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Summary

Lithium-ion battery performance is intrinsically linked to
electrode microstructure. Quantitative measurement of
key structural parameters of lithium-ion battery electrode
microstructures will enable optimization as well as motivate
systematic numerical studies for the improvement of battery
performance. With the rapid development of 3-D imaging
techniques, quantitative assessment of 3-D microstructures
from 2-D image sections by stereological methods appears
outmoded; however, in spite of the proliferation of tomo-
graphic imaging techniques, it remains significantly easier
to obtain two-dimensional (2-D) data sets. In this study,
stereological prediction and three-dimensional (3-D) analysis
techniques for quantitative assessment of key geometric pa-
rameters for characterizing battery electrode microstructures
are examined and compared. Lithium-ion battery electrodes
were imaged using synchrotron-based X-ray tomographic
microscopy. For each electrode sample investigated, stereo-
logical analysis was performed on reconstructed 2-D image
sections generated from tomographic imaging, whereas
direct 3-D analysis was performed on reconstructed image
volumes. The analysis showed that geometric parameter
estimation using 2-D image sections is bound to be associated
with ambiguity and that volume-based 3-D characterization
of nonconvex, irregular and interconnected particles can
be used to more accurately quantify spatially-dependent
parameters, such as tortuosity and pore-phase connectivity.
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Introduction

Reactions that take place within lithium-ion batteries are
supported by porous composite electrodes possessing complex
microstructures, and as with all functional materials, there
is a direct relationship between electrode microstructure
and battery performance. A quantitative understanding
of microstructure and transport pathways within lithium
ion battery electrodes is crucial for improving their design,
manufacture, performance and durability. To this end, char-
acterization techniques for revealing all relevant, detailed
microstructural morphology and for assessing quantitative
geometric parameters are essential.

Three-dimensional (3-D) microstructures can be char-
acterised using two principal approaches: the first is by
stereological methods (DeHoff & Rhines, 1961; DeHoff &
Rhines, 1968; Underwood, 1970; Mouton, 2002), which
take measurements from planar two-dimensional (2-D) image
slices through a sample material (typically obtained using 2-D
cross-sectional microscopy), and extrapolating the results to
the geometric parameters of the 3-D structure using statistical
approaches and image analysis. The second approach is by
direct viewing and measurement of 3-D datasets obtained
by tomographic imaging of the material of interest or serial
sectioning techniques. X-ray tomography (Chen-Wiegart
et al., 2012; Shearing et al., 2012; Ebner et al., 2013) and
FIB-SEM tomography (Ender et al., 2011; Wilson et al., 2011;
Hutzenlaub et al., 2012) are the most commonly applied imag-
ing techniques for obtaining complete microstructural models
of lithium-ion battery electrodes (Shearing et al., 2012).

Although stereological procedures require relatively less
experimental and computational effort, microstructural
investigations using these methods are often inconclusive,
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Table 1. Tomography acquisition parameters for each sample

Scan parameters LCO LMO Graphite

Beam energy (keV) 18 18 10.5

Number of projections 1501
Radiograph exposure time (ms) 200
Rotation range (°) [0, 180]
Effective voxel size (nm3) 650 × 650 × 650

particularly when attempting to characterize structural
quantities that rely on phase connectivity in 3-D. In contrast,
3-D microstructural analysis from tomographic imaging
can be time consuming and may require access to advanced
tomography equipment.

This paper will examine and compare both stereological
prediction and 3-D analysis techniques for quantitative
measurements of key geometric parameters that characterise
lithium-ion battery electrode microstructures. In this work,
lithium-ion battery electrode samples were imaged using
synchrotron-based X-ray tomography, and for each electrode
sample investigated, stereological analysis was performed on
reconstructed 2-D image slices extracted from tomographic
imaging whereas direct 3-D analysis was performed on
reconstructed image volumes.

Materials and methods

X-ray tomography and image analysis

Three commercial lithium-ion battery electrodes materials:
lithium cobalt oxide (LCO), lithium manganese oxide (LMO)
and graphite (MTI Corporation, California, USA) were imaged
using synchrotron radiation X-ray tomographic microscopy at
the TOMCAT beamline of the Swiss Light Source (Paul Scher-
rer Institut, Villigen, Switzerland) (Stampanoni et al., 2006).
Small sections of the printed electrode materials were cut to a
size which fit into the user-defined field of view, set to 1.6 ×
1.4 mm2 for this experiment.

