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Abstract—We study the tunability and robustness of photonic
Dirac points (DPs) in plasmonic nanostructures. The tunability of
the DP is demonstrated in graphene-based photonic superlattices
by adjusting the graphene permittivity via the optical Kerr effect
or electrical doping. The robustness of DPs is demonstrated
in plasmonic lattices by showing that even very high levels of
disorder are unable to localize the modes located near the Dirac
point. The robustness of the DP also manifests itself in the fact
that the inversely-proportional dependence of the transmission
on the lattice length near the Dirac point remains unchanged
under strong disorder.

Index Terms—Graphene, photonic superlattices, Dirac points,
structural disorder, transmission.

I. INTRODUCTION

PERIODIC photonic systems, through a proper design
of their photonic band structure, provide unprecedented

opportunities for manipulating the interaction between light
and matter. In these systems, various exotic photonic band
structures can be engineered, featuring frequency gaps, spec-
tral domains with strong anisotropy, negative refraction, and
Dirac points (DPs). In the case of DPs, whose properties are
the subject of the present paper, an upper and lower photonic
bands are designed in such a way that they intersect at a single
point, the frequency dispersion of the optical modes located
in the vicinity of this point being linear. Interestingly, it has
been recently demonstrated that the band structure of surface-
plasmon polaritons (SPPs), which occur in one-dimensional
(1D) layered metallic-dielectric nanostructures, possess DPs
provided that the spatial average of the permittivity of the
lattice is zero [1]–[3]. In condensed-matter physics, electronic
counterparts of photonic DPs are at the origin of many
remarkable properties of recently discovered materials, such as
graphene and topological insulators [4]–[6]. Therefore, the a-
bility to create, eliminate, and, more generally, manipulate DPs
of photonic structures could have many important implications,
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both at the fundamental level and to photonic devices with
new or improved functionalities. The photonic DPs provide a
convenient way to explore and understand DP-related physics
in the general form, as photonic structures offer a versatile,
easy to use platform for the experimental implementation
of such physical systems [7]. However, a major problem
impeding the implementation of this approach is that both
photonic and plasmonic crystals usually lack tunability of their
performance.

A recently introduced photonic platform that contains all
the ingredients needed to achieve ultra-fast broad optical
tunability at the nanoscale is graphene [8], [9].Compared to
the SPPs in metals, graphene plasmons are localized in much
smaller regions, provide a much larger enhancement of optical
near-fields, and can propagate significantly longer distances
[10]. Equally important, the conductivity of graphene and,
implicitly, its local electrical permittivity can be substantially
varied by means of chemical doping or gate voltage [11], [12].
The latter method makes it also possible to implement ultra-
fast variation of graphene permittivity. For example, changing
the Fermi level by a mere 1 eV causes the relative variation
of the real part of the permittivity, at 10 µm, by 250%.
Depositing graphene onto the surface of specific material-
s, which may be both dielectrics and metals, a variety of
graphene-based layered nanostructures have been designed,
and their implementations in functional photonic devices have
been demonstrated [13]–[15]. The most salient feature of
these superlattices is that, by incorporating graphene into
the periodic structure, the spectral band structure and, thus,
their optical response can be dynamically tuned, using the
above-mentioned method of electric gating. This key property,
in conjunction with relatively low loss and extremely tight
confinement of the graphene plasmons, opens up promising
applications of tunable graphene photonic superlattices (GPSs)
at mid-IR and at THz wavelengths. In Section II, we present
an example of such an application, demonstrating tunability
of DPs in graphene-based superlattices.

Generally speaking, photonic DPs can be divided into
two broad classes according to how they appear. One class
encompasses structural DPs, [16] whose existence is related
to specific topological and structural properties of the un-
derlying photonic lattice. In particular, such DPs, occurring
in honeycomb lattices regardless of their parameters, may
be viewed as the photonic analog of the electronic DPs
of graphene and other two-dimensional (2D) materials. The
other class of photonic DPs includes the so-called accidental-
degeneracy-induced DPs (ADIDPs) [17]. They can appear
in simple lattices, such as square ones, when the lattice
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parameters (such as the spacing and refractive-index contrast)
are finely tuned in such a way that the effective permittivity
and permeability of the structure vanish at specific frequencies.
The above-mentioned DPs occurring in 1D plasmonic lattices
with vanishing average permittivity belong to the ADIDPs
class, too.

