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ABSTRACT 15 

Identification of phenotypic modules, semi-autonomous sets of highly-correlated traits, can be 16 

accomplished through exploratory (e.g., cluster analysis) or confirmatory approaches (e.g., RV 17 

coefficient analysis). While statistically more robust, confirmatory approaches are generally 18 

unable to compare across different model structures. For example, RV coefficient analysis finds 19 

support for both two- and six-module models for the therian mammalian skull. Here, we present 20 

a maximum likelihood approach that takes into account model parameterization. We compare 21 

model log-likelihoods of trait correlation matrices using the finite-sample corrected Akaike 22 

Information Criterion, allowing for comparison of hypotheses across different model structures. 23 

Simulations varying model complexity and within- and between-module contrast demonstrate 24 

that this method correctly identifies model structure and parameters across a wide range of 25 

conditions.  We further analyzed a dataset of 3-D data, consisting of 61 landmarks from 181 26 

macaque (Macaca fuscata) skulls, distributed among five age categories, testing 31 models, 27 

including no modularity among the landmarks, and various partitions of 2, 3, 6, and 8 modules. 28 

Our results clearly support a complex six-module model, with separate within- and inter-module 29 

correlations. Furthermore, this model was selected for all five age categories, demonstrating that 30 

this complex pattern of integration in the macaque skull appears early and is highly conserved 31 

throughout postnatal ontogeny. Subsampling analyses demonstrate that this method is robust to 32 

relatively low sample sizes, as is commonly encountered in rare or extinct taxa. This new 33 

approach allows for the direct comparison of models with different parameterizations, providing 34 

an important tool for the analysis of modularity across diverse systems.  35 

  36 
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INTRODUCTION 37 

The related topics of phenotypic integration and modularity, which concern associations among 38 

traits and their partitioning into semi-autonomous and highly-correlated subsets, respectively, 39 

have received increased attention over the past few decades as a powerful bridge among different 40 

scales of evolutionary analysis. Recent years have seen increasing effort to identify and compare 41 

phenotypic modularity and integration across taxa, in some cases spanning entire vertebrate 42 

‘classes’ (Goswami 2006b, a; Goswami 2007; Porto et al. 2009; Bell et al. 2011; Bennett and 43 

Goswami 2011; Klingenberg and Marugan-Lobon 2013), and even comparing plants and animals 44 

(Conner et al. 2014). There has also been a refining of different levels of modularity acting at 45 

different scales. The most typically-studied level, termed “variational” (Marquez 2008) or 46 

“static” (Klingenberg 2014) modularity, focuses on a single species or population, commonly at 47 

a specific ontogenetic stage (e.g., adults). Within this level, analyses focus on identifying drivers 48 

of trait integration, whether functional, developmental, genetic, or environmental. Beyond 49 

variational modularity, studies have analyzed modularity at the ontogenetic scale (that is, 50 

patterns or changes in modularity through ontogeny within a species), and evolutionary 51 

modularity (comparative analysis of patterns of modularity across taxa). Coincident with this 52 

increase in studies of modularity, there has been an explosion in the number of methods 53 

proposed to analyze phenotypic modularity and integration, both within and across populations 54 

(Klingenberg 2009; Goswami and Polly 2010; Klingenberg 2013; Adams and Felice 2014; 55 

Bookstein and Mitteroecker 2014; Klingenberg 2014). 56 

 57 
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Analyses of modularity have taken many forms, from entirely exploratory approaches, such as 58 

cluster analysis, Euclidean distance matrix analysis, and graphical modelling, to confirmatory 59 

approaches, such as partial least squares analysis and the related RV coefficient analysis, 60 

integration matrices, and theoretical matrix modelling (reviewed in Klingenberg 2009; Goswami 61 

and Polly 2010; Klingenberg 2013, 2014), and there has been a vigorous discussion of the merits, 62 

practical considerations, and issues of each approach (Klingenberg 2008; Goswami and Polly 63 

2010; Fruciano et al. 2013; Adams and Felice 2014). Not surprisingly, confirmatory methods are 64 

generally viewed as more robust, particularly as exploratory methods such as cluster analysis 65 

impose hierarchical relationships on traits that may or may not reflect their true biological 66 

organization. On the other hand, exploratory approaches have the benefit of not requiring a 67 

priori determination of model structure, whereas confirmatory methods depend on a defined 68 

model structure and are therefore limited to testing pre-selected models. Given the complexity of 69 

many biological structures, and the diverse factors that may influence trait relationships 70 

(Hallgrimsson et al. 2009), this limitation argues for the continued role of exploratory 71 

approaches, particularly as studies expand beyond well-established model systems. Recent work 72 

has developed relative eigenanalysis for the purpose of comparing two covariance matrices in a 73 

more informative manner than do previous methods, such as eigenvalue dispersion or random 74 

skewers analysis (Bookstein and Mitteroecker 2014), providing an efficient exploratory approach 75 

that can detail the specific ways that high-dimensional covariance matrices differ by identifying 76 

the maximal ratios of variance between any two groups. However, this approach does not 77 

directly address the problem of describing the pattern of integration for a group, which remains 78 

an outstanding issue in this field.    79 

 80 
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Another important issue with most current confirmatory approaches is that they are designed to 81 

measure support for alternative hypothesized parameter values within a proposed model structure 82 

(Wagner 2000). For example, RV coefficient analysis determines the correlations among sets of 83 

traits, and then randomizes trait associations to produce an empirical distribution of RV 84 

coefficients for the model structure under consideration, testing the hypothesis that the observed 85 