A parallel monochromatic beam was used in absorption-
contrast imaging mode, with the beam energy set to 10.5
keV for the graphite electrode and 18 keV for both LCO and
LMO materials. For each tomographic scan, 1501 projections
were acquired during a 180° rotation of the sample about its
long axis, through angular steps of 0.12° with an exposure
time of 200 ms for each projection image. The X-rays illumi-
nated a 20-μm-thick LuAG:Ce scintillator, producing visible
light which was focused onto a PCO.Edge camera, providing
an effective pixel size of 0.65 μm. Tomographic reconstruc-
tion of the acquired projection images was performed using
the gridrec algorithm (Marone & Stampanoni, 2012) after
application of flat- and dark-field corrections to account for
nonuniformity in the incident beam and detector response,
respectively. Table 1 is a summary of the parameters used to
image the different samples.

Fig. 1. Transformation of greyscale 2-D image to binary image 2-D and
ultimately a volume rendering of the (A) graphite, (B) LCO and (C) LMO
electrode samples respectively, where white represents the solid phase and
black represents the pore/electrolyte phase.

Image preprocessing and volume rendering of the result-
ing reconstructed volumes (Fig. 1) was carried out using the
Avizo Fire software package (Avizo Fire 8.0, FEI Visualization
Sciences Group, Mérignac Cedex, France). For each acquired
tomographic volume (consisting of a stacked sequence of 2-D
grayscale images), a region-of-interest (ROI) was extracted for
subsequent analysis. After ROI extraction, a nonlocal means
smoothing filter was applied to the greyscale image sequences
for image smoothing and denoising, followed by threshold
segmentation which utilizes the greyscale histogram of the
tomographic images to separate out the solid phase from the
pore phase, creating a binary image.

Quantification of microstructural parameters

In order to compare stereological and direct 3-D quantification
procedures, some common geometric parameters were anal-
ysed, namely: pore volume fraction, volume-specific surface
area, geometric tortuosity and pore radius. Stereological or
2-D-based predictions of 3-D microstructural parameters are
usually obtained by performing quantitative image analysis
on 2-D image sections—this could be done using a single 2-D
cross-sectional image slice or a statistical sampling of a few
image slices. In this work, however, we perform stereological
analysis on every 2-D cross-sectional slice from each of the
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tomographic image sequences; thus, for each calculated
parameter, a slicewise distribution across the sample volume
is generated over which an average is taken. With direct
3-D quantification, microstructural parameters are extracted
from the tomographic image volume. In this approach, image
sections (actual or computer-generated, depending on the
imaging technique employed) can be read into a computer
as a 3-D volume using digital image analysis (as a matrix of
volume pixels or voxels).

i. Pore volume fraction (φ): This is the volume fraction of
the pore phase with respect to the total volume of sam-
ple porous material being analysed. Pore volume fraction
can be predicted stereologically using Delesse’s principle
(DeHoff & Rhines, 1968; Underwood, 1970) which esti-
mates the volume fraction of a component/phase of in-
terest within a 3-D object from the area fraction of that
component within a 2-D cross-section through that object
(AA), that is, φ = AA. Area fraction calculations were per-
formed on each 2-D cross-sectional slice generated from
the tomography image sequences using a pixel count-
ing approach as the ratio of the total number of pixels in
the pore phase to the total number of pixels in the anal-
ysed image slice. Pore volume fraction was calculated di-
rectly from the tomographic image volumes, using a voxel
counting approach, as the fraction of cubic voxels that
make up the pore phase within the analysed 3-D volume
of interest.

ii. Volume-specific surface area (SV): For a given interface or
phase boundary within an imaged sample volume, SV

can be defined as the ratio of the total surface area of
that interface type in the sample to the sample volume.
SV for the solid phase/porosity interface in the lithium-ion
battery electrode samples was predicted using a stereo-
logical approach which requires the measurement of L A,

the perimeter length of the total phase boundary observed
within the given 2-D cross-section per unit area of the
image cross-section (DeHoff & Rhines, 1968; Underwood,
1970; Mouton, 2002), that is,

SV = 4
π

(L A) . (1)