In reality, however, fabrication processes inevitably intro-
duce a certain level of structural disorder upon producing peri-
odic structures, and thus it is important to analyze the survival
of the DPs under the structural disorder, thus securing the
experimental observations of the DP-related physics. Effects
of disorder on the structural DPs have been investigated in the
particular case of optical honeycomb waveguide lattices, the
main finding being that the DP-associated chiral symmetry is
preserved or broken, depending on the nature of the disorder
[18]. The influence of the disorder on ADIDPs is considered in
Section III. We find that the DPs of this type are very robust,
in the sense that even very high disorder levels are unable to
induced the (Anderson) localization of modes close to the DP.

Section IV addresses the transmissivity of finite-size plas-
monic lattices that contain DPs in their spectral band structure
(in the perfectly-periodic limit). It has been previously report-
ed that the transmissivity close to the DP is characterized
by scaling ∼1/L with respect to length L of the lattice
[19], [20]. Such 1/L scaling of the transmissivity is called
“pseudo-diffusive”, being reminiscent of the diffusion through
a disordered medium, but we stress that here it occurs in
the regular lattice in the absence of any disorder. Next, in
Section IV we address the transmissivity of the disordered
DP-bearing plasmonic lattice. We find that the 1/L scaling
remains unchanged near the DPs, providing another proof of
the their robustness against the structural disorder.

II. TUNABILITY OF THE DIRAC POINT

The GPS concept, that was put forward in Ref. [21], not
only enables manipulations of the light-matter interactions at
the deep-subwavelength scale, but also provides unprecedent-
ed tunability of their functionalities and performance. The
advantage of including graphene sheets into the unit cell of
metallo-dielectric superlattices is that one can then readily
design GPSs that posses electrically and optically tunable DPs.
To add specificity to these ideas, we consider, as an example
of a GPS, the 1D periodic structure displayed in Fig. 1(a).
It has a three-layer unit cell, graphene-metal-dielectric, the
metallic and dielectric layers chosen here being silver and
silicon, respectively. The dispersion relation of the structure
is easily found by using the transfer-matrix method [22], and
is given by (see also Appendix A):

cos(kxΛ) = σ

(
1−

ϱ2gdϱ
2
dg

2ϱgdϱdg
tanκg tanκd−

ϱ2dm + ϱ2md

2ϱdmϱmd
tanκd tanκm −

ϱ2mg + ϱ2gm
2ϱmgϱgm

tanκm tanκg

)
,

(1)

where kx is the Bloch wave vector, kz the propagation wave
vector, tg , td, and tm are thicknesses of the layers, Λ = tg +
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Fig. 1. (a) A schematic of the photonic superlattice: the unit cell is a
graphene-metal-dielectric tri-layer configuration stacked along the x direction.
The incident TM-polarized beam propagates along the z-axis, its non-
vanishing field components being Ex, Ez , and Hy . (b) The photonic band
structure calculated in the case of the zero-averaged-permittivity, featuring the
1D Dirac point. The structural parameters are εg = −14.48, εd = 12.25,
εm = −924.05, tg = 0.5 nm, td = 604 nm, tm = 8 nm, and
λD = 4.2 µm. (c) The dependence of the wavelength of the Dirac point
on the graphene’s chemical potential and permittivity. (d) The photonic band
structure calculated for different wavelengths.

td+tm is the period of the supercell, σ ≡ cosκg cosκd cosκm,
κj ≡ tj

√
(ω/c)2εjµj − k2z , and ϱij ≡ κiεjtj , with j =

g, d,m standing for graphene, dielectric (silicon), and metal
(silver), respectively. By fixing the frequency ω in Eq. (1), the
dependence kz = kz(kx) defines the spatial dispersion relation
for the particular frequency.

To produce a DP, the band structure of such GPSs should,
first, possess two transmission bands. Further, for a two-band
configuration to occur, the thickness of the dielectric and
metallic layers should be larger than certain critical values.
For example, for tm = 8 nm, in order to support the two-
band structure, the minimum thickness of dielectric layers is
td = 592 nm. Then, similar to other plasmonic structures, the
two bands intersect at the center of the Brillouin zone, kx = 0,
giving rise to the photonic DP [see Fig. 1(b)], provided that
the real part of the average permittivity of the superlattice
vanishes [1]–[3], that is,

Re(ε) =
1

Λ
Re (εgtg + εdtd + εmtm) = 0. (2)

We now demonstrate that the graphene component of this
photonic superlattice allows one to tune the wavelength of
the photonic DPs, by merely varying the chemical potential
of graphene, µc. More specifically, changing µc by means
of external tools (gate voltage, chemical doping, etc.), one
alters the graphene’s permittivity, making it possible to tune
the wavelength, λD, at which condition Re[ε(λD)] = 0 holds.
These ideas are illustrated in Fig. 1(c), where we plot the
dependence of the DP wavelength on µc. Note that a spectral



