
 1 

Aerosol-assisted CVD-grown PdO nanoparticle-

decorated tungsten oxide nanoneedles extremely 

sensitive and selective to hydrogen 

Fatima. E. Annanouch1, Z. Haddi1,2, M. Ling3, F. Di Maggio3, S. Vallejos4, T.Vilic1, Y. Zhu3, T. 

Shujah3,5, P. Umek6, C. Bittencourt7, C. Blackman3, * and E. Llobet1,*  

1MINOS-EMaS, Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain 

2 Laboratoire des Sciences de l’Information et des Systèmes (LSIS), Aix-Marseille University, 

France 

3Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, 

United Kingdom 

4SIX Research Centre, Brno University of Technology, Technická 10, Brno, CZ-61600, Czech 

Republic 

5GC University, Katchery Road, Lahore 54000, Pakistan 

6Department of Solid-State Physics, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, 

Slovenia 

7Materia Nova, Univeristé de Mons, Parc Initialis  -  Av. N. Copernic, 1, B-7000, Mons, Belgium 

 

KEYWORDS: Aerosol Assisted CVD, nanoneedles, nanoparticles, gas sensor. 

 

Abstract 
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We report for the first time the successful synthesis of palladium nanoparticle (NP) decorated 

WO3 nanoneedles (NNs) via two step aerosol assisted chemical vapor deposition (AACVD) 

approach. Morphological, structural and elemental composition analysis revealed that Pd(acac)2 

precursor was very suitable to decorate WO3 NNs with uniform and well dispersed PdO NPs. 

Gas sensing results revealed that decoration with PdO NPs led to an ultra-sensitive and selective 

H2 gas sensor (sensor response peaks to 1670 at H2 500 ppm) with low operating temperature 

(150 °C). The response of decorated NNs is 755 times higher than that of bare WO3 NNs. 

Additionally, at temperature near that of the ambient (50 °C), the response of this sensor toward 

the same concentration of H2 was 23, which is higher than that of some promising sensors 

reported in the literature. Finally, humidity measurements showed that PdO/WO3 sensors 

displayed low-cross sensitivity toward water vapor, compared to bare WO3 sensors. The addition 

of PdO NPs helps minimizing the effect of ambient humidity on sensor response.  

Introduction  

Tungsten trioxide (WO3) is an important n-type semiconductor with a band gap between 2.4 and 

2.8 eV, which has a variety of applications including electrochromic and photochromic devices,1,2 

photocatalysis,3  and gas sensors.4 With the development of nanotechnology, WO3 has been 

synthesized in different forms such as nanoneedles,4 nanotubes,5 and nanorods,6 which owing to 

unique properties not possessed by its bulk form, provide intrinsic advantages for the 

aforementioned applications. For instance in gas sensors, the high surface-to-volume ratio has 

improved gas sensitivity,7 and the relatively high level of crystallinity has improved the stability 

of sensor response.4 Consequently, nanostructured WO3 has been used for sensing a variety of 

gases such as CO, NO2, NO, H2, NH3 etc. Among these gases, hydrogen has recently triggered 

much interest as a renewable energy source.8 It is considered as an essential fuel source in clean-

energy transportation and power generation applications. Simultaneously, it is colorless, odorless, 
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tasteless, and highly flammable and explosive at volume concentrations higher than ca. 4%.9 

Thus, there is serious concern regarding its safe production, storage, and transportation.  

On the basis of what is reported in the literature,10,11 the sensitivity of bare nanostructured WO3 

sensors toward hydrogen is not good enough. Additionally, their high working temperatures, long 

response time, humidity cross-sensitivity and low selectivity make them unsuitable for reliable, 

robust and accurate H2 sensors. To overcome these drawbacks, the addition of decorating catalyst 

nanoparticles onto the metal oxide matrix (i.e., surface functionalization of the nanostructured 

metal oxide) has been explored, providing demonstrated improvements in selectivity toward a 

target gas,7,12 especially, when the size of the host matrix elements is within the Debye length (LD) 

and the catalyst nanoparticles are incorporated in small, discrete amounts.13 Several strategies to 

modify functionality of the host matrix have been investigated.14 These fall broadly into two 

categories, either one-step processes in which the metal nanoparticles (NPs) and metal oxide 

(MOX) nanostructures are grown simultaneously (e.g. co-deposition via AACVD) or a multi-step 

approach in which the metal additives are deposited or incorporated on the surface of previously 

grown metal oxide nanostructures.  