The variable SV was directly quantified in 3-D as the
ratio of the total 3-D surface area of the sample solid
phase/porosity interface to the total analysed sample vol-
ume. The surface area of the solid phase/porosity interface
was calculated as the area of a triangular surface mesh
approximation of the solid phase/porosity interface. This
was performed using the ‘Surface Area-Volume’ quantifi-
cation module in Avizo Fire software. Here, a marching
cubes algorithm (Lorensen & Cline, 1987) is applied to
the segmented image to generate a triangulated surface.
In order to capture phase interfaces, the marching cube
algorithm in Avizo Fire allows for generating interfaces

between multiple segmented phases, and can use sub-
voxel weights for surface smoothing. A constrained sur-
face smoothing was applied using subvoxel weights and
with a smoothing extent of 5 in the surface generation
step. For this surface area calculation approach, mesh re-
finement was done and validated against the analytical
solution of model image samples.

iii. Geometric tortuosity (τ ): Tortuosity (τ ) is a term com-
monly used to describe the complexity and interconnect-
edness of transport paths in porous media. In lithium-ion
batteries, the tortuosity of the pore phase describes the
influence of electrode morphology on lithium-ion trans-
port with the electrolyte. In the literature, the term has
been defined from diffusion transport point of view (as
tortuosity factor, τ2) and from a geometrical point of
view (Epstein, 1989). Geometrically, τ can be defined in
2-D using the arc-chord ratio which is the ratio of the ef-
fective length of a curve (Le) to the length of the straight
line between the curve’s end points (L), that is,

τ = L e

L
. (2)

However, extending this 2-D definition to branching
3-D networks, τ can be extracted between a source plane
and a destination plane within a porous volume, and
defined for each location x on the destination plane (i.e.
in the x, y or z directions) where it intersects with the
3-D network:

τ (x) = L e (x)
L (x)

. (3)

where L e (x) represents the shortest path length through
the selected phase from the source plane to the location x
and L (x) represents the shortest path through any phase
in the sample volume from the source to destination
planes. With each of the examined 3-D volumes, τ for
the pore phase was calculated along the x, y and z axes.

Here, the tortuosity distributions were calculated
based on source backtracking, which uses the fast
marching algorithm on the binarized tomographic im-
age sequence to draw a source-distance map of the prop-
agating front. This source map was then used to recon-
nect any connected component to the nearest geodesic
path to the starting boundaries. The reader can find
more information about using the FMM method to create
distance distribution maps in Jørgensen et al. (2011).

iv. Pore radius (σ ): Within 3-D porous media, the pore size
distribution is usually characterized by a mean pore
size. Stereologically, such media can be characterized
by a mean pore size that is not derived from a pore
size distribution but from using the concept of mean
intercept length (Underwood, 1970). From this, the

C© 2016 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society., 00, 1–13



4 O . O . T A I W O E T A L .

stereologically predicted mean pore radius (σ2D ) can be
defined by the following relation:

σ2D = 2VV

SV
, (4)

where VV and SV are the volume fraction and volume-
specific surface area of the pore phase, respectively.

From a geometrical point of view, the pore radius for
any section of the pore path in the network can be defined
as the radius of the largest sphere that can be locally
inscribed into that section of the network (Jørgensen
et al., 2011). For the 3-D pore size quantification, the
mean pore radius is calculated by taking the average of a
generated pore radius distribution and various methods
exist for extracting pore radius distributions from 3-D
image volumes; however, in this work, we compare these
four methods:

• Medial axis based method using fast marching (MA-FM):
This method first extracts the medial axis (or skeleton)
of the pore network by performing a skeletonization
on the 3-D pore image with the aid of a multistencil
fast-marching algorithm (Hassouna & Farag, 2007),
and then takes the pore radius from every point along
the resulting topological skeleton as the distance to
the nearest pore phase boundary.

• Medial axis-based method using distance-ordered homo-
topic thinning (DOHT): This method (Pudney, 1998)
also calculates pore radius as the distance to the near-
est pore phase boundary to the pore skeleton, but
performs the skeletonization by combining morpho-
logical thinning and distance map based techniques.
First, a chamfer distance map of the 3-D pore space
is computed, which contains the shortest distance of
each point in the pore space to the pore phase bound-
ary, and then the resulting distance map is used to
guide the thinning algorithm. This approach was im-
plemented using the Avizo Fire 8.0 ‘Auto-Skeleton’
module.

