.73 eV for BaO)172,237 of the corresponding bulk material. This 

shows that, in line with the calculated excited state localisation, the Δo,rs values for the 

materials show a red- rather than a blue-shifted optical gap as the particle size is reduced 

from the bulk to nano-sized. The comparison with experimental data for the magnesium 

chalcogenides is more difficult due to the sparsity of experimental data for rocksalt 

particles.188,238–240 However, the Δo,rs is below the light absorption onset for the bulk at 

4.78 eV for MgS and at 5.60 eV for MgSe. However, for (CdO)32 and (PbS)32, the 

predicted Δo,rs values lie above the experimental absorption onset (2.37 eV for CdO and 

0.44 eV for PbS).178,179 In the case of PbS, this could be related to the lack of spin-orbit 

coupling in these calculations but in the case of (CdO)32 it is in line with the kind of blue-

shift, or the hypothesis that such particles would display quantum confinement, seen when 

the excited state is delocalised. 
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6.5 Conclusions 

In conclusion, the question as to whether the problematic description of charge transfer 

excitations occurring in MgO nanoparticles is also present in (MX)32 materials (CaO, SrO, 

BaO, MgS, MgSe, CdO and PbS) has been investigated in terms of the magnitude and 

nature of their optical gap in the rocksalt configuration.  

The lowest t2 excitations calculated with TD-B3LYP are, as previously found for MgO, 

CT excitations for all nanoparticles considered bar (CdO)32 and (PbS)32. These CT 

excitations are spuriously energetically stabilised relative to local excitations, although 

the CT character is really more of a sliding scale that can vary from system to system: as 

either the metal or chalcogen in (MgO)32 is replaced by a heavier counterpart, the CT 

character decreases for the lowest t2 excitation as the excitation becomes more delocalised. 

Similarly to the case of MgO nanoparticles, hybrid (GGA) xc-functionals with a high 

percentage of HFE are assumed to correct the description of such CT excitation, similarly 

to the BHLYP xc-functional used in this work. Range-separated xc-functionals such as 

CAM-B3LYP are also known to help alleviate the problematic description of CT artefacts.  

The results obtained using TD-BHLYP show that the magnitude and nature of the optical 

gap varies between the different rocksalt particles. The particles in the (MO)32 group are 

predicted to exhibit large optical gaps, with a very localised excited state involving oxygen 

corner and the metal edge sites adjacent to these corners. On the other hand, the post-

transition metal chalcogenide nanoparticles have a much smaller optical gap and a 

delocalised excited state. The magnesium chalcogenides display an intermediate 

behaviour, albeit closer to that of the alkaline earth oxides. 

The difference in the optical gap and excited state localisation can, furthermore, be 

understood in terms of the dielectric screening of the Coulomb interaction between the 

excited electron and the corresponding electron hole. The larger bulk dielectric constants 

of CdO and PbS mean that the potential energy term favouring exited state localisation is 

much reduced, as the charges are better screened from each other.  
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Finally, taking into account the apparent role played by the dielectric constant, a future 

avenue of this research is to explore xc-functionals where the amount of HFE is treated as 

an explicit function of the dielectric constant (rather than an empirical constant) 243–245 and 

their suitability in describing these particles and their corresponding excited states. 
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7. Photoluminescence in MgO nanoparticles  

7.1 Introduction 

Photoluminescence (PL) properties of materials can be very desirable if the emitted light 

is in the visible spectrum, as it is for e.g. light-emitting diodes (LEDs).246–250 It is clear 

that materials with useful PL properties are sought after. The intrinsic processes behind 

PL are interesting and useful to study computationally: as the light emitting processes 

occur on very short timescales, the underlying physics and chemistry is extremely difficult 

to study by experiment alone, let alone at an atomistic level. Computational studies that 

look at the fundamentals of PL are therefore crucial in expanding the knowledge of these 

processes – and can potentially even drive experimental studies.  

MgO (nano)particles are not currently considered for industrial PL applications, due to 

the fact that they do not photo-emit light in the visible spectrum. However, MgO 

nanoparticles are good model systems to study PL computationally, as - in contrast to 

many other inorganic nanoparticles - even relatively small particles exhibit the rocksalt 

structure, which is found experimentally. 

Experimental studies20,228 have measured PL spectra of small MgO nanoparticles with an 

average size of 3 nm that show a broad peak between ~520 – 300 nm (~ 2.4 – 4.1 eV), 

with the peak maximum at 375 nm (3.3 eV), produced using an incident light source of 

270 nm (4.6 eV). The peak maximum shifts to 365 nm (3.4 eV) when a light source of 

240 nm (5.2 eV) is used. Experimentally, this shift is rationalised by characterising the 

photoluminescence in terms of de-excitation from corner (3-coordinated) and edge (4-

coordinated) oxygen atoms respectively: as the average particle size increases from 3 to 5 

to 10 nm, the peak at 375 nm (3.3 eV) becomes less intense, as proportionally fewer corner 

sites are available. 

This chapter focusses on extending the work on vertical excitations in MgO nanoparticles 

presented in chapter 5 by studying the excited state behaviour of these particles, obtaining 

the photoluminescence energies (PLEs) and comparing the different excited state minima 
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on the S1 surface. As only S1 to S0 transitions are considered here, the PLEs are all 

technically fluorescence energies. However, as fluorescence and phosphorescence are 

distinguished experimentally through their respective lifetimes, and this is a property that 

cannot be easily calculated, photoluminescence is considered to be a more encompassing 

label for these de-excitation processes.  

The previous work presented in chapters 5 and 6, has shown that to model electronic 

excitations of MgO nanoparticles, the choice of either the BHLYP or the CAM-B3LYP 

xc-functional is most suitable. However, it is not clear whether these xc-functionals are 

also suitable for describing the excited state relaxation process of these nanoparticles. This 

chapter aims to answer these questions. 

 

7.2 Methodology 

Different nanoparticles of MgO are studied, namely (MgO)n where n = 4, 6, 9, 12, 18, 24, 

32, 40. The optimised ground state structures, and their vertical excitation energies, have 

been obtained using Density Functional Theory (DFT) and Time Dependent Density 

Functional Theory (TDDFT) respectively, as discussed in chapter 5. Here, the optimised 

structure in the S1 state is obtained starting from the ground state starting structure. The 

PLE associated with the vertical de-excitation at the excited state energy minimum is also 

found. 

The calculations employ three different xc-functionals; the hybrid-GGA BHLYP and 

B3LYP xc-functionals and the Coulomb-attenuated CAM-B3LYP xc-functional. 

Furthermore, three different basis sets were used in these calculations; the triple-ζ quality 

def2-TZVP basis set251 and two variants of a double-ζ basis set; the DZ(D)P basis-set 

available in Turbomole by Schäfer et al.83 and the DZP basis-set of Canal Neto et al.252 

For simplicity, we shall from now on refer to the DZ(D)P basis-set by Schaefer et al. as 

DZS and the Canal-Neto basis-set as DZC. The DZS basis set has also been used 

previously in this work. The DZS results can mainly be found in Appendix A. The 
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advantage of using the smaller basis set is that it allows the study of slightly larger particles 

compared to the def2-TZVP basis set. 

Finally, where computationally tractable (n ≤ 12), analytical frequencies at the excited 

state stationary points were calculated and only results which show there to be no 

imaginary frequencies present are discussed. As an exception to this, two analytical 

frequency calculations have been performed on (MgO)32 particle, at very high 

computational expense. This was deemed necessary as a structure had been optimised that 

exhibited a larger PLE than the other structures, and it was found that this increased PLE 

was linked to a non-minimum structure.  

The localisation of the excited state at both the ground and relaxed excited state geometry 

is analysed in terms of the difference between Natural Bond Order (NBO) charges in the 

case of calculations employing the B3LYP and BHLYP xc-functionals, and Löwdin 

charges in the case of calculations employing the CAM-B3LYP xc-functional. The latter 

is used as NBO charges are not available in the computational package that employed for 

the CAM-B3LYP calculations. Furthermore, the Λ diagnostic of Peach et al.109,110 was 

employed to identify potentially problematic charge-transfer (CT)-excitations.  

The (TD-)BHLYP and (TD-)B3LYP calculations were generally performed using the 

TURBOMOLE 6.4 code, whereas the CAM-B3LYP calculations used the GAMESS-US 

code (version 1 OCT 2010 – R1), as did the TD-B3LYP Λ diagnostic calculations. 

Visualisation of molecular structures has been performed using the VMD package. 

 

7.3 Excited state properties 

The vertical excitation spectra of MgO nanoparticles have been discussed previously in 

chapter 5. It was found that to accurately describe the excitation, the use of an xc-

functional with a large amount of Hartree-Fock exchange (HFE), such as BHLYP, or a 

range-separated xc-functional such as CAM-B3LYP, is required. This is in contrast to the 

results obtained using B3LYP, which contains only 20% HFE and fails to correctly 
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describe the excitation behaviour of MgO and other rocksalt materials, as shown in chapter 

6. However, the latter xc-functional is included as it has previously been used to study 

MgO vertical excitations in chapters 5 and 6, and serves to highlight the functional 

dependence of the PL results. 

 

7.3.1 Photoluminescence energies 

 

 

Figure 7-1: def2-TZVP calculated photoluminescence energies, obtained using the B3LYP 

(blue diamonds), BHLYP (orange squares) and CAM-B3LYP (grey triangles) xc-functionals. 

Open symbols correspond to the PLE of the cubic (MgO)6 and the sodalite (MgO)12 structures. 

In the case of CAM-B3LYP, for (MgO)32, the open triangle corresponds to the CAM-B3LYP 

single-point calculation on the TD-BHLYP/def2-TZVP S1 optimised geometry. 
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Table 7-1: def2-TZVP and DZC calculated photoluminescence energies, obtained using the 

B3LYP, BHLYP and CAM-B3LYP xc-functionals (DZC results between parentheses). All 

energies are in eV. 

 B3LYP BHLYP CAM-B3LYP 

(MgO)4 1.70 (1.53) 2.60 (2.40) 2.38 (2.33) 

(MgO)6 hexagonal 2.43 (1.37) 1.45 (2.28) 2.99 (2.75) 

(MgO)6 cubic 1.49 (2.14) 2.35 (1.32) 2.43 (2.21) 

(MgO)9 2.78 (2.64) 3.11 (2.61) 2.97 (2.71) 

(MgO)12 hexagonal 2.04 (1.90) 2.72 (2.57) 2.58 (2.40) 

(MgO)12 sodalite 3.08 (2.99) 3.50 (3.34) 3.20 (3.08) 

(MgO)18 0.49 (0.17) 1.53 (1.44) 1.56 (1.46) 

(MgO)24 0.56 (0.76) 2.14 (2.05) 2.18 (2.08) 

(MgO)32 0.58 (0.55) 2.22 (2.16) 2.22* (2.25) 

(MgO)40 - (0.51) - (2.08) - (2.12)†  

*CAM-B3LYP single-point calculation on the TD-BHLYP/def2-TZVP S1 optimised geometry. 

†optimisation using the ground state TD-BHLYP/DZC structure as a starting point. 

 

Table 7-1, figure 7-1 and figures 7-5, 7-6 and 7-7 show the PLE for all considered (MgO)n 

particles, and it can be seen that for all (MgO)n particles (except n = 6), the def2-TZVP 

PL value obtained using the B3LYP xc-functional is considerably lower than that obtained 

from TD-BHLYP or TD-CAM-B3LYP, with the difference between the calculated PLEs 

using this and the other two functionals widening as n increases. This trend has also been 

observed for the lowest vertical excitation energy (LVEE), discussed in chapter 5. This 

underestimation of the PLEs, similarly to what has been seen with the LVEE, is possibly 

linked to the CT-character of the lowest TD-B3LYP excitation and the underlying issue 

of why TD-B3LYP cannot predict these excitation processes in MgO nanoparticles 
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accurately. As the particle size (n) increases, the overlap of the orbitals involved in the 

excitation (and possibly de-excitation) decreases, meaning that the CT-character increases 

and the description of the process, as obtained from TD-B3LYP, worsens. 

The def2-TZVP-calculated PL data presents a varied picture for the smaller particles: both 

TD-B3LYP and TD-CAM-B3LYP predict an increase in the PLE going from n = 4 to n = 

6 by 0.73 eV and 0.61 eV respectively, but TD-CAM-B3LYP then predicts a decrease in 

PLE from n = 6 to n = 9 by 0.02 eV, whereas TD-B3LYP predicts an increase of 0.35 eV. 

These differences in PLE are all above the uncertainty of the methodology (approximately 

0.3 – 0.5 eV, as discussed in section 2.2.6), apart from the 0.02 eV for TD-CAM-B3LYP. 

On the other hand, TD-BHLYP predicts a dip in PLE from n = 4 to n = 6 of 1.15 eV, and 

an increase by 1.66 eV from n = 6 to n = 9. Both these differences are significantly larger 

than the TDDFT uncertainties. 

It can be seen that the def2-TZVP calculations with all three xc-functionals display the 

same trend from n = 9 onwards: the PLE decreases from n = 9 to n = 12 and n = 18, then 

increases between n = 18 and n = 24, before finally plateauing for n = 32, which shows 

the same behaviour as the LVEE values discussed in chapter 5. The variability in the PLEs 

between the particles with n  9 is possibly due to the fact that the smaller particles appear 

less rigid and so a larger number of excited state minima on the S1 surface are low in 

energy: this is further discussed in section 7.3.6.  

The TD-CAM-B3LYP calculated value for n = 32 is only approximate: due to the 

increased cost of the computational code required, no value could be obtained for the TD-

CAM-B3LYP optimised S1 structure. However, a single point calculation was performed 

on the TD-BHLYP/def2-TZVP optimised structure, as can be seen in table 7-2 below. 

This approach appears to be a good approximation to the TD-CAM-B3LYP PLE. 
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Table 7-2: Comparison of photoluminescence energies obtained with the def2-TZVP basis set 

for particles (MgO)n (n = 18, 24, 32). The first column shows the result of an S1 TD-BHLYP 

optimisation starting from the BHLYP S0 ground state structure, the second column shows the 

result of an S1 TD-CAM-B3LYP optimisation using the CAM-B3LYP S0 ground state, and the 

third column shows the result of a single-point TD-CAM-B3LYP calculation on the TD-BHLYP 

optimised S1 structure (labelled ‘CAM’). All energies are in eV. 

 

 BHLYP CAM-B3LYP CAM / BHLYP 

(MgO)18 1.53 1.56 1.55 

(MgO)24 2.14 2.18 2.13 

(MgO)32 2.22 - 2.22 

  

 

Figure 7-2: Difference between def2-TZVP calculated PLE and DZC PLE, obtained using the 

B3LYP (blue diamonds), BHLYP (orange squares) and CAM-B3LYP (grey triangles) xc-

functionals. Open symbols correspond to the difference in PLE of the cubic (MgO)6 and the 

sodalite (MgO)12 structures. In the case of CAM-B3LYP, for (MgO)32, the open triangle 

corresponds to the CAM-B3LYP single-point calculation on the TD-BHLYP/def2-TZVP S1 

optimised geometry. 
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The main difference in PLEs (table 7-1 and figure 7-2) calculated with different basis sets 

can be seen for n = 6 (hexagonal) using TD-BHLYP, where the def2-TZVP PLE is 0.83 

eV smaller than the DZC result, but in general the DZC PLEs are lower than their def2-

TZVP counterparts, and both basis sets exhibit the same general trend. However, 

especially for the larger particles, the results obtained from the smaller basis set seem to 

be a good approximation to the PLE calculated with the def2-TZVP basis set. Results 

obtained with the DZS basis can be found in Appendix A. 

For values up to and including n = 9, the results obtained using the three xc-functionals 

vary and this is due to the fact that the particles optimise to different structural minima 

(discussed below). Both the TD-BHLYP/DZC and TD-B3LYP/DZC model chemistries 

predict a decrease in PLE going from n = 4 to n = 6, and then an increase going to n = 9, 

although the increase is much larger for TD-B3LYP: the PLE values for n = 6 are 2.28 eV 

for TD-BHLYP/DZC and 1.37 eV for TD-B3LYP/DZC but for n = 9, the values are 2.61 

eV and 2.64 eV, respectively. TD-CAM-B3LYP/DZC shows a very similar picture for 

these particular particles, as it does with def2-TZVP: the PLE increases from n = 4 to n = 

6, and drops slightly for n = 9.  

Going from n = 9 to n = 12, TD-B3LYP/DZC and TD-CAM-B3LYP/DZC predict a lower 

PLE value, whereas TD-BHLYP/DZC predicts a slight increase. Going to n = 18, all 

functionals predict a considerable drop in PLEs, before increasing again going to n = 24. 

Both TD-BHLYP/DZC and TD-CAM-B3LYP/DZC approximate a plateau from n = 24 

to n = 40, with only small variations in the PLE and converging around 2.1 – 2.2 eV, 

whereas TD-B3LYP/DZC predicts a drop of 0.25 eV from n = 24 to n = 40. This drop 

could be related to the CT-excitation issue discussed in previous chapters; as the particle 

size increases, the orbital overlap within the excitation decreases, resulting in a stronger 

CT-character of the excitation. This is investigated further later in this chapter. 