It is well known that Pd/PdO nanoparticles have been widely used as a sensitizer in metal oxide 

films for H2 gas sensors.15,16,17 Their incorporation promotes the dissociation of H2 molecules to 

hydrogen atoms and thus enhances the electrochemical reactions at the surface or/interface of the 

metal oxide host matrix. Suematsu and co-workers have synthesized Pd loaded SnO2 NPs 

responding to 200 ppm of H2.18 The sensors showed a remarkable sensitivity and sensor response 

(SR) toward H2 was equal to 2000, but their optimal working temperature was rather high (i.e., 300 

°C). Chang and co-workers have investigated the H2 gas sensing properties of Pd NP decorated 

ZnO nanorods.19 The maximum response (SR=1371) toward 600 ppm of H2 was achieved at 260 

°C. However the sensing element was produced employing a time-consuming technique that 

included various wet chemical deposition steps. Chavez and co-workers have reported on the 

sensing performance of Pd functionalized WO3 nanowires by drop-casting method.20 The 
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fabricated sensors exhibited very small response (3.1) toward high concentration of H2 (1000 

ppm) at a rather high optimal working temperature of 300 °C. It is worth noting that the sensing 

element of most of the reported works on Pd/MOX sensors was not directly grown onto the sensor 

substrates, and this is due to the limitations of the techniques adopted during the synthesis. 

Moreover, WO3 nanostructures decorated with PdO/Pd NPs have not been widely explored for the 

detection of H2, since most of the reported works were focused on the use of SnO2 as host matrix. 

Finally, none of the papers cited above reported the effect of ambient humidity on sensor 

response, yet it is well known that humidity generally diminishes the resistance of an n-type 

semiconductor gas sensor, which results in an interfering effect for the detection of H2. 

Herein we report on the AACVD synthesis of PdO NPs-decorated WO3 nanoneedles (NNs), onto 

MEMs based micro-hotplate transducers, using a two-step strategy. To our knowledge, no 

previous reports have described the synthesis of PdO NPs decorated WO3 NNs via AACVD 

method for gas sensing application. Scanning electron microscopy (SEM), X-ray diffraction 

(XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and X-ray 

photoelectron spectroscopy (XPS) have been used to determine the morphology, phase 

composition, and microstructure of the deposited layers. Their gas sensing performances toward 

detecting H2 have been investigated in both humid and dry atmospheres. Furthermore, CO, NH3, 

C6H6 and moisture have been used as interfering species in order to study the sensors’ selectivity. 

Finally, the sensing mechanism for H2 in PdO NPs decorated WO3 NNs is discussed as well. 

Experimental section 

MEMs transducer platforms. MEMS-based microsensor platforms were implemented in a double 

side polished p-type <100> Si substrates with a 300 μm thickness. Clean room processes were 

carried out at the wafer level and consisted of the following microfabrication steps including 

implantation, photolithography, metallization, lift-off and rear side etching of the substrate to 

define the membranes. In one chip, four membranes with dimension of 1 mm × 1 mm, were 
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grown via LPCVD (Low-pressure CVD) technique. Each membrane (see Figure 1) comprised of 

a POCl3-doped polysilicon meander shaped resistive heater (16 Ω/sq, 0.47µm thickness, and a 

temperature coefficient of resistivity (TCR) equal to 6.79×10-4/ºC), silicon oxide insulator layer 

(800 nm thick), and platinum electrodes (0.2 µm thickness, 50 µm electrode gap). Each chip 

consisted of an array of four microsensors bounded and mounted on a standard TO-8 package.7 It 

is worth noting, that during AACVD deposition, a shadow mask was used to avoid contact 

between the heater and the electrodes pads (contacts) and to confine the film deposition to the 

electrode area. 

 

Figure 1. schematic view of the layers comprising the MEMs based gas microsensors. 

 

Reactants. Palladium(II) acetylacetonate (Pd(acac)2) (99 %), Tungsten hexacarbonyl (97 %), 

Methanol (≥99.9%), Ethanol (≥99.8%) and Acetone (≥99.9%) were obtained from Sigma-

Aldrich and were used as received without further purification. 

