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The surface code is one of the most promising candidates for combating errors in large scale fault-tolerant
quantum computation. A fault-tolerant decoder is a vital part of the error correction process—it is the algorithm
which computes the operations needed to correct or compensate for the errors according to the measured
syndrome, even when the measurement itself is error prone. Previously decoders based on minimum-weight
perfect matching have been studied. However, these are not immediately generalizable from qubit to qudit codes.
In this work, we develop a fault-tolerant decoder for the surface code, capable of efficient operation for qubits
and qudits of any dimension, generalizing the decoder first introduced by Bravyi and Haah [Phys. Rev. Lett. 111,
200501 (2013)]. We study its performance when both the physical qudits and the syndromes measurements are
subject to generalized uncorrelated bit-flip noise (and the higher-dimensional equivalent). We show that, with
appropriate enhancements to the decoder and a high enough qudit dimension, a threshold at an error rate of more

than 8% can be achieved.
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I. OVERVIEW

Topological quantum codes built from qubits [two-
dimensional (2D) quantum systems] play a central role in
architectures for fault-tolerant quantum computing at the
forefront of current research [1-4]. The surface code [5] and
the related toric code [6,7] are prominent examples of such
codes. Compared with other quantum error correcting codes,
they posses the key experimental benefit of requiring only
local interactions and yet, under realistic noise models, they
have been shown to achieve the highest reported fault-tolerant
thresholds [8,9].

Recent developments have shown that employing d-
dimensional quantum systems, or qudits, as the building
blocks for fault-tolerant schemes may offer some important
advantages. For example, an integral part of many fault-
tolerant schemes is the distillation of magic states [10]—a
procedure necessary to achieve universal computation—where
generalization to higher dimensions has resulted in improved
distillation thresholds and lower overheads in the number of
qudit magic states [11-13]. Moreover, threshold investigations
of the qudit toric code with noise-free syndrome measurements
have shown that, for a standard independent noise model,
the error correction threshold increases significantly with
increasing qudit dimension [14-16], although we caution that
it is difficult to fairly compare noise rates between systems
of different dimensions. Although it is more challenging to
realize qudit quantum systems experimentally, recent work
has demonstrated the ability to coherently control and perform
operations in single 16-dimensional atomic systems with
high fidelity [17,18], with the implementation of high-fidelity
multiqudit interactions still to be achieved.

A surface code is a stabilizer code with local stabilizer
generators. Qudits are associated with the edges of a 2D
square lattice. In order to store the encoded information for
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an arbitrary length of time, active error detection must be
performed periodically in order to prevent the errors from
accumulating beyond the capability of the code to correct them
(see Fig. 1). In every round of error correction all the stabilizer
generators are measured to obtain the syndrome. The syndrome
is then processed by the decoder—the classical algorithm that
outputs a correction operator. In a realistic environment both
the physical systems and the stabilizer measurements are prone
to errors, and hence the decoder must be able to take both of
these types of errors into account [7,19].

Decoders are often developed for the simpler case where
measurement error is neglected. However, there is a well-
established and elegant method for generalizing measurement-
noise-free decoders for topological codes to the fully fault-
tolerant setting [7]. The noisy syndrome measurements are
repeated, extending the two-dimensional surface representing
the code to a three-dimensional (3D) data structure, where
time represents an extra dimension. Remarkably, the change
from two to three dimensions allows most decoder algorithms
developed for noise-free measurements to be applied largely
unchanged in this more general setting.

The most widely used decoding algorithm for topological
codes remains the minimum-weight perfect matching algo-
rithm (MWPMA). However, this algorithm has a number of
disadvantages. For a distance L surface code, with error-
free measurements, the run time for a basic implementation
of the MWPMA scales with O(L®), and for error-prone
measurements this run time increases to O(L?). A more refined
fault-tolerant implementation for the qubit surface code scales
with O(L?) [20], and under certain assumptions a run time
complexity that is independent of L can be attained [21].
Nevertheless, the main disadvantage of the MWPMA is that
it is not suitable for qudit surface codes with d > 2. For these
reasons, the development of alternative decoding algorithms
is currently a very active research area [14,15,22-27].

In this work, we introduce a fault-tolerant decoding al-
gorithm which overcomes both of the disadvantages of the
MWPMA. The algorithm, which extends the hard-decision
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FIG. 1. (Color online) An illustrative picture of the data structure
obtained in order to perform fault-tolerant error correction. Each layer
represents a single time step where all the stabilizers are measured
(only plaquettes are shown here for clarity—depicted by the meter
with multiple outcomes) to obtain the syndrome. The yellow meters
(dark gray) represent locations where an error has occurred in the
measurement procedure itself. After a specified number of time steps
a full 3D history of the syndromes will have been be collected. If
operating below threshold the decoder then uses this data to infer a
correction operator that returns the code to its original state with high
probability.

renormalization group (HDRG) decoder proposed by Bravyi
and Haah [28], has a fast typical run time of O(L?) and can be
applied to qudit surface codes of any dimension d.