• Successive morphological opening method (SMO): This
method applies successive morphological opening on
the 3-D pore space with spherical structuring ele-
ments (SEs) of increasing size (Daı ̈an et al., 2004;
Dupuy et al., 2011; Yang et al., 2014). Here, open-
ing refers to the process of first dilating, and then
eroding an image using a SE. Hence, if a spherical SE
of 1 pixel radius is used to ‘open’ the 3-D pore image,
the resulting image will only have pores larger than 1
pixel in radius. In this method, the opening operation
is repeated with increasing SE size until there are no
more pores existing in the 3-D pore volume. For each
opening operation, the accumulated volume fraction

Table 2. Volume dimensions of the analysed electrode samples

Analysed volume dimensions
Electrode sample X × Y × Z voxel3 (μm3)

LCO 744 × 1140 × 75 (483.6 × 741.0 × 48.8)
Graphite 1022 × 1176 × 85 (664.3 × 764.4 × 55.3)
LMO 990 × 1125 × 90 (643.5 × 731.3 × 58.5)

of pores larger than a certain SE of radius r can be
calculated as

υ (r ) = 1 − β (r )
β

, (5)

where β is the sum of the pore phase voxels in the ini-
tial 3-D volume, β(r ) is the sum of pore phase voxels
in the 3-D volume after the morphological opening
operation with a SE of radius r . From this, the vol-
ume fraction of pores with a certain radius can be
obtained by the difference of two successively accu-
mulated volume fractions. The pore radius obtained
using this method is called equivalent radius and it
is equivalent to the radius of the maximal inscribed
sphere in the pore.

• Continuous pore size distribution method (CPSD): The
‘continuous pore size distribution’ method (Münch &
Holzer, 2008; Holzer et al., 2011) is based on an algo-
rithm which measures the pore volume that can be
covered with a sphere of given radius. This algorithm
can also be seen to represent, in this sense, the sim-
ulation of a pressure induced intrusion with a poorly
wetting fluid (e.g. mercury intrusion). Here, a contin-
uous pore size distribution is obtained by incremen-
tally reducing the radius and thereby filling a larger
volume: by decreasing the radius, more constricted
areas such as pore bottle-necks and narrow corners
can be intruded. A cumulative PSD is obtained as a
result by relating the incrementally filled volume with
corresponding radii, which can then be normalized.

Representative volume element analysis

To allow ease of manipulation for the direct 3-D parameter
quantification, the largest possible cuboid volume was cropped
from each tomographic dataset (Table 2); however, to ensure
that these cropped electrode volumes were large enough to be
representative of the macroscopic properties of the respective
bulk electrode volumes, representative volume element (RVE)
analysis was performed. The RVE is usually regarded as a
volume of heterogeneous material which effectively includes a
sampling of all microstructural heterogeneities present and is
sufficiently large to be statistically representative for the entire
structure; further, the size of the RVE also depends on the
investigated morphological or physical properties (Kanit et al.,

C© 2016 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society., 00, 1–13



C O M P A R I S O N A N D T E C H N I Q U E S F O R Q U A N T I F Y I N G L I T H I U M - I O N B A T T E R Y 5

Fig. 2. Conceptual schematic representing the idealized relationship between material property (n) and the sample volume (U) and showing the
representative volume element region. Adapted from Costanza-Robinson et al. (2011).

2003). In practice, the RVE can be estimated deterministically
by performing a systematic analysis of the influence of volume
size on the overall geometric or physical properties of interest
(Bernard et al., 2005; Costanza-Robinson et al., 2011), with
the minimum RVE given by the size of the volume for which
the fluctuations in the effective property become insignifi-
cant, seen as a distinct plateau (i.e. the onset of region II in
Fig. 2). However, for real heterogeneous systems, the presence
of region II may be difficult to delineate with confidence due
to spatial variability (Zhang et al., 2000; Baveye et al., 2002),
and as a result, we adopt a methodology based on a study by
Li et al. (2009) who point out that the RVE for a given material
property can be determined for a required error, besides visual
assessment of whether each RVE plot exhibited a distinct
plateau or not. Here, the selected volume of interest for each
analysed electrode was deemed a representative volume
element if the absolute value of the relative error (εr,RVE) in
the measured material parameter was less than or equal 2 %.

For the RVE analysis, the ROI extracted for each electrode
sample was split into subvolumes where each subvolume was
obtained by increasing the x and y lengths from an initial
cuboidal volume selected from a vertex of the image, whilst
keeping the z-length (i.e. electrode thickness) fixed for all sub-
volumes. This was followed by computing the value of each
microstructural parameter for the different incremental sub-
volumes in attempt to realise converging RVE plots.