Procedure. Synthesis of Pd nanoparticle decorated WO3 nanoneedles. Depositions were carried 

out in a horizontal hot wall AACVD reactor using N2 (g) (99.96%, BOC) as a carrier gas. A 

Johnson Matthey Liquifog 2 operating at 2 MHz was used to generate the aerosol from the 

precursor solutions. MEMs based microsensors substrates were cleaned with acetone and then 
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with ethanol, dried with air and then placed inside the reactor. Pure WO3 NNs were obtained at 

500 °C, from AACVD of W(CO)6 (50 mg) dissolved in a mixture of acetone (15 cm3) and 

methanol (5 cm3). Conditions were chosen to promote formation of nanostructured WO3, as 

described previously,21 on the MEMS platforms. We have previously explored the relationship 

between WO3 NNs dimensions and sensing properties 22,7 with the growth conditions used 

providing NNs with dimensions consistent with optimum performance as identified in those 

articles. Pd nanoparticle decorated WO3 nanoneedles were prepared via a two-step AACVD 

method. In the initial stage pure WO3 NNs were deposited, followed by annealing at 500 °C for 3 

hours in air. In the subsequent step, palladium nanoparticles were incorporated on the pre-grown 

nanoneedles via AACVD of [Pd(acac)2] (1.5 mg) dissolved in methanol (10 cm3) at 400 °C. It 

has been shown previously that sensing performance in Pd/SnO2 samples improves with 

decreasing Pd particle size.23 The value of Pd loading chosen for use on the MEMS platforms 

was guided by results showing that reducing the amount of Pd precursor reduced the size of Pd 

NPs (Table S1 and Figure S1 in the Supporting Information, SI). As a note to us - by setting this 

parameter it is therefore not realistic to vary the Pd loading as that is not the only variable that 

changes - the particle size also changes, so by selecting for smallest particle size we 'set' the 

Pd/W ratio.  

The nitrogen (99.4%, purchased from BOC, Ltd.) carrier gas flow was maintained at 300 sccm. 

The deposition time (the time required for all the precursor solution to be transported) was 

between 25 to 45 min. After synthesis, the reactor was cooled by using the water jacket system 

(i.e. water cooling system) and all samples were subjected to annealing at 500 °C for 3 h in air.   
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Material analysis. Scanning electron microscopy (SEM) images were taken using the FEI 

Quanta 600. XRD patterns were collected by Bruker, AXD D8-Discover, using Cu K-α 

radiation operated at 40 kV and 40 mA. High resolution transmission electron microscopy 

(HRTEM) images were performed using a JEOL JEM-2100 with a LaB6 filament at an 

acceleration voltage of 200 keV. Images were recorded on a Gatan Orius charge-coupled device. 

Film samples were prepared by removing the film from the glass substrate via sonication in 

methanol for 15 min, and then drop-casting onto an Agar Scientific 400 Cu mesh holey carbon 

grid. Excess solutions were removed with filter paper. XPS analysis of the films was carried out 

using a Thermo Scientific Kα spectrometer with Al K-α radiation, a dual beam charge-

compensation system, and constant pass energy of 50eV. Survey scans were collected in the 

range 01350 eV (binding energy). High resolution peaks were carried out for the principal 

peaks of W (4f), Pd (3d), C (1s) and O (1s). All the XPS data were elaborated using Casa XPS 

v.2.3 software and binding energies were referenced with respect to the C 1s peak at 284.5 eV.  

Gas sensing tests. Gas-sensing tests were carried out in a Teflon/ stainless steel test chamber (2 × 

10−2 dm3) under a continuous gas flow of 200 sccm. The resistance change of the different 

samples, while exposed to different concentrations of the studied gases and vapors, was 

monitored by using an Agilent-34970A multimeter. The desired concentrations of the test gases 

were obtained by employing calibrated gas bottles and PC-driven mass flow controllers 

(Bronkhost Hitech 7.03.241). Humidity measurements were performed using an Environics 

series 4000, which allowed us to automatically mix up to three individual gases in a balance gas 

(air, pollutant gas, and humidity). The sensors (4 PdO-decorated WO3 NN sensors and 4 bare 

WO3 NN sensors) were exposed to the test gas for 10 min, and subsequently the chamber was 

purged with air for 30 min, which enabled recording the recovery of their baseline resistance. 
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After this process, the sensors were ready for a new measurement. The sensor response (R) was 

defined as R = Ra/Rg for reducing gases and R = Rg/ Ra for oxidizing gases, where Ra and Rg 

are the sensor resistances at the stationary state in air and after 10 min of exposure to the 

analytes, respectively.  