1077-260X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTQE.2016.2521711, IEEE Journal
of Selected Topics in Quantum Electronics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, DECEMBER 2015 3

9 9

4.3

3.6

2.9

2.2
(a)

cμ = 0.23 eV

Dirac point

0-0.5 -0.25 0.25 0.5 0

4.3

3.6

2.9

-0.5 0.5

(b)

c
μ = 1.5 eV

-0.25 0.25

0

6

x [μm]
(c)

3

0-6 6-3 3

(c)

(d)
0

6

3

0-6 6-3 3

(d)
0

1

x [μm]

z 
[μ

m
]

z 
[μ

m
]

k x[π/Λ]k x[π/Λ]

0
k
 

k
 z[ 

  
 ]0

k
 

k
 z[ 

  
 ]

2.2

1

0

Fig. 2. (a,b) Formation of a bandgap in place of the Dirac point with
λD = 4.2 µm by varying the graphene’s Fermi level. (c,d) Splitting of the
incident TM-polarized Gaussian beam with profile Ex(x) = exp(−x2/w2),
that has w = 2λD . In (a) and (c), permittivities of the layers are the same
as in Fig. 1. In (b) and (d), εg = −195.02. In all cases, thicknesses of the
layers are the same as in Fig. 1.

shift of more than 30 nm can be achieved changing µc by
1.5 eV. The variation of the corresponding band structure is
presented in Fig. 1(d).

The tunability of the band-structure of the GPS provides
an effective way to control the excitation and propagation of
optical beams. As Figs. 2(a) and 2(b) show, when µc varies
from 0.23 eV to 1.5 eV, the band structure transforms from
a gapless one, which possesses a DP, to a gapped structure,
this effect being accompanied by a dramatic change in the
beam-propagation dynamics. At the DP, a normally incident
Gaussian beam splits into two secondary ones only, as the
upper- and lower-band excitations are not resolved, due to the
fact that the two bands have identical slopes near the DP [see
Fig. 2(c)]. By contrast, when a gap opens the output pattern
exhibits four split beams, due to the difference in the slopes
of the upper and lower bands near kx = 0, as per Fig. 2(d).

In addition to the electric means, the wavelength at the DPs
can be tuned by employing the intrinsic optical nonlinearity of
graphene, as well as that of the dielectric and metallic layers.
Such nonlinearity-induced tunability of the DP is possible
in the presently considered superlattices because, as shown
above, the DPs appear when the real part of the average
permittivity is zero. Accordingly, nonlinear optical effects, that
change the local refractive index, can be used to tune the
permittivity to or off the zero-average value, thus providing all-
optical means to control the formation of the DPs. The optical
nonlinearity of graphene is expected to be particularly strong,
due to its unusually large third-order nonlinear susceptibility
[30], as well as tightly localized optical field supported by
graphene sheets.

To illustrate this possibility, Fig. 3 shows the cre-
ation/destruction of a DP under the action of the optical Kerr
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Fig. 3. (a) The linear band structure, calculated for the same parameters as
in Fig. 1, except for εg = −195.02 (ε = −0.15). (b) The nonlinear band
structure, where the Bloch mode of the upper band at kx = 0 is used to
induce the nonlinear (Kerr) change of permittivities, δεd = 0.07 and δεg =
0.46. (c,d) Splitting of the incident TM-polarized Gaussian beam, Ex(x) =
A exp(−x2/w2), with w = 2Λ and A = 1 V/m in (c) or A = 4.13 ×
107 V/m in (d). The Kerr coefficients are n2,d = 1.86×10−20 m2/V2 (for
silicon) and n2,g = 4.09× 10−17 m2/V2.

effect, acting in graphene and the adjacent dielectric (silicon)
layer. At low optical powers, starting with a superlattice for
which ε(λ) < 0, the two transmission bands are separated
by a gap, as shown in Fig. 3(a). When the input power
increases, both graphene and dielectric are affected by the
Kerr nonlinearity, their permittivities varying by δεg > 0 and
δεd > 0, respectively. As a result, the average permittivity, ε,
increases and the corresponding band structure is modified as
well. At some value of the optical power, ε vanishes, so that,
as shown in Fig. 3(b), the photonic gap closes and the DP
emerges. For the particular case shown in Fig. 3, δεd = 0.07
and δεg = 0.46. The propagation of a TM-polarized Gaussian
beam, both in the linear and nonlinear regimes, is displayed
in Figs. 3(c) and 3(d), respectively. One can see that, as the
power of the input beam increases, the dynamics changes from
typical discrete diffraction to 1D conical diffraction, which is
a manifestation of the formation of the DP in the latter case.