RV coefficient is significantly lower than randomized alternatives. But while this methodology 86 

can test if a particular model is more structured than random, it does not readily address the 87 

question of whether a four-module model describes the pattern of phenotypic integration better 88 

than arrangements with three or five modules. The same is true of the recently described 89 

Covariance Ratio metric (Adams 2016), which improves upon several statistical issues with RV 90 

coefficient analysis, but also can only test one model of modularity against a hypothesis of 91 

random associations of traits.  Thus far, only one published method allows for comparisons of 92 

models with different complexities (Marquez 2008), as demonstrated with a 2-D landmark 93 

dataset for rodent mandibles. This method included several innovations that allowed for testing 94 

of hundreds of alternative models, including those with overlapping landmarks, but the most 95 

relevant is the correction of similarity among the observed and modeled covariance matrices 96 

against the number of estimated parameters. This addition facilitates comparison across models 97 

with varying structures of different complexity. While this represented an important step in 98 

confirmatory tests of modularity, the author noted that a linear correction for the number of 99 

estimated parameters may not be appropriate for all test statistics or for more complex 100 

approaches (Marquez 2008). Additionally, this method has also never been expanded to 3-D 101 

data.   102 

 103 
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Here, we describe a new method for the analysis of phenotypic modularity from trait correlation 104 

matrices based on a maximum likelihood approach. We provide a case study applying this 105 

approach to a dataset of macaque skulls spanning infant to adult age groups. We use this method 106 

to compare various models that have been proposed for mammalian skull modularity (including 107 

no modularity, a two-module neurocranial/facial hypothesis, and multiple six-module 108 

hypotheses; Fig. 1), as well as novel alternative models of varying structure and complexity. 109 

 110 

EMMLi: Evaluating Modularity with Maximum Likelihood 111 

Model selection approaches using information theory compare likelihood fits across a set of 112 

models of varying degree of complexity. In order to estimate likelihoods of models of trait 113 

integrations, we first model the expected distribution around a hypothesized value representing 114 

the relationship among a set of traits. For the product moment correlation coefficient, and its 115 

derivatives including the congruence coefficient and canonical correlation (Goswami and Polly 116 

2010), a simple transformation is available in the Fisher r-to-z transformation: 117 

 118 

Eq. 1) �� = �����	(�) = 	
� � �	��

	��� (Sokal and Rohlf 1995, pg. 575), 119 

 120 

where r is the sample correlation coefficient.  Here the observed correlation matrix is treated as a 121 

set of realizations (the values of r) of a hypothesized true correlation coefficient (ρ). The 122 
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distribution around a hypothesized value of ρ is approximately normally distributed with 123 

parameters:  124 

 125 

Eq. 2a) �� = �� =	 	� � �	��
	��� and , 126 

Eq. 2b) ��� = � 	
√����

�
=	 	

��� (Sokal and Rohlf 1995, page 575),  127 

 128 

where n is the sample size used to calculate the correlation coefficient (i.e., the number of 129 

specimens with measured landmarks). The log-likelihood support for a hypothesized value of ρ, 130 

given an observed value of r, is then: 131 

 132 

Eq. 3) ���� ∝ − 	
�������� − �������

�

����  (Edwards 1992). 133 

 134 

Applying Equation 3 to a matrix of trait correlations, the simplest model structure (no 135 

modularity) proposes a single value for the correlation coefficient between all possible trait pairs. 136 

The value that maximizes the summed log-likelihood for all observed correlations in the matrix 137 

would then be the preferred hypothesis, and this log-likelihood would then be the model log-138 

likelihood for the “no modularity” model structure.   139 

 140 
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However, given the results of a large number of previous studies (Cheverud 1982, 1989, 1995a, 141 

1996; Ackermann and Cheverud 2000; Marroig and Cheverud 2001; Hallgrimsson et al. 2004; 142 

Goswami 2006a; Hallgrimsson et al. 2009; Porto et al. 2009; Goswami and Polly 2010; 143 

Klingenberg 2013), it is highly likely that a model structure positing a single value of ρ for the 144 

entire correlation matrix would not adequately describe trait correlations in a real biological 145 

system. Model structures of varying complexity can be compared using the Akaike Information 146 

Criterion (AIC) (Akaike 1973; Burnham and Anderson 2002), assessing the likelihood fit of the 147 

models, while controlling for better fit induced by increased model complexity. The finite-148 

sample AIC (AICc) is given by: 149 

 150 

Eq. 4) � !" =	−����� + �$ +	�$	($�	)
%�$�	  (Hurvich and Tsai 1989). 151 

 152 

In Equation 4, N is the sample size, but in the case of computing AICc, this is the number of 153 

between-trait correlations used to calculate the likelihood score. K is the number of estimated 154 

parameters, which is the number of distinct, optimal correlations estimated by the model, and an 155 

additional parameter for each estimate of the variance around the hypothetical value of ρ (see: 156 