Results and discussion 

Materials Characterization. Bare and decorated WO3 NNs were successfully grown and directly 

integrated onto MEMs based gas sensor substrates. The color of all as-deposited films was dark 

blue indicative of partially reduced tungsten oxide (i.e., WO3-x), while after annealing samples 

for 3 hours in air; their color changed to white-yellow, indicative of full oxidation of tungsten 

oxide NNs.24 SEM imaging of either bare or decorated WO3 NNs revealed the formation of a 

thick layer of nonaligned nanoneedles, distributed homogenously over the electrode area (Figure 

2a,b,c). The diameter of the nanoneedles was between 50 to 200 nm, while their length was 

about 19 µm (see Figure 2d).  
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Figure 2. Film morphology observed by SEM images at low (a, b) and high (d) magnification. 

Cross section of WO3 nanoneedles (d) 

XRD patterns (Figure 3) recorded from undecorated and decorated samples suggested the 

formation of monoclinic-phase WO3 NNs (P21/n (14) space group, with typical cell parameters 

of a=0.729 nm, b=0.7539 nm, c=0.7688 nm, and β=90.91º; ICCD card no. 72-0677), with 

preferred orientation in the (002) direction for Pd/WO3 NNs, showing an intense diffraction peak 

at 23.10° 2θ. No peaks for palladium or palladium oxides were observed in the pattern, likely 

due to their small size (nanoscale) and/or to the relatively low amount present. The platinum and 

boron nitride (BN) diffraction peaks indicated in the patterns come from the electrodes and the 

membrane, respectively.25 By comparing the patterns of bare WO3 NNs with the ones of Pd 

decorated sample, we did not observe any shifts in the WO3 peak positions demonstrating that 

the monoclinic crystal structure of tungsten trioxide was not changed during the addition of 

palladium.  
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Figure 3. XRD patterns of undecorated and decorated WO3 NNs deposited at MEMs based gas 

sensor substrates. 

In order to obtain more detailed information about the morphology and the elemental 

composition of the as-deposited samples, TEM and HRTEM were carried out. In this work, we 

do not show the HRTEM and XPS results obtained from the pure WO3 film because they were 

similar to the ones reported in our previous works.11,26 Figure 4 shows representative TEM 

images of the as-deposited NNs decorated with Pd nanoparticles. The results revealed the 

presence of well-dispersed nanoparticles along the surface of the NNs, consistent with results 

previously seen for gold and platinum NP functionalized WO3 NNs.11  

Overall, the obtained NNs are single crystalline with uniform lattice structures. The spacing 

between adjacent lattice fringes is 0.378 nm,  consistent with  the unit cell (c=0.7688 nm) 

observed by XRD and with our previous results.26  

On the other hand, Pd NPs displayed approximately spherical morphology, with sizes between 

24 nm (total measured population was 20 particles). They were characterized by lattice fringes 
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with interplanar spacing of 0.225 nm corresponding to the (111) plane of face-centred-cubic (fcc) 

palladium (ICDD card no. 00-046-1043). Thus, TEM and HRTEM results confirm the successful 

synthesis of Pd nanoparticles via a two-step AACVD route. 

 

Figure 4. (a) TEM image of as-deposited Pd NPs decorated WO3 NNs, (b) HRTEM 

images of WO3 NNs and (c) Pd NPs. The color code of the insets corresponds to the areas 

indicated in the TEM image from which the high resolution images were taken. 

XPS analysis of the as-deposited and annealed films was conducted. Examination of the W 

4f core level spectrum of as-deposited Pd/WO3 film (Figure 5a) revealed the presence of two 

intense peaks centered at 35.4 eV and 37.5 eV, which are associated to the W 4f7/2 and W 4f5/2 

doublet respectively and their values are in good agreement with those found in the literature for 

W6+ in stoichiometric WO3 films.27 The weak emission located around 41 eV is originating 

from W 5p3/2 core level.   After annealing of the sample, no shifts in the peaks binding energies 

were observed and the composition of the surface remains stoichiometric (Figure 5b).  
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Figure 5. XPS W 4f core-level spectra of (a) as deposited Pd/WO3, (b) after annealing. 