III. ROBUSTNESS OF DIRAC POINTS AGAINST
STRUCTURAL DISORDER

Similar to zero-n̄ band gaps, which are formed when the
spatial average of the refractive index of a Bragg grating
vanishes [23]–[29], ADIDPs in our photonic structure are
particularly robust against disorder added to the system. This
behavior is expected because structural disorder weakly affects
the spatial average of the permittivity, hence its vanishing,
which determines the existence of DPs, persists in the presence
of disorder as well.

To evaluate the effect of structural disorder on the ADIDP-
s, we here perform a comparative study of the Anderson
localization of light waves in a disordered 1D plasmonic
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crystal that, in the regular (disorder-free) form, possesses
either a DP or a Bragg gap (BG) in the spectrum of the
wave vectors. For this purpose, we consider a binary periodic
nanostructure composed of alternating metallic and dielectric
layers(the results for section III and IV both correspond to
the metallic-dielectric binary periodic structure, namely, when
the graphene component in the structure shown in Fig. 1(a)
is absent). As mentioned above, the 1D DP appears at the
center of the Brillouin zone, kx = 0, provided that the
real part of the spatially averaged permittivity vanishes, i.e.,
Re(ε) = (td + tm)

−1
Re {εdtd + εmtm} = 0. To be specific,

we assume that the metallic and dielectric layers are made
(as above) of silver and silicon, respectively. The silicon per-
mittivity is given by the above-mentioned value, εd = 12.25,
and the permittivity of silver is εm = −125.39 + 2.84i at
the standard telecomm wavelength, λ = 1550 nm. We further
fix the thickness of the silicon layer as td = 256 nm. With
these parameters, it is readily found that, for tm = 25 nm, the
condition Re(ε) = 0 holds, giving rise to a photonic DP; for
other values of tm, the average permittivity is shifted away
from the zero, hence a BG opens.

Disorder is introduced into the nanostructure by assuming
a random fluctuation of the thickness of the dielectric layers,
namely, the thickness of the n-th layer is tnd = td0+δn, where
td0 is the average thickness (we take td0 = 256 nm here), and
δn is a random value, uniformly distributed in the interval of
[−δ, δ], with 0 < δ < td0. Thus the disorder strength may be
defined as ∆ ≡ δ/td0. We calculated the effective size of the
emerging Anderson modes as

Weff =

⟨∣∣∣∣
∫ +∞
−∞ |E(x)|2(x− xc)

2dx∫ +∞
−∞ |E(x)|2xdx

∣∣∣∣ 12⟩, (3)

where xc ≡
∫ +∞
−∞ |E(x)|2xdx/

∫ +∞
−∞ |E(x)|2dx is the center

of the Anderson-localized mode, and “⟨⟩” stands for averaging
over multiple realizations of the randomness with the same
strength of disorder.

Figures 4(a-d) and 4(g,h) show the effective width of the
modes in the lattices of the DP and BG types, respectively,
which feature a gradually increasing strength of the structural
disorder. Figures 4(a-f) demonstrate that the modes with the
smallest and largest eigenvalues at first become localized, then
the localization effect extends towards the central region of the
spectrum. Nevertheless, the modes at the center of the spec-
trum, which correspond to the DP of the disorder-free lattice,
remain delocalized despite the fact that the disorder strength
attains large value [80% in Fig. 4(d)]. As might be expected,
a similar scenario is observed as well when thicknesses of the
dielectric and metallic layers of the lattice unit cell are both
randomized [Figs. 4(e,f)]. Spatial profiles of modes with the
largest effective width are shown in inset to Figs. 4(d) and
4(f). It is worthy to note that the propagation constants of
the widest mode and the corresponding DP are exactly equal.
This is a clear manifestation of the extreme robustness of
the ADIDP in the present setting against structural disorder,
a phenomenon that can be understood by recalling that the
condition for the formation of such ADIDPs is vanishing of
the averaged permittivity, ε̄ = 0. Indeed, if, in the disorder-
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Fig. 4. The dependence of the width of the Anderson-localized modes on
the disorder strength, calculated for the DP-bearing system (a)-(f), and for
the BG system (g)-(h). In (e)-(f), widths of both dielectric and metallic layers
are disordered. Insets in (d), (f) and (h) show profiles of the most delocalized
Anderson modes. Gray regions in (g) and (h) indicate the bandgap of the
eigenvalue spectra of the unperturbed lattices.