Results and discussion

In this work, we compare the geometric quantification of bat-
tery electrode microstructural parameters using both stere-
ological and direct 3-D measurement approaches. Note that
each reconstructed 2-D image section is a plane of single voxel
thickness. Parameter calculation using the stereological ap-
proach was performed on 2-D image sections to yield slice-
wise distributions and RVE analysis was performed on the 3-D
reconstructed volumes to ensure bulk representation of the

calculated parameters in three dimensions. Based on a 2 %
relative error criterion, the profiles for pore volume fraction,
volume-specific surface area, as well as geometric tortuosity
along the x, y and z directions presented in Figures 3(D), 4(D)
and 6, respectively show that the three electrode sample vol-
umes yield parameter values that are representative of the bulk
electrode volume. The graphite and LMO samples reach the
minimum RVE at a much smaller subvolume than the LCO
sample, which can be attributed to lesser microscopic het-
erogeneity effects on the microstructural parameters in both
graphite and LMO sample volumes.

Pore volume fraction

Figures 3(A–C) show the slicewise pore volume fraction profile
for each of the three examined battery electrodes along each or-
thogonal direction. For each electrode sample, the mean pore
volume fraction and standard deviation (SD) in each direction
were also calculated over the 2-D image sections. As expected,
averaging the entire slicewise 2-D pore volume fraction distri-
bution along each axis yields stereological mean pore volume
fraction values (Mean 2-D) which are identical to the value ob-
tained from a 3-D reconstruction of the pore phase, as seen in
Table 3, but the pore volume fraction standard deviation varies
in each direction. It can also be seen that stereological predic-
tion of pore volume fraction using 2-D image sections along
each axis yields a pore volume fraction profile which displays
significant variation, thus highlighting localised microstruc-
tural heterogeneities. When compared to the pore volume
fraction measured in 3-D, all three electrodes showed larger
maximum percentage underestimation (% UE) and maximum
percentage overestimation (% OE) in the x and y directions
than in the z direction. Moreover, the results further indicate
that basing pore volume fraction calculations for a 3-D porous
material with a heterogeneous microstructure on the area
fraction of just a single planar section of such material could
be misleading.
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Fig. 3. Pore volume fraction profiles for (A) LCO, (B) LMO and (C) graphite electrode samples showing variation in slicewise pore volume fraction along
the x, y and z directions. (D) Evolution of 3-D pore volume fraction (main) and the relative errors (inset) versus subvolume size for each electrode sample.

Table 3. Comparison of pore volume fraction obtained by stereological
predictions and 3-D analysis

Pore volume fraction, φ

Mean SD Min Max
Sample 3-D 2-D 2-D 2-D % UE 2-D % OE

LCO 0.431 x-dir: 0.431 0.021 0.363 15.67 0.490 13.69
y-dir: 0.431 0.070 0.297 30.96 0.546 26.69
z-dir: 0.431 0.011 0.399 7.26 0.442 2.73

Graphite 0.484 x-dir: 0.484 0.013 0.452 6.67 0.531 9.81
y-dir: 0.484 0.013 0.443 8.60 0.527 8.84
z-dir: 0.484 0.005 0.468 3.24 0.492 1.73

LMO 0.453 x-dir: 0.453 0.062 0.298 34.36 0.569 25.58
y-dir: 0.453 0.047 0.353 22.07 0.528 16.33
z-dir: 0.453 0.013 0.397 12.47 0.469 3.38

Volume-specific surface area

Figure 4 shows the slicewise volume-specific surface area
profiles generated using the stereological relation shown in
Eq. (1) for each of the three examined battery electrodes along
each orthogonal direction. Unlike the pore volume fraction
results, it can be seen for all three samples that the mean stere-
ological volume-specific surface area values obtained along
each axis direction differ from each other and also from the
mean volume-specific surface value obtained from 3-D vol-
ume analysis; for instance, when compared with the mean
volume-specific surface area obtained from 3-D measurement
shown in Table 4, a difference of up to 52 % was found in the
LMO electrode sample. This error can be associated with the
fact that the stereological method does not account for how
each image slice interacts with the next when estimating the
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Fig. 4. Volume-specific surface area profiles for (A) LCO, (B) LMO and (C) graphite electrode samples showing variation in slicewise volume-specific
surface area along the x, y and z directions. (D) Evolution of 3-D volume-specific surface area (main) and the relative errors (inset) versus subvolume size
for each electrode sample.