Equation 2b). In the present analysis, this is fixed for all of the examined models within each 157 

data set (a single variance was calculated for each data set based on its sample size), and the 158 

number of parameters is simply the number of estimated values of ρ incremented by one for all 159 

models. However, this does not need to be the case, as more complex analyses may wish to 160 

consider whether patterns of modularity are common across multiple data sets which may have 161 
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different estimates of variance. In such cases, different variances may be included as estimated 162 

parameters among different models.  163 

 164 

To illustrate the designation of model parameters more clearly, consider a set of landmarks 165 

across a mammal cranium (Fig. 2A). Previous study of the mammal skull has proposed six 166 

modules for this system (Cheverud 1982; Goswami 2006a). It is possible that that the 167 

magnitudes of within-module correlations are effectively the same in all of the modules (Fig. 2B) 168 

or that each of these modules has distinct strengths of correlation between landmarks within a 169 

given module (Fig. 2C). Furthermore, inter-module correlations could also be distinct for each 170 

module-to-module set (Fig. 2E and G), or they could be effectively identical (Fig. 2D and F). 171 

These variations then returns four potential model structures with 3, 17, 8 or 22 estimated 172 

parameters (the number of estimated ρ’s in each, plus 1 for the estimated variance). Summing the 173 

log-likelihoods from Equation 3 for the set of observed correlations within each modeled set for 174 

an optimal estimate of ρ, gives the model log-likelihood. These can be compared to one another, 175 

to the “no modularity” hypothesis, and to different proposed structures or different groupings of 176 

the landmarks within modules using Equation 4. From the model AICc scores, we calculate 177 

∆AICc, the difference between a particular model’s AICc score and the lowest score observed 178 

among the tested models. From this, we calculate the model log-likelihood adjusting for the 179 

penalty due to parameterization: 180 

 181 

Eq. 5) &�'()	���� ∝ − 	
�∆� !" (Burnham and Anderson 2002). 182 
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 183 

A set of model posterior probabilities can then be calculated by dividing each model’s likelihood 184 

by the sum of likelihoods over the set of examined models (N.B. these are likelihoods, and are 185 

therefore equal to e
Model LogL

 (see: Burnham and Anderson 2004)).  186 

 187 

A Note on Sample Size 188 

A value of “n” or sample size appears in both the equations for calculating the variance around 189 

an estimated value of ρ (Equation 2b) and for the calculation of the AIC statistic (Equation 5). 190 

We have used upper- and lowercase to distinguish between the two, as n for calculation of 191 

correlations is based on the number of specimens, whereas, in the case of computing AICc, N is 192 

the number of between-trait correlations considered in calculating the log-likelihood. For a 61 193 

landmark data matrix, there are 1830 unique between-landmark correlations (i.e., the sub-194 

diagonal values of the matrix). 195 

 196 

A note on the use of the Fisher Transformation 197 

The Fisher r-to-z Transformation converts the bounded correlation coefficient to an unbounded 198 

variable. Comparison of the transformed correlation to a hypothetical population value of ρ 199 

demonstrates that the transformed coefficient is approximately normally distributed about ρ, 200 

making the Fisher Transformation attractive for hypothesis testing. In the case of the correlation 201 

matrix, however, there is a concern about the independence of the sample of correlation 202 
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coefficients, in that, for example, elements r12 and r13 are not strictly random iid draws from a 203 

population, but are themselves intercorrelated. However, the Fisher-transformed correlations 204 

within a correlation matrix have been shown to be asymptotically, multivariate normal in 205 

distribution, and robust to the violations of independence (Steiger 1980b; De Leeuw 1983). 206 

Specifically, this has been demonstrated for pattern hypotheses within correlation matrices, 207 

wherein observed correlation coefficients are tested against a proposed “pattern matrix” (Steiger 208 

1980a), and this approach, which is adopted here in the form of the proposed within- and among- 209 

module correlation estimates, has been applied in a wide range of research questions (Feldman et 210 

al. 2007; Wager et al. 2007; LeBel and Gawronski 2009). As such the employing Fisher-211 

transformed correlations in a likelihood framework, as proposed here, should prove a reliable 212 

approach to evaluating modularity with trait correlation matrices. 213 

 214 

SIMULATIONS 215 

Given the above noted concern with respect to independence of the Fisher-transformed 216 

correlation coefficients, we evaluated the ability of the maximum likelihood approach as 217 

implemented in EMMLi to correctly select a known model when choosing among models 218 

structures. To do so, we conducted an extensive series of simulations testing a range of model 219 

structures, contrasting two variables: model complexity (number of parameters) and contrast 220 

(difference between within-module and between-module strength of integration). In all cases, 60 221 

“landmarks” were simulated as divided into zero, two or six modules, to represent a hypothetical 222 

correlation structure that we wish to evaluate.  Between-module correlations were set at a mean 223 

value of 0.1 for all simulations.  Standard deviations for generating correlations were varied from 224 
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a low value of σ = 0.01 to realistic value of σ = 0.05 (e.g., Cheverud 1982), encompassing values 225 

used in simulations testing other recently described methods for the analysis of modularity 226 

(Adams 2016).   227 

 228 

Simulating datasets without any modular structure allowed for assessment of Type I error rates.  229 

100 permutations each were run with the mean correlations among all traits simulated as r = 230 

0.15, 0.3, 0.5, 0.7, or 0.9, with σ = 0.01 or 0.05, for a total of 1000 simulations.  In these cases, 231 

the correct model would be equivalent in structure to model 1 (K=2) in Table 1.   232 

 233 

For the two and six module structures, both simple and complex models were tested.  The simple 234 

models involved two or six modules which all had the same within-module correlations, set to 235 

five mean values ranging from r = 0.15 in the lowest contrast model to r = 0.9 in the highest 236 

contrast model (i.e., mean within-module r = 0.15, 0.3, 0.5, 0.7, and 0.9 were all simulated).  237 