free lattice, one has ε = (εdtd0 + εmtm0) / (td0 + tm0) = 0,
then in the disordered system the average permittivity is

ε = lim
L→∞

{
L−1

∑
n

εm(tm0 + δnm) +
∑
n

εd(td0 + δnd )

}

= lim
L→∞

{
L−1

[∑
n

(εmtm0 + εdtd0)

+ εm
∑
n

δnm + εd
∑
n

δnd

]}
= 0, (4)

where L is the total transverse length of the disordered lattice,
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As above, td and tm are the thicknesses of the dielectric and metallic layers,
respectively, and Λ = td + tm is the size of the lattice cell. “a” denotes the
location of the Dirac point, while “b1” and “b2” are edge points of the bands.

and the use is made of the fact that the average value of
the random perturbations is zero. Thus the random structural
fluctuations preserve this zero-epsilon condition, hence the
corresponding mode remains delocalized. By contrast, the
width of the modes in the BG-bearing lattice rapidly become
localized as disorder is added to the photonic lattice. This
is observed in Figs. 4(g,h), where the width of the modes
corresponding to two different BG-bearing lattices are present-
ed. In particular, one can see that even weak disorder (with
∆ = 20%) is able to make almost all the modes localized.
Even the widest mode is actually tightly localized when the
disorder strength is a mere 20%, as seen in the inset to
Fig 4(h). It is also instructive to compare widths of the most
delocalized modes in the two lattices, looking at the insets to
Figs. 4(d), 4(f), and 4(h).

IV. TRANSMISSIVITY NEAR DIRAC POINTS

This section addresses the transmissivity of light through a
finite-size plasmonic crystal. We use the same lattice model
as in Section III, namely, one built of alternating layers of
silicon (εd = 2.25) and silver (εm = −20 at λ = 632.8 nm)
stacked along the x axis. The lattice is bounded at each edge
by a homogeneous semi-infinite dielectric medium with a
permittivity ϵ1, labeled as Region 1 and Region 2 in Fig. 5(a).
The band structure for the periodic lattice satisfying the
condition of Re(ε) = (td + tm)

−1
Re (εdtd + εmtm) = 0

is shown in Fig. 5(b). As expected, the DP is found at
(kx, kz) = (0, 1.5922k0), with k0 = 2π/λ. Considering a
plane TM-polarized wave coming from Region 1, as shown
in Fig. 5(a), at incidence angle θ, the transfer matrix method
[32] makes it possible to calculate the transmissivity for the
incident wave passing into Region 2.

A. Transmission near the Dirac point in periodic lattices

First, we consider the most interesting case when the
incident plane wave has the z-component of the wave vector,
kzi = k0 sin θ

√
ε1, that exactly corresponds to the DP. Note

that the DP is located at kz = 1.5922k0 > k0, therefore, to

match kzi to the DP, the permittivity in Region 1, ε1, must
be larger than that of the dielectric component of the lattice,
i.e., ε1 > εd = 2.25. Thus, we choose silicon as the material
in Region 1, with the above-mentioned large values of the
permittivity, ε1 = 12.25. By tuning the angle of incidence,
one can readily meet the condition of sin θ

√
ε1 = 1.5922,

and then study the transmission through the lattice at the DP.
Further varying the incidence angle, one can also study the
transmission for kzi falling into allowed bands or forbidden
bandgaps. The results of this analysis are summarized in
Figs. 6.

Figure 6(a) shows the transmissivity at the DP which is
clearly inversely proportional to the length of the lattice, L
(the slope of the curve at large L in the log-log plot is −1 ).
This finding is consistent with the conclusion of Ref. [33]. For
comparison, when the incident wave number kzi is tuned to the
bandgaps, the transmissivity is, quite naturally exponentially
suppressed, see examples in Fig. 6(b) for the first finite gap,
which separates the second and third band, and Fig. 6(c) for
the semi-infinite gap. Finally, if the incidence angle is adjusted
to put kzi into the allowed bands, a periodic dependence of
the transmissivity on L is observed in Figs. 6(c,d). This is a
manifestation of the excitation of an associated Bloch-Floquet
modes, that can be written as 2f(x) cos(kxx) exp (ikziz),
where function f(x) is the factor in the Bloch function whose
period is identical to the lattice period. From this expression,
one can easily see that a larger detuning of kzi from the DP
leads to a higher oscillation frequency of the transmissivity.