Table 4. Comparison of volume-specific area obtained by stereological predictions and 3-D analysis

Volume-specific surface area, SV

3-D Mean 2-D SD 2-D Min 2-D Max 2-D
Sample (μm−1) (μm−1) (μm−1) (μm−1) % UE (μm−1) % O.E.

LCO 0.302 x-dir: 0.252 0.007 0.231 23.38 0.268 11.17
y-dir: 0.280 0.018 0.236 21.83 0.314 4.08
z-dir: 0.286 0.003 0.276 8.77 0.291 3.65

Graphite 0.258 x-dir: 0.248 0.004 0.236 8.64 0.258 0.21
y-dir: 0.148 0.004 0.139 46.26 0.158 38.49
z-dir: 0.127 0.001 0.124 51.89 0.129 49.95

LMO 0.214 x-dir: 0.325 0.012 0.180 15.69 0.223 4.32
y-dir: 0.193 0.013 0.104 51.50 0.141 34.36
z-dir: 0.169 0.002 0.109 49.41 0.114 46.55

length of the pore-solid phase boundary length. Furthermore,
in the LMO and graphite samples, the 2-D image sections ex-
tracted in the x direction yield a slicewise profile with higher
volume-specific surface area values than the profiles from the
2-D sections in the y and z directions. This could be attributed to
the anisotropic or nonspherical nature of the electrode particle

shapes and/or to particle-to-particle ordering and orientation
within the electrode samples as a result of electrode calendar-
ing or the electrode manufacturing process; this could then
lead to a variation in the length of the particle–porosity phase
boundary that would be captured in 2-D sections along a given
orthogonal direction.
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Fig. 5. (A) Schematic illustration of how a 3-D structure can be viewed along each axis direction for 2-D tortuosity calculations. Slicewise tortuosity
profile in the pore phase across (B) ZX image sections in the LCO electrode, (C) ZY image sections in the LMO electrode and (D) XY image sections in
the graphite electrode. Regions of tortuosity discontinuity highlighted by the red arrows in the inset plots signify no pore percolation across some image
section(s) within the region of the sample.

Geometric tortuosity

Although the arc-chord ratio for calculating geometric tortu-
osity is not a relationship developed from stereological theory,
it has been used on 2-D image sections for estimating the
tortuosity of inherently 3-D structures (Onkaew et al., 2011).
Moreover, as illustrated in Figure 5(A) using a small ROI from
the reconstructed LCO electrode pore network, 2-D image
based estimations of the tortuosity of a 3-D pore network
along a given orthogonal direction means that the 2-D planar
images for this could be viewed or selected from two possible
directions. For example, if we are estimating tortuosity along
the z direction in a tomographically generated 3-D image
using the arc-chord ratio approach, the tortuosity estimates
can be calculated using 2-D image sections generated in the
ZX or ZY planes, and in the x and y directions if the 3-D image

is re-sliced to generate image sections in the XZ or XY planes
and YX or YZ planes, respectively. This results in two tortu-
osity profiles per axial direction, making a total of six possible
tortuosity profiles. Although the pore phase in the examined
electrodes showed good connectivity (>99 %) and percolation
in three dimensions, we observe that the pore phase across
some individual 2-D sections generated was not connected,
leading to discontinuities in the slicewise tortuosity profiles as
the tortuosity values across such sections is taken to be infinite.

Figure 5(B-D) show the discontinuities in the slicewise tor-
tuosity profile for each of the examined electrodes, which
highlights the absence of a completely percolating pore
phase across some 2-D sections. These discontinuities were
present in all the 2-D tortuosity slicewise profiles cre-
ated along each possible plane. Figure 6 shows the evo-
lution of 3-D pore-phase tortuosity with increasing sample

C© 2016 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society., 00, 1–13
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Fig. 6. Evolution of 3-D pore-phase tortuosity along each orthogonal direction (main) and the relative errors (inset) versus subvolume size for each
electrode sample.