The above data shows that, especially with the larger basis set, the PLEs of the rocksalt 

structures (n > 12) are similarly described using TD-BHLYP and TD-CAM-B3LYP, and 

both xc-functionals approach the experimental PL onset of 2.4 eV, whereas TD-B3LYP 

consistently underestimates the PLEs, just as it does excitation energies, as shown in 

chapter 5.  
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7.3.2 Stokes shifts 

The Stokes shift, which is the difference between the LVEE and PLE for a given particle, 

has been calculated for these particles. The Stokes shift is a measure of energy lost during 

the relaxation processes occurring in the excited state. It is, in some sense, an indication 

of the steepness of the potential energy surfaces: a high Stokes shift would mean that the 

S0 and/or S1 energy surface change significantly between the ground state and excited 

state optimised geometries. 

 

 

Figure 7-3: Stokes shifts, calculated using the def2-TZVP basis sets and the B3LYP (blue 

diamonds), BHLYP (orange squares) and CAM-B3LYP (grey triangles) xc-functionals. Empty 

symbols represent Stokes shifts for (MgO)6 cubic and (MgO)12 sodalite structures. All energies 

are in eV. 
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Table 7-3: Stokes shifts, calculated using the def2-TZVP and DZC basis sets and the B3LYP, 

BHLYP and CAM-B3LYP xc-functionals (DZC results between parentheses). All energies are 

in eV. 

 B3LYP BHLYP CAM-B3LYP 

(MgO)4 1.36 (1.26) 1.58 (1.50) 1.31 (1.30) 

(MgO)6 hexagonal 1.22 (1.12) 3.36 (3.21) 1.38 (1.57) 

(MgO)6 cubic 1.76 (1.68) 2.03 (1.99) 1.48 (1.64) 

(MgO)9 1.11 (1.05) 1.99 (2.30) 1.72 (1.96) 

(MgO)12 hexagonal 1.99 (1.93) 2.51 (2.46) 2.23 (2.20) 

(MgO)12 sodalite 1.12 (1.03) 1.95 (1.94) 1.77 (1.95) 

(MgO)18 2.02 (2.14) 2.81 (2.69) 2.55 (2.58) 

(MgO)24 2.73 (2.35) 2.82 (2.75) 2.42 (2.43) 

(MgO)32 2.96 (2.84) 2.85 (2.81) 2.47* (2.28) 

(MgO)40 – (2.86) – (2.87) –  (–) 

*CAM-B3LYP single-point calculation on the TD-BHLYP/def2-TZVP S1 optimised geometry 

used as an approximation to the PL energy.   

 

Table 7-3 and figure 7-3, as well as figures 7-5, 7-6 and 7-7 illustrate the trend in Stokes 

shifts found for the different MgO nanoparticles. The data can again be separated into two 

different classes: the smaller, more flexible particles that tend not to follow a clear trend, 

and the larger particles that tend to converge towards a limiting value, with the TD-CAM-

B3LYP/DZC Stokes shift values for (MgO)24 and (MgO)32 possibly decreasing. No value 

for (MgO)40 is given for the CAM-B3LYP xc-functional, as due to the computational costs 

of the calculation, the starting point for the excited state optimisation was the BHLYP 

ground state structure, rather than the CAM-B3LYP ground state structure. This means 

that the Stokes shift cannot be derived. Equally, the TD-CAM-B3LYP/def2-TZVP value 
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for (MgO)32 could potentially be misleading, as the PLE obtained is from a single point 

calculation on the TD-BHLYP-optimised S1 structure, although table 7-2 shows that the 

approximation is suitable to approximate PLEs.  

The TD-B3LYP predicted Stokes shift values are similar to those predicted by TD-

BHLYP and TD-CAM-B3LYP. However, as the B3LYP excitation energies are known 

to suffer from CT problems as, presumably, do the corresponding PLEs, it is very likely 

that the numerical values are similar to the values obtained from TD-BHLYP and TD-

CAM-B3LYP due to error cancellation rather than an accurate description of the 

phenomena. Such behaviour has also been seen in TiO2 and ZnS nanoparticles.241,253–255 

The CT character is probed by considering Λ values: the TD-B3LYP Λ value for (MgO)24 

at the ground state geometry is 0.15 (as shown in table 5-3) and 0.09 at the S1 minimum, 

a clear sign of low orbital overlap and therefore a high probability that the S1 surface and 

PLE at the S1 minimum is poorly described by TD-B3LYP. From the Λ values obtained 

for the (MgO)24 system, it appears that TD-B3LYP underestimates the vertical excitation 

energy from the S0 minimum to S1 (as already discussed in chapter 5), and the orbital 

overlap decreases as the excited state structure is being optimised, which means that the 

de-excitation energy from the S1 minimum to S0 and it also underestimated. Due to 

computational inefficiency of the GAMESS-US package, no Λ value for the S1 (MgO)32 

particle could be obtained. 

The difference in Stokes shift values between the TD-BHLYP and TD-CAM-B3LYP 

values (of approximately 0.3 eV) is possibly due to the overestimation of excitation 

energies of about 0.5 eV when TD-BHLYP is used, also discussed in chapter 5. 

 

7.3.3 Stokes shift components  

The difference in the excitation and de-excitation energies has two different components: 

namely the Ground State Destabilisation Energy (GSDE) and the Excited State 

Stabilisation Energy (ESSE). The former stems from the fact that as S1 minimises its 

energy through geometry optimisation, i.e. the excited state stabilises, S0 increases in 
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energy, as the geometry moves away from that of the ground state minimum. A schematic 

of the energy differences are pictured in figure 7-4. 

 

 

Figure 7-4: Conceptual figure of the S0 potential energy surface (blue line), vertical excitation 

(dashed line labelled 1), the S1 potential energy surface (red line), the excited state stabilisation 

energy, ESSE, (green line), the vertical de-excitation (black dashed line labelled 2) and the 

ground state destabilisation energy, GSDE, orange line). The horizontal black line is a guide to 

the eye, showing the energy of the state after vertical excitation (S0 energy + vertical excitation 

energy). 
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Table 7-4: The def2-TZVP GSDE for the B3LYP, BHLYP and CAM-B3LYP (denoted by 

‘CAM’) xc-functionals. All values are in eV. 

 B3LYP  GSDE BHLYP  GSDE CAM GSDE 

(MgO)4 0.78 0.94 0.79 

(MgO)6 hexagonal 0.73 2.30 0.86 

(MgO)6 cubic 1.16 1.31 0.91 

(MgO)9 0.67 1.35 1.15 

(MgO)12 hexagonal 1.37 1.71 1.49 

(MgO)12 sodalite 0.70 1.40 1.32 

(MgO)18 0.99 1.62 1.53 

(MgO)24 1.49 1.69 1.55 

(MgO)32 1.61 1.78 – 

 

Table 7-5: The def2-TZVP ESSE for the B3LYP, BHLYP and CAM-B3LYP (denoted by 

‘CAM’) xc-functionals. All values are in eV. 

 B3LYP ESSE BHLYP  ESSE CAM  ESSE 

(MgO)4 - 0.58 - 0.64 - 0.52 

(MgO)6 hexagonal - 0.49 - 1.06 - 0.53 

(MgO)6 cubic - 0.31 - 0.72 - 0.57 

(MgO)9 - 0.44 - 0.64 - 0.58 

(MgO)12 hexagonal - 0.62 - 0.80 - 0.74 

(MgO)12 sodalite - 0.42 - 0.55 - 0.45 

(MgO)18 - 1.03 - 1.28 - 1.02 

(MgO)24 - 1.24 - 1.13 - 0.87 

(MgO)32 - 1.35 - 1.07 – 
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Figure 7-5: The TD-B3LYP/def2-TZVP GSDE (red), PLE (light blue) and ESSE (green) 

results. The ‘h’ subscript denotes the hexagonal particles, ‘c’ the cubic one, and ‘s’ the sodalite 

type particler. All values are in eV. 
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Figure 7-6: The TD-BHLYP/def2-TZVP GSDE (red), PLE (light blue) and ESSE (green) 

results. The ‘h’ subscript denotes the hexagonal particles, ‘c’ the cubic one, and ‘s’ the sodalite 

type particle. All values are in eV. 
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Figure 7-7: The TD-CAM-B3LYP/def2-TZVP GSDE (red), PLE (light blue) and ESSE (green) 

results. The ‘h’ subscript denotes the hexagonal particles, ‘c’ the cubic one, and ‘s’ the sodalite 

type particle. All values are in eV. 

 

From the data presented in tables 7-4 and 7-5 and figures 7-5, 7-6 and 7-7, it can be seen 

that generally for a given particle the GSDE has a larger absolute value than the ESSE, 

with the B3LYP-calculated (MgO)18 energies being the only exception. The latter might 

be due to the dipole present in the system, discussed in section 5.3.2. 

The fact that the GSDE is larger than the ESSE means that the S0 surface changes more 

dramatically than the S1 surface, although the ESSEs increase for the larger particles (n = 

18, 24, 32). Interestingly, all xc-functionals show a similar trend in the energies, which is 

further evidence for error cancellation (discussed above in the context of Stokes shifts) 

occurring in the TD-B3LYP data. From previous data discussed in chapter 5, it is obvious 

that TD-B3LYP does not describe energies on the S1 surface at the S0 minimum energy 
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structure accurately due to the CT character of the excitations, and it appears that the S1 

energies at the S1 structure are also poorly described using TD-B3LYP. 

The B3LYP/def2-TZVP (MgO)9 GSDE is very low in in comparison to the GSDE of the 

other particles, which is presumably due to the fact that the B3LYP/def2-TZVP (MgO)9 

particle is  predicted to have a different exciton localisation character, discussed further in 

section 7.3.4. 

 

Table 7-6: GSDE calculated with the B3LYP, BHLYP and CAM-B3LYP (denoted by ‘CAM’) 

xc-functionals and the DZC basis set for (MgO)n where n =  24, 32, 40. All values are in eV. 

 B3LYP  GSDE BHLYP  GSDE CAM  GSDE 

(MgO)24 1.19 1.62 1.53 

(MgO)32 1.50 0.55 0.45 

(MgO)40 1.49 0.60 – 

 

Table 7-7: ESSE calculated with the B3LYP, BHLYP and CAM-B3LYP (denoted by ‘CAM’) 

xc-functionals and the DZC basis set for (MgO)n where n =  24, 32, 40. All values are in eV. 

 B3LYP ESSE BHLYP  ESSE CAM  ESSE 

(MgO)24 - 1.15 - 1.13 - 0.91 

(MgO)32 - 1.34 - 2.27 - 0.71 

(MgO)40 -  1.37 - 2.27 – 

 

The DZC equivalent ESDE and ESSE results for the larger particles are presented in tables 

7-6 and 7-7, to highlight some differences between these results and the results obtained 

with the def2-TZVP basis set, shown in tables 7-4 and 7-5. The results obtained from both 

the B3LYP and CAM-B3LYP xc-functionals are not basis set dependent but in the case 
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of the BHLYP xc-functional, some clear differences can be seen: the ESSE becomes larger 

than the GSDE for both the (MgO)32 and the (MgO)40 particles when decreasing the size 

of the basis set. This means that, when using the smaller basis set, the S0 potential energy 

surface is shallower than the S1 surface. However, it is possible that the S1 surface is 

sufficiently badly described with the smaller basis set, and described worse than the 

ground state surface, as, broadly speaking, the excited state density is more diffuse. This 

increased diffuse nature arises from the fact that the electron is less strongly bound when 

excited. This then results in an excited state that is more difficult to describe with a smaller 

basis set. 

 

7.3.4 Exciton localisation 

It can be difficult to characterise excited state minima, however Zwijnenburg256,257 has 

developed a useful approach to describing different types of S1 minima through their 

exciton localisation character (ELC), and a similar notation is adopted here. The different 

types of minima are labelled as (ne - nh) where ne = the number of excited electron centres 

and nh = the number of hole centres. As, an example, when one electron is localised over 

two centres and the corresponding hole is localised over one centre, the notation (2 – 1) is 

used. When the excited electron and/or hole are delocalised over the entire particle, N (for 

‘nulla’, zero in Latin) is used instead of a numerical value. The number of electron and 

hole centres has been obtained by taking the difference of the ground state (S0) charges 

and the excited state (S1) charges, both obtained at the optimised excited state geometry. 

When using (TD-)BHLYP and (TD-)B3LYP, NBO charges have been used to evaluate 

the charge difference, whereas Löwdin charges have been used for calculations with (TD)-

CAM-B3LYP. 

The localisation data is a set of charge differences, evaluated at every atom, so on every 

atom, the resulting charge difference could range from zero to one. A charge difference 

of zero would mean that none of the excited electron or hole is localised on that atom and 

a charge difference of one would mean that the entire electron or hole is localised on that 

atom. However, as (TD)DFT describes electrons as wave-like particles (or rather, it 
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describes the electron density), the charge difference is never zero or one. This means that 

a cut-off value had to be determined to classify the electron and hole localisation.  

Typically, a cut-off value of 0.1 has been used. However, in the case of the TD-

B3LYP/def2-TZVP (MgO)9 result, this was not the case: the hole was localised on one 

oxygen atom by approximately 62% (i.e. the oxygen on which the hole was localised on 

had a charge difference of 0.62, with the other oxygens having charge differences ranging 

from 0.03 to 0.08). The corresponding excited electron, however, was delocalised over 

several magnesium atoms: two atoms had a charge difference of 0.1, two atoms showed a 

charge difference of 0.09, two atoms showed a charge difference of 0.07, two further 

atoms had 0.04 of the electron and the final atom had 3% of the electron localised on that 

atom (corresponding to a charge difference of 0.03). It could be argued that, instead of a 

(N – 1) localisation, a (2 – 1) localisation would be more suitable. However, as a charge 

difference of 0.10 is so small compared to one of 0.6 and 0.10 is so similar to a charge 

difference of 0.09, which in turn is more similar to 0.07 than it is to 0.6, it was felt that a 

localisation of (N – 1) would be a more suitable description of the relative delocalisation 

of the electron compared to that of the hole. For all other systems, the case of cut-off 

values was very clear, and two examples are given to demonstrate this point further. An 

example particle with (1 – 2) ELC is the cubic (MgO)6 particle with the TD-BHLYP/def2-

TZVP model chemistry: the electron is localised on one magnesium atom, seen by a 

charge difference of 0.72, and the hole is delocalised over two oxygen atoms, with a 

charge difference of 0.35 each. The TD-BHLYP/def2-TZVP (MgO)9 particle, in contrast, 

shows a very clear (1 – 1) ELC, with an excited electron localised on one oxygen atom by 

76% and the corresponding hole being localised on one magnesium atom of 67%. The 

ELCs obtained for all (MgO)n systems are shown in table 7-8, below. 

 

 

 



Photoluminescence in MgO nanoparticles 

 

188 
 

Table 7-8: Exciton localisation character (ELC) from the difference in NBO charges derived 

from calculations using the B3LYP and BHLYP- xc-functionals and the def2-TZVP and DZC 

basis sets. 

 

B3LYP BHLYP 

def2-TZVP   DZC def2-TZVP   DZC   

(MgO)4 (2 – 2) (2 – 2) (2 – 2) (2 – 2) 

(MgO)6 hexagonal (2 – 2) (2 – 2) (1 – 1) (1 – 1) 

(MgO)6 cubic (1 – 2) (1 – 2) (1 – 2) (1 – 2) 

(MgO)9 (N – 1) (1 – 2) (1 – 1) (1 – 2) 

(MgO)12 hexagonal (1 – 1) (1 – 1) (1 – 2) (1 – 2) 

(MgO)12 sodalite (2 – 2) (2 – 2) (1 – 2) (1 – 2) 

(MgO)18 (1 – 1) (1 – 1) (1 – 1) (1 – 1) 

(MgO)24 (1 – 1) (1 – 1) (1 – 1) (1 – 1) 

(MgO)32 (1 – 1) (1 – 1) (1 – 1) (1 – 1) 

(MgO)40 – (1 – 1) – (1 – 1) 

 

The results based on the NBO data show that as the particle size increases, the excited 

electron and hole each become more localised at the S1 minimum energy geometry, as 

seen in figure 7-8. The localised character of the exciton is most apparent in the 

calculations for larger particles (n = 18, 24, 32, 40), which all have an ELC of (1 – 1), i.e. 

the excited electron and hole are localised on one atomic centre each: this is predicted with 

both the DZC and def2-TZVP basis sets. In these larger rocksalt systems, the excited 

electron is localised on a corner magnesium atom, whereas the hole is localised on a corner 

oxygen atom, with some of the excited electron and hole density also accumulating on the 

edge atoms adjacent to the corner sites. 
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It sounds contradictory that the optimised S1 exciton appears to be so similar for both TD-

B3LYP and TD-BHLYP, considering the different vertical excitation behaviour discussed 

in chapter 5. Taking the (MgO)32 particle as an example, the analysis of the LVEE, 

discussed in the previous chapters, showed that TD-B3LYP predicts the LVEE to arise 

from an electron that is excited from a corner oxygen atom to a corner magnesium atom, 

whereas TD-BHLYP predicts the LVEE involves instead a corner oxygen atom and 

neighbouring magnesium edge atoms. 