For a given noise model, the error threshold represents
an upper bound on the noise level for which increasing the
code distance increases the probability of successful error
correction. We denote the threshold for a given qudit dimension
by pfl‘f A widely studied qubit error model (described below
in more detail) is the simple uncorrelated noise model where
X and Z Pauli errors on individual code qubits and bit-flip
errors on the syndrome measurement outcomes each occur
independently with probability p. For this noise model, the
optimal threshold for the qubit toric code is known to be
3.3% [29] while the threshold obtained with the MWPMA
decoder is 2.9% [9,19,30].

The HDRG decoder we study here attains a threshold of
pg ) = 2.2% for the qubit code and may also be used with qudit
surface codes of any dimension. For the qudit generalization of
the uncorrelated noise model (introduced below), the decoder
achieves a threshold value which increases monotonically with
the qudit dimension d, until it reaches a saturated value of
around 4.2%.

We show that this saturating behavior is due to a syn-
drome percolation effect which upper bounds the achievable
threshold. To overcome the percolation threshold we have
constructed a procedure executed before running the HDRG,
which we call the initialization step [15]. The algorithm im-
plemented in this “pre-decoding” step disrupts the syndrome
percolation and boosts the threshold to 8.3% for sufficiently
high qudit dimension. We call the HDRG decoder when
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augmented with the initialization step the enhanced-HDRG
decoder.

The structure of this paper is as follows. We start in
Sec. II by reviewing the properties of the qudit surface
code and fixing our notation. In Sec. III we give a formal
description of the noise model investigated and describe how
our numerical simulations were performed. In Sec. IV we
present our different variations of the HDRG decoder for the
fault-tolerant setting, along with the thresholds we obtain. We
conclude in Sec. V.

II. THE QUDIT SURFACE CODE

The qudit surface code is the natural higher-dimensional
generalization of the qubit code. This generalization is already
present in Kitaev’s seminal paper [6] and has been written
about extensively elsewhere [7,19,31-33]. For completeness,
however, we shall provide an overview of qudit stabilizer codes
and the qudit surface code.

We express the computational basis for a single qudit as the
set of states |o) where « € Z,, and where the d-element cyclic
group Zg4 = {0, ...,d — 1} can be conveniently identified with
addition over integers modulo d. The conventional single qubit
Pauli operators have natural generalizations:

X=Yljeng. z=Y o)yl O

jEZd jEZd

where w = ¢?"//? and the addition & is taken to be modulo d.
Notice that these unitary operators are no longer Hermitian
when d > 2, but they posses orthogonal eigenspaces with
eigenvalues of the form !, for some j. Hence, we can
still interpret them as physical observables with measurement
outputs labeled by their complex eigenvalues. As a shorthand
we will often abbreviate an outcome w’/ simply by its
exponent j.

The qudit Pauli operators obey the commutation relation
XJZ*¥ = w=7kZ*¥ X for arbitrary j,k € Z,. They generate the
single qudit Pauli group P; = (X,Z) up to a global phase.
The n-qudit Pauli group P} is the n-fold tensor product of the
single qudit Pauli group P$". The code space of a stabilizer
code is defined as the “+1” eigenspace of an Abelian subgroup
S € P, such that w/1 ¢ S for nonzero j. The elements of S
are called the stabilizers of the code. A set of generators of S is
identified as the syndrome measurement operators for the code.

In a surface code qudits are identified with the edges of an
L x L lattice with boundaries as shown in Fig. 2. The surface
code is a stabilizer code with two types of stabilizer generators
S = (A, B),) defined on the lattice as

A=X,®X,'®X,'®X, YeeV, )

B,=72,®2.R2,'®Z;' VeecP, (3)

where e € V are the edges surrounding a vertex V of the lattice
and e € P are the edges surrounding a plaquette P. We refer to
Ay as the vertex operators, and to B, as the plaguette operators.
An example of each is shown in Figs. 2(a) and 2(b). Note that
the two boundary different types (“rough” and “smooth’) of the
lattice lead to deformations of plaquette and vertex operators
at the boundary, respectively.
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FIG. 2. (Color online) An example of a distance 5 surface code.
Qudits are shown as black dots, arranged on the edges of a lattice
with two types of boundary: rough and smooth. For clarity, when
an arbitrary X/ or Z* Pauli operator acts on a physical qudit, we
only include the exponents j and k on the edges of the figure. We
use red for X/ errors and vertex operators, and blue for Z* errors or
plaquette operators. (a) and (b) An example of a single plaquette and
vertex operator, respectively. (c) An example of a deformed rough
edge plaquette operator (three-body operator). Note that the vertex
operators are deformed at smooth edges. (d) and (e) An example of a
pair of anticommuting logical operators.