 238 

For the complex models, all two or six modules had different within-module correlations. In the 239 

high contrast, complex two-module model, these values were set to mean within-module r = 0.7 240 

and 0.9; in the mix contrast model, mean within-module r = 0.3 and 0.8; and in the low contrast 241 

case, mean within-module r = 0.15 and 0.3.  In the high contrast, complex six-module model, 242 

mean within-module r = 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95; in the mix contrast case, mean within-243 

module r = 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8; and in the low contrast case, mean within-module r = 244 

0.15, 0.2, 0.25, 0.3, 0.35, and 0.4.  For the simple two-module structure, the correct model would 245 
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be equivalent in structure to model 2 (K=3) in Table 1, and the complex structure would be 246 

equivalent to model 3 (K=4). For the simple six-module structure, the correct model would be 247 

equivalent in structure to model 4 or 8 (K=3) in Table 1, and the complex structure would be 248 

equivalent to model 5 or 9 (K=8). 100 permutations each of these 16 models were run, using 249 

each of the standard deviation levels, resulting in 3200 total simulations of these modular 250 

structures. 251 

 252 

 253 

CASE STUDY: MAXIMUM LIKELIHOOD ANALYSIS OF MACAQUE CRANIAL 254 

MODULARITY 255 

Materials 256 

We use a data set of 3-D coordinates for 61 landmarks taken on the cranium of Japanese 257 

macaque (Macaca fuscata) from the Primate Research Institute at Inuyama, Japan, previously 258 

described in (Goswami and Polly 2010) (see Supporting Information). Individuals were divided 259 

into five datasets representing four age classes: infants with deciduous dentition only (n = 42), 260 

juveniles with M1 erupted (n = 42), sub-adult with M2 erupted (n = 48), and adults with the 261 

entire adult dentition, further divided into male and female data partitions (nm = 25, nf = 24). See 262 

Goswami and Polly (2010) for further details on the dataset used in the following analyses.  263 

 264 
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The landmark data were superimposed with Generalized Procrustes superimposition to remove 265 

the effects of rotation, translation and size (scaling all specimens to unit centroid size). All five 266 

datasets were analyzed separately. We calculated vector congruence coefficient correlation 267 

matrices, producing 61x61 element matrices. This vector-based approach allows for 268 

simultaneous analysis of all three coordinates representing a single landmark (Goswami 2006a; 269 

Goswami and Polly 2010). There has been some debate about the use of vector-based versus 270 

coordinate-based correlations in studies of phenotypic integration and modularity (Klingenberg 271 

2008; Goswami and Polly 2010; Klingenberg 2013). Here, we use the vector-based matrices, as 272 

we feel these better reflects biological relationships, treating each landmark as a single unit of 273 

information. However, we also include an example using the correlation matrix for individual 274 

coordinates for the M1-erupted data set (see Supporting Information). This is a 183x183 matrix 275 

(x-, y- and z-coordinates for each of 61 landmarks). Allometric effects and asymmetric variation 276 

have not been removed from the example dataset, for comparability with previously published 277 

analyses of macaque skull modularity (Cheverud 1982; Goswami and Polly 2010), although, as 278 

with selection of metric of trait correlation, the model presented here is applicable to datasets that 279 

do remove, or focus entirely on, those aspects of shape.  280 

 281 

Models 282 

We investigated 31 model structures within several broad hypotheses of cranial modularity. The 283 

first, and simplest, model structure is that there are no distinct modules within the cranium, and 284 

that the cranium can be analyzed as a single entity. Further, more complex, models of modularity 285 

consist of a two-module (neurocranial vs. facial) structure (Drake and Klingenberg 2010), two 286 
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six-module structures (primate-specific (Cheverud 1995b) and general mammalian (Goswami 287 

2006a)), and an eight-module structure combining the two six-module models (see: Table S1). 288 

We investigated further refinements for both configurations of the six-module structure: first, 289 

leaving some landmarks “unintegrated”, i.e., outside of any module, based on a monotreme 290 

model of integration (Goswami 2006a), resulting in 3-module + “unintegrated” models; and, 291 

second, considering a tissue-origin model (Goswami 2006a), in which landmarks were grouped 292 

based on their derivation from neural crest, mesodermal, or mixed germ-layer derived bone (see: 293 

Table S1).  294 

 295 

As detailed above, each hypothesized model structure may have many potential 296 

parametrizations, depending on whether within-module or across-module correlations are 297 

modeled as being the same for all cases (e.g., a single high hypothesized correlation within 298 

modules and a single, across-module correlation), or all module cases are considered unique, or 299 

some mixture of these extremes. For example, the 2-module neurocranial/facial model structure 300 

comprises Models 2 and 3 (Table 1), with the difference being the number of proposed within-301 

module estimates. Models with increasing numbers of modules have correspondingly greater 302 

complexity in their potential parameterizations. As described above, the six-module model has 303 

four different parameterizations examined here (Fig. 2). In the simplest model (Model 4, Fig. 304 

2D), there is a single within-module estimate and a single across-module estimate. Other models 305 

propose six freely-varying within-module estimates with a constant across-module estimate 306 

(Model 5, Fig. 2F), fifteen freely-varying across-module estimates with a single within-module 307 

estimate (Model 6, Fig 2E) and a completely varying model with six within-module estimates 308 

and 15 across-module estimates (Model 7, Fig. 2G). All model structures that were explored and 309 
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their corresponding parameterizations are given in Table 1. The R code used in this analysis and 310 

example data files are provided in the online supporting information for this article and are 311 

available for download from: http://www.goswamilab.com/#!software/c1cxq. 312 

 313 

Subsampling analysis 314 

While analyses of integration are often performed on model systems with the ability to sample 315 

large numbers of individuals, questions about the evolution of integration can require the 316 

incorporation of fossil or rare taxa (Goswami et al. 2015) for which sample sizes are constrained. 317 