Table 5. Comparison of geometric tortuosity obtained by stereological predictions and 3-D analysis

Geometric tortuosity, τ

Mean 2-D SD 2-D Min 2-D Max 2-D
Sample 3-D (z-dir, ZX slices) (z-dir, ZX slices) (z-dir, ZX slices) % UE (z-dir, ZX slices) % OE

LCO τx : 1.078
τy: 1.060
τz : 1.011

1.170 0.069 1.023 1.18 1.919 89.82

Graphite τx : 1.051
τy: 1.054
τz : 1.013

1.485 0.147 1.167 2.736 21.42 84.26

LMO τx : 1.069
τy: 1.053
τz : 1.010

1.225 0.105 1.077 6.61 1.936 91.6

subvolume along the x, y and z directions using represen-
tative volume element analysis. The discontinuities in Fig-
ure 5 show that the tortuosity within inherently 3-D net-
works is nearly impossible to measure from 2-D cross-sections
or planar slices, as it relies on exactly how and where
the phase networks branch out and interconnect in three
dimensions (Wilson et al., 2006; Wilson et al., 2011); the

2-D methodology does not consider the 3-D phase network
interconnectivity, and hence such an approach for estimation
of 3-D tortuosity is bound to be associated with ambiguity.
Table 5 compares the stereological mean z-direction tor-
tuosity (obtained using ZX image sections) with the direc-
tional tortuosities obtained directly from the 3-D volumes.
Here, the stereological mean z-direction tortuosities in each
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Fig. 7. Mean pore radius profiles for (A) LCO, (B) LMO and (C) graphite electrode samples showing variation in slicewise pore radii along the x, y and z
directions.

electrode sample appear to be largely overestimated because
they are much higher than the z-direction tortuosities obtained
from 3-D analysis. This overestimation is most likely associated
with the fact that the shortest pathway through such hetero-
geneous pore networks from a 2-D cross-section is actually
a much shorter route when the entire 3-D pore network is
considered.

Pore radius

With the stereological approach, slicewise profiles for mean
pore radius were generated for each electrode sample using
2-D sections generated along each axis. In all three samples,
significant variations in pore radius are seen in each slicewise
profile along each axis. Moreover, in all three electrode sam-
ples, the mean pore radius values obtained along each axis
direction appear to be in close range (Fig. 7 and Table 6);

With regards to the 3-D reconstructed volumes, four differ-
ent approaches for extracting the mean pore radius parameter
were examined, as outlined previously. Figure 8 shows a com-
parison of the pore radius distributions generated from these
methods. Of all three electrode samples, the LMO electrode ap-
pears to have the broadest pore size distribution and the high-
est mean pore radius value. It is also observed that the DOHT

method gives a high frequency of smaller pores - this is associ-
ated with the tendency of the thinning algorithm to generate
false branches and spurious nodes in the resulting skeleton,
which are often induced by surface irregularities and image
noise. However, these can be eliminated by pruning the false
branches within the skeleton but this is a nontrivial process for
such complex microstructures and could end up significantly
altering the original topological skeleton.

The MA-FM method, however, appears to have a relatively
higher frequency of larger pores. This is as a result of the
characteristic behaviour of the fast marching algorithm
employed to perform selective pore radius sampling on larger
pore pathways rather than on every pore pathway due to
the scaling of the speed map with the interfacial distance
map (Jørgensen et al., 2011). The pore radius distribution
generated with the MA-FM, SMO and CPSD methods are
almost identical for the LCO sample. In both the LMO and
LCO samples, the pore radius distribution curves from the
CPSD and SMO methods are similar. However, this trend is
absent in the graphite electrode sample, with the SMO method
displaying a broad pore radius distribution.

It is noteworthy to mention that pore-scale quantification of
tomography data has been extensively validated against con-
ventional porosimetry techniques (e.g. Safinia et al., 2006;
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Table 6. Comparison of pore radius obtained from stereological prediction and different 3-D analysis methods

Pore radius, σ

3-D Mean 2-D SD 2-D Min 2-D Max 2-D
Sample (μm) (μm) (μm) % OE % UE (μm) % OE

LCO DOHT: 1.049 x-dir: 1.708 0.021 1.656 27.26 1.797 21.07
MA-FM: 2.251 y-dir: 1.397 0.092 1.243 45.43 1.549 31.99
CPSD: 2.277 z-dir: 1.511 0.011 1.490 34.56 1.523 33.12
SMO: 2.394

Graphite DOHT: 1.650 x-dir: 1.957 0.015 1.827 48.25 1.988 43.70
MA-FM: 3.531 y-dir: 1.986 0.032 1.908 45.96 2.050 41.98
CPSD: 3.031 z-dir: 2.376 0.021 2.345 33.58 2.443 30.80
SMO: 3.155

LMO DOHT: 2.723 x-dir: 2.030 0.218 1.586 53.48 2.254 33.86
MA-FM: 3.680 y-dir: 2.265 0.060 1.863 45.34 2.330 31.64
CPSD: 3.408 z-dir: 2.425 0.073 2.140 37.20 2.512 26.29
SMO: 3.443

Fig. 8. Pore radius distribution of the battery electrode samples (A) LCO, (B) LMO and (C) graphite.