The surface code supports one logical qudit. The logical
operators for the qudit are defined by stringlike X (or Z)
operators. The logical X operators connect the two opposing
smooth edges, whereas the logical Z operators connect the
two rough edges. An example of each is shown in Figs. 2(d)
and 2(e). These operators, together with the stabilizer group,
generate the group of Pauli operators which map the code
space to itself. We denote this group of logical operators L.
We denote the set of logical operators which do not leave the
code space invariant as £ — S. The distance of a topological
code corresponds to the length of shortest possible logical
operator, i.e., the distance is L.

Errors that occur on the qudits are detected by measuring
the neighboring stabilizers, with X-type and Z-type errors
detected independently by the plaquette and the vertex oper-
ators, respectively. This allows us to restrict the discussion to
X-type errors since results for Z-type errors will be analogous.
A single X-type error is detected by two adjacent plaquettes,
except when it occurs on a smooth boundary [see Fig. 3(a)].
In general, a string of X-type errors is detected by plaquettes
contiguously along the path of the string, as shown by the
example in Fig. 3(b). This is in contrast to the qubit case
(d = 2) where only the end points of the string give rise to
nontrivial plaquette measurements, a situation that can also
arise for general d when the errors along the string possess
identical errors. This observation suggests that in higher d the
syndrome reveals more information about the path of the errors
on the lattice. Indeed it is this information that, if exploited
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FIG. 3. (Color online) Examples of X-type errors and the syn-
drome transportation rule. (a) A single boundary error is only detected
by one plaquette. (b) An arbitrary string of three errors and the
corresponding intermediate plaquette measurement outcomes. (c) An
example of how to transport the plaquette with outcome a in any
of the indicated directions by applying the relevant X-type operator
shown in green.

correctly by the decoder, can lead to improved error correction
performance, as shown by their higher threshold values, as d
increases.

We also introduce the concept of syndrome transportation:
a syndrome can be transported in any direction by applying the
appropriate operator as illustrated by the example in Fig. 3(c).
Moreover, by transporting one syndrome to the location of a
second, they are fused into a single syndrome such that their
charges are added (modulo d). These concepts will be useful
in Sec. IV when describing our decoder.

Generally speaking, the aim of the decoder is to use the
information given by the syndrome to return a correction
operator that restores the code to its original state. More
formally, let us denote an arbitrary configuration of X-
type errors on the 2D surface code by the set e, and the
corresponding plaquette measurement outcomes by the set
s = {sx,y}, wheres, , € Z, is the outcome of the measurement
and the subscripts x and y are the coordinates of the plaquettes,
sothat | <x < Land 1 <y < (L —1). We will often refer
to the outcome sy, as the charge of the measurement. Then
we say that a decoder D takes in the syndrome s and returns a
correction configuration f. We denote this map by D(s) — f.
The decoder succeeds if e ® f € S and failsife®@f € £ — S.

In the next section we will give a formal description of
the noise model and describe the method for the fault-tolerant
simulation.

III. THE NOISE MODEL AND SIMULATION METHODS

In the literature it is common to test fault-tolerant decoders
with a simple error model described by a single parameter p.
For ease of comparison, we shall follow this convention and
use the same error model here. Although this model is not
likely to be particularly close to the noise which occurs in
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physical systems, it has the advantage that it allows X- and Z-
type errors and their correction to be modeled independently.
It is thus the standard noise model used to benchmark new
decoders.

Between each round of syndrome measurements we assume
that each physical qudit is independently subject to an error
channel which applies error operator X* such that 1 < k <
(d — 1) with equal probability p/(d — 1), followed by an error
channel which applies error operator Z* such that 1 < k <
(d — 1) with equal probability p/(d — 1). We then assume
that the outcome of each syndrome measurement j undergoes
an error whichmaps jto j @ kfor 1 < k < (d — 1) withequal
probability p/(d — 1). Since X-type errors, Z-type errors, and
measurement errors are uncorrelated this is often called the
uncorrelated noise model.

We estimate the threshold via a Monte Carlo simulation.
We shall study a distance L code for a variety of values of L.
This corresponds to an L x L surface code grid. For simplicity,
we shall let the number of time steps in our simulation also
equal L.

The simulation proceeds by first generating a 3D data
structure of L time steps of the accumulated history of
the physical qudit errors and the measurement errors. The
corresponding syndrome measurement outcomes, taking into
account both of these error sources, are then computed.

In order to achieve the close analogy for the relationship
between errors and syndromes in the 2D measurement-error-
free and 3D general case, Dennis et al. [7] showed that it
is most convenient to represent the history of the syndrome
outcomes as a 3D grid of syndrome changes.