B. Effect of disorder on the transmissivity at the Dirac point

As shown above, the transmissivity through the regular
lattice at the DP scales as 1/L. A natural question is whether
structural disorder destroys this feature. To address this ques-
tion, we introduce structural disorder into the lattice possessing
a DP as it was done in Section III. Moreover, the transmis-
sivity is calculated as the ensemble-average over 500 disorder
realizations. The results are summarized in Fig. 7.

A profound property that Figure 7(a) shows is that, the
transmissivity at the DP can slightly increase with the growth
of the disorder strength, as long as it remains weak enough.
Physically, this is linked to the fact that Anderson modes
are always excited in 1D lattices, but their localization size
exceeds the finite width of the weakly disordered lattice, the
tails of these modes reaching the edges of the finite lattice thus
enhancing the transmission. The enhancement in the presence
of disorder is even more profound for the transmission in the
forbidden bandgaps, which is similar to the scenario observed
before [34]. Another striking fact that Fig. 7(a) shows is that,
the slopes of the transmission curve in the log-log plot are
very well approximated by T ∼ 1/L at large L region. This
means that the dependence of transmission on 1/L found in
the ”clear” DP-bearing lattices persists when the lattices are
perturbed.

Figure 7(b) further presents results when the DP-bearing lat-
tice is perturbed by strong disorders. We see a monotonous de-
crease of the transmissivity with a growing disorder strength.
This is expected, as when the disorder strength grows, the
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Fig. 6. The dependence of transmissivity on the propagation distance,
calculated for different values of the z-component of the incident wave vector,
kzi = k0 sin θ

√
µ1ε1. (a) kzi = 1.5922k0 at the DP. (b) kzi = 0.3k0 in

the first finite forbidden gap. (c) kzi = 2k0 in the semi-infinite gap. In (d)
and (e) kzi falls into allowed bands.

corresponding Anderson modes get localized on a scale small-
er than the length of the lattice, which causes. Remarkably,
though, at sufficiently large L, the 1/L dependence of the
transmissivity remains almost unaltered, although the overall
transmission is strongly attenuated by strong disorder, such
as that at the 80% level. The survival of the 1/L scaling
law of the transmissivity under the strong disorder is another
important manifestation of the robustness of DPs.

V. CONCLUSION

We have studied the tunability and robustness of the pho-
tonic DPs (Dirac points) in plasmonic nanostructures. The
tunability of the DPs was demonstrated in graphene-based
photonic superlattices by tuning the graphene permittivity via
the optical Kerr effect, electric gating, or chemical doping. The
robustness of the DPs was demonstrated in plasmonic lattices
by showing that even very high levels of disorder are unable to
cause the Anderson localization of modes near the DP, and by
showing that the 1/L dependence of the transmissivity on size
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Fig. 7. The effect of the structural disorder on the transmissivity at the Dirac
point. The results are obtained as the ensemble-average over 500 disorder
realizations. The percentage shows the disorder strengths, low in (a), and
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L of the finite lattice remains unchanged near the Dirac point
under strong disorder. Our findings suggest a highly effective
and robust approach for the control of photonic beams at the
nanoscale, and reveal effects of the structural disorder on the
functionality of certain optical nanodevices.

The approach developed in this paper may be applied to
other relevant settings. One of them is the parity-time (PT )
symmetry at subwavelength scales. Why the PT symmetry
is usually introduced in the paraxial approximation, assuming
balance between symmetrically placed gain and loss elements
[35], this property for nano-optical settings, based on the use
of the full system of the Maxwell’s equations, was recently
put forward in Ref. [36]. In particular, the PT symmetry
may be much more robust (suffering breakup at much higher
levels of the gain and loss, or remaining unbreakable) in
that setting, in comparison with its paraxial counterpart. In
the present context, the PT symmetry can be introduced
into the graphene-metal-dielectric superstructure by imparting
equal amounts of gain and loss to alternating dielectric and
metallic layers. The interplay of the DP-type dispersion and
PT symmetry in such a system will be considered elsewhere.