Figure 6a displays the 3d XPS spectra recorded from as-deposited Pd/WO3 film. This could be 

fitted by using two deconvoluted doublets. The more intense one, with components centred 

at 335.1 eV and 340.4 eV, is associated to Pd 3d5/2 and Pd 3d3/2 for Pd metal 

respectively.28 The low intense one, corresponds to a plasmon loss peak at binding energy 

of 343 eV and to residual spectral intensity at binding energy of  337.9 eV that may 

indicate the presence of some sub-oxide (3% or less), although this last assignment is 

uncertain.29 After annealing at 500 ºC for 3 h, the XPS spectra of the sample (Figure 6b), was 

dominated by two peaks at 337.1342.4 eV,30 which are ascribed to Pd 3d5/2 and Pd 3d3/2 for 

PdO. Furthermore, HRTEM of the sample after annealing confirmed the presence of PdO, 

rather than Pd, NP with lattice spacing consistent with the (110) and (101) planes of PdO 

(0.21 and 0.26 nm respectively, see Figure S2 in the Supporting Information, SI). Hence, 

for as deposited coatings, the samples consisted of a Pd metal. In contrast, after the annealing, all 

Pd nanoparticles were oxidized to Pd(II) (i.e., PdO). 
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Figure 6. XPS Pd 3d core-level spectra of (a) as deposited Pd/WO3 and (b) after annealing. 

Gas-Sensing Response. Gas sensing tests were carried out to different concentrations of 

hydrogen by using dc resistance measurements. Undecorated and PdO decorated WO3 NNs 

sensors were tested at various temperatures from 50–350 °C, in intervals of 50° C, in order to 

understand the effect of the temperature on the sensor responses. Four replicate measurements 

per temperature were performed in order to assess the reproducibility of results. Figure 7 

displays the sensor responses to 500 ppm of H2 as a function of the operating temperature. At 

temperatures below 200 °C, pristine WO3 NNs exhibited almost no resistance change, especially 

at 50 °C and 100 °C, where they were not able to detect the analyte. In contrast, at temperatures 

exceeding 200 °C, the sensor showed good responses, their maximum (SR=2.21) toward 500 
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ppm of H2, was achieved at 250 °C. This finding indicates the normal behavior known in pure 

metal oxide sensors, since they need elevated working temperatures. Regarding PdO/WO3 

sensors, the response was increased by increasing the operating temperature, reaching the 

maximum (SR= 1670) at 150 °C, then response started to decrease by further increasing the 

temperature. It was noticeable that below 200 °C, responses were stable and saturated, but above 

this value, they became small and somewhat unreproducible.  This is in agreement with the 

volcano shape of response intensity as a function of operating temperature observed in metal 

oxides. The initial increase in response results from an increase in the rate of surface reaction 

with temperature, and the decrease observed when temperature is further increased results from a 

decrease in the utility of the gas sensing body (i.e., gas molecules are not able to diffuse onto the 

whole nanoneedle film).17,33  

 Therefore, 150 °C and 250 °C are the optimal working temperatures for decorated and 

undecorated WO3 NN sensors, respectively. They will be adopted for all the investigations 

hereinafter. Decoration with PdO nanoparticles promotes an increase in sensor response (SR) as 

well as a shift of the response maximum towards lower operating temperatures.  The sensor 

becomes able to detect the studied analyte at very low temperature. For instance, at 50 °C, the 

response of PdO/WO3 sensor toward 500 ppm of H2 was equal to SR = 23, which is significantly 

higher than that of some promising devices recently reported in the literature.17,19   
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Figure 7. Sensor responses to 500 ppm of hydrogen as a function of operating temperature. 