Let us denote s, as the set of syndrome outcomes at the
tth time step. The set of syndrome changes s, at time step ¢
is then defined as the elementwise difference, modulo d, of
s; and s,_y, i.e., s, = s, © 5,1, where © denotes subtraction
modulo d and we assume that s} = s;. Each set of syndrome
changes corresponds to a 2D grid of integers, and we combine
these grids into a 3D cubic structure with # = 1 at the bottom
and r = L at the top. We call this grid the syndrome changes
history and denote it S'. It is convenient to introduce a Cartesian
coordinate system to refer to the elements of §', i.e., sy,
corresponds to the syndrome change at grid point (x,y) at
time step ?.

The input to the decoder is the 3D syndrome changes
history S’ = {51,852 ©51,...,5L © s._1}. The decoder takes
the syndrome changes history and returns a 3D correction
operator F = {f| f,,....f.}. To convert this to a physical
correction operator that can be applied in two dimensions
we ignore timelike edges and combine the two-dimensional
layers corresponding to each time step, to form a 2D correction
operator f that corrects the accumulated errors at the last time
step of the surface code.

In other words, the resultant correction operator, f, is the
sum (modulo d) of the correction at each qudit location at each
time step, i.e., f=af. We say the decoder has succeeded
when the product of the accumulated errors on the qudits and
the returned correction operator is within the stabilizer of the
code.

If we are operating below threshold then following the 3D
decoding we expect almost all of the errors to have been
corrected. There is a finite probability, however, that some
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small number of errors will remain after the fault-tolerant
decoding has been performed. In a realistic setting the error
correction would proceed in this way, eliminating all but a
small number of errors in each block of L time steps. At the
point when the state is read out, these small errors can be
accounted for by taking a majority vote on the measurements
of the logical operators.

For the purposes of the simulation, however, we need to
determine whether the fault-tolerant decoder has introduced a
logical error. The conventional way to overcome this problem
is to perform an additional round of error correction in two
dimensions with noise-free syndrome measurements, after
which we can be certain that all the errors are corrected and a
parity check will reveal whether any logical errors have been
introduced.

IV. HDRG DECODER WITH NOISY SYNDROMES

The HDRG decoder has a simple motivation behind its
construction: when the error rate is sufficiently low we expect
any errors arising on the surface code lattice to be sparse.
This in turn means that syndromes are likely to occur in
small, well-separated clusters. The HDRG decoder aims to
identify clusters of syndromes generated by such local errors
and correct them locally within each cluster. If these clusters
have been correctly identified, and the clusters are each small
enough that they do not span the lattice, then this strategy
results in the decoder computing a correction operator that will
correct all errors with high probability. In this section we shall
give a formal definition of these concepts in the fault-tolerant
setting.

A. Decoder construction

The main concept required for the description of the HDRG
decoder is that of a metric—a geometric distance function
between any pair of elements of a set. In our case, we wish to
associate a metric between pairs of syndromes in the set S'.
The metric we use is the Manhattan distance, denoted here by
8, which maps two syndromes as follows:

8ty y) = I =t + X —x|+ 1y =yl @)

See Fig. 4 for an illustration for how the region defined by this
metric grows.

We say that two syndromes are §-connected if the distance
between them is less than or equal to §. For a given metric
value §, we define a cluster C to be the set nontrivial syndromes

t41 t42

FIG. 4. (Color online) An illustration of the Manhattan distance
metric. The figure shows five time steps from the syndrome changes
history. The green (light gray) plaquettes are 1-connected to the
central red plaquette (central plaquette at time step 7, medium gray).
Blue (dark gray) and green plaquettes are 2-connected to the central
plaquette.
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such that every syndrome within the cluster is §-connected to
at least one other syndrome within that cluster. It is easy to
see that for a fixed § the syndrome changes history S’ can
always be partitioned into a set of disjoint clusters such that
S"'=C,UCU-.-UC(,, for some integer n.

Associated to every cluster is a total charge ®¢ s; ,,, where
the summation is performed modulo 4. If this charge is zero,
we call the cluster neutral. Such a cluster can be annihilated
by fusing all of the syndromes contained in the cluster locally,
meaning that the Pauli correction operator will have support
only within the cluster. If the charge is nonzero but the
cluster is -connected to any of the three smooth boundaries
(two spatial and one time) then we call the cluster boundary
neutral. Clusters of this type can be annihilated by fusing the
syndromes locally and then connecting the remaining charge
to the boundary it overlaps.

The HDRG decoder involves multiple levels of decoding
to fuse together all the elements in S” and return the resultant
correction operator. Every decoding level ¢ is associated with
a distance determining the connectivity of the disjoint clusters
at that level. For the metric we have defined we will use § = 2¢
starting with £ = 0. This means that the cluster connectivity
increases exponentially as we increase the decoding levels. At
each level, only the neutral (and boundary-neutral) clusters
are fused, leaving any charged clusters to be combined to form
neutral clusters at subsequent levels.

The decoding procedure can now be summarized as follows,
starting with £ = 0.

(1) Clustering: Identify all the disjoint §-connected clusters
at level £.