It appears that during the S1 relaxation, the TD-B3LYP exciton delocalises slightly, with 

the NBO charge differences decreasing in absolute terms on the corner atom: the excited 

electron is localised 75.65% on corner magnesium atoms at the ground state geometry and 

74.06% at the S1 minimum. The hole delocalises more, with 83.51% of it being localised 

on oxygen corner atoms before the exciton relaxes, but only 61.11% of the hole is localised 

on oxygen corner atoms in the S1 minimum. On the other hand, the TD-BHLYP exciton 

changes from an electron-hole pair that is in close proximity to each other, to an electron-

hole pair that is separated along an edge of the rocksalt particle. TD-BHLYP S1 relaxation 

therefore is a process where the an electron is excited from magnesium edge atoms 

coordinating the oxygen corner atom on which the hole is localised to a magnesium corner 

atom that shares a common edge the a corner hole centre. The excited electron is localised 

for only 17.24% on magnesium corner atoms before excited state relaxation, but this 

increases to 81.30% afterwards, whereas the hole delocalises slightly in the process, from 

89.52% localisation on corner atoms before the excited state relation, to 67.20% after. A 

density difference plot, showing the optimised self-trapped exciton (STE)‡‡‡ calculated 

with TD-B3LYP and TD-BHLYP can be seen in figure 7-8 for the (MgO)32 particle. 

In addition to the well-defined trend for the larger particle, good agreement between the 

different model chemistries (referring to both basis sets and xc-functionals) can be seen 

for some of the smaller particles, such as (MgO)4 and the cubic (MgO)6 structure.  

Some model chemistries lead to results that differ from those predicted by the other 

method combinations: for example, the hexagonal (MgO)6 structure is predicted to have 

                                                
‡‡‡ A self-trapped exciton is an exciton that traps itself by distorting the geometry around it. 
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an (1 – 1) ELC by (TD-)BHLYP, which is in contrast to the (TD-)B3LYP prediction of a 

(2 – 2) type ELC. This difference is apparent regardless of which basis set is used. A 

similar result is found for the (MgO)12 particles: (TD-)BHLYP predicts a (1 – 2) type ELC 

for both particles but (TD-)B3LYP predicts an ELC of (2 – 2) for the sodalite particle and 

an (1 – 1) ELC for the hexagonal particle. The previously discussed (MgO)9 particle is 

interesting, as although the DZC basis set yields the same ELC for (TD-)BHLYP and (TD-

)B3LYP of (1 – 2), the def2-TZVP basis set shows a different localisation for the (TD-

)BHLYP and (TD-)B3LYP densities: the former showing an (1 – 1) ELC but the latter a 

(N – 1) ELC, i.e. with the excited electron delocalised over all magnesium sites. (MgO)9 

is the only particle where ne is larger than nh. For all other particles where ne  nh, the 

electron is localised on one centre, whereas the hole is delocalised over two centres. 

 

 

Figure 7-8: Ground and excited state electron density differences for the S1 minima of the 

(MgO)32 particle calculated using A. the TD-BHLYP/def2-TZVP and B. the TD-B3LYP/def2-

TZVP model chemistries. Blue surfaces show charge accumulation (excess of electron density in 

the excited state), and green show charge depletion (deficit of electron density in the excited 

state). Isosurfaces are generated with a contour value of 0.01 a.u. Red spheres represent oxygen 

atoms, brown magnesium atoms. 
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Table 7-9: CAM-B3LYP/DZC exciton localisation characterisation values for the S1 minima, 

based on the difference in Löwdin charges. 

 

CAM-B3LYP 

def2-TZVP  DZC  

(MgO)4 (2 – 2) (3 – 1) 

(MgO)6 cubic (2 – 2) (2 – 2) 

(MgO)6 hex (1 – 1) (1 – 1) 

(MgO)9 (1 – 1) (1 – 1) 

(MgO)12 sodalite (1 – 2) (1 – 2) 

(MgO)12 hexagonal (1 – 2) (1 – 2) 

(MgO)18 (1 – 2) (1 – 2) 

(MgO)24 (1 – 1) (1 – 1) 

(MgO)32 – (1 – 1) 

 

Due to the unavailability of NBO population analysis in GAMESS-US, localisation 

characterisation based on Löwdin charges was performed instead for CAM-B3LYP 

generated densities and is shown in table 7-9. In contrast to the analysis based on NBO 

charges, Löwdin ELC are the same, irrespective of the basis set used for all particles apart 

from (MgO)4, where the def2-TZVP basis set gives a (2 – 2) localisation for the smallest 

particle, compared to a (1 – 3) ELC obtained from the DZC generated data. The absolute 

charge differences obtained for the different basis sets are different: the (2 – 2) ELC 

obtained from the def2-TZVP calculation results from the excited electron an hole centres 

having approximately the same amount of localisation on each of the centres, with an 

absolute charge of approximately 0.14 per centre, whereas the ELC from the DZC basis 

set arises from a 23% electron localisation and a 9% localisation of approximately on each 
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of the hole centres. This strong basis set dependence can only be seen for the smallest 

particle in this set of results. 

Similarly to the NBO results in table 7-8, Löwdin analysis predicts a (1 – 1) localisation 

for the larger particles studied. It should be noted that the (MgO)40 particle has not been 

included in this analysis, due to previously discussed computational limitations. Both 

(MgO)24 and (MgO)32 are discussed in more depth below. 

When considering the (MgO)24 particle, the CAM-B3LYP xc-functional with both the 

DZC and def2-TZVP basis sets predicts an ELC of (1 – 1), with the electron localised on 

one magnesium corner and the hole on one oxygen corner. The corner sites are common 

to one edge. It could be argued that the exciton localisation at the S1 minimum is actually 

one with an (1 – 4) ELC, as the Löwdin charge differences suggest that the magnesium 

edge atoms around the oxygen corner (where the hole is localised) also contribute to the 

hole. The fact that magnesium atoms are predicted to be hole centres is counter-intuitive: 

MgO is an ionic material, with magnesium being a di-cation and oxygen a di-anion, so the 

excited electron would move from the negatively charged ion to the positively charged 

ion, and the excited electron would not move from a positively charged ion. It is possible 

that localising the hole on magnesium sites is an error that arises from the Löwdin analysis: 

Löwdin analysis is basis-set dependent, and uses atomic orbitals to analyse charges. The 

diffuse functions in the magnesium atoms might contribute to the description of charge on 

the oxygen corner, which would lead to spurious (positive) charges on magnesium. When 

both optimised S1 CAM-B3LYP geometries (def2-TZVP and DZC optimised) have been 

studied with NBO analysis (albeit with the BHLYP xc-functional), the magnesium edge 

sites can no longer be identified as hole centres. It was therefore decided that the ELC of 

(1 – 1) was more suitable. 

The (1 – 1) ELC for (MgO)32  obtained from Löwdin charges found for CAM-

B3LYP/DZC calculations could, similarly to (MgO)24, be described as having (1 – 4) 

ELC. As this is a tetrahedral particle, and all edges contain the same number of atoms, 

each magnesium edge site neighbouring the hole centre show approximately a third of the 

charge difference of the oxygen corner site. For comparison, a Löwdin analysis performed 

on the TD-BHLYP structure (with a photoluminescence energy of 2.22 eV) yields an ELC 
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of (1 – 1), although it could be argued that this is a localisation of (1 – 2), with the 

magnesium edge site between the electron and hole having some hole characteristics. This 

is not found when using NBO charges (where only the corner sites show significant 

electron and hole localisation).  

From comparison of the (TD-)CAM-B3LYP and (TD-)BHLYP Löwdin charge analysis, 

it appears that (TD-)BHLYP localises charges more than (TD-)CAM-B3LYP. Secondly, 

it seems that the hole localisation on magnesium edge sites adjacent to the oxygen corner 

hole centre is only apparent when analysing Löwdin charges and not those of NBO. This 

means that, if NBO analysis were available for the (TD-)CAM-B3LYP densities, an (1 – 

1) ELC would most likely result, with little evidence of a possible (1 – 4) ELC for (MgO)24 

or (MgO)32. 

 

7.3.5 Structural characterisation 

A comparison of S0 and S1 structures calculated with the B3LYP/def2-TZVP xc-

functional are shown in figure 7-9. The (MgO)9 structure is discussed in more detail 

below, and its TD-B3LYP structures are compared to the TD-BHLYP structures in figure 

7-10, showing further evidence that the structural distortion can be directly linked to the 

ELC. 

On the one hand, the larger particles (n = 18, 24, 32; structures F, G and H in figure 7-9) 

show the same, and very clear, structural distortion: one magnesium corner atom (shown 

as the top left corner) distorts outwards, lengthening the bonds with the neighbouring 

oxygen atoms. This can be rationalised in the following, simplistic way: all larger particles 

show a (1 – 1) ELC, and the excited electron is localised on a corner magnesium. That 

corner magnesium changes its +2 charge to a +1 charge, meaning that the bond becomes 

more covalent (less ionic), with a weaker Coulombic interaction, and therefore the bond 

length increases. Comparing the absolute distortion between the larger particles and the 

others, it can be seen that the overall distortion appears to be smaller in the larger particles, 

due to their rigid rocksalt structure.  
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On the other hand are the smaller particles, where the individual distortions are not clearly 

visible, such as the (MgO)4, hexagonal (MgO)6 and the bubble-like sodalite (MgO)12 (TD-

)B3LYP/def2-TZVP particles (structures A, C and E in figure 7-9). This subtle excited 

state distortion can be explained through its ELC of (2 – 2): two of the magnesium atoms 

gain electron density, and two of the oxygen atoms lose electron density. This means that 

the electron density is distributed over more than one atom and the individual distortions 

are not as clearly visible, as only smaller parts of the excited electron are localised on each 

of the two magnesium atoms. As two magnesium atoms distort slightly, the other atoms 

in the particle rearrange to accommodate the distortion. 

The cubic (MgO)6 particle (structure A in figure 7-9) displays different behaviour: one 

magnesium corner (top left) is distorted more than any other atom. This can be rationalised 

with the ELC of (1 – 2), meaning that the excited electron localises mainly on one corner 

magnesium atom. The main oxygen distortion appears to be on the oxygen atoms directly 

bonded to the magnesium corner that localises the excited electron and not on the atoms 

where the hole is located on. This shows that the hole does not distort the atoms as much 

as the electron does.  

Similarly to the cubic (MgO)6 particle, the hexagonal (MgO)12 particle (structure D in 

figure 7-9) displays one very distorted magnesium atom (top right). This arises from the 

fact that the particle displays (1 – 1) ELC and the excited electron is localised on the most 

distorted magnesium atom.  
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Figure 7-9: Overlaid TD-B3LYP/def2-TZVP calculated ground and excited state structures d of 

A. (MgO)4, B. cubic (MgO)6, C. hexagonal (MgO)6, D. hexagonal (MgO)12, E. sodalite (MgO)12, 

F. (MgO)18, G. (MgO)24, H. (MgO)32. Red (brown) spheres represent oxygen (magnesium) atoms 

in the ground state geometry and the blue spheres represent both species of in the excited state 

geometry. 

 

The one particle where there is a significant difference between the TD-B3LYP and TD-

BHLYP S1 structures is (MgO)9. Figure 7-10 shows that the optimised TD-B3LYP S1 

structure is more similar to the B3LYP ground state minimum (figure 7-10 A), whereas 

the TD-BHLYP optimised S1 structure shows a magnesium atom that is strongly displaced 

from that of the optimised BHLYP ground state in comparison to the rest of the atoms 

(figure 7-10 B). This difference can be explained by the difference in ELC: analysis of the 

TD-B3LYP density gives a minimum with (N – 1) ELC, i.e. the electron is delocalised 
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over the entire particle and therefore only minor distortions on every atom can be 

observed, rather than one atom distorting significantly more than the rest, whereas TD-

BHLYP predicts a (1 – 1) ELC, which means that the electron is localised on a single 

magnesium atom, which in turn moves further away from neighbouring oxygens, resulting 

in a stronger distortion. 

 

 

Figure 7-10: (MgO)9 TD-B3LYP/def2-TZVP (A) and TD-BHLYP/def2-TZVP (B) calculated 

ground and excited state structures overlaid. Red (brown) spheres represent oxygen (magnesium) 

atoms in the ground state geometry and the blue spheres represent both species in the excited 

state geometry. Black circle highlights the different distortion behaviour. 

 

7.3.6 The flexibility of smaller particles 

All the above presented work has been done under the assumption that starting the S1 

optimisation from the S0 optimised structure is a reliable way to finding the S1 minimum 

responsible for fluorescence. To test this assumption, the smaller particles have been 

chosen and the S1 optimisation has been performed with a different starting structure. Not 

only are the optimisation calculations tractable for these clusters, but the frequency 

analysis can also be performed with reasonable computational expense. Furthermore, from 

the behaviour of the smaller particles, extrapolating the validity of the S1 minima of the 

larger particles (which cannot be studied in the same way due to computational costs 

involved) might be possible. Only actual minima with no imaginary frequencies are 

discussed below. 
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The flexibility of the clusters is illustrated in greater detail in this section using the BHLYP 

and B3LYP xc-functionals, along with the DZS and the def2-TZVP basis sets. Here the 

focus is on the (MgO)n particles with n = 4, 6, 9. The approach to investigating this 

flexibility has been the following: the excited state structure of a particle optimised with 

one functional and one basis set is taken and then re-optimised with either the other 

functional or basis set. This means that the starting point of the S1 re-optimisation is not 

the optimised S0 structure, but some non-optimal structure. This allows further exploration 

of the excited state surface from a different starting point, potentially leading to other local 

minima on the S1 surface. The different minima are characterised by their PLE and their 

ELC. Further data on the DZS results can be found in Appendix A. 

 

Table 7-10: Calculated photoluminescence energies for the cubic (MgO)4 particle, obtained 

from different combinations of xc-functional and basis set: the model chemistry for the starting 

structure of the calculation is listed on the left hand side, whereas the model chemistry used for 

the re-optimisation is listed at the top. Italicised values are for the reference minima, the ‘–‘ sign 

means that this combination of model chemistries has not been tested. All values are in eV. 

(MgO)4 
BHLYP / 

def2-TZVP 

B3LYP /  

def2-TZVP 

BHLYP /  

DZS 

B3LYP/  

DZS 

BHLYP / 

def2-TZVP 
2.60 1.70 2.29 – 

B3LYP /  

def2-TZVP 
2.60 1.70 – 1.44 

BHLYP /  

DZS 
2.60 – 2.29 1.44 

B3LYP /  

DZS 
– 1.70 2.29 1.44 

 

As table 7-10 shows, (MgO)4 does not have any other accessible minima in close 

proximity to the minima already found. As previously discussed and shown in table 7-8, 

the def2-TZVP minima are of (2 – 2) ELC, with a PLE of 2.60 eV and 1.70 eV for TD-
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BHLYP and TD-B3LYP, respectively. The DZS basis set also predicts a (2 – 2) ELC at 

the S1 minima for both xc-functionals. The PLEs from DZS the found minima is 2.29 eV 

and 1.44 eV from TD-BHLYP and TD-B3LYP, respectively.  

Through the use of different starting structures, several transition states were identified, 

although the only minima found are those reported above. The fact that several transition 

states are present shows that the S1 potential energy surface is not composed of just one 

minimum, but rather that the S1 surface has several extrema. 

 

Table 7-11: Calculated photoluminescence energies for the hexagonal (MgO)6 particle, obtained 

from different combinations of xc-functional and basis set: the model chemistry for the starting 

structure of the calculation is listed on the left hand side, whereas the model chemistry used for 

the re-optimisation is listed at the top. Italicised values are for the reference minima, the ‘–‘ sign 

means that this combination of model chemistries has not been tested. All values are in eV. 

(MgO)6 hex. 
BHLYP / 

def2-TZVP 

B3LYP / 

def2-TZVP 

BHLYP / 

DZS 

B3LYP / 

DZS 

BHLYP / 

def2-TZVP 
1.45 0.73 1.23 – 

B3LYP / 

def2-TZVP 
1.45 2.43 – 1.88 

BHLYP / 

DZS 
1.45 – 2.60 1.88 

B3LYP / 

DZS 
– 0.73 2.60 1.88 

  

The hexagonal (MgO)6 particle shows more complicated behaviour than (MgO)4, as 

shown in table 7-11. The S1 minima predicted by TD-BHLYP/def2-TZVP and TD-

B3LYP/DZS do not appear to be dependent on the starting structure.  

However, the TD-B3LYP/def2-TZVP model chemistry predicts a second minima in 

addition to the minima with a PLE of 2.43 eV and an ELC of (2 – 2), discussed previously 
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in this chapter. The second TD-B3LYP/def2-TZVP minima with PLE of 0.73 eV has an 

ELC of (1 – 1). This minimum is actually 0.6 eV more stable§§§ than the previously found 

minima with PLE 2.43 eV, showing that the more localised exciton stabilises the S1 

surface more. However, it is unclear whether the lower energy minima would be 

accessible from the TD-B3LYP/def2-TZVP ground state structure, as this study does not 

investigate energy barriers between minima 

Furthermore, a second minimum has been found for the TD-BHLYP/DZS model 

chemistry, with a PLE of 1.23 eV and an (1 – 3) ELC. This minima 3.60 eV higher in S1 

total energy to (1 – 2) minima with a PLE of 2.60 eV. Despite the higher energy of the 

minima with a PLE of 1.23 eV, this minima is closer in PLE to the def2-TZVP PLE (with 

a difference of 0.22 eV) than the DZS minimum of 2.60 eV (with a difference of (1.15 

eV), or the previously discussed DZC minimum with PLE 2.28 eV (with a difference of 

0.83 eV).  