Figure 8 illustrates the change in resistance of undecorated and PdO decorated WO3 

microsensors, toward H2 pulses with concentrations ranging from 40 to 500 ppm, at their optimal 

working temperatures. The sensors showed an n-type semiconductor behavior, i.e. decreasing 

electrical resistance when exposed to a reducing gas such as H2. Furthermore, the sensors 

showed stable responses with complete recovery of the baseline resistance.  It is clear from the 

graphs that sensors decorated with PdO NPs exhibited the largest resistance change toward H2 

concentrations. Moreover, we have studied the reproducibility of the sensor responses by re-

exposing them to 80 ppm of H2. As it is shown in (Figure 8), the sensors showed reproducible 

behavior, getting good reproducible responses to 80 ppm of H2 at the beginning and at the end of 
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the repeated detection/recovery cycles. In addition, it can be noticed that decorating WO3 NNs 

with PdO NPs results in an increase in the baseline resistance. PdO is a well-known p-type 

semiconductor,31 and WO3 is an n-type semiconductor; thus, p-n junctions are formed at the 

interfaces of the PdO/WO3 nanocomposite. The formation of these, leads to the occurrence of a 

space charge layer around each PdO/WO3 interface, which decreases the free electrons in the 

conduction band of WO3 NNs and, therefore, increases the baseline resistance of the sensor.32,4 

 

Figure 8. Film resistance changes (a) pristine WO3 and (b) PdO/WO3 film toward various 

concentrations of H2. 
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The corresponding gas-sensing response calculated from the change in resistance of undecorated 

and PdO decorated WO3 NNs are plotted as a function of H2 concentration as shown in Figure 9. 

As we can see, decoration with PdO has greatly enhanced the sensitivity of WO3 NNs toward H2. 

At 500 ppm of H2, the response of PdO/WO3 NNs was 755 times higher than that of pure WO3 

NNs. Besides, by increasing the gas concentration the responses of all the sensors were 

increased. The slope of the calibration curve (i.e. sensitivity) for pure WO3 sensor was very small 

compared to the decorated sensor. The response of undecorated sensors varied between 1.23 and 

2.21 for concentrations ranging from 40 to 500 ppm of H2.  

 

Figure 9. Sensor responses toward various concentration of hydrogen. 

The selectivity of bare and PdO decorated WO3 sensors toward 100 ppm of H2 was studied by 

measuring the response to different interfering gases such as NH3 (100 ppm), C6H6 (200 ppm) 

and CO (200 ppm), at their optimal working temperatures. All these concentrations are chosen 

with the aim to be higher or equal to the concentration of the target gas (100 ppm of H2). As 
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shown in Figure 10a, it is clear that pure WO3 suffers from a very high cross-sensitivity toward 

all the interfering gases. In contrast, PdO decorated WO3 sensor exhibits higher sensitivity 

toward H2 (100 ppm) than to the higher concentrations of the interfering gases (Figure 10b). The 

response of this sensor toward 100 ppm of H2 is almost 263 times higher than to NH3 100 ppm, 

500 times higher than to C6H6 200 ppm, and 463 times higher than to CO 200 ppm. Hence, 

decoration with PdO NPs has highly enhanced the selectivity of WO3 NNs toward H2. 

 

Figure 10. Selectivity diagram of (a) pristine WO3 and (b) PdO/WO3 sensors, toward NH3, C6H6 

and CO interfering gases. 

Mechanism of sensitization by PdO nanoparticles. 

The hydrogen sensing of PdO NPs decorated WO3 NNs can be explained by the interplay of 

different mechanisms that depend on the working temperature.  
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Based on the literature, we have found that at temperatures exceeding that of the ambient, the 

sensitization mechanism of Pd/PdO NPs can be in general associated to electronic sensitization 

and chemical sensitization (see Figure 11a). Electronic sensitization occurs due to the presence 

of PdO NPs, which behave as p-type semiconductors. PdO NPs are strong acceptors of electrons 

from the n-type WO3 NNs and expand the electron depletion layers at the interfaces of the p-n 

heterojunctions, which increases the baseline resistance.4 When H2 is in contact with PdO NPs 

and the operating temperature is clearly above room temperature, the hydrogen molecule 

dissociates into H+, which results in electronic charge transfer from the PdO NPs towards the 