(2) Neutral annihilation: Fuse each neutral and boundary-
neutral cluster locally and return a correction operator.

(3) Renormalize: If there are clusters that are not annihi-
lated, then increment £ by 1 and return to step 1.

The decoder stops when there are no nontrivial syndromes
remaining. The crucial feature of this decoder is that part of the
total correction operator is fixed after each level of decoding.
In classical coding theory, decoding algorithms exhibiting
such a feature are referred to as hard-decision decoders. An
explicit example for a small lattice simulation is illustrated in
Appendix A 1.

B. The run time of the HDRG decoder

The dominant parts of our decoder algorithm that contribute
to the run time complexity are the identification of the
é-connected cluster of syndromes (clustering) and the deter-
mination of the Pauli operator that eliminates the syndrome
(fusion). We shall look at each of these processes in turn and
argue that for lower error rates we expect a run time scaling
of O(L?) and even in the worst case this scaling will be no
greater than O(L9).

Let us first consider the limit in which error rates are low
and the errors are extremely sparse. In the clustering part
of the algorithm at a given level ¢, the algorithm searches a
constant number of plaquettes O(23) around every nontrivial
syndrome.

In the case of extremely sparse syndromes the total number
of syndromes is O(L?) and the decoder will only need to run
at the first level ¢ = 1. Thus, in this limit, the dependence of
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the run time complexity on L for this part of the algorithm will
be O(L?).

In the worst case scenario we consider the most pessimistic
estimates for the clustering step of the algorithm. In this
case the decoder will run the maximum number of levels
£ = O(log, L). There will be o(L?) syndromes and the
dependence of the run time complexity on L for this part
of the algorithm will thus be

O(log, L)
Z 23ZL3 ~ 23 O(log, L)L3 ~ O(LG), (5)
=0

to leading order.

For the fusion part of the algorithm, the syndromes can all
be moved to a single point in the box enclosing the cluster. This
will take a time that scales with the size of the enclosing box,
and the maximum size of the box scales with L3. Note that,
since the time complexity of modular arithmetic is independent
of modulus d, this scaling is independent of d.

C. Thresholds estimation and percolation limitation

To estimate the threshold we simulate the entire process
of generating L time steps of errors and noisy syndromes,
followed by decoding the syndromes. The simulation was done
for N = 10* runs, and repeated for a range of lattice sizes L
and error rates p.

We determine the threshold pf,f ) using a rescaling
method [19,34]. Selecting data close to the point where the
curves of different L cross (for fixed qudit dimension) we
perform a fit to a function of the form

Pgyec(x) = A+ Bx + sz + DL?I/M, (6)

where x = (p — pw)L'Y, and the final term in the sum
represents a finite-size correction to the fitting.

The success probability of the decoder for the qubit case
is shown in Fig. 5, where we find a threshold value of
pt(ﬁ) = 0.0215 £+ 0.0006. This allows us to directly compare
our decoder with other fault-tolerant qubit decoders; for
example, the soft-decision renormalization-group decoder by

Lattice size
100 ¢ 16
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FIG. 5. (Color online) An example for the collected simulation
data used to estimate the threshold for qubits. The inset figure shows
the fitting of the function Py,..(x) = A 4+ Bx + Cx> + DL~ "/* to the
rescaled data.

032309-5



FERN H. E. WATSON, HUSSAIN ANWAR, AND DAN E. BROWNE

9.0 A Initialization levels
I 0
8OF | vuvunn. 1 I

7.0

6.0 L————
5.0 -

4.0 -

Threshold (%)

3.0
2.0

1.0

T T T T S ST T [ T A ST Y T S ST NN N SO S S |
0.0 10 20 30 0

Dimension, d

FIRU R BT .
7919”

FIG. 6. (Color online) A summary of all qudit thresholds for
different numbers of rounds of the initialization step. We have chosen
the 1000th prime dimension (d = 7919) to represent the asymptotic
limit. Although for small qudit dimensions the initialization step
disrupts the syndrome too much and reduces the threshold, we see
that in the asymptotic limit there is a clear advantage to using this
technique.

@ _

Duclos-Cianci and Poulin achieves a threshold of py’ =

0.019 £ 0.004 [22].

Using the same technique of rescaling and fitting the
function in Eq. (6) we can determine the threshold pt(fl] ) for
further qudit dimensions. Although our HDRG decoder works
for arbitrary qudit dimension d we consider the first few prime
dimensions, and in order to determine the asymptotic behavior
we also consider one very high qudit dimension, d = 7919,
the 1000th prime number. The results are shown as the plot
labeled “Initialization levels 0 in Fig. 6. The plot shows that
the threshold achieved by the decoder increases monotonically
with increasing qudit dimension, but quickly saturates to a
maximum value of pgg]g) = 0.042 £ 0.09. Previous work
performed on the noiseless syndrome measurement version
of the HDRG in [15] suggests that this saturation is due to a
syndrome percolation effect.