APPENDIX A
BRIEF OUTLINE OF THE TRANSFER MATRIX METHOD

We use the transfer matrix method (TMM) to obtain the
photonic band structure and transmissivity of the structures.
To this end, the electromagnetic field at two positions x and
x+∆x in the same layer is related via the following transfer
matrix [22], [32]:

Mj(∆x, ω) =

(
cos(kj△x) i

qj sin(kj△x)

iqj sin(kj△x) cos(kj△x)

)
, (5)

where kj =
√

(ω/c)2εjµj − k2z , j = g, d,m. Here, g, d, and
m stand for graphene, silicon, and silver, respectively. For a
TM-polarized wave, qj =

[
µj/εj(1− sin2 θ/µjεj)

]1/2
. θ is

the angle of incidence of light(Fig. 5(a)).

A. Derivation of the photonic band structure

According to the Bloch theorem, if one considers a periodic
photonic structure with period, Λ, the electric and magnetic
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components of an electromagnetic mode in layers N and N−
1, with Bloch wavevector, kx, are related to each other through,(

HN

EN

)
= eikxΛ

(
HN−1

EN−1

)
. (6)

On the other hand, the TMM leads to:(
HN

EN

)
= MgMdMm

(
HN−1

EN−1

)
=

(
m11 m12

m21 m22

)(
HN−1

EN−1

)
. (7)

Combining Eqs. (6) and (7) yields:(
m11 m12

m21 m22

)(
HN−1

EN−1

)
= eikxΛ

(
HN−1

EN−1

)
, (8)

so that the factor eikxΛ is the eigenvalue of the transfer matrix
M = MgMdMm. This conclusion can be expressed as

eikxΛ =
1

2
(m11 +m22)±

[
1

4
(m11 +m22)

2 − 1

] 1
2

. (9)

From Eq. (9) one can easily derive the dispersion relation,
kx = kx(kz, ω),

kx(kz, ω) =
1

Λ
arccos

[
1

2
(m11 +m22)

]
. (10)

By substituting the elements of the matrix M , this relation
yields,

cos(kxΛ) = cos(kgtg) cos(kdtd) cos(kmtm)

− 1

2

ε2gk
2
d + ε2dk

2
g

εdεgkgkd
sin(kgtg) sin(kdtd) cos(kmtm)

− 1

2

ε2gk
2
m + ε2mk2g

εmεgkgkm
sin(kgtg) cos(kdtd) sin(kmtm)

− 1

2

ε2mk2d + ε2dk
2
m

εdεmkdkg
cos(kgtg) sin(kdtd) sin(kmtm).

(11)

Finally, Eq. (11) can be simplified to

1

σ
cos(kxΛ) = 1−

ϱ2gd + ϱ2dg
2ϱgdϱdg

tanκg tanκd

− ϱ2dm + ϱ2md

2ϱdmϱmd
tanκd tanκm −

ϱ2mg + ϱ2gm
2ϱmgϱgm

tanκm tanκg,

(12)

where σ = cosκg cosκd cosκm. We have also defined ϱij =
κiτj , κi = kiti, and τi = εiti, where i, j = g, d,m.

For a binary periodic nanostructure composed of alternating
layers of metallic and dielectric materials stacked along the x-
axis, as depicted in Fig 5(a), photonic bands of the structure
are obtained by using the method just described and are given
by the solutions of the following transcendental equation:

cos(kxΛ) =cos(kdtd) cos(kmtm)

− 1

2

(
εdkm
εmkd

+
εmkd
εdkm

)
sin(kdtd) sin(kmtm).

(13)

B. Derivation of the formula for lattice transmissivity

For further convenience, we define the basic transfer matrix
between two positions x and x+∆x as,

M ′
j(∆x, ω) = Mj(−∆x, ω), (14)

where Mj is defined in Eq.(5).
According to the transfer matrix formalism, for a PC

consisting of N layers the matrix associated to the lattice is
given by the product of the respective transfer matrices for the
individual layers. Thus, we have:(

H0

E0

)
=

N∏
j=1

M ′
j

(
HN

EN

)
=

(
m′

11 m′
12

m′
21 m′

22

)(
HN

EN

)
. (15)

Let I, R, and T denote the amplitudes (possibly com-
plex) of the magnetic vectors of the incident, reflected, and
transmitted waves, respectively. We then define the reflection
coefficient as r = R

I , and the transmission coefficient as
t = T

I .
The boundary conditions demand that the tangential compo-

nents of the fields E and H are continuous across each of the
two boundaries of the layered medium. In conjunction with
the relation

H =

√
ε

µ
E,

one can easily show that for TM waves the following relations
holds:(

I +R
pi(I −R)

)
=

(
m′

11 m′
12

m′
21 m′

22

)(
T
plT

)
. (16)

where pi = pl =
√

1
ε1

cos θ. From this relation we finally
obtain a matrix equation that relates the transmission and
reflection coefficients:(