WO3 NNs, and in the relaxation of the space charge layer. Consequently, the electronic 

conductivity in the WO3 NNs is raised.33  In chemical sensitization, PdO NPs both facilitate the 

increase in the number of oxygen adsorbates present on the surface of WO3 NNs and favor, via  

spill-over effect, that H+ species diffuse onto the surface of the nanoneedles where they further 

react with oxygen adsorbates.33,34 To date, there is no clear evidence of which of these 

mechanisms is more useful for gas sensing, although the literature points to the need to combine 

both mechanisms to induce an overall better functionality of metal oxide gas sensors. It is the 

well-known property of Pd and PdO catalyst nanoparticles to dissociate molecular hydrogen and 

generate H+ species, which can easily diffuse within the host metal oxide film and are highly 

reactive, what explains the very high response to hydrogen of PdO-WO3 NN sensors in 

comparison to the significantly lower response observed for other reducing species such as CO, 

NH3 or C6H6.
35  

On the other hand, when the operating temperature is low (≤ 50 °C), Chang and co-workers19 

report that the sensing mechanism is generally related to the dissociation of H2 molecules over 

the PdO NPs, and the dissolution of atomic hydrogen in the PdO NPs, forming a palladium 
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hydride (PdHx) (see Figure 11b). This has a reduced work function compared to Pd/PdO NPs, 

and thus facilitates the transfer of charge carriers from the NPs to the host matrix (i.e. the WO3 

NNs).36 Evidence on the formation of PdHx has been shown by the XPS spectra recorded from 

the active layer after H2 measurement, at operating temperature near the ambient (≤ 50 °C) 

(Figure S3 in the Supporting Information, SI).  It is worth noting that at this low temperature, the 

amount of adsorbed oxygen is intensively diminished since the oxygen spill-over effect is a 

thermally activated event.37  Consequently, this mechanism could explain why our PdO NP 

decorated WO3 NNs still show a remarkably high response to H2 when operated at 50ºC.  

 

Figure 11. Mechanism of WO3 sensitization by PdO nanoparticles toward H2, (a) at operating 

temperature clearly exceeding that of the ambient and (b) at operation temperature equal or lower 

than 50 °C. 

Humidity effects 
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Gas sensors are usually intended for detecting target gases in the ambient atmosphere. It is well 

known that water vapor can affect the sensor response by decreasing its electrical resistance in a 

similar way as a reducing gas, resulting in an interfering effect for gas detection. Thus it is 

necessary and compulsory to test the fabricated sensors in a humid background. Figure 12 

displays the change in resistance of undecorated and PdO decorated sensors, toward 500 ppm of 

H2, under dry or humid (50% relative humidity (RH) at 25 °C) atmospheres. From Figure 12a, it 

is clear that pure WO3 is significantly influenced by the presence of humidity. Its baseline 

resistance decreases by about 55% when humid air is introduced. Additionally, after removing 

this later, the baseline resistance could not be recovered to its initial value as in the beginning of 

the measuring cycle. In contrast, PdO/WO3 sensor (Figure 12b) is only slightly influenced by the 

presence of humidity.  Besides, the sensor could easily recover to its initial state when humidity 

was removed. 

Based on the literature, decoration with Pd/PdO nanoparticles is an effective way to suppress the 

water vapor cross-sensitivity. Recently, Ma and co-workers showed that adsorbed oxygen 

species on the surface of Pd-SnO2 were not influenced by the presence of water vapor.38 

Additionally, they found that the electron depletion layer resulting from the p-n junctions present 

in PdO-SnO2 may impede OH − adsorption.  Koziej and coworkers suggested that the dispersed 

Pd NPs at an atomic level on the SnO2 surface could provide initial adsorption sites for oxygen 

species and then minimize the effect of the water molecule on the Pd-SnO2 surface.39 Thus, the 

results obtained from decorated sensor in a humid background can be related to the low 

operating temperature (150 °C). It has been reported that the influence of background humidity 

can be significant when sensors are operated at low temperatures (< 200 ºC). The adsorption of 
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the OH-group at the surface of the metal oxide is very strong and needs high operating 

temperatures to be removed.40  

 

Figure 12. Change in resistance of (a) pristine WO3 and (b) PdO/WO3 sensors, toward 500 ppm 

of H2, at the presence of both dry and humid (50% relative humidity (RH) at 25 °C) atmospheres. 