In order to verify this hypothesis, we performed a sim-
ulation of the syndrome percolation threshold. This was
done by generating the qudit noise and noisy syndrome
measurements for each qudit dimension in the same way as for
the decoder simulation. However, once the syndrome changes
were calculated, we performed a check to determine whether
any 1-connected clusters in S’ percolated the lattice in the x or
y directions. The ¢ direction was not checked since we want
to determine whether the percolating cluster is able to support
a logical operator once it is collapsed to f, and any stringlike
operators in the ¢ direction are unphysical. This information
is summarized in the plot labeled “Initialization levels 0” in
Fig. 7. The saturated value for the percolation thresholds for
dimension 7919 is around 4.5%, agreeing with our prediction
that the HDRG decoder thresholds are upper-bounded by the
percolation threshold.

In the next section we show how to overcome this syndrome
percolation effect and achieve improved qudit thresholds using
an initialization step. This is an algorithm which is run before
the HDRG to disrupt the percolating clusters.
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FIG. 7. (Color online) A summary of percolation thresholds for
different numbers of rounds of the initialization step. The initializa-
tion step disrupts the percolation for low qudit dimensions, meaning
that in some cases a threshold cannot be identified.

D. Further enhancement

The initialization step is a subroutine that sweeps through
all of the syndromes S’ searching for neutral subclusters in
order to disrupt the percolating clusters. Unlike the HDRG
algorithm, the initialization step does not divide the observed
syndrome into disjoint clusters, but simply identifies and
eliminates neutral subclusters locally.

As with the decoder, the initialization step has “levels”
defined by a metric. However, subclusters are more than §-
connected plaquettes; they are 1-connected paths of plaquettes,
where the charge of the subcluster is counted along the entire
path. This is because of the fact illustrated in Fig. 3, that a

(a) (b)

FIG. 8. (Color online) An illustration of the first three initializa-
tion levels. (a) First initialization level. Orange plaquettes (light gray)
are 1-connected to the central red plaquette (central plaquette at time
step 7). (b) Second initialization level. Green plaquettes (medium
gray) are 2-connected to the central plaquette and paths between the
central plaquette and any green plaquette have a degeneracy of 2. (c)
Third initialization level. Blue plaquettes (dark gray) are 2-connected
to the central plaquette and paths between the central plaquette and
any blue plaquette have a degeneracy of 1.
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connected path of errors will result in a connected neutral path
of syndromes.

An important idea needed to understand the initialization
levels is that of degeneracy of paths. If there are 4 steps in
the x direction, v steps in the y direction, and %z steps in
the ¢ direction of the path then its degeneracy is given by

D=(h+v+z)! o
hlv!z!

The initialization levels are defined sequentially by distance
from the central syndrome and the degeneracy of the paths,
favoring those paths with equal distance but higher degeneracy
as more likely. In Fig. 8 we show the outer syndromes of the
first three initialization levels.

For a given syndrome s, . , we denote by Q = q1,q2, . .. ,qy
the set of syndromes with the same distance from s, . ,, and
whose paths connecting to s, ., have the same degeneracy.
Denote by p; a possible path connecting s; , , to ¢; and refer
to each path as a subcluster at the initialization level k.

The initialization step I of depth k consists of running
all the levels Z,,7,, . ..,Z; where the initialization procedure
Z; consists of the following steps, beginning with the first
nontrivial syndrome.

(1) Neutral subcluster: Search over all the paths p;. If a
neutral path (subcluster) is identified go to step 2. If all the
paths are searched and none of them are neutral, increment the
syndrome index by 1 and repeat step 1.

(2) Subcluster annihilation: Annihilate the neutral subclus-
ter by fusing the syndromes within the subcluster, i.e., along
the path.

We refer to the HDRG decoder when augmented with
initialization at a certain depth as the enhanced-HDRG. It
is clear that the initialization step is not efficient because the
number of paths to search over increases factorially as the
depth increases, but for small numbers of levels the number of
subclusters to search over is still not too high. For example, at
the first level of initialization, in the worst case there will
be six paths to check for each element in the bulk of S’
[corresponding to the six neighboring syndromes (see Fig. 8)].
In general, the initialization step has an overhead of C;L?
where C; is the number of paths for each syndrome for the ith
initialization level. Specifically, C; = 6,24,6, and 48, for the
first four initialization levels, respectively.

We simulated the enhanced-HDRG decoder in the same
way described in Sec. IV C. The results are summarized in
Fig. 6. We see that the asymptotic threshold achieved for four
levels of the initialization step is around 8.2%.

Although the improved thresholds for high d suggest that
we are successfully able to disrupt the syndrome percolation
using this technique, we still observe some saturation of the
thresholds. To test this, we performed syndrome percolation
simulations using the initialization step prior to the test for
percolation. The results are summarized in Fig. 7. We see
that the percolation threshold still upper-bounds the enhanced-
HDRG thresholds for the corresponding initialization
step.