To evaluate potential sensitivity of this method to small sample sizes, we conducted a 318 

subsampling analysis of the best sampled dataset (subadult Macaca, 48 specimens), producing 319 

50 random subsets each of 25 specimens, 15 specimens, and 10 specimens.  Each subset was 320 

subjected to generalized Procrustes analysis prior to calculation of vector congruence coefficient 321 

correlation matrices, producing 61x61 element matrices and analyzed in EMMLi.   322 

 323 

RESULTS 324 

Simulations 325 

When a low standard deviation (σ = 0.01) around the simulated correlation values was used, the 326 

correct model structure was identified as the best fit model in 100% of cases for all no-module, 327 

two-module, and six-module structures (Fig. 3A). Reconstructed ρ values were consistently 328 

within 0.01 of the simulated values.  For the simulations of a no-modularity data set, posterior 329 
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probabilities were generally low, ~0.24, even for the best fit model.  All posterior probabilities 330 

for the correct model were greater than 0.5 for the simulations in which there was a modular 331 

structure to the data. In all cases, estimated ρ values exactly matched those used to generate the 332 

simulated datasets. 333 

 334 

When a higher standard deviation of 0.05 was used, the correct model was identified in most 335 

cases, although accuracy decreased at the highest levels of mean correlations for simple 336 

structures (Fig. 3B).  The correct model was selected with high (>0.90) posterior probability in 337 

100% of cases for the simple six-module model with within-module correlations ranging from 338 

0.15 to 0.70.  It was also correct, with 100% posterior probability, in all cases for the complex 339 

six-module structure, using either high, mixed, or low correlations. When all within-module 340 

correlations were set to 0.90, the correct model was selected in 23/100 runs, and receives a 341 

posterior probability > 0.05 in 36/100 runs, with a different parameterization of the same model 342 

structure (six modules, K=8) selected in all remaining cases.  For the two-module model, the 343 

correct model was selected in 100% of cases for within-module correlations of 0.15, 0.30, and 344 

0.50.  The correct model is selected in 84/100 cases when the within-module correlation is 0.7, 345 

and receives a posterior probability > 0.05 in 100% of cases.  In the remaining 16 runs, the 346 

closely related, more parameterized two-model model (K=3) was selected as the best fit model.  347 

When within-module correlations are centered around 0.90, an unrelated model was selected in 348 

the majority of cases.  The correct model was selected in 100% of cases with the complex two-349 

module model using low or mixed correlations.  When only the highest correlations (0.70 and 350 

0.90) were used to simulate a complex two-module structure, the correct model was selected in 351 

77/100 cases and had a posterior probability > 0.05 in 83/100 cases.  352 
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 353 

The strongest effects of high correlations and higher standard deviation were observed in cases 354 

of no modularity in the simulated structure (Fig. 3B).  The correct model was selected in 100% 355 

of cases when the overall correlation was 0.15 or 0.30.  When the overall correlation was 0.50, 356 

the correct model was selected as the best fit model in 98/100 runs and had a posterior 357 

probability > 0.05 in all runs.  With overall correlations of 0.70, the correct model was selected 358 

as the best fit model in 53/100 cases and had a posterior probability > 0.05 in 95 cases.  In the 359 

cases where the wrong model was selected, the posterior probability was < 0.50 in all but five 360 

cases, although, as noted above, posterior probabilities are generally low (~0.2) for models of no 361 

modularity, even when the correct model was selected.  When the overall correlation was 362 

extremely high, 0.90, the wrong model was selected with posterior probability > 0.50 in all runs. 363 

Even in cases where the wrong model was supported, estimated ρ values were within 0.03 of the 364 

values used to simulate each dataset.   365 

 366 

Case study 367 

For all five data sets, the optimal model selected by AICc was Model 7 (Fig. 1C), with over 99% 368 

of the posterior probability centered on this model for each data set, with the remaining model 369 

posterior probabilities were effectively zero for all other models considered (Tables 2, S2-S5). 370 

Additionally, the 183x183 raw coordinate data the juvenile (M1 erupted) data set (Table S6) also 371 

returned Model 7 as the unambiguously best-supported model. Model 7 can thus be considered 372 

the single optimal model describing the pattern of cranial integration in the macaque data set 373 

(Edwards 1992; Royall 1997; Burnham and Anderson 2002).  374 
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 375 

Model 7 is based on Cheverud’s primate-specific six-module structure (Cheverud 1982), 376 

proposing distinct within-module ρ’s for all six modules, as well as separate ρ’s for all possible 377 

across-module comparisons (total of 22 estimated parameters). Model 16, for the adult female 378 

data set only, had a posterior probability of ~ 0.001 (Table S2). This model is a variant of Model 379 

7, in which the oral, nasal, and occipital modules are maintained , but all other landmarks are 380 

treated as unintegrated, which is broadly similar to the pattern of modularity displayed by 381 

monotremes (Goswami 2006a). All other model structures, including those that proposed no 382 

modularity, a neurocranial/facial module structure, more than six cranial modules, or non-383 

primate specific module structures, received no support. 384 

 385 

Estimated values for ρ were similar for each of the 21 model parameters across the four data sets 386 