It can be seen that TD-BHLYP energetically favours more localised excitons.  

 

 

 

 

 

 

 

 

                                                
§§§ The statement in this context refers to the total excited state energy. No comments about 
GSDE and ESSE are made, which could influence the PLE. In these cases, no Stokes shift, 
GSDE or ESSE have be calculated, as the model chemistries describing the starting structure 
and the final structure is different. 
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Table 7-12: Calculated photoluminescence energies for the cubic (MgO)6 particle, obtained 

from different combinations of xc-functional and basis set: the model chemistry for the starting 

structure of the calculation is listed on the left hand side, whereas the model chemistry used for 

the re-optimisation is listed at the top. Italicised values are for the reference minima. Italicised 

values are for the reference minima, the ‘–‘ sign means that this combination of model 

chemistries has not been tested. All values are in eV. 

(MgO)6 cub. 
BHLYP / 

def2-TZVP 

B3LYP / 

def2-TZVP 

BHLYP / 

DZS 

B3LYP / 

DZS 

BHLYP / 

def2-TZVP  
2.35 1.48 2.08 – 

B3LYP / 

def2-TZVP 
2.35 1.49 – 1.31 

BHLYP / 

DZS 
2.35 – 2.08 1.30 

B3LYP / 

DZS 
– 1.48 2.08 1.30 

 

As observed for the cubic (MgO)4 particle, the cubic (MgO)6 particle does not appear to 

have any other minima on the S1 surface in the explored region, as shown in table 7-12. 

All minima found have the same ELC of (1 – 2). The TD-B3LYP results sometimes vary 

by 0.01 eV, but this is most likely due to the chosen (TD)DFT convergence criteria: the 

TD-B3LYP/def2-TZVP minima have the same energy, within two decimal places, and 

the TD-B3LYP/DZS minima vary by 0.01 eV in their total excited state energy. It is likely 

that both the def2-TZVP and the DZS minima for TD-B3LYP have only one accessible 

minimum, but the S1 potential energy surface is shallow and due to the convergence 

criteria used in the calculations, two very slightly different minima result, depending on 

which starting structure is used. The fact that there is only one accessible minima on the 

S1 potential energy surface (with both the B3LYP and BHLYP xc-functionals) might not 

hold true for the DZC basis set: the difference between the def2-TZVP and DZC PLE is 

between 0.7 – 1.0 eV, which is not seen in the comparison of the def2-TZVP with the DZS 

data, suggesting that there might be another minimum on the S1 surface when the DZC 

basis set is employed. 
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Finally, as with (MgO)4, several transition states were found on the S1 surface for many 

re-optimisations. 

 

Table 7-13: Calculated photoluminescence energies for the hexagonal (MgO)9 particle, obtained 

from different combinations of xc-functional and basis set: the model chemistry for the starting 

structure of the calculation is listed on the left hand side, whereas the model chemistry used for 

the re-optimisation is listed at the top. Italicised values are for the reference minima, the ‘–‘ sign 

means that this combination of model chemistries has not been tested. All values are in eV. 

(MgO)9  
BHLYP / 

def2-TZVP 

B3LYP / 

def2-TZVP 

BHLYP / 

DZS 

B3LYP / 

DZS 

BHLYP / 

def2-TZVP 
3.11 2.78 2.85 – 

B3LYP / 

def2-TZVP 
3.11 2.78 – 2.24 

BHLYP / 

DZS 
3.11 – 2.85 1.95 

B3LYP / 

DZS 
– 1.73 2.24 1.51 

  

When studying the hexagonal (MgO)9, similarly to the hexagonal (MgO)6 particle, 

different S1 minima have been found, as seen from PLEs presented in table 7-13. The use 

of the def2-TZVP basis set results in more rigid potential energy surfaces compared to the 

smaller DZS basis set. All starting structures converge towards the same TD-

BHLYP/def2-TZVP minimum with a photoluminescence energy of 3.11 eV. TD-

B3LYP/def2-TZVP calculations, on the other hand, optimise to two different minima: the 

minimum with a photoluminescence of 2.78 eV and ELC of (N – 1) and another minimum, 

lower by 0.04 eV, which photo-luminesces at 1.73 eV and with an ELC of (1 – 1). 

As already mentioned, the use of the smaller DZS basis set can result in different minima. 

In addition to the TD-BHLYP/DZS with PLE of 2.85 eV, another minima with PLE of 



Photoluminescence in MgO nanoparticles 

 

202 
 

2.24 eV is seen. The latter minima is 0.12 eV lower in energy than the former. Both 

minima exhibit an ELC of (1 – 1). 

With the TD-B3LYP/DZS model chemistry, three different S1 minima can be accessed, 

all of which have an ELC of (1 – 1). In terms of energy, the minima with a PLE of 2.24 

eV is 5.03 eV lower in energy than the minima with an associated PLE at 1.51 eV, which 

is in turn lower in energy by 0.03 eV than the minima that de-excites an electron at 1.95 

eV.  

It is unclear whether the different minima obtained from the DZS basis set would all be 

observed experimentally. As the def2-TZVP basis set does not show this flexibility and 

range in different minima, it is possible that the different TD-B3LYP/DZS minima arise 

from the poor description of the S1 surface. Furthermore, assuming these minima are not 

just a result of poor basis set choice, it is unclear how high the energy barriers between 

the different minima would be, so it cannot be said whether all minima would be 

accessible (when starting from the S0 minimum). 

What can be concluded from this small study into the size and flexibility of the particles, 

is that the cubic particles are rigid whereas the hexagonal particles have more flexibility. 

This flexibility leads to other minima on the S1 surface that can be accessed from slightly 

different starting structures, although it is unclear as to whether any high energy barriers 

exist between the different minima. Extrapolating from these findings, it seems reasonable 

to suggest that the larger particles, in particular (MgO)18 and larger, would not show 

different minima on the S1 surface in the studied region, as they are larger versions of the 

cubic particles studied in this section. This would mean that the PLE presented at the 

beginning of the chapter are most likely the lowest possible PLE for the larger particles. 

 

7.4 Comparison to experiment 

The smaller particles are, as previously discussed, less rigid. This means that they can be 

found in different energetic minima. However, the larger rocksalt structures seem to 

converge to a PLE of about 2.1 to 2.2 eV, which is only slightly lower than the 
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experimental PL onset of 2.4 eV. The experimental PL peak, however, is at 3.3 eV, a value 

that cannot be reflected in the calculations performed by the author. 

It is possible that the use of the TD-BHLYP or the TD-CAM-B3LYP approximation is 

simply not sufficient to predict the correct PL behaviour of the MgO nanoparticles. It 

would be surprising, but not impossible, that although the use of TD-CAM-B3LYP is 

needed to accurately describe the vertical excitation spectra, this approximation does not 

hold for the description of other excited state properties, possibly due to over-localising 

the excited electron and hole. This is discussed in more detail below. 

Due to the rigidity of the large particle, extrapolated from findings in section 7.3.6, it can 

be concluded that it is unlikely that the larger particles studied have other minima on S1 

that are accessible via the ground state structure. This leads to the question of where the 

current computational limits are for studying the PL of MgO nanoparticles.  

To understand the compatibility of the computational results with experimental 

observations, two questions must be asked: what physical observable is being calculated, 

and what property is measured experimentally? The limitations of the computational (as 

well as experimental) approaches to studying these properties must also be taken into 

account.  

Firstly, the experimental spectra (figure 3.2 ii) should be analysed more closely. If all 

particles emitted at the same energy upon de-excitation, then only one narrow peak should 

be seen in the spectrum. This is not the case, presumably due to instrumental broadening, 

vibrational broadening and a range of particle sizes in the sample. If vibrational 

broadening were the only factor, then a symmetrical peak would be observed, with the 

peak intensity corresponding to the value attributed to the de-excitation.  

The obvious question to ask next is whether the asymmetrical particle size distribution 

found experimentally20 is the source of the asymmetry of the observed photoemission 

spectrum. The experimental particle size distribution shows that, although the average 

particle size is 3 nm, particles as large as 8 nm are present within the sample,20 so it can 
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be said that the asymmetric peak observed is at least partly related to the particle size 

distribution. 

However, the same study has also looked at samples with larger average particle sizes (5 

nm and 10 nm) and the peak positions of the PL spectra vary in intensity but only by 0.1 

eV in energy and the asymmetry of the peak does not change (figure 3.2 ii). If the particle 

size distribution was the only factor determining the asymmetry of the peak and the peak 

position, the experimentally observed PL spectra would look different for the samples 

with different average particle sizes, resulting in PL spectra that are shifted up or 

downwards in energy if the average particle size of the sample increases or decreases. 

There are other sources of potential broadening of the spectra that are not related to the 

sample, such as instrumental broadening. This type of broadening has different sources, 

such as the incoming light consisting of not just the set value of λ but also small variations 

in the wavelength but an average value of λ. It is difficult to quantify these broadening 

effect, especially as a computational chemist. However, it is most likely that the 

experimental broadening that arises would be symmetric (either of Gaussian or Lorentzian 

distribution), unless some unlikely misalignment is the experimental apparatus is present. 

Assuming that the experiments have been performed as accurately as possible, it is very 

unlikely that the asymmetry of the PL peak stems from instrumental broadening. 

Through exclusion of other possibilities, such as vibrational and instrumental broadening 

as well as particle size distribution, and the fact that the use of different electron excitation 

energies yield slightly different PL peaks, it appears that there is a possibility of the fact 

that Kasha’s rule (discussed in section 1.3) does not hold true for the MgO nanoparticles 

investigated by the author, as observed for other particles previously258–260: this would 

mean that de-excitation does not only occur from the S1 surface but also from higher-lying 

(singlet) states. As little spin-orbit coupling is expected in MgO nanoparticles, de-

excitation from T1 (or any triplet state) is unlikely. There is some experimental evidence 

for the fact that MgO nanoparticles exhibit non-Kasha behaviour: the experimental PL 

spectra should be independent of the excitation wavelength, something that is not seen 

experimentally. The PL peak at 3.3 eV shifts to 3.4 eV as the excitation photon increases 

in energy from 270 nm (4.59 eV) to 240 nm (5.17 eV). This was explained by arguing that 
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the peak at 3.3 eV resulted from corner de-excitation and the peak at 3.4 resulted from 

edge de-excitation. 

From a computational chemist’s point of view, the possibility that Kasha’s rule may not 

be applicable for MgO nanoparticles has severe consequences. As discussed previously it 

is difficult to calculate excited state minima using TDDFT on surfaces higher than S1. 

Furthermore, it is possible that once an electron has been excited, internal conversion 

(orange arrow in figure 1.3) occurs: this is a radiationless transition and is therefore 

difficult to study experimentally. Hence, it is possible that an electron is excited to Sn with 

n > 1, the system relaxes partly and only after some relaxation, does internal conversion 

occur to Sm, with m < n. This process may be repeated until the nanoparticle is in the S1 

state, and emission occurs – or, alternatively, emission occurs from a higher-lying state. 

The problem, from a computational perspective, is that the complex relaxation process is 

completely unknown. With the cost of the calculations as they are today and the 

limitations of the methodology, it is just not possible to know on which potential energy 

surface the relaxation occurs, which internal (radiationless) processes occur and from 

which state emission occurs for systems as large as the ones studied in this thesis.  

 

7.5 Discussion  

As discussed previously in this thesis, TD-B3LYP does not correctly predict MgO 

excitation behaviour, due to the CT character of some of its excitations. Similarly, TD-

B3LYP calculated PLEs are considerably lower than those obtained from TD-BHLYP, 

TD-CAM-B3LYP and experiment. A test calculation was performed to obtain the Λ value 

from a (MgO)24 excited state optimisation calculation. The Λ value is a numerical measure 

of overlap between orbitals occupied in the ground and excited states, discussed in more 

detail in chapters 5 and 5. For comparison, the Λ value associated with the lowest vertical 

excitation of an electron at the ground state structure for (MgO)24 is 0.15, indicating that 

the excitation has CT character. However, at the S1 optimised structure, the Λ value 

decreases to 0.09, indicating that there is even less orbital overlap between the orbitals at 

the S1 minimum. This is the reason why the TD-B3LYP data for the larger particles, 
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despite sharing characteristics with TD-BHLYP such as the (1 – 1) ELC, reveals a severe 

underestimation of the PLE. From the data discussed in chapter 5, it was determined that 

the excited state has been stabilised at the ground state structure and it can be seen from 

the PL data presented in this chapter, that this is also true at the S1 minimum.  

As discussed in chapter 5, TD-BHLYP predicts the excitation energies in MgO 

nanoparticles to be approximately 0.5 eV higher than those found experimentally (and 

those calculated with TD-CAM-B3LYP), presumably de-stabilising the excited states 

associated with these excitations. However, this is no longer seen in the PLE data: TD-

BHLYP and TD-CAM-B3LYP predict very similar PLE for the larger particles and both 

predict the PLEs to reach a plateau at around 2.2 eV. This plateau is consistent with the 

experimental observation that the PLEs are not size-dependent. The difference in Stokes 

shift obtained from the TD-BHLYP results are slightly (although less than 0.5 eV) higher 

than the results obtained using TD-CAM-B3LYP. This leads to the question of where the 

stabilisation of S1 at the optimised S1 geometry using TD-BHLYP stems from. The ESSE 

is consistently higher for TD-BHLYP than it is for TD-CAM-B3LYP, and this is 

especially noticeable for the larger particles, meaning that the S1 potential energy surface 

as described by TD-BHLYP is steeper, and initially higher at the S0 geometry. This might 

result in a lower TD-BHLYP-calculated S1 minimum i.e. the excited state energy at the 

S1 minimum relatively lower than at the S0 minimum and therefore leads to a 

photoemission energy similar to that of TD-CAM-B3LYP. 

On a more general note regarding TDDFT, as seen in section 5.7, the larger particles 

optimise with TD-BHLYP from a state in which the exciton is localised on a corner atom 

and edge atoms (chapter 5), to an exciton that spreads along the edge side of the particle. 

Although there is no clear link that has been investigated between the BHLYP xc-

functional performance and orbital overlap, TDDFT is known to model such excitations 

poorly with hybrid GGA functionals (apart from functionals with significant amount of 

HFE), as the xc-energy is a description of the local density and its gradient, even though 

the HFE is a non-local expression. The TD-BHLYP functional is constructed with a 50% 

HF contribution to the exchange, but although the HFE is non-local, it only describes the 

exact exchange for a non-interacting system (albeit with the same density as the 
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interacting system). The question that remains is whether a 50% contribution of a non-

local, but non-interacting expression, is a good balance to describe the optimisation 

process of the S1 surface.  

The issue remains as to why TDDFT does not predict the peak position of the PL 

spectrum: the experimentally observed peak is the most intense, and that peak is the S1 → 

S0 vertical adiabatic de-excitation, the process that is modelled here (a 0 → n vibronic de-

excitation, where 0 and n are the vibronic states of the S1 and S0 surfaces respectively). 

The experimental spectrum shows a broad peak, and on either side of the highest intensity 

are contributions to the PL spectra that are not modelled here, such as non-vertical non-

adiabatic de-excitations. The photoluminescence onset is therefore due to such de-

excitation, and so the numerical agreement between the TDDFT calculations and the 

experimental PL onset appears to be coincidental. To model not only the most intense 

peak but also these other contributions, the TDDFT calculations would need to include 

vibronic coupling. This is technically feasible but increases the computational cost of the 

calculations to such an extent that it is only practical for small molecules. 

As previously alluded to, it is possible that the approximations used (mainly the use of 

hybrid GGA xc-functionals) within this study are fundamentally unsuitable in describing 

the electronic structure near the S1 minimum. Related to this, it is also possible that the S1 

minimum is described correctly but the barrier between that minimum and a local, higher 

minimum is not described correctly. The higher energy minimum could be the one from 

which the PL occurs experimentally, with the barrier preventing the real particle from 

reaching the lower S1 minimum. If this barrier between two minima is not accurately 

described then the higher energy minima could end up being incorrectly described an on 

open-ended basin. Furthermore, it is possible that this barrier only arises once the particles 

are sufficiently large, meaning that these theoretical particles are then not representative 

of those studied experimentally. To test any of these hypotheses, more accurate (and 

therefore more expensive) calculations would be needed, or larger particles would need 

to be studied. The potential reasons for the failure of TDDFT in this case cannot therefore 

currently be tested.  
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Sampling limitations within TDDFT could also be the reason as to why the calculated 

PLE are not accurately described: it is possible (although unlikely if the rocksalt particles 

are as rigid as thought), that there are other S1 minima that have not been found in this 

study. The limitation in not being able to sample higher excited states surfaces also means 

that it cannot be excluded that non-Kasha behaviour occurs, with the Sn to S1 decay failing 

to occur on a sufficiently fast timescale. This would blue-shift the PL peak directly. 