After gas sensing measurements, sensors based on undecorated and PdO decorated tungsten 

oxide NNs underwent SEM and XRD analysis, showing no changes either in the morphology or 

in the structure of both sensing films (see Figure S4, S5 and S6, in the SI). These observations 

suggest that the sensing material grown directly onto the MEMS platforms remains stable after 

the temperature changes and the exposure to analytes undergone during the tests. 
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Table 1 represents a comparative analysis of some characteristics of H2 sensors based on Pd/PdO 

nanoparticles decorated metal oxide nanostructures reported in this work and in the literature. 

We can observe that the response of PdO decorated WO3 NNs is much higher than those of other 

Pd decorated metal oxide nanostructures including nanoparticles, nanorods, nanowires and 

nanofibers. Besides, this higher response is obtained at quite low operating temperatures (i.e. 150 

°C). Moreover, more than three-step deposition techniques were employed in the majority of 

these works to produce the nanocomposite film. In contrast, in our case, we used a two-step 

AACVD route, which allowed us the direct growth of the nanocomposite film onto the MEMS 

transducer substrate, within 180 minutes. Finally, by comparing our sensor with the other 

Pd/WO3 nanostructures produced by different methods, it is clear that H2 gas sensing 

performances are highly dependent on the morphological structure and the preparation method of 

the Pd NPs decorated WO3 sensing layer. Consequently, using a simple, scalable and low cost 

technique (AACVD), we were able to obtain a highly sensitive and selective H2 sensor, with low 

operating temperature. 
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Table 1. Summary of some characteristics of H2 sensors based on Pd/PdO nanoparticles 

functionalized metal oxide nanostructures reported in this work and in the literature.  Selected 

parameters are pointed in a. 

Structure 

MOX 

host 

matrix 

MOX/M 

NPs 

Synthesis 

Steps 

T Op 

(°C) 

Conc. 

(ppm) 

response Rf/Rnf 
Selectivity 

test 

Humidity 

effect 

studied 

Ref. 

PdO/WO3 

Nanoneedles 
WO3 PdO 2_Step 150 500 1670 755 Yes Yes 

This 

work 

Pd/WO3 Nanowires 

   Pd/WO3 nanofibers 

Pd/WO3 Thick film 

Pd/WO3 Thick film 

WO3 

WO3 

WO3 

WO3 

      Pd 

      Pd 

Pd 

Pd 

2_Steps 

More than 3 steps 

More than 4 steps 

More than 3 steps 

300 

300 

180 

200 

1000 

500 

200 

200 

3.1 

30 

69 

20 

2.21 

No 

NA 

NA 

    Yes 

     No 

No 

No 

    No 

No 

Yes 

Yes 

20 

   41 

42 

43 

Pd/ZnO nanorodes ZnO Pd More than 4 steps 260 500 1106 110 No No   19 

Pd/SnO2 nanofibers SnO2 Pd More than 4 steps 160 500 2.6 2 Yes No 17
 

Pd/SnO2 Thick film SnO2 Pd More than 4 steps 300 600 200 0.6 No Yes 18
 

 

a MOX/M NPs: metal oxide/metal nanoparticles, TOp : operating temperature, Conc.: Measured 

concentration. Rf/Rnf: relative change of the sensor response obtained with decorated and 

undecorated metal oxide sensors. 

Conclusion 

PdO NPs decorated WO3 NNs were successfully deposited and integrated onto MEMs based gas 

sensor substrates, using two steps AACVD approach. The sensing layers were directly grown 

onto the sensor substrate without any intermediate steps for sensor fabrication. Gas sensing 
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results revealed that decoration with PdO NPs led to the fabrication of a highly sensitive and 

selective H2 sensor. It was found that decoration with small amounts of PdO NPs has a great 

efficiency  in increasing sensor responses (SR)  as well as shifting the response maximum (SR= 

1670) towards lower operating temperatures (150 °C).  

The sensor becomes able to detect the studied analyte at very low temperature. As a 

consequence, at temperature near the ambient (50 °C), the response of PdO/WO3 sensor toward 

500 ppm of H2 was equal to SR = 23, which is better than that of some promising devices 

reported in the literature. Finally, humidity measurements showed that PdO/WO3 NN sensors 

displayed low-cross sensitivity toward water vapor, compared to bare WO3 NN sensors. The 

addition of PdO NPs helps to suppress the effect of humidity on the sensor resistance changes. 

These results have been explained as a result of the chemical and electronic sensitization effects 

of PdO NPs onto WO3 NNs. 
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