(Table 3), with very strongly integrated anterior modules (Modules 1 and 2, corresponding to the 387 

anterior dentition and nasal/facial bones) and a moderately integrated occipital region (Module 388 

6). Other modules, corresponding to the basicranium, neurocranium, and palatal/molar region 389 

were less well integrated, as were inter-module correlations. This is in approximate agreement 390 

with previous analyses of integration patterns in mammalian crania (Goswami 2006a). 391 

 392 

Subsampling analysis 393 

For the subsampling analyses, the unambiguously best supported model (posterior probabilities > 394 

0.95) was the same as for the full dataset (Model 7) 100% of the time, for the rarefaction to 25 395 
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specimens.  With 15 specimens, the same model was selected in 48/50 analyses. In the two cases 396 

of mismatch, Model 7 was one of three top models (posterior probability > 0.05), sharing support 397 

with alternative parameterizations of the same Cheverud six-module structure.  Subsampling to 398 

10 specimens recovered Model 7 in 36/50 of runs.  In three of the remaining runs in which it 399 

wasn’t the best fit model, it was selected as one of the top models (>0.05 posterior probability), 400 

in all cases along with alternative parameterizations of the Cheverud six-module structure.  For 401 

11 runs, Model 7 had a posterior probability less than 0.05.  Thus, even at n=10, this method was 402 

successful at identifying the correct model as having a significant posterior probability 78% of 403 

the time. Moreoever, of the 14 cases where Model 7 was not the top model, the best supported 404 

model was a variation on the Cheverud model in 12 cases. In only 2 of the 50 runs was the top 405 

model unrelated to Model 7; thus, a relevant model structure, if not the correct parameterization, 406 

was recovered in 96% of cases at n=10.   407 

 408 

Reconstructed ρ values were consistently very similar to those of the full dataset (Table 4), even 409 

at n =10, with mean deviations from ρ values for the full dataset of 0.020 for n = 25, to 0.037 for 410 

n = 15, and 0.062 for n = 10. Standard deviations of reconstructed ρ values were similarly low, 411 

but unsurprisingly increasing with decreasing sample sizes: 0.023 for n = 25, 0.036 for n = 15, 412 

and 0.042 for n = 10.  Thus, these further analyses provide strong support that this method is 413 

remarkably robust to quite low sample sizes.  414 

 415 

 416 
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 417 

DISCUSSION 418 

Extensive simulations varying model complexity, magnitude of mean within-module correlation, 419 

and standard deviation of correlations demonstrates that this method is robust under biologically 420 

realistic conditions.  It performs exceedingly well (perfectly, in fact), when correlations are 421 

tightly grouped around hypothetical values of ρ (low standard deviation simulations), regardless 422 

of whether the simulated structure is highly modular or entirely lacks any modular structure.  423 

With increased dispersion around the ρ values (higher standard deviations), this method is robust 424 

under most conditions, but struggles with highly integrated structures, specifically those that 425 

combine two biologically unlikely situations: 1) complete lack of modularity and 2) uniformly 426 

and, in most cases, unrealistically high correlations. Only in the case of very high within-module 427 

correlations (mainly ρ = 0.90, but also involving ρ = 0.70 in the no-modularity model and in the 428 

high-correlation complex two-module model) does the method return incorrect model structures 429 

with high posterior probability.  Observing such high correlations, uniformly across all modules 430 

or an entire structure is unusual.  Previous studies (Conner et al. 2014) have shown that 431 

vertebrates, plants, and hemimetabolous insects display mean phenotypic correlations among 432 

linear traits ranging from 0.35 to 0.5, although mean correlations among linear traits in 433 

holometabolous insects may be much higher (~0.84).  In the case study presented here, only a 434 

single module (Module 2) shows mean within-module correlations above 0.7 (Table 3), while all 435 

other modules are in the moderate to low range of within-module correlations used in these 436 

simulations.  Our simulations also show that this method is extremely robust in identifying 437 

complex models of modularity in which some modules have high within-module correlations and 438 

others have moderate or low within-module correlations.  Thus, outside of the unusual conditions 439 
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noted above, our method proves to work with high efficacy, and the few cases of “failure” in 440 

conditions typically encountered in most biological systems involved selection of a differently 441 

parameterized version of the same model structure.   442 

   443 

We further note that no other method currently available for confirmatory analysis of modularity 444 

directly compares models of modularity against a model of total integration (e.g., Marquez 2008; 445 

Klingenberg 2009; Adams 2016).  For example, in the description of the covariance ratio metric, 446 

the author provided the important cautionary note that covariance ratio analysis be used only for 447 

evaluating patterns of modularity and suggested that Partial Least Squares analysis (Rohlf and 448 

Corti 2000; Adams and Felice 2014) be used to evaluate hypotheses of integration (Adams 449 

2016). EMMLi thus provides unprecedented ability to evaluate models of total integration as 450 

well as models of modularity, but struggles with correctly identifying the lack of modularity 451 

when both standard deviations of correlations and mean correlations are high.  For this reason, 452 

we urge caution in interpreting results if the returned posterior probabilities of the best fit models 453 

are low (< 0.50), if reconstructed correlations are exceptionally high (uniformly > 0.70), or if 454 

multiple unrelated models are returned with posterior probability > 0.05, particularly if standard 455 

deviations of within-module correlations are high.  Under those circumstances, we follow Adams 456 