Another possibility would be that a Sn to S1 conversion via a conical intersection occurs, 

giving access to different S1 minima further away from the ground state minimum. 

Although these last two points are possibilities, the experimental used excitation 

wavelength was tuned to 270 nm, which is close to the absorption onset, the S0 to S1 

excitation, so populating a higher state than S1 seems unlikely. 

 

7.6 Conclusions 

In this chapter, the photoluminescence energies of different MgO nanoparticles were 

presented and discussed. These energies were calculated using three different xc-

functionals: B3LYP, BHLYP and CAM-B3LYP, each containing different amounts of 

HFE. The amount of HFE is crucial in determining an accurate description of the S1 

minimum, from which an electron is de-excited back to S0. 

It has been shown with example TD-B3LYP/def2-TZVP structures, that the ELC and 

optimised S1 structure are directly linked. The main factor in the S1 structure distortion 

compared to the S0 optimised structure, is the number of electron centres, ne: when ne is 

equal to one, one magnesium atom can be seen to be most distorted, increasing the bond 

length to the neighbouring oxygen atoms, and the rest of the particle rearranges to 

compensate for this distortion. As ne increases, the atoms on which the excited electron is 

localised, becomes less obvious in the structure, and the distortion can be seen to occur 

equally over the entire particle, which is a result of two factors: some atoms distort as they 

have more electron density and other atoms rearrange to compensate for the distortion of 

other atoms. This means that from the individual distortion of the atom, it cannot be said 
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whether that atom is distorted due to electron density gain or whether it has rearranged to 

accommodate another atom’s distortion. 

The larger particles (n = 18, 24, 32) all optimise to an excited state minimum which has a 

localised electron and hole, with the electron and hole both localising on corner sites lying 

on opposite ends of one edge of the particle. This is in contrast to the excited state 

localisation after vertical excitation at the S0 minimum obtained from TD-BHLYP, where 

the electron and hole are in close proximity to each other. This shows that the optimisation 

on the S1 surface corresponds to a process by which the electron and hole pair separate. In 

the case of the B3LYP xc-functional, localisation at the S1 minima is found to be the same 

as for TD-BHLYP, although the calculations using the former are unreliable due to the 

strong CT-character of the excitation process. This link between poor LVEE (and possibly 

also PLE) predictions and poor orbital overlap has not been found for the BHLYP and 

CAM-B3LYP xc-functionals.89,109 

Something that should be borne in mind, however, with these calculations is that they 

might not be representative of the experimental observations: calculated PLEs are in good 

agreement with the experimental PL onset by underestimating this onset by approximately 

0.2 eV, although this agreement appears to be coincidental. The calculated PLEs are 

approximately 1 eV below the experimental peak positions. Several potential explanations 

have been presented to explain the disagreements between experimental and 

computational results. 

In the unlikely situation whereby the TD-CAM-B3LYP/TD-BHLYP model of the PL 

from the S1 surface is accurate, then it implies that Kasha’s rule is not applicable to MgO 

nanoparticles, which makes it extremely challenging to predict the PL spectra of these 

particles, as emissions from many different excited surfaces down to S0 would be 

occurring. This is computationally extremely time-consuming, if not currently intractable. 

Furthermore, the calculations presented here assume that no internal conversion from 

higher lying excited states down to S1 is occurring, which may be an over-simplification 

of the process.  
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It appears that there are too many unknowns at hand to accurately model, and therefore in 

future predict the PL spectra of MgO particles that approach experimental size. However, 

computational chemistry is a field that has seen immense advances with the help of 

increasing computer power and more efficient implementation of (quantum) chemical 

codes. If this trend continues, excited state optimisations will become cheaper to perform, 

so that higher lying states can be studied in more detail, their predicted PLE can be 

calculated and a PL spectrum can be compiled. This advance would shed light on whether 

Kasha’s rule truly is not applicable for these MgO nanoparticles. 
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8. Doped MgO particles  

8.1 Introduction 

As discussed in section 3.1.3, doping (nano)particles is an effective approach to modifying 

the chemical and physical properties of the particles. The effect of doping MgO 

nanoparticles is the subject of this preliminary study. The chosen dopants are the alkaline 

earth metals beryllium (Be), calcium (Ca), strontium (Sr) and barium (Ba), as well as the 

group 12 elements cadmium (Cd) and zinc (Zn). These dopants were chosen so as to retain 

a neutral particle, with all chosen dopants found as 2+ cations. Ca-, Ba- and Zn-doped 

MgO nanoparticles are also found experimentally. To reflect the low doping percentage 

found experimentally (usually below 10%, as discussed in section 3.1.3), only one Mg ion 

is substituted in any given system. Only (MgO)24 and (MgO)32 particles have been 

considered, as it has been shown in this thesis that these particles accurately reflect 

experiment at an affordable computational cost: these are also the two smallest structures 

with the experimentally observed rocksalt morphology. As the energetically lowest 

substitution occurs on corner sites, corner substitution has been studied in both the A-

Mg23O24 as well as the A-Mg31O32 particles, where A denotes the dopant. Furthermore, in 

the case of the (MgO)32 cluster, edge and face substitution has also been modelled.  

This chapter aims to investigate whether the BHLYP xc-functional can reproduce 

experimental results of doped MgO nanoparticles, albeit with the caveat that the excitation 

energies might be over-estimated by as much as 0.5 eV. The CAM-B3LYP xc-functional 

has not been used here due to its computational expense, and the BHLYP xc-functional 

has been demonstrated in this thesis to be reliable in the simulation of the vertical 

excitation process of MgO and other inorganic nanoparticles. In essence, this chapter goes 

beyond chapters 5 and 7, and tests whether the approximations made in previous chapters 

are also suitable when considering the properties of doped particles. 

The work presented here is based on preliminary results. Therefore some data sets are 

incomplete, and some properties considered in other chapters have not been investigated.  
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8.2 Methodology 

DFT has been used to calculate the ground state structures of doped (MgO)24 and (MgO)32 

particles with the BHLYP xc-functional, and TDDFT (using TD-BHLYP) employed to 

calculate vertical excitation energies of said structures. Furthermore, excited state 

relaxations on the S1 surface have been performed, again using TDDFT, to obtain 

photoluminescence energies (PLE). The following dopants have been considered: Ba, Be, 

Ca, Cd, Sr and Zn. The triple-ζ basis set def2-TZVP was used for all atoms, incorporating 

effective core potentials for Sr and Ba.  

The absorption spectra, obtained from a custom script, have all been modelled using a 0.1 

eV standard deviation of the Gaussian function, in-line with studied shown in chapters 5 

and 6. The character of the excitation has been analysed by evaluating the difference in 

the natural bond order (NBO) charges between the ground and excited states. The 

TURBOMOLE code has been used for all studies, and VMD for visualisation of the 

particles. 

 

8.3 Ground state Structures 

Ground state structures have been optimised by taking the optimised (MgO)24 and 

(MgO)32 particles as initial geometries. The (MgO)24 lattice has been modified to 

incorporate the dopant by replacing a corner atom. In the case of the (MgO)32 particle, one 

corner, one edge and one face atom have been substituted respectively, taking advantage 

of the cubic nature of the particle. Figure 8-1 shows the optimised corner-doped A-

Mg23O24 particles overlaid on top of the pure (MgO)24 particle. The corner, edge and face 

substituted A-Mg31O32 particles overlaid on the pure (MgO)32 particle are shown in figures 

8-2, 8-3 and 8-4, respectively. 
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Figure 8-1: BHLYP/def2-TZVP optimised doped clusters A-Mg23O24 overlaid onto optimised 

Mg24O24, where A= Be (A), Ca (B), Sr (C), Ba (D), Zn (E) and Cd (F). Dopant is visualised as a 

yellow sphere, magnesium as a brown sphere and oxygen as a red sphere. 

 

Table 8-1: Ionic radii, obtained from reference 261 and 262, for the ionic radius of 6-

coordinated dications. All values are in Å. 

Mg2+ Be2+ Ca2+ Sr2+ Ba2+ Zn2+ Cd2+ 

0.72 0.45 1.00 1.18 1.35 0.74 0.95 

 

Table 8-2: BHLYP/def2-TZVP calculated A-O bond lengths for A-Mg23O24, where A = Mg, Be, 

Ca, Sr, Ba, Zn, Cd. Subscript denotes site: c for corner, e for edge, f for face and b for bulk. All 

values are in Å. 

 A = Mg A = Be A = Ca A = Sr A = Ba A = Zn A= Cd 

Ac–Oe 

Ac–Oe 

Ac–Oe* 

1.906 

1.906 

1.919 

1.577 

1.577 

1.599 

2.166 

2.167 

2.193 

2.304 

2.305 

2.336 

2.428 

2.429 

2.477 

1.922 

1.922 

1.944 

2.130 

2.131 

2.160 

* denotes the shorter edge of the particle. 
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The ionic Radii, first collated by Shannon261,262 as presented in table 8-1, are the ionic 

radii for a 6-coordinated, doubly positive cation, have been used to rationalise the trend 

seen in the ground state structures: in line with the tabulated ionic radii, Be substitution 

(figure 8-1-A) has a pronounced impact on bond lengths around the doped corner site: due 

to the significantly small size of the Be2+ cation, it sits much closer to the neighbouring 

oxygen sites, inside of the rocksalt skeleton of (MgO)24, also seen in table 8-2. Due to the 

size-mismatch, the neighbouring oxygen corner atoms are also displaced relative to their 

position in pure MgO. All other dopants have a larger ionic radius than magnesium, and 

therefore exhibit longer bonds with neighbouring oxygens, as seen in table 8-2. Sr2+ and 

Ba2+ and Cd2+ doped particles also show some distortion on the neighbouring O2- sites as 

well, as seen in figure 8-1-A. The Zn-doped particle is most similar in structure to the pure 

MgO particle, as the Zn2+ ion sits nearly in the same position as the Mg2+ corner site, with 

only minor changes to bond lengths. The similar structures of pure (MgO)24 and Zn-

Mg23O24 arises from the fact that Mg2+ and Zn2+ ions have very similar ionic radii. The 

structural effects of the dopants are similar in corner-, edge- and face-doped A-Mg31O32, 

as can be seen from figures 8-2, 8-3 and 8-4, and tables 8-2, 8-3, 8-4 and 8-5.  
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Figure 8-2: BHLYP/def2-TZVP optimised corner doped clusters A-Mg31O32 overlayed onto 

optimised Mg32O32, where A= Be (A), Ca (B), Sr (C), Ba (D), Zn (E) and Cd (F). Dopant is 

visualised as a yellow sphere, magnesium as a brown sphere and oxygen as a red sphere. 

 

 

Figure 8-3: BHLYP/def2-TZVP optimised edge doped clusters A-Mg31O32 overlayed onto 

optimised Mg32O32, where A= Be (A), Ca (B), Sr (C), Ba (D), Zn (E) and Cd (F). Dopant is 

visualised as a yellow sphere, magnesium as a brown sphere and oxygen as a red sphere. 
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Figure 8-4: BHLYP/def2-TZVP optimised face doped clusters A-Mg31O32 overlayed onto 

optimised Mg32O32, where A= Be (A), Ca (B), Sr (C), Ba (D), Zn (E) and Cd (F). Dopant is 

visualised as a yellow sphere, magnesium as a brown sphere and oxygen as a red sphere. 

 

Table 8-3: BHLYP/def2-TZVP A-O bond lengths for corner-doped A-Mg31O32, where A = Mg, 

Be, Ca, Sr, Ba, Zn, Cd. Subscript denotes site: c for corner, e for edge, f for face and b for bulk. 

All values are in Å. 

 A = Mg A = Be A = Ca A = Sr A = Ba A = Zn A= Cd 

Ac–Oe 

Ac–Oe 

Ac–Oe 

1.915 

1.916 

1.916 

1.591 

1.591 

1.591 

2.179 

2.180 

2.180 

2.318 

2.319 

2.318 

2.449 

2.449 

2.449 

1.934 

1.934 

1.934 

2.145 

2.145 

2.146 
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Table 8-4: BHLYP/def2-TZVP A-O bond lengths for edge-doped A-Mg31O32, where A = Mg, 

Be, Ca, Sr, Ba, Zn, Cd. Subscript denotes site: c for corner, e for edge, f for face and b for bulk. 

All values are in Å. 

 A = Mg A = Be A = Ca A = Sr A = Ba A = Zn A= Cd 

Ae–Oc 

Ae–Oe 

Ae–Of 

Ae–Of 

1.948 

2.018 

2.014 

2.014 

1.538 

2.603 

1.631 

1.631 

2.195 

2.288 

2.288 

2.289 

2.324 

2.423 

2.455 

2.455 

2.403 

2.547 

2.656 

2.657 

1.938 

2.006 

2.085 

2.086 

2.109 

2.160 

2.317 

2.317 

 

Table 8-5: BHLYP/def2-TZVP A-O bond lengths for face-doped A-Mg31O32, where A = Mg, 

Be, Ca, Sr, Ba, Zn, Cd. Subscript denotes site: c for corner, e for edge, f for face and b for bulk. 

All values are in Å. 

 A = Mg A = Be A = Ca A = Sr A = Ba A = Zn A= Cd 

Af–Oe 

Af–Oe 

Af–Of 

Af–Of 

Af–Ob 

2.069 

2.070 

1.995 

1.996 

2.069 

2.626 

2.647 

1.592 

1.594 

1.615 

2.271 

2.272 

2.193 

2.193 

2.598 

2.429 

2.429 

2.344 

2.344 

3.189 

2.586 

2.586 

2.488 

2.488 

3.555 

2.102 

2.103 

2.023 

2.023 

2.137 

2.239 

2.240 

2.169 

2.170 

2.526 

 

 

It can be seen from figures 8-2 to 8-4 and tables 8-3 – 8-5 that as the coordination number 

of the dopant increases from three to four to five, more structural deformation of the Mg-

O lattice is required to accommodate the larger dopant (apart from Be2+). The zinc dopant 

is the obvious exception, with no apparent change to the structure and only minor changes 

to the bond lengths. Unsurprisingly, Be2+ always moves into the lattice, rather than out of 

it as is the case with the other, larger, dopants, seen as e.g. in table 8-5, where the bond 

length between the beryllium atom and the oxygen bulk atom is smaller than the 

equivalent magnesium-oxygen bond length. All structures exhibit a trend that follows 

what would be expected from the ionic radii. 
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8.3.1 Substitution energy 

Calculating the substitution energy of each dopant is interesting since it can reveal whether 

or not a substitution could occur naturally, i.e. whether there is an overall energy decrease. 

Of course, the substitution energies calculated below only offer insights into the 

thermodynamics of the process, i.e. no energy barriers for this process are investigated. 

This means that even if a substitution is favourable, it might not occur spontaneously. 

Substitution energies have been calculated by taking the difference between two systems: 

- The sum of the total energies of the doped clusters and the Mg2+ ion 

- The sum of the total energy of the pure MgO clusters and the dopant ion, 

i.e. the difference between the starting materials and the products in equation (8-1), where 

n = 24 or 32. 

(𝑀𝑔𝑂)𝑛 + 𝐴2+ →  𝐴𝑀𝑔𝑛−1𝑂𝑛 +  𝑀𝑔2+                                                           (8-1) 

 

Table 8-6: Substitution energies of a Mg2+corner ion in (MgO)24. All values are in eV. 

 Be2+ Ca2+ Sr2+ Ba2+ Zn2+ Cd2+ 

Corner - 7.11 3.90 5.46 6.60 - 1.59 1.25 
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Table 8-7: Substitution energies of a Mg2+ corner, edge and face ion in (MgO)32. Numbers in 

brackets show coordination numbers of the dopant. All values are in eV. 

 Be2+ Ca2+ Sr2+ Ba2+ Zn2+ Cd2+ 

Corner (3) - 7.05 3.89 5.45 6.56 - 1.61 1.21 

Edge (4) - 6.10 4.12 5.87 7.18 - 1.48 1.31 

Face (5) - 5.77 4.93 6.99 8.50 - 1.25 1.95 

 

Tables 8-6 and 8-7 show that the substitution energy is almost independent of particle size, 

with all energy differences being within the uncertainty of DFT. Table 8-7 shows that as 

the coordination number of the dopant increases, the substitution becomes less favourable, 

as expected. These calculations are in agreement with the study by Sternig et al.,19 which 

concludes that 3-coordinated sites are substituted before 4- and 5- coordinated sites. 

Doping MgO with Ca2+, Sr2+, Ba2+ and Cd2+ is found to be strongly endothermic, where 

Cd2+ is the least endothermic substitution, presumably because Cd2+ is most similar in size 

to Mg2+. As Zn2+ has an ionic radii that is extremely similar to that of Mg2+, it is 

unsurprising that the substitution energies are small. This is in-line with the fact that Zn-

doped MgO nanoparticles are studied experimentally, as discussed in section 3.1.3.3. 

Despite the size-mismatch, doping MgO nanoparticles with beryllium is the most 

energetically favourable, which seems anomalous and is therefore discussed further in 

terms of cluster deformation energies.  