Jones et al., 2007; Izzo et al., 2008); moreover, the CPSD
algorithm was developed to mimic the physical process
of mercury porosimetry to extract values from tomogra-
phy data that can be directly compared with porosimetry
measurements.

Although these 3-D pore size extraction methods are com-
monly used in pore-scale characterization of porous mate-
rials, each of them has its advantages and drawbacks (e.g.
DOHT method is easily affected by image noise and could cre-
ate false skeleton branches and nodes, whereas the MA method
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selectively samples pore pathways) and the differences in cal-
culated pore radius values suggests that there stands the risk
of confusion about the geometric definition of pore size and size
distribution. However, the CPSD method would be expected
to have a high degree of accuracy as it includes all possi-
ble pathways including narrow bottlenecks and dead-ended
pores, and is not limited by possible errors from topological
skeleton creation.

Therefore, it is recommended that one proceed with caution
when selecting amongst these pore size calculation methods
for quantifying complex porous microstructures, and conse-
quently any comparison of 3-D pore size distribution should
fully account for inherent difference that may be present in
the calculation methodology. Moreover, even as all pore size
calculations should be independent of imaging resolution (as
the digital image resolution dependencies decrease once the
voxel size falls below that of the structures to be resolved), it
is useful to image the porous material of interest at a suffi-
ciently high resolution to reduce the effect of possible artefacts
from image processing. Applying a multiscale 3-D imaging
approach (Shearing et al., 2012) will provide a good valida-
tion for microstructural quantification. Furthermore, when
the stereological mean pore radii values were compared with
the mean pore radius values obtained using the CPSD method,
large underestimations (and overestimations) of over 20 %
were observed.

Conclusion

In this study, both stereological prediction and 3-D analy-
sis techniques for quantitative assessment of key geometric
parameters for characterizing lithium-ion battery electrode
microstructures were examined and compared. Quantitative
analysis was carried out on image data obtained from imag-
ing battery electrode samples using synchrotron-based X-ray
tomographic microscopy. For each electrode sample inves-
tigated stereological analysis was performed on 2-D planar
image slices generated from tomographic imaging, whereas
direct 3-D analysis was performed on rendered image vol-
umes; representative volume element analysis was performed
to ascertain the selected 3-D volumes examined were repre-
sentative of the bulk electrode.

The results showed that stereological estimation of inher-
ently 3-D microstructural parameters using a single 2-D im-
age section is bound to be associated with ambiguity and
may lead to significant parameter under- or overestimation.
Significant variation in measured parameters observed using
2-D planar image sections highlights the presence of localised
microstructural heterogeneities within the electrode materi-
als. Pore volume fraction measurements using stereological
prediction showed smaller parameter variations using planar
slices normal to the z direction; in this case, stereology could
be used to obtain an initial approximation for pore volume
fraction but in order to obtain complete information on a sta-

tistically, nonhomogenous microstructure, direct 3-D mea-
surement cannot be replaced by stereological relationships.
Discontinuities in the planar tortuosity profiles show that the
tortuosity within inherently 3-D networks cannot be geomet-
rically measured from 2-D cross-sections or planar slices, as
tortuosity relies on exactly how and where the phase net-
works branch out and interconnect in three dimensions. This
also demonstrates that 3-D measurement of nonconvex, ir-
regular and interconnected pore networks are more suited
for accurately quantifying spatial parameters, like tortuos-
ity and phase connectivity. Although there is bias introduced
when applying stereological relationships to measure inhomo-
geneous 3-D microstructures, direct 3-D measurements have
the demerit of being more computationally intensive.

We also compare four different methods to extract pore size
distributions in 3-D. The CPSD and SMO methods give similar
pore-size distributions curves as they consider the entire net-
work including dead-ended and isolated pores, as opposed to
the MA-FM method which tends to sample major pore path-
ways. It is recommended that comparison of 3-D pore size
distributions should fully account for inherent difference that
may be present in each calculation methodology.
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