(2016) in suggesting that it may prove useful to employ Partial Least Squares analysis to 457 

evaluate the support for a highly integrated structure. We further advise users to consider and 458 

report all models with posterior probabilities greater than 0.05.     459 

      460 
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With regard to the macaque case study, for all five data sets, greater than 99% of the posterior 461 

probability distribution was explained by Model 7, the most parameterized version of 462 

Cheverud’s model of six cranial modules. This result indicates very strong support for this model 463 

of cranial modularity in macaques. Cheverud’s (1982) model structure was based on analysis of 464 

correlations among inter-landmark distances (length measurements) from a dataset of 462 rhesus 465 

macaques (Macaca mulatta). Cheverud (1982) identified support for this model by calculating an 466 

agreement statistic between the hypothesized F-sets and empirical P-sets, the latter derived by 467 

cluster analysis of inter-landmark distances in principal component space. This model structure 468 

has subsequently tested using theoretical matrix correlation analysis and RV coefficient analysis, 469 

with the present Japanese macaque dataset (M. fuscata) (Goswami and Polly 2010). However, 470 

that study also tested two alternative models: the two-module facial/neurocranial model (Models 471 

2-3 in Table 1), and an alternative six-module structure (the “Goswami” models, Models 8-11 in 472 

Table 1), based on general patterns of integration among therian mammals (Goswami 2006a). In 473 

that study, model selection was not directly possible, as RV coefficient analysis makes no 474 

specific hypothesis regarding model parameterization beyond the total number of modules and 475 

theoretical matrix correlation analysis simply compares the correspondence between two 476 

matrices, usually with a permutation test to assess support. All three model structures were 477 

supported at p < 0.01 using theoretical matrix correlation analysis with Mantel’s test, although it 478 

should be noted that Cheverud’s model showed the highest correlations with the empirical data. 479 

In the RV coefficient analyses, the two-module model was supported in three of the five datasets 480 

(p < 0.05), the Goswami model was supported in two of five datasets, and the Cheverud model 481 

supported in three of the five datasets, and, where supported, the Cheverud model received the 482 
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strongest support (p < 0.001). However, it was not supported for either adult dataset, whereas 483 

both the two-module and the Goswami models received support for the adult male dataset.  484 

 485 

The Goswami and Polly (2010) analysis highlighted an important issue with the existing range of 486 

confirmatory approaches to analyzing modularity: the lack of a clear way to compare among 487 

models across proposing fundamentally different structures of modularity/integration. One can 488 

compare the Cheverud six-module model to the Goswami six-module model with RV coefficient 489 

analysis, as they both are based on six cranial modules, yet neither can be meaningfully 490 

compared to the two-module neurocranial/facial model (Fig. 1). Moreover, there are a range of 491 

possibilities, from unintegrated traits within a partially modular structure, to entirely different 492 

modular structures that are biologically interesting and potentially informative, but which are 493 

impossible to approach with the existing methods.  494 

 495 

The results presented demonstrate the unambiguous support for Cheverud’s structure of 496 

phenotypic modularity for the macaque cranium, with distinct within- and among-model 497 

correlation values. Here, we used maximum likelihood analysis of congruence coefficients 498 

derived from multidimensional vector variables, as well as the more standard individual 499 

coordinate correlations for one dataset. We focused on trait correlation matrices, rather than 500 

variance-covariance matrices, in this method, as the relationships among traits, and not their 501 

individual variances, are the primary concern in studies of phenotypic integration and modularity 502 

(Olson and Miller 1951; Olson and Miller 1958; Pavlicev et al. 2009; Goswami and Polly 2010; 503 

Conner et al. 2014). Benefits of the model selection approach employed here include: 1) ability 504 
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to directly compare models of different complexities (such as two- and six-module models) or 505 

models of similar complexity which do not constitute nested subsets of one another (such as the 506 

Cheverud (1982) and Goswami (2006a) six-module models), 2) increased precision in model 507 

description, in terms of varying numbers of within- and between-module values for ρ; and 3) 508 

expansion to mixed models, in which a structure can include both modules and unintegrated 509 

traits (e.g., models 20-31 in Table 1). 510 

 511 

As noted above, there is an existing method to compare competing models of variational 512 

modularity using subspace analysis (Marquez 2008). As with the maximum likelihood approach 513 

described here, subspace analysis is a remarkably flexible approach that accurately reflects the 514 

complexity of biological systems and is capable of comparing hundreds of models (and indeed 515 

performs better with more models).   516 

 517 

Both subspace analysis and EMMLI can test multiple variations on a basic model structure, 518 

allow for combined or overlapping modules, and conduct direct comparison of models with 519 

similar or different parametrizations. In contrast to maximum likelihood analysis as implemented 520 

in EMMLi, subspace analysis creates a specific hypothetical covariance matrix for each matrix 521 

that fixes between-module covariances at zero. This is rarely the case in biological systems, 522 

particularly in proximal modules, and therefore oversimplifies the apparent hierarchical pattern 523 

of modularity in systems such as the cranium. The maximum likelihood-based approach 524 

described here could be considered preferable because it does not assign an a priori value to 525 

between-module correlations, and by returning all estimated ρ values for the best supported 526 
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model(s), allows for direct assessment of every within- and between-module correlation, which 527 

can inform on alternative model structures to test (for example, if two modules show a between-528 

module ρ that is equal or similar to their respective within-module ρ values, one could add an 529 

additional model that unites those modules into a single grouping).  530 

 531 

The two methods also differ on the method of model selection.  As a measure of goodness of fit 532 

between the observed and model covariance matrices, subspace analysis as implemented in 533 