 

8.3.1.1 Cluster deformation energies 

It appears counter-intuitive that Be-doping is energetically favourable, let alone the most 

favourable substitution. The reasons for this are unclear, but looking at the cluster 

deformation energies (CDE) can give further insight into this system. The CDE is the 

difference in energies between: 
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- The total energy of the optimised doped particle, without the dopant atom, 

𝐸[𝑀𝑔𝑛−1𝑂𝑛
2+]𝐴−𝑀𝑔𝑛−1𝑂𝑛

 

- The total energy of the optimised MgO particle, without the equivalent 

magnesium atom, 𝐸[𝑀𝑔𝑛−1𝑂𝑛
2+](𝑀𝑔𝑂)𝑛

 

i.e. equation (8-2), where n = 24 or 32. 

𝐸[𝑀𝑔𝑛−1𝑂𝑛]𝐴−𝑀𝑔𝑛−1𝑂𝑛
−  𝐸[𝑀𝑔𝑛−1𝑂𝑛](𝑀𝑔𝑂)𝑛

                                                     (8-2) 

The CDE can shed light on whether the total energy of the particle is more or less 

favourable when the structure is optimised with a dopant. 

 

Table 8-8: BHLYP/def2-TZVP calculated cluster deformation energies (CDE) of a Mg2+corner 

ion in (MgO)24. All values are in eV. 

 Be2+ Ca2+ Sr2+ Ba2+ Zn2+ Cd2+ 

Corner 1.35 - 0.79 - 0.99 - 1.08 - 0.28 - 0.74 

 

Table 8-9: BHLYP/def2-TZVP calculated cluster deformation energies (CDE) of a Mg2+ corner, 

edge and face ion in (MgO)32. Numbers in brackets show coordination numbers of the dopant. 

All values are in eV. 

 Be2+ Ca2+ Sr2+ Ba2+ Zn2+ Cd2+ 

Corner (3) 1.67 - 0.61 - 0.83 - 0.93 - 0.07 - 0.57 

Edge (4) 0.54 - 0.89 - 1.18 - 1.35 - 0.13 - 0.79 

Face (5) 0.64 - 0.65 - 0.88 - 0.98 - 0.88 - 0.81 

 

Interestingly, the lattice energy is always more favourable at geometries when the lattice 

is optimised with a dopant, with results ranging from a 0.07 eV energy difference for the 
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lattice without the zinc corner dopant to a 0.93 eV difference for the lattice without the 

barium corner dopant, both calculated for Mg31O32 clusters. However, the presence of the 

beryllium dopant actually destabilises the lattice, by as much as 1.67 eV for corner doping. 

It seems anomalous that a destabilisation of the lattice would then lead to a stabilisation 

of the total energy by 7 eV when the dopant is reintroduced into the system by purely 

electrostatic effects from the dopant-oxygen interaction.  

In contrast to the substitution energies, for the group 2 dopants, the structure of the particle 

is most stable when an edge magnesium atom in substituted. For the group 12 elements, 

face-doping results in the most stable structure. 

The beryllium results appear anomalous and cannot be rationalised. To avoid potential 

confusions of any trends studied below, it has been decided to not study Be-doped MgO 

particles further. 

 

8.4 Vertical excitations  

As the ground state structures are now determined, attention turns to the excited state 

properties of these doped clusters. First, the lowest vertical excitation energies (LVEEs) 

of all particles are studied, before moving on to the comparison of calculated absorption 

spectra to available (and comparable) experimental absorption spectra for Ca-MgO, Ba-

MgO and Zn-MgO nanoparticles.  

 

8.4.1 Lowest vertical excitation energies 

Calculating the LVEE is the first step to studying the excited state behaviour of the doped 

particles. The results are shown in tables 8-10 and 8-11 for the A-Mg23O24 and A-Mg31O32 

particles, respectively. 
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Table 8-10: TD-BHLYP/def2-TZVP calculated lowest vertical excitation energy (LVEE) for 

corner doped A-Mg23O24. All values are in eV. 

 A = Mg A = Ca A = Sr A = Ba A = Zn A = Cd 

LVEE 4.96 4.89 4.84 4.91 4.85 3.77 

 

Table 8-11: TD-BHLYP/def2-TZVP calculated lowest vertical excitation energy (LVEE) for 

corner, edge and face doped A-Mg31O32. All values are in eV. 

 A = Mg A = Ca A = Sr A = Ba A = Zn A = Cd 

Corner (3) 5.07 5.03 4.99 5.03 4.99 3.91 

Edge (4) 5.07 4.87 4.68 4.74 4.91 4.24 

Face (5) 5.07 4.93 4.75 4.78 4.88 4.37 

 

Comparing the data for the corner-doped clusters from tables 8-10 and 8-11, it can be seen 

that for all dopants the same trend as for pure MgO nanoparticles occurs: as the particle 

size increase, so does the LVEE. This suggests that there is no quantum confinement, just 

as in pure MgO particles. 

When comparing the LVEE of the differently doped A-Mg31O32 particles, as shown in 

table 8-11, no clear trend can be observed. For the alkaline earth dopants, as the 

coordination number of the dopant increases from three to four, the LVEE decreases, but 

increases as the coordination number of the dopant increases from four to five, although 

the increase is smaller in absolute terms than the decrease (following the same trend as 

their respective CDE). The LVEE of the group 12 dopants show opposing trends: for the 

zinc-doped particles, the LVEE decreases with increasing coordination number, whereas 

for the cadmium-doped particles, the LVEE increases with coordination number. 
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It should be noted that all excitations tabulated in tables 8-10 and 8-11 have non-zero 

oscillator strength. This means that they should all, in principle, be visible in the 

absorption spectrum, although possibly as low intensity excitations.  

 

8.4.2 Absorption spectra 

Before the character of the lowest excitation is discussed, the predicted absorption spectra 

of the doped A-Mg31O32 particles are compared to that calculated for pure (MgO)32, as 

well as experimental spectra. The A-Mg31O32 particles are chosen over the A-Mg23O24 

particles for this study, due to their slightly larger size and as they have more symmetry-

equivalent dopant sites available. A slight disadvantage of using the larger particles, is 

that the A-Mg31O32 particles have a lower dopant concentration when compared to the A-

Mg23O24 particles, and experimental concentration is of approximately 10% 

substitution21,149,213 whereas the modelled particles have a dopant concentration of only 

3%. The rigid 0.5 eV downward shift has been applied to all spectra, in-line with what has 

been presented for pure MgO particles in chapter 5 and other rocksalt-structured particles 

discussed in chapter 6. Due to the computational cost of these calculations, in particular 

with respect to memory requirements, only the lowest 50 excitations were modelled. This 

means the exact position of the higher energy peak therefore cannot be determined. This 

study focusses instead on the variation in absorption spectra obtained when considering 

different dopant positions. Furthermore, spectra have only been generated for particles 

where experimental data is available (i.e. A = Ba, Ca, Zn). 
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Figure 8-5: Calculated absorption spectra for corner-doped (blue line), edge-doped (orange line) 

and face-doped (grey line) Ca-Mg31O32, compared to (MgO)32 (yellow line). A rigid red-shift of 

0.5 eV and a Gaussian smearing of 0.1 eV has been applied to all spectra. 

 

Figure 8-5 shows the absorption spectra of the differently Ca-doped particles, as well as 

the calculated absorption spectrum of (MgO)32. All spectra shown look very similar to 

each other. Looking at the individual spectra in more detail gives insight as to which sites 

might have the most impact on observable properties. In the case of Ca-doping, the spectra 

show that edge doping has the smallest effect, with the absorption onset starting at the 

lowest energy (265 nm, 4.68 eV) and the peak position at approximately 245 nm (5.06 

eV), when compared to the other spectra. The pure MgO absorption spectrum has a higher 

absorption onset (approximately 255 nm, 4.86 eV) compared to that of the edge-doped 

Ca-MgO particle, but the peak is positioned at the same energy of 245 nm (5.06 eV). In 

contrast, corner doping has the greatest effect, with a distinct shoulder appearing in the 

230 – 220 nm (5.39 – 5.64 eV) energy range. A less intense shoulder appears in the same 

region when a face site is doped. Face-doped Ca-Mg31O32 also shows a lower absorption 

onset, at approximately 262 nm (4.73 eV) and a peak position at ~ 250 nm (4.96 eV).  
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Comparing these absorption spectra to experiment (section 3.1.3.1), it can be seen that not 

all experimental features are simulated. The Ca-doped MgO samples Ca0.1Mg0.9O, 

synthesised by Stankic et al.,149 with an average size between 5 and 40 nm, exhibit a broad 

absorption peak around approximately 235 nm (~ 5.3 eV) and an absorption onset at 345 

nm (3.59 eV). The calculated (and red-shifted) spectrum of Ca-Mg31O32 is somewhat in-

line with experimental observations: the broad range of experimental particle sizes may 

result in a coalescence of the two predicted peaks seen in figure 8-5. However, the low 

absorption onset is not replicated with TDDFT. From tables 8-7, 8-8 and 8-9, it can be 

seen that the lowest vertical excitation energy, as predicted with TD-BHLYP, lies at 4.87 

eV (4.37 eV with the 0.5 eV downward shift as explored in chapters 5 and 6), so above 

the experimental onset. The reason for this is unclear, although there are two possibilities. 

One is that the computational clusters are too small to accurately describe particles of up 

to 40 nm in size. Another possibility is that the dopant concentration is not high enough: 

Ca-doped MgO is studied experimentally at 10% and 20% substitution (compared to 

approximately 3% substitution in this computational study). The experimental samples 

with 20% substitution have a similar absorption onset as those with 10% substitution 

(figure 3-6), implying that the dopant concentration might not be reason for this 

disagreement. The experimental absorption onset of pure CaO samples is approximately 

350 nm (~ 3.54 eV), giving the doped-MgO samples a lower absorption onset than pure 

MgO. In chapter 6, the absorption onset of pure CaO particles has been calculated to be 

4.35 eV with the TD-BHLYP/def2-TZVP model chemistry, which is lower than the 

calculated absorption onset of the equivalent MgO particles, as well as that of the Ca-

doped particles. From results discussed chapter 5, it is likely that the absorption onset 

needs to be lowered by 0.5 eV to represent experimental data more accurately, which 

would bring the absorption onset of pure CaO samples down to 3.85 eV. The gap between 

the calculated absorption onset and experimental absorption onset for the doped particles, 

and the fact that pure CaO has a lower absorption onset than MgO and Ca-doped MgO, 

lead to the following hypothesis: from a computational chemist’s perspective, the question 

does arise as to whether all calcium (and other dopant) ions populate magnesium 

vacancies, or whether some of the dopant has phase-segregated on the MgO surface, 
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lowering the absorption onset by having pure CaO present on the surface of the 

nanoparticle.  

 

 

Figure 8-6: Calculated absorption spectra for corner-doped (blue line), edge-doped (orange line) 

and face-doped (grey line) Zn-Mg31O32, compared to (MgO)32 (yellow line). A rigid red-shift of 

0.5 eV and a Gaussian smearing of 0.1 eV has been applied to all spectra. 

 

The absorption spectra for Zn-doped MgO can be seen in figure 8-6. The only real 

difference between that of the doped spectra and that of pure (MgO)32 is that the corner 

doped particle gives rise to a shoulder for the high energy and high intensity peak at 

approximately 230 – 220 nm (5.39 – 5.64 eV), similar to for the predicted behaviour of 

the Ca corner-doped particle.  

Zn-doped MgO clusters (Zn0.1Mg0.9O, particle size in the range 8 – 25 nm) exhibit a broad 

peak with shoulders at 335 nm (~ 3.7 eV) and 230 nm (~ 5.4 eV),21,213 with the low energy 

peak again not replicated with these calculations. The experimental absorption onset for 

pure ZnO nanoparticles is ~ 390 nm (3.18 eV), lower than the absorption onset of pure 

MgO or Zn doped-MgO nanoparticles, meaning that the same logic as that discussed with 
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respect to Ca-doped clusters can be applied to the Zn-doped clusters: it is likely that the 

low absorption onset seen experimentally but not in the computed results, can be linked 

to the higher dopant concentration or to pure ZnO that has deposited onto the MgO 

surface, rather than zinc substituting for a magnesium ion. 

A larger Gaussian smearing would replicate the one broad peak seen in the experimental 

spectra, but this would be at the expense of losing the information that the broad peak 

most likely stems from (at least) two different excitations.  

 

 

Figure 8-7: Calculated absorption spectra for corner-doped (blue line), edge-doped (orange line) 

and face-doped (grey line) Ba-Mg31O32, compared to (MgO)32 (yellow line). A rigid red-shift of 

0.5 eV and a Gaussian smearing of 0.1 eV has been applied to all spectra. 

 

Figure 8-7 shows the different absorption spectra for the differently Ba-doped particles. 

Similarly to the Ca-doped and Zn-doped particles, the edge doping appears to have the 

least influence on the shape of the absorption spectrum. On the other hand, both face and 

corner doping induce significant differences in the overall appearance of the absorption 

spectra. Corner doping results in a distinct shoulder of the main peak in the 235 – 220 nm 
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(5.28 – 5.64 eV) region, as calculated for the Ca- and Zn-doped particles. In contrast to 

all other spectra, the Ba-face doped spectrum exhibits some intensity from 270 nm (4.59 

eV) onwards, with peaks at ~ 260 nm (4.77 eV) and ~ 245 nm (5.06 eV).  Furthermore, 

this spectrum does not have the two well defined peaks found in all other spectra. This 

could be related to the fact that the barium ion is considerably larger than the magnesium 

ion, meaning that when a face site is substituted, a significant amount of structural 

rearrangement is necessary, affecting a larger part of the particle, and therefore affecting 

the absorption over a wider energy range. 

Similarly to the observations of Ca-doped MgO particles, experimental Ba-doped MgO 

clusters (Ba0.02Mg0.98O, 7 nm average particle size) exhibit a broad absorption peak, with 

an absorption onset at approximately 350 nm (3.5 eV) and the peak at approximately 225 

nm (5.5 eV).211 Similarly to the Ca- and Zn-doped particles, the low energy absorption is 

not predicted in the calculated spectra. The calculated absorption onset for Ba32O32 is 3.86 

eV, as seen in chapter 6, which is lower than that of the doped particles, suggesting that 

the hypothesis for Ca- and Zn- doped MgO nanoparticles might also be applicable to Ba-

doped MgO particles. 

 

8.4.3 Character of the lowest vertical excitations 

As presented in chapters 5 and 6, NBO analysis can be used to study the localisation of 

the excited electron and hole by comparison of the atomic charges in the ground and 

excited state. The focus here is on the lowest vertical excitation of the A-Mg31O32 particles 

to aid identification of the difference the dopants and their coordination number make on 

the excitation characteristics.  

It should be noted that only the lowest vertical excitation is analysed, but this is done for 

all dopants apart from Ba (and Be). The barium data has not been included as a numerical 

problem was found in the NBO analysis, which reported that more than one electron is 

involved in the excitation by having a surplus of negative charge, which accounted for 
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more than one electron. For this reason, it was decided that the Ba-doped particles should 

not be included in this analysis to avoid the risk of drawing false conclusions. 

 

Table 8-12: Percentage localisation of the electron (on A and Mg sites) and hole (on O sites) of 

the lowest energy TD-BHLYP excitation for corner-doped A-Mg31O32 particles. 

 A = Mg A = Ca A = Sr A = Zn A = Cd 

A corner % - 28.27 47.87 93.38 94.61 

Mg corner % 17.68  8.98 5.06 0.71 0.87 

Mg edge % 72.24  56.16 40.59 3.03 2.80 

Mg face % 5.36  3.11 2.49 1.56 1.18 

Mg bulk % 4.72  4.47 4.00 1.32 0.55 

O corner % 89.52 85.32 83.34 2.93 2.70 

O edge % 0.96 3.50 3.93 92.78 91.36 

O face % 3.10 5.34 7.60 3.43 5.31 

O bulk % 6.42 5.84 5.14 0.85 0.63 

 

Table 8-12 shows the percentage exciton localisation per site-type in the corner-doped 

particles considered here. These can be separated into two different cases: the alkaline 

earth dopants and the group 12 dopants. The former exhibit an excitation pattern similar 

to that of pure MgO: an electron from a corner oxygen site is excited onto the neighbouring 

magnesium edge atoms. This excitation is thus a ‘corner to neighbouring edge’ excitation, 

with increased excited electron localisation on the calcium edge atom compared to the 

average magnesium edge atom and increased excited electron localisation on the 

strontium corner atom compared to the calcium corner atom. The group 12 dopants, on 
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the other hand, show a different pattern: an electron from an oxygen edge site is excited 

onto the corner dopant site, so this can be considered an ‘edge to neighbouring corner’ 

excitation. It should be noted that the alkaline earth dopants also attract significantly more 

excited electron density than the corresponding magnesium corner, with a dopant corner 

contribution of 28.27% for Ca and 47.87% for Sr. Although this is significantly smaller 

than the 93.38% for Zn and 94.61% for Cd, it is more than the 4.42% (17.68% divided by 

4, to obtain the average magnesium corner contribution) contribution of the magnesium 

corner atoms in the pure MgO particle – showing that for the heavier group 2 dopants, the 

excited electron character becomes more like that seen for the group 12 dopants.  