Despite its success for very high qudit dimensions the
enhanced-HDRG is not useful for low qudit dimensions, where
the initialization step disrupts the syndromes in a way that
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results in a lower threshold. This can be understood as a result
of using a decoding strategy that is too local—the neutral
subclusters identified are in fact fragments of larger errors
and the syndromes do not contain enough information to
reconstruct them correctly. This suggests that the syndromes
for very high qudit dimensions contain enough information
to allow many rounds of initialization to keep improving the
threshold. For smaller qudit dimensions, however, we see there
is an optimal number of initialization rounds that should be
performed; for example, for d = 17 we found that the two
initialization levels are optimal.

V. DISCUSSION

We have presented a modified version of the HDRG decoder
that was first introduced by Bravyi and Haah in [28] and
studied its decoding performance for the surface code with
noisy syndrome measurements. The main difference in our
version is the use of a more refined metric which has led to an
improved threshold. We have chosen the Manhattan distance
metric &, whereas Bravyi and Haah considered the d,, metric.
In our investigations we discovered that the majority of the
syndromes are cleared at the first level of decoding. This means
that having a more refined metric matters more at £ = 0 than
it does at higher decoding levels. The § metric ensures that the
clusters at the first decoding level are as connected as possible
by allowing a single syndrome to be connected only to its six
nearest-neighbor plaquettes. This refinement of the metric is
the reason for our improved thresholds.

We found that, similarly to the measurement-noise-free set-
ting, for all but the smallest dimension d, syndrome percolation
places an upper bound on the decoder threshold for the HDRG
decoder. We have demonstrated that this can be overcome by
adopting an extra initialization step, which, by scanning for
locally neutral subclusters, breaks up the percolated lattice,
allowing the decoder to succeed above the percolation thresh-
old. This has a particularly stark effect for high dimensions,
increasing the threshold by almost a factor of 2.

The uncorrelated noise model chosen here was adopted
for ease of comparison with other decoders. However, an
uncorrelated noise model is unlikely to be encountered in
experiment. When the dimension is high, in an isotropic
depolarizing noise model, there will be a high correlation
between the presence of X-type and Z-type errors. A decoder
which used this information might achieve significantly higher
thresholds. Nevertheless, we expect the decoder presented
here to possess an error threshold for any noise model acting
independently and identically distributed (i.i.d.) with respect
to individual qudits and also non-i.i.d. noise models where
the correlation between qudit errors is limited. Testing these
possibilities is a pertinent open question.

A remarkable feature of this decoder is the independence of
its run time complexity with respect to qudit dimension. This is
in stark contrast to other known qudit decoders. For example,
the soft-decision renormalization-group decoder in the fault-
tolerant setting [22] has a straightforward implementation in
higher dimensions but comes with a cost of a polynomial
overhead in d which means its applicability is limited to low
dimensions.
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To make our comparisons with other decoding algorithms
more concrete in the qubit case, further research should focus
on a full gate-error simulation of the HDRG in the low-noise
regime. A comparison of success probability versus error rate
in this regime would allow one to compare overheads, the most
relevant figure of merit for judging the relative performance of
these decoders.

Given the excellent performance of the MWPMA, the most
important applications of the methods here will be for codes
where MWPMA is not a suitable decoder. The surface codes
studied in this paper are not the only quantum error correcting
codes for which HDRG type decoders could be beneficial. An
efficient decoding algorithm for the more exotic low density
parity check (LDPC) code, the four-dimensional hyperbolic
code, was introduced by Hastings with similar “greedy local
matching” principles as the HDRG decoder [35]. Other LDPC
codes exist for which efficient decoders have not yet been
identified [36,37]. The development of computationally light
fault-tolerant decoders for these codes is essential if they are to
be practical. HDRG decoders have demonstrated the efficiency
needed to support large scale fault-tolerant error correction
on the surface code and a flexibility which may make them
well suited to unlock the potential of future novel topological
codes.

Note added. Recently, the authors learned of a similar
investigation of the HDRG decoder with nonperfect syndrome
measurements (without the initialization step) [23].
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APPENDIX: EXPLICIT EXAMPLES

In this section we present two explicit examples outlining
all the steps of the 3D fault-tolerant simulation for a single
sample of errors. The reader may find the figures below more
transparent in explaining how the HDRG decoder works in
comparison to the description provided in Sec. IV. In both
examples we choose a lattice of distance 5 and qudit dimension
d=>5.

1. Example 1: HDRG decoding

In this example we present the simulation for the HDRG
decoder without any initialization step. We describe the steps
of the simulation in the captions of Figs. 9-14.

2. Example 2: Enhanced-HDRG decoding
with a depth 1 initialization step

In Figs. 15-19 we present the simulation for the HDRG
decoder when augmented with the first level of initialization,
7). The initialization step is shown in Fig. 16, and all the
remaining steps are similar to those shown in the previous
example.