1 + r
pi(1− r)

)
=

(
m′

11 m′
12

m′
21 m′

22

)(
1
pl

)
t, (17)

From this equation we can derive the formula for the
transmission coefficient,

t =
2pi

(m′
11 +m′

12pl)pi + (m′
21 +m′

22pl)
. (18)

In terms of t, the transmissivity of the lattice is given by:

T =
pl
pi
|t|2. (19)

APPENDIX B
PHYSICAL MODELS FOR THE ELECTRIC PERMITTIVITY OF

METAL AND GRAPHENE

For the metallic layers of our photonic superlattice we
use the Drude model for the complex, frequency-dependent
electric permittivity of the metal:

εm = 1−
ω2
p

ω (ω + iν)
, (20)

where ωp and ν are the plasma and damping frequencies,
respectively. In the paper, the metallic layers are assumed
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to be made of silver, with ωp = 13.7× 1015 rad s−1 and
ν = 2.7× 1013 rad s−1 [37]. For graphene, we use the Kubo’s
formula to model the surface conductivity, σs, including the
contributions of both the interband and intraband transitions
[38],

σs(ω, µc, τ, T ) = − ie2(ω + iτ−1)

π~2

{∫ +∞

−∞

∂f(ϵ)

∂ϵ

|ϵ|dϵ
(ω + iτ−1)2

−
∫ +∞

0

[
∂f(−ϵ)

∂ϵ
− ∂f(ϵ)

∂ϵ

]
dϵ

(ω + iτ−1)2 − 4(ϵ/~)2

}
.

(21)

Here, f(ϵ) = 1/{1 + exp [(ϵ− µc)/(kBT )]} is the Fermi-
Dirac distribution, with kB being the Boltzmann constant,
ϵ the energy, µc the chemical potential, T the temperature,
e the electron charge, ~ the reduced Planck’s constant, and
τ the momentum relaxation time (inverse of the electron-
phonon scattering rate). A carrier density as large as n ≈
2× 1014 cm−2 has been achieved experimentally with an
ionic liquid gating [39], which corresponds to a Fermi level
µc = 1.65 eV (µc = ~VF

√
πn, see [40]). We also note that

n ≈ 4× 1014 cm−2 has been realized with an electrolytic gate
[41], which means µc = 2.33 eV. For such gating schemes,
the typical scattering time is of the order of 100 fs [42]. We
used in Eq. (21) the experimentally measured value, τ = 90 fs
[42].

The first term in Eq. (21) corresponds to intraband electron-
photon scattering processes, and can be evaluated to

σintra = i
e2kBT

π~2(ω + iτ−1)

[
µc

kBT
+ 2 ln

(
e
− µc
kBT + 1

)]
,

(22)

whereas the second term corresponds to direct interband
electron transitions and, for ~ω, |µc| ≫ kBT , it can be
approximated to:

σinter = i
e2

4π~
ln

[
2|µc| − ~(ω + iτ−1)

2|µc|+ ~(ω + iτ−1)

]
. (23)

APPENDIX C
THE LINEAR AND NONLINEAR PERMITTIVITY OF

GRAPHENE

For the sake of convenience in numerical simulations,
graphene layers have been approximated by finite-thickness
layers with the effective dielectric constant given by [43], [44]:

εg,tot = 1 +
iσg,totη0
k0tg

= 1 +
iη0
k0tg

(σs + σ3|E∥|2)

= εg + χ(3)
g |E∥|2, (24)

where σg is the total conductivity of graphene layer, including
both the linear and nonlinear contributions, namely, σg =
σs + σ3|E∥|2. η0 is the vacuum impedance (η0 =

√
µ0/ϵ0 ≈

377 Ω), tg is the thickness of graphene (tg = 0.5 nm used
in our simulations), E∥ is the in-plane component of electric
field, and k0 = 2π/λ is the wavenumber in vacuum of light
with wavelength, λ. The nonlinear contribution to the surface

conductivity of the graphene is given by, σ3|E∥|2, where σ3 is
the nonlinear conductivity coefficient, expressed as [30], [45]:

σ3 = −i
3

32

e4v2F
π~2µcω3

. (25)

In this equation, vF ≈ c/300 is the Fermi velocity. E-
quivalently, one can define a third-order effective nonlinear
susceptibility, χ

(3)
g =

iσ3η0
k0tg

. If we assume µc = 1.5 eV
and λ = 4.2 µm, as we used in our calculations, one finds
χ
(3)
g = 4.09× 10−17 m2 V−2.
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