Figure 8-8 displays the electron density difference plot for the lowest excitation for the 

corner-doped particles. All corner-doped particles show a localised lowest vertical 

excitation, involving corner atoms and neighbouring edge atoms. Similarly to what is 

predicted from the NBO analysis, the electron density difference plots show that both Ca- 

and Sr-doped particles display a similar excitation character. As reported for pure MgO 

particles (discussed in section 5.7), individual magnesium edge and dopant corner 

contributions are not identified using density difference plots with a low isovalue. The Zn- 

and Cd-doped particles, however, show a different excitation character to that seen for 

pure MgO particles. This different excitation character has also been predicted by the 

NBO analysis, exhibiting an edge to corner excitation, with the excited electron almost 

completely localised on the dopant corner atoms. Both NBO and density difference plots 

show, similarly to what has been observed for pure MgO particles and other inorganic 

particles discussed in chapter 6, that the lowest vertical excitations cannot be described as 

either corner or edge excitations. 
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Figure 8-8: TD-BHLYP/def2-TZVP calculated ground and excited state electron density 

difference for the lowest vertical excitation for A calcium, B strontium, C zinc and D cadmium 

corner-doped A-Mg21O32 particles: blue isosurfaces show charge accumulation (excess of 

electron density in the excited state), and green show charge depletion (deficit of electron 

density in the excited state). An isosurface of 0.003 a.u. is used. Red spheres represent oxygen 

atoms, brown magnesium atoms and yellow the dopant. Equivalent figure of pure MgO can be 

seen in figure 5-13. 
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Table 8-13: Percentage localisation of the electron (on A and Mg sites) and hole (on O sites) of 

the lowest energy TD-BHLYP excitation for the differently edge-doped A-Mg31O32 particles. 

 A = Mg A = Ca A = Sr A = Zn A = Cd 

A edge % - 84.39 90.19 44.23 88.65 

Mg corner % 17.68  3.49 1.01 16.08 2.74 

Mg edge % 72.24  5.69 3.27 32.98 3.83 

Mg face % 5.36  4.31 3.84 4.14 3.05 

Mg bulk % 4.72  2.12 1.69 2.57 1.72 

O corner % 89.52 89.83 90.53 76.79 80.56 

O edge % 0.96 2.66 3.35 3.62 4.41 

O face % 3.10 3.50 3.15 13.81 12.54 

O bulk % 6.42 4.00 2.97 5.78 2.49 

 

Similarly to what has been seen for the absorption spectra in figures 8-5, 8-6 and 8-7, edge 

doping appears to have only minor effects on the excitation, as can be seen in table 8-13. 

Pure MgO has a magnesium edge contributions of 72.24% (although only 6.02% per edge 

atom) and with Ca, Sr and Cd edge-doping the excited electron is localised to 84.39%, 

90.19% and 88.65% on the dopant atom, respectively. This means that there is an 

increased electron density on one edge site, making the particle less symmetrical than in 

the case of the pure MgO particle. However the excitations can still be described as one 

of ‘corner to neighbouring edge’ type.  

Zn-edge doping is slightly different, as only 44.23% of the excited electron is localised on 

the Zn dopant, with 2.75% on each magnesium edge atom (32.98% over all magnesium 

edge atoms). Due to the similar ionic radii of magnesium and zinc, the local environment 

of the oxygen corner atoms on which the hole is localised is more symmetric than in the 
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case of the other dopants. Therefore the excited electron delocalises on both zinc and 

magnesium edge atom. 

This means that the lowest vertical excitation for each of the edge-doped particles arises 

from local excitations from a corner oxygen atom to the neighbouring doped edge site 

and, in the case of the Zn-dopant, also to the magnesium edge atoms adjacent to the 

oxygen corner atom on which the hole is localised. 

Similarly to the NBO analysis, figure 8-9 shows that for edge-doped the (MgO)32 particles, 

the charge depletion can be found mainly on the oxygen corner neighbouring the dopant 

site, i.e. the hole mainly localises on that oxygen corner site. The excited electron localises 

on the dopant site, especially in the case of the cadmium edge atom. The cadmium dopant 

behaves differently to the other dopants, presumably because it is a group 12 and not group 

2 element, changing its electronic structure. The difference between the zinc and cadmium 

behaviour might be related to the different ionic radii, with that of zinc being very similar 

to magnesium but the difference between cadmium and magnesium being different, with 

cadmium having and ionic radius 32% larger than that of magnesium. As the edge site has 

a higher coordination number than the corner site, the difference in the localisation 

character between zinc and cadmium doping is more pronounced from the edge doping. 

Again, the density difference on the magnesium edge atoms is not identified by this 

analysis. 
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Figure 8-9: TD-BHLYP/def2-TZVP calculated ground and excited state electron density 

difference for the lowest vertical excitation for A calcium, B strontium, C zinc and D cadmium 

edge-doped A-Mg21O32 particles: blue isosurfaces show charge accumulation (excess of electron 

density in the excited state), and green show charge depletion (deficit of electron density in the 

excited state). An isosurface of 0.003 a.u. is used. Red spheres represent oxygen atoms, brown 

magnesium atoms and yellow the dopant. Equivalent figure of pure MgO can be seen in figure 

5-13. 
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Table 8-14: Percentage localisation of the electron (on A and Mg sites) and hole (on O sites) of 

the lowest energy TD-BHLYP excitation for the differently face-doped A-Mg31O32 particles. 

 A = Mg A = Ca A = Sr A = Zn A = Cd 

A face % - 34.06 71.40 4.13 40.21 

Mg corner % 17.68  8.84 1.90 81.34 49.18 

Mg edge % 72.24  50.70 19.88 9.81 6.55 

Mg face % 5.36  2.01 3.24 1.80 1.37 

Mg bulk % 4.72  4.40 3.58 2.92 2.68 

O corner % 89.52 84.82 80.98 14.52 8.78 

O edge % 0.96 3.96 5.10 63.02 61.97 

O face % 3.10 4.76 9.34 18.82 25.25 

O bulk % 6.42 6.46 4.59 3.64 4.00 

 

Table 8-14 shows the NBO-derived localisation data for the face-doped particles. It can 

be seen that the alkaline earth dopants have a similar effect: an electron is excited from an 

oxygen corner atom to neighbouring magnesium edge atoms (50.70% for Ca-doping, 

19.88% for Sr-doping) and the dopant face atom (34.06% for Ca-doping, 71.40% for Sr-

doping). The excited electron density on the magnesium edge and the dopant face atoms 

amounts to 84.76% for the Ca-doped particle and to 91.28% for the Sr-doped particle. The 

fact that the excited electron localises more on the strontium face atom (compared to 

calcium or magnesium edge atoms) is most likely due to the size mismatch of strontium 

and magnesium.  

The group 12 dopants show a slightly different exciton localisation, namely one that 

involves the excitation predominantly from an oxygen edge atom (63.02% for Zn-doped 

and 61.97% for Cd-doped particles) with some contribution from oxygen face atoms 
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(18.81% for Zn-doped, 25.25% for the Cd-doped particles) to the dopant face site (40.21% 

for Cd-doped) and magnesium corner atoms (81.34% for Zn-doped and 49.18% for the 

Cd-doped particles). The difference in the localisation of the excited electron on the zinc 

and cadmium face atoms respectively can again be rationalised due to the size mismatch 

with respect to the ionic radius of magnesium. Compared to the corner doped particles, 

the difference in ionic radii is more relevant for face-doped particles, as the coordination 

number of the dopant is increased. 

As has been seen with the corner-doped particles, the lowest vertical excitation of each 

face-doped particle is a local excitation, and can be characterised as either a ‘corner to 

edge and face’ excitation or an ‘edge and face to corner and face’ excitation. In both cases, 

all atoms involved in the excitation are on the same face of the particle.  

Figure 8-10 displays the electron density differences arising from the vertical excitation 

for the face-doped particles. As with the previous density difference plots, the individual 

magnesium contributions are not identified. However, the similarity between the Ca- and 

Sr-doped particles is, as with the other doping sites, very clear: the hole delocalises over 

the oxygen corner on the same site as the dopants, as well as on some face oxygen atoms. 

The Zn- and Cd- doped particles show a different character to those with alkaline earth 

dopants in that the main sites on which the hole delocalises are the oxygen edge sites 

neighbouring the dopant sites, with some contribution also provided by oxygen corner 

sites. The magnesium corner atom nearest to the dopant site displays an accumulation of 

the excited electron density, which decreases as the dopant changes from Zn to Cd. At the 

same time the dopant contribution increases. This trend can also be seen in the NBO data. 
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Figure 8-10: TD-BHLYP/def2-TZVP calculated ground and excited state electron density 

difference for the lowest vertical excitation for A calcium, B strontium, C zinc and D cadmium 

face-doped A-Mg21O32 particles: blue isosurfaces show charge accumulation (excess of electron 

density in the excited state), and green show charge depletion (deficit of electron density in the 

excited state). An isosurface of 0.003 a.u. is used. Red spheres represent oxygen atoms, brown 

magnesium atoms and yellow the dopant. Equivalent figure of pure MgO can be seen in figure 

5-13. 

 

The electron density difference plots (figures 8-8, 8-9 and 8-10) are in agreement with the 

NBO data (tables 8-12, 8-13 and 8-14), apart from the fact that the localisation of the 

excited electron on individual magnesium atoms is not always clear with the isosurface 

value chosen. However, similarly to the NBO data, both the Ca- and Sr-doped particles 

display a similar excitation character in the electron density difference plots. These plots 

demonstrate that the character of the lowest vertical excitations are centred around the 

dopant atom, with the excitations localised on that side of the particle. 
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Comparing the trends in the LVEE (table 8-11) as the coordination number of the dopant 

is increased with the analysis of excited electron and hole localisation analysis, it can be 

seen that for all dopants, apart from Zn, the more the excited electron is localised on the 

dopant, the lower the excitation energy. This might be related to the fact that the atoms 

are moved out of the lattice and are therefore able to move, and hence can lower their 

energy, giving rise to lower excitation energies. 

For the zinc dopant, the opposite is true: the more the excited electron is localised on the 

zinc atom, the higher the excitation energy.  

 

8.5 Photoluminescence energies 

The photoluminescence energies (PLE) has also been studied for these doped particles, 

although the PLE results obtained for pure MgO do not agree with experimental results, 

as shown in chapter 7. Unfortunately, this data set is incomplete due to the extreme 

computational expense of these calculations. Some experimental PL data is available for 

doped particles, as discussed in chapter 3. 

 

Table 8-15: TD-BLHYP/def2-TZVP calculated photoluminescence energies for the differently 

doped A-Mg31O32 particles. All values are in eV. 

 A = Ca A = Sr A = Ba A = Zn A = Cd 

Corner 2.67 2.64 N/A N/A N/A 

Edge 2.15 3.09 2.01 1.84 2.31 

Face N/A 1.93 1.89 3.27 2.87 
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Available data is presented in table 8-15 and shows that the dopant site has significant 

effects on the PLE, especially in the case for Zn-Mg31O32, where the PLE increases by 

1.43 eV as the coordination number of the dopant is increased from four to five. This is a 

surprising result, as for the other doped particles, a variation of approximately only 0.5 eV 

can be seen when the dopant site is altered (and even less for the Ba-doped particles). The 

significant difference in PLE for the Zn-doped particles can be explained in the structural 

difference of the respective S1 minima (tables 8-16 and 8-17): the optimised geometry of 

the edge-doped particle has a longer bond between the zinc edge atom and the oxygen 

corner atom of 3.098 Å (compared to 1.938 Å for the S0 minimum), with a difference of 

more than 1 Å. The face-doped Zn-Mg31O32 particle, on the other hand, only displays 

minor changes in bond lengths (in the order of magnitude of ~ 0.1 Å). The LVEE for the 

edge-doped Zn-Mg31O32 is 4.91 eV and 4.88 eV for the face-doped one and because the 

face doped particle does not structurally change significantly upon relaxation on the S1 

surface, the PLE is close to the LVEE value (with a Stokes shift of 1.61 eV). In contrast, 

the edge-doped particle has a Stokes shift of 3.07 eV, reflecting the significant structural 

change occurring in the particle. It should be noted that no frequency analysis has been 

performed on these systems due to the high computational cost, which means that it is 

possible that some of the particles are not true minima. 

 

Table 8-16: BHLYP/def2-TZVP Zn-O bond lengths for edge-doped Zn-Mg31O32, for the 

optimised ground state structure (S0) and the optimised excited state structure (S1). Subscript 

denotes site: c for corner, e for edge, f for face and b for bulk. All values are in Å. 

 S0 S1 

Ae–Oc 

Ae–Oe 

Ae–Of 

Ae–Of 

1.938 

2.006 

2.085 

2.086 

3.098 

1.981 

2.121 

2.122 
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Table 8-17: BHLYP/def2-TZVP Zn-O bond lengths for face-doped An-Mg31O32 for the 

optimised ground state structure (S0) and the optimised excited state structure (S1). Subscript 

denotes site: c for corner, e for edge, f for face and b for bulk. All values are in Å. 

 S0 S1 

Af–Oe 

Af–Oe 

Af–Of 

Af–Of 

Af–Ob 

2.102 

2.103 

2.023 

2.023 

2.137 

2.001 

2.004 

1.995 

1.995 

2.139 

 

The experimental PLE are approximately 2.92 eV for Ca-doped MgO particles,148,149,208 

2.30 eV for Ba-doped MgO particles211 and 3.20 eV for Zn-doped particles.21,213 

Surprisingly, and in contrast to what has been seen for pure MgO particles, the calculated 

PLE are much closer to experimental data than expected from the results obtained from 

MgO, for at least one dopant site. However, as discussed in chapter 3, the 

photoluminescence spectra are dependent on particle size as well as the dopant 

concentration, making comparison with computational data extremely difficult. 

Furthermore, TD-BHLYP overestimates the LVEE, but underestimates the PLE (apart 

from in the case of face-doped Zn particles where it overestimates by 0.07 eV). This raises 

the question whether the agreement of the PLE is serendipity in this case, or whether the 

doping helps the excited electron and hole stay closer to each other (and not localise on 

one corner atom each, with a distance of 0.6 nm in between them), resulting in a better 

description of the relaxation process and therefore the S1 minimum. TDDFT is known for 

not describing excitations that have non-local character well, and the dopant atoms might 

change the electronic structure such that the relaxation process on the S1 potential energy 

surface is more local, and therefore more accurate using TDDFT. Only further work on 

the effect of doping on the PLE can answer this question. 
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Table 8-18: TD-BLHYP/def2-TZVP photoluminescence energies for the corner doped A-

Mg23O24 particles. All values are in eV. 

 A = Ca A = Sr A = Ba A = Zn A = Cd 

Corner 2.59 2.55 2.89 2.66 1.51 

 

Size-dependence and dopant concentration can be studied further by considering the PLE 

data for corner-doped A-Mg23O24, presented in table 8-18. The PLE difference between 

(MgO)24 and (MgO)32 is approximately 0.08 eV (seen in section 7.3.1) and the PLE data 

for the corner-doped particles (using Ca- and Sr-doped particles as the reference) is in-

line with what has been observed for the pure MgO particles. Due to the fact that as the 

particle size changes but the number of dopant atoms remains the same, the effects of 

particle size and dopant concentration cannot be separated. However, as the PLE for the 

calcium and strontium corner-doped A-Mg23O24 is approximately 0.1 eV lower than the 

PLE for the calcium and strontium corner-doped A-Mg31O32 respectively, some educated 

guesses regarding the PLE trends in the A- Mg31O32 particles can be made.  

 

Table 8-19: TD-BLHYP/def2-TZVP calculated photoluminescence energies for the differently 

doped A-Mg31O32 particles. Italicised and grey values are PLE extrapolated from the corner-

doped A-Mg23O24 PLE. All values are in eV. 

 A = Ca A = Sr A = Ba A = Zn A = Cd 

Corner 2.67 2.64 2.99 2.76 1.61 

Edge 2.15 3.09 2.01 1.84 2.31 

Face N/A 1.94 1.89 3.27 2.87 
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Table 8-19 shows the calculated PLE of the differently doped A-Mg31O32 particles, as well 

as extrapolated PLE values (for corner-doped Ba-MgO, Zn-MgO and Cd-MgO) by adding 

0.1 eV to the PLE value obtained from A-Mg23O24.  

Assuming that the extrapolated values are accurate, then it can be said that the PLE of the 

Cd-doped particles follow the same trend as the LVEE; as the coordination number of the 

dopant increases, so does the PLE. The PLE for both the Ca- and Ba-doped particles 

follow the same trend as the LVEE for the data available (a decrease in energy as the 

dopant coordination changes from three to four). The LVEE and PLE of Sr-doped particles 

do not follow the same trend, however, with the LVEE decreasing and the PLE increasing 

as the coordination number of the dopant increases from three to four and the PLE 

decreasing as the LVEE increases as the coordination number of the dopant increases from 

four to five. Similarly, the Zn-doped particle does not exhibit the same trend when 

comparing LVEE and PLE, suggesting that when the PLE does not follow the same trend 

as the LVEE, more substantial structural rearrangement occurs on the S1 surface. Similarly 

to the PLE obtained for pure MgO in chapter 7, it is possible that the methodology cannot 

predict the PLE accurately, so it would be dangerous to over-interpret potential trends in 

the PLE.  