’ o ’ ’ o ’ ’ ’ ’ ’ 4 ’ ’ ’ ’ 4 ’ ’ ’ ’ 4 ’ ’ ’ ’ ’ ’

R 'rg\ D /3\ 203 rg\ 23 33 §

155 L @2 3 O D12 1@9@@0

. < . . < . . . 3 . . q . . E@Af il@} . 1@4 4@@ _é@ 4@@
t=1 t=2 t=3 t=4 t=25

FIG. 9. (Color online) Error and syndrome histories. The first step is to generate the full history of errors and noisy syndrome measurements
S for L = 5 time steps. The red circles and squares indicate the location of errors. Notice how the errors accumulate at each time step. The goal

of the decoder is to correct the final error configuration ¢ = 5.

2 1 ¢ 4 > o 26 o 4

1 e L 4 e 3 >

t=1 t=2

t=3

t=4 t=5

FIG. 10. (Color online) Syndrome changes history. The second step is to evaluate the syndrome changes history S’ = {e;,e; © e;,e3 ©
e).e4 O e3,e5 © e4}, where the subtraction is performed modulo d. The changes history is passed to the decoder, which must infer a correction

operator from the information in S alone.
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(1) .
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t=1 t=2 t=3 t=4 t=5

FIG. 11. (Color online) HDRG ¢ = 1. The first level of the HDRG decoder divides the set S into disjoint 1-connected clusters (i.e.,
6 = 1). There are three different types of clusters shown: non-neutral, neutral, and boundary-neutral. Specifically, there are two single element
non-neutral clusters shown in blue with the their charge displayed. These clusters cannot be fused at this level. Moreover, there are two neutral
clusters in the bulk (gray and dark green), meaning that their total charge adds to zero (modulo 5). The elements of each neutral cluster are
fused together to the vacuum. Finally, there are five boundary-neutral clusters (yellow, purple, light green, orange, and pink). The total charges
of these clusters do not add up to zero, but since they are 1-connected to one of the boundaries they can be fused with that boundary. When the
cluster is fused with the time boundary, no physical correction is applied. The resultant correction operator from the fusion of the neutral and
boundary-neutral clusters is shown in green.

©

@ ® ®
D,1.9 @

O/
t=1 t=2 t=3 t=4 t=5

FIG. 12. (Color online) HDRG ¢ = 2. The only remaining non-neutral cluster from the previous level is now 2-connected (shown in red).
Its elements are fused together and a local correction is returned.
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FIG. 13. (Color online) Projected correction. (a) The final (physical) error layer at # = 5. (b) Projected correction operator from corrections
identified in Fig. 12, f =f, @ f, ® f; ® f4 ® f5, which is equivalent to summing the exponents of the operators modulo d. (c) The product of
the accumulated error and the projected correction operators. The correction has resulted in a small number of remaining errors.
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FIG. 14. (Color online) Noise-free decoding. To confirm whether the decoder has succeeded or failed, we must perform an additional
round of decoding with noise-free syndrome measurements. (a) The outcomes of the noise-free syndrome measurements. (b) Clustering and
correction operators. (c) Result of noise-free decoding. As we can see in this instance all the errors have been eliminated, no logical error has
been introduced, and the decoding has succeeded.
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FIG. 15. (Color online) First row: The generation of the error and syndrome histories, similar to Fig. 9. Second row: The syndrome changes
history §’, similar to Fig. 10. Notice how S’ contains a percolating cluster of syndromes.
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FIG. 16. (Color online) Initialization Z;. At the first level of initialization there are only six subclusters to search around each plaquette.
The search works by searching over every nontrivial syndrome and checking its six neighboring plaquettes sequentially to see if any of them
forms a two-element neutral subcluster. Once a neutral pairing is found, the two plaquettes are fused together and a single correction operator is
returned. Note that in this step we do not pair plaquettes to the physical or the time boundary. In the figure each subcluster is colored differently.
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FIG. 17. (Color online) The initialization step has disrupted the percolating cluster. HDRG decoding. Neutral and boundary-neutral clusters
identified by running two levels of the HDRG decoder with the correction operator returned are shown in green.
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FIG. 18. (Color online) Projected correction. (a) The accumulated layer of errors at ¢+ = 5 (see the top row of Fig. 15). (b) The projected

correction operator from running the initialization Z; (see Fig. 16). (c) The projected correction operator obtained from the HDRG decoder
(see Fig. 17). (d) The resultant errors after taking the operator product of the two correction layers and the accumulated layer of errors.
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FIG. 19. (Color online) Noise-free decoding. (e) Noise-free syndrome measurements. (f) Clustering and correction operators. (g) The
result of noise-free decoding. In this case the resultant operators are all members of the stabilizer group so once again the decoding has been

successful.
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