 

8.6 Conclusions 

It has been shown that the (TD-)BHLYP/def2-TZVP model chemistry can be used to 

model the absorption spectra of doped MgO particles in the region of 300 – 200 nm (4.13 

– 6.12 eV), especially when a rigid downward shift of 0.5 eV is applied, although the low 

energy absorption onset of the experimental spectra cannot be replicated. This could be 

due a number of reasons: the larger average sample size, larger dopant concentration, or 

phase separation of the dopant oxide on the MgO surface, rather than a magnesium 

substitution. This could be tested in the future by further calculations, e.g. by adding 

dopant- oxides to the surface of the magnesium particles. 
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The character of the excitation for the lowest vertical excitation has been studied and it 

can be concluded that doping alters the absorption behaviour of these particles compared 

to pure MgO, with edge-doping having the pronounced effect. It was also be seen that the 

side of the particle on which the dopant is located is also the one on which the exciton is 

localised. The amount the excited electron localised on the dopant can be linked directly 

to the LVEE value: in the case of calcium, strontium and cadmium doping, the amount 

the excited electron is localised on the dopant is inversely proportional to the LVEE value. 

In contrast, the relationship between the localisation amount of the excited electron and 

the LVEE value is proportional for zinc dopants. 

The PLE are difficult to rationalise, and computed values are difficult to compare to 

experiment, as the photoluminescence spectra are strongly dependent on particle size 

and/or dopant concentration. However, the computed values are within 0.3 eV of those 

found experimentally for at least one doped site. Due to the potential unreliability of the 

predicted PLE values, as discussed in chapter 7, no conclusions can be drawn as to which 

dopant site might be prevalent experimentally. Another difficulty arises in comparing 

experimental and computed photoluminescence energies: in experiment, presumably a 

mixture of corner- edge- and face-doping can be seen, whereas the modelled particles only 

have one doped site.  

 It would be interesting to study the photoluminescence of these doped particles further, 

by completing the data sets presented here, as well as having more than one dopant atom 

per particle. This, however, is a very large task, with varying the relative location between 

the dopant sites in one particle. Furthermore, changing only the particle size or dopant 

concentration would give some insight into the effects of particle size and dopant 

concentration, and would potentially help differentiate between these two phenomena. 

However, it is difficult to change one variable without the other in small particles. The 

effect of either variable on the photoluminescence (and absorption) energies would be 

very interesting indeed, and would aid in the comparison of calculated results to 

experiment. 
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9. Conclusions and perspectives 

The applications of (Time-Dependent) Density Functional Theory ((TD)DFT) in chemical 

research have ballooned over the past decades. Ground state DFT in particular is gaining 

ever-increasing popularity, being applied to a greater range of systems and used to study 

an increasing variety of properties. However, it is critically important to benchmark results 

rigorously when applying computational methodologies to new areas of study or 

materials, ideally against experimental data. Only through such rigorous testing can 

advances be made: if approximations are badly applied, simulation cannot advance the 

knowledge of the field, and could potentially even have a detrimental effect. The B3LYP 

hybrid GGA exchange-correlation (xc)-functional is an example of a functional 

approximation which is broadly applied in both chemistry and chemical physics often 

without rigorous benchmarking – its popularity can potentially mask poor data from which 

invalid conclusions can be derived. Similarly, the (TD)DFT methodology is often seen as 

a ‘black box’ method but this is not the case: the researcher has to consider the 

approximations and their limitations before useful data can be produced and advances in 

the field made. 

 

This thesis presents a novel approach to describing the excited state properties of MgO 

and other inorganic nanoparticles exhibiting the rocksalt structure. On the one hand, the 

lowest vertical excitation energies (which often correspond to the lowest optically allowed 

excitations) obtained from TDDFT have been benchmarked against the lowest vertical 

excitation energies obtained from high-level Coupled Cluster (CC) calculations for the 

smaller particles, and on the other hand, the TDDFT results for the larger particles have 

been compared to experiment. Two different approximations within (TD)DFT have been 

employed further to study the excitation behaviour of other inorganic nanoparticles 

exhibiting the rocksalt structure, in order to test whether the approximations found in this 

work to be suitable for MgO can also be applied to related materials with the same 

structure. Further to these excitation studies, the de-excitation characteristics of MgO 

nanoparticles have also been explored using TDDFT in terms of their photoluminescence 
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energies (PLEs) and the excited state minima have been studied in terms of their exciton 

localisation character (ELC), as well as their structural differences. Some preliminary 

work on doped MgO nanoparticles has also been presented, to test the suitability of 

TDDFT to describe their optical properties. 

It has been shown that to accurately describe the lowest vertical excitation energy for MgO 

nanoparticles, an xc-functional containing a high degree of Hartree-Fock exchange (HFE), 

such as BHLYP, or a range-separated (long-range corrected) xc-functional, such as CAM-

B3LYP, are needed. It has been established here that other xc-functionals with a low 

degree of HFE, such as B3LYP, severely underestimate the lowest vertical excitation 

energies, due to the fact that such functionals spuriously stabilise excitations with charge 

transfer (CT) character. This fact is the origin of why there is disagreement between results 

obtained with different xc-functionals with regard to the lowest vertical excitation energies 

values, with this disagreement becoming more pronounced as the particle size increases. 

The CT character of the excitation is characterised by poor overlap between the orbitals 

involved in the excitation: in the case of (MgO)32, the excited electron is transferred from 

a corner oxygen atom to a corner magnesium atom upon excitation, a distance of 

approximately 0.6 nm. This corner to corner excitation is stabilised in energy when TD-

B3LYP is employed, making it the lowest (optically allowed) transition and giving a 

resulting absorption spectrum that is not representative of that observed experimentally. 

The TD-BHLYP-calculated excitation results show that the lowest vertical excitation has 

a local character, with the excited electron being transferred from an oxygen corner atom 

to its neighbouring magnesium edge atoms upon excitation: the corner to corner excitation 

lies significantly higher in energy.  

This link between poor orbital overlap and the spurious stabilisation of the energy of the 

(lowest) excited state is found not only for MgO nanoparticles, but also in other related 

inorganic nanoparticles exhibiting the rocksalt structure, such as CaO, SrO, BaO, MgS 

and MgSe. The degree to which the spurious stabilisation of the excited state energy 

manifests itself in these particles when using TD-B3LYP clearly correlates with the degree 

of delocalisation of the excited electron: as this becomes more delocalised over the entire 

particle, the orbital overlap increases and consequently the description of the excitation is 



Conclusions and perspectives 

 

246 
 

more accurate. Although the excitations of all of these particles are found to be badly 

described using TD-B3LYP, the idea that the CT character of an excitation is not binary, 

but more graded, arises. In contrast to the alkaline earth chalcogenides discussed above 

are the CdO and PbS nanoparticles with the rocksalt structure, which appear to have 

lowest vertical excitation energies which are similarly described using TD-B3LYP and 

TD-BHLYP. These two materials have excited electrons that are delocalised over the 

entire particle. A relationship between the excited electron delocalisation and the dielectric 

constant of the bulk material has been established as a potential predictive tool as to 

whether the use of TD-B3LYP would be suitable: particles possessing a high dielectric 

constant have a more delocalised excited state and therefore, the excited state description 

of such particles as obtained with TD-B3LYP could be expected to be reliable. 

Furthermore, the suitability of TDDFT to describe the photoluminescence properties of 

MgO has been investigated. Similarly to the previous findings, TD-B3LYP is 

demonstrated to underestimate photoluminescence energies, and this underestimation 

becomes more pronounced as particle size increases. This is presumably linked to the 

original underestimation of the excitation energy: the excited state electronic structure 

serves as a starting point for the excited state optimisation. However, it has been shown 

that the description of the optimised first excited state, as obtained from TD-B3LYP and 

TD-BHLYP simulations, is similar in terms of the exciton localisation character, possibly 

explaining why TD-BHLYP (and TD-CAM-B3LYP) also underestimate the 

photoluminescence energies of MgO nanoparticles. The reason why TDDFT fails to 

predict the photoluminescence energies of MgO is unclear, but it is possible that the 

methodology, especially the functional approximations, are not suitable to describing the 

S1 optimisation and the intrinsically linked photoluminescence energies. 

Finally, the preliminary results obtained for the doped particles display an issue with the 

absorption energies: the TD-BHLYP calculated absorption onset is higher than that 

observed experimentally. This can be further investigated by increasing the dopant 

concentration in the simulated particles and/or including dopant oxide islands on top of 

the MgO surface. The strong dependence on the dopant site in the particle, especially for 

the photoluminescence energies, makes it challenging to predict how doping could be used 
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to tune optical properties. However, this preliminary study shows the need for further 

investigation of doping in these particles.  

 

It can be concluded from the research presented in this thesis that TDDFT simulations, 

when suitably analysed, can be used to accurately characterise the excitation behaviour of 

inorganic particles, although the choice of xc-functional is critical, with the CAM-B3LYP 

xc-functional providing the most accurate data. In contrast, the TD-B3LYP approximation 

is only suitable in describing the excitation behaviour of materials with a delocalised 

excited electron, which is typically related to them possessing a high dielectric constant. 

It is important to understand the limitations of the approximations used within TDDFT, 

so the fact that a reliable method has been shown to be applicable to the study of MgO 

and other related inorganic nanoparticles is of great value. 

As well as addressing these issues, the research presented here has also highlighted gaps 

in the current knowledge of these systems and, more generally, in our understanding of 

photophysical phenomena. The suitability of TDDFT in describing excitation energies is 

widely accepted (given suitable approximations to the xc-potential) and excitation spectra 

can be modelled with this density-based methodology extremely well. However, TDDFT 

is a relatively new approach to modelling photoluminescence of inorganic materials, 

meaning that there are many unknowns in this field. The simplest possible optimisation 

of the lowest excited state was attempted by taking the optimised ground state as a starting 

structure for the optimisation of the particle on the lowest excited potential energy surface. 

However, in contrast to the absorption spectra of MgO nanoparticles, their emission 

spectra could not be replicated with the same functional approximations. It shows that a 

complete understanding of the emission process in even these relatively simple systems 

will be a major computational undertaking.  

 

To deepen our understanding of photoluminescence processes, the author hopes that 

researchers are encouraged to study the excited state properties of these particles further: 
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not just by optimising the structure on the S1 potential energy surfaces, but also on higher 

lying surfaces, as well as studying internal conversion processes and possible transition 

states on the excited state surfaces. This may not be computationally feasible at this 

moment in time, but it would certainly be fascinating to elucidate the structure of these 

potential energy surfaces with the aim of replicating the full photoluminescence spectrum. 

This would shed light on the applicability of Kasha’s rule in predicting the state from 

which photoluminescence occurs. If it happened that this rule was broken, then what other 

systems might display the same behaviour? Is it possible that Kasha’s rule is an over-

simplification? What happens in systems where spin-orbit coupling is pronounced and 

how would this affect the photoluminescence spectra?  

There are many unanswered questions that can be posed based on the work presented here 

but the author certainly hopes that others with access to copious amount of patience, 

computational resources – and an interest in elucidating the photoluminescence behaviour 

of inorganic particles – engage with this area of research and challenge themselves to 

further develop the model of the photoluminescence spectrum of the particles studied in 

this thesis.  
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Appendix A 

 

As discussed in section 7.3.6, it has been noticed that in some cases, the DZS basis set is 

a better approximation to the def2-TZVP S1 minima, compared to the DSC basis set. 

The hexagonal (MgO)6 cluster is one example of this: Although both the TD-

BHLYP/DZC and TD-BHLYP/def2-TZVP basis sets predict an S1 minimum with an ELC 

of (1 – 1), the PLE is 0.83 eV higher for the former, which appears anomalous. On the 

other hand, the TD-BHLYP/DZS PLE is 1.15 eV higher than the PLE of the TD-

BLHYP/def2-TZVP results but the ELC of the DZS results is (1 – 2), which is a different 

ELC to the one obtained from the def2-TZVP calculation, in-line with that would be 

expected from different PLE. 

The cubic (MgO)6 cluster is another example where the def2-TZVP and DZS data appear 

more in agreement with each other: with TD-BHLYP, both model chemistries predict a 

(1 – 2) ELC, with a PLE difference of 0.27 eV. In contract, the TD-BHLYP/DZC 

calculation yields an ELC of (1 – 2) but the PLE is 1.03 eV lower compared to the TD-

BHLYP/def2-TZVP result. 

Due to the absence of TD-CAM-B3LYP/DZS data, and for the sake of clarity of chapter 

7, the TD-BHLYP/DZS and TD-B3LYP/DZS data is shown in this appendix rather than 

the main chapter. 

 

 

 

 

 

 

 

 



Appendix A 

 

274 
 

 

 

 

 

 

 

 

 

 

Figure A-1: DZS calculated photoluminescence energies, obtained using the B3LYP (blue 

diamonds) and BHLYP (orange squares) xc-functionals. Open symbols correspond to the PLE of 

the cubic (MgO)6 and the sodalite (MgO)12 structures. 
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Table A-1: DZS calculated photoluminescence energies, obtained using the B3LYP and 

BHLYP xc-functionals. All energies are in eV. 

 B3LYP BHLYP 

(MgO)4 1.44 2.29 

(MgO)6 hexagonal 1.88 2.60 

(MgO)6 cubic 1.30 2.08 

(MgO)9 1.51 2.85 

(MgO)12 hexagonal 1.86 2.48 

(MgO)12 sodalite 2.98 3.25 

(MgO)18 0.50 1.32 

(MgO)24 0.54 1.97 

(MgO)32 0.58 2.09 

(MgO)40 0.54 2.02 

 

 

 

 

 

 

 

 



Appendix A 

 

276 
 

 

 

 

 

 

 

 

 

 

Figure A-2: Difference between def2-TZVP calculated PLE and DZS PLE, obtained using the 

B3LYP (blue diamonds) andBHLYP (orange squares). Open symbols correspond to the 

difference in PLE of the cubic (MgO)6 and the sodalite (MgO)12 structures. 
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Figure A-3: Stokes shifts, calculated using the DZS basis sets and the B3LYP (blue diamonds) 

and BHLYP (orange squares) xc-functionals. Empty symbols represent Stokes shifts for (MgO)6 

cubic and (MgO)12 sodalite structures. 

 

 

 

 

 

 

 



Appendix A 

 

278 
 

 

 

 

 

 

 

 

 

Table A-2: Stokes shifts, calculated using the DZS basis sets and the B3LYP and BHLYP xc-

functionals. All energies are in eV. 

 B3LYP BHLYP 

(MgO)4 1.29 1.56 

(MgO)6 hexagonal 1.50 1.98 

(MgO)6 cubic 1.64 2.00 

(MgO)9 2.15 2.06 

(MgO)12 hexagonal 1.94 2.54 

(MgO)12 sodalite 0.97 2.00 

(MgO)18 1.68 2.73 

(MgO)24 2.48 2.82 

(MgO)32 2.73 2.86 

(MgO)40 2.77 2.93 
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Table A-3: The DZS GSDE for the B3LYP and BHLYP xc-functionals. All values are in eV. 

 B3LYP  GSDE BHLYP  GSDE 

(MgO)4 0.74 0.94 

(MgO)6 hexagonal 1.03 1.34 

(MgO)6 cubic 1.05 1.28 

(MgO)9 1.61 1.33 

(MgO)12 hexagonal 1.28 1.65 

(MgO)12 sodalite 0.63 1.42 

(MgO)18 0.80 1.53 

(MgO)24 1.21 1.61 

(MgO)32 1.41 1.68 

(MgO)40 1.38 1.68 
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Table A-4: The DZS ESSE for the B3LYP and BHLYP xc-functionals. All values are in eV. 

 B3LYP ESSE BHLYP  ESSE 

(MgO)4 - 0.55 - 0.62 

(MgO)6 hexagonal - 0.47 - 0.64 

(MgO)6 cubic - 0.63 - 0.72 

(MgO)9 - 0.49 - 0.73 

(MgO)12 hexagonal - 0.66 - 0.89 

(MgO)12 sodalite - 0.34 - 0.58 

(MgO)18 - 0.88 - 1.20 

(MgO)24 - 1.17 -  1.21 

(MgO)32 - 1.32 - 1.18 

(MgO)40 - 1.39 - 1.25 

 

 

 

 

 



Appendix A 

 

281 
 

 

 

 

 

 

 

 

 

Table A-5: Exciton localisation character (ELC) from the difference in NBO charges derived 

from calculations using the B3LYP and BHLYP- xc-functionals and DZS basis set. 

 B3LYP BHLYP 

(MgO)4 (2 – 2) (2 – 2) 

(MgO)6 hexagonal (1 – 2) (1 – 2) 

(MgO)6 cubic (1 – 2) (1 – 2) 

(MgO)9 (1 – 1) (2 – 1) 

(MgO)12 hexagonal (1 – 2) (1 – 3) 

(MgO)12 sodalite (1 – 2) (2 – 2) 

(MgO)18 (1 – 1) (1 – 1) 

(MgO)24 (1 – 1) (1 – 1) 

(MgO)32 (1 – 1) (1 – 1) 

(MgO)40 (1 – 1) (1 – 1) 

 

 

 

 