MINT (Marquez 2008) uses γ, and corrects for differences in the parametrizations of each model 534 

by regressing γ against the number of zero elements in each model, generating γ*, with 535 

significance evaluated against expectations from random covariance matrices. In order to 536 

strengthen the evaluation of model rank, a jackknifing approach was used, with model support 537 

reflecting how often a model ranked first in the jackknifed samples. The method described here 538 

does not require fixing any values, but instead provides an overall model structure and searches 539 

for values of ρ that return the maximum likelihood for that structure.  The complexity of the 540 

model, and correction for the goodness of fit or model selection, is a function of the number of 541 

independent estimates of ρ, rather than the number of zero elements in the model.  542 

 543 

Because subspace analysis as implemented in MINT has never been developed for 3-D data, we 544 

did not conduct a direct comparison of these two methods.  Qualitative comparison of the 545 

simulations of subspace analysis (Marquez 2008) and those described here suggest that the 546 

maximum likelihood approach is more robust to sample size, number of models, model 547 

complexity, and magnitude of integration, as well as being available for use with any 548 
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morphometric dataset.  Nonetheless, subspace analysis represented a major improvement on 549 

existing methods, and there are numerous interesting aspects to subspace analysis as 550 

implemented in MINT, such as the heuristic modeling of additional hypotheses of modularity 551 

and the construction of consensus models, both of which could be developed as exploratory tools 552 

within a likelihood framework.  553 

 554 

In addition to the possibility of incorporating aspects of the Marquez (2008) method, which was 555 

developed for the same purpose as the maximum likelihood method described here, there is also 556 

vast potential for combining with methods developed for different goals. For example, the 557 

Reimmanian spaces for covariance matrices and the distances therein provide a framework for 558 

comparing the relative likelihood of one covariance matrix to that of another (Bookstein and 559 

Mitteroecker 2014) and could be combined with the method we describe here.  In whatever 560 

combination, all of these methods are beginning to fill an important need for approaches that are 561 

more flexible to the biological reality of complex anatomy.   562 

 563 

These benefits are important, as many studies of phenotypic modularity to date have either 564 

assumed a hypothesized set of modules without explicitly testing its validity for the taxon of 565 

interest (e.g., applying  the Cheverud model to other mammals, as in Marroig et al. 2009; Porto 566 

et al. 2009), or have tested a single model in the absence of comparison to other potential 567 

models, regardless of the support for that one model (e.g., Klingenberg and Marugan-Lobon 568 

2013). Ongoing analyses of other groups suggest that the Cheverud model does not adequately 569 

describe all mammalian taxa. For example, EMMLi analysis of a 55 landmark data set for the red 570 
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fox, Vulpes vulpes (Table S7) recovered the 22-parameter version of the Goswami six-module 571 

model as the unambiguous best fit model (for details of dataset, see Goswami 2006b). This result 572 

is perhaps unsurprising, as that model was initially based on cluster analyses of a comparative 573 

dataset that included a large sample of carnivorans (Goswami 2006a). However, it underscores 574 

the flexibility of the model selection approach advocated here, in that many different proposed 575 

model structures can be simultaneously compared. The approach implemented in EMMLi, and 576 

its many possible future extensions, provides the ability to directly compare diverse hypotheses 577 

on the evolution of modularity and integration, which will become increasingly crucial as we 578 

drift further from well-established model systems.  Further work along these lines will be crucial 579 

to identifying where shifts in modularity occur in the tree of life, and what the consequences of 580 

those shifts may be for the morphological evolution.  581 

 582 

With respect to cranial modularity in macaques, the results from maximum likelihood analyses 583 

as implemented in EMMLi underscore two important biological points: 1) the model of two 584 

cranial modules based on a neurocranial and a facial module is not supported when compared 585 

with more complex six-module hypotheses, and 2) the 8-module structure, although biologically 586 

plausible, is not supported. This implies that while a functional model of a facial (masticatory) 587 

vs. neurocranial organization of the skull is too simplistic to describe phenotypic integration, 588 

there is also likely an upper limit to the complexity of cranial integration in the macaque system. 589 

In addition, because Model 7 is highly-supported in the infant, juvenile, and subadult data sets in 590 

addition to the two adult data sets, this pattern of morphological integration appears to be 591 

established very early in postnatal ontogeny in Macaca. This consistency through ontogeny 592 

confirms the previous analyses of this dataset (Goswami and Polly 2010), which suggested that, 593 
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although relative level of integration decreases through ontogeny, the overall pattern is 594 

conserved from infancy to adulthood.  595 

 596 

CONCLUSIONS 597 

The study of phenotypic modularity has seen rapid growth in recent years. New empirical studies 598 

are expanding the topic beyond model systems through development (Young 1959; Zelditch 599 

1988; Hallgrimsson et al. 2004; Zelditch et al. 2006; Goswami et al. 2009; Hallgrimsson et al. 600 

2009; Zelditch et al. 2009; Sears et al. 2012), across the tree of life (Armbruster et al. 2004; 601 

Young and Hallgrimsson 2005; Goswami 2006b, a; Goswami 2007; Bell et al. 2011; Bennett and 602 

Goswami 2011; Armbruster et al. 2014; Conner et al. 2014; Goswami et al. 2014), and even into 603 

the distant past (Goswami 2006a; Bell et al. 2011; Gerber and Hopkins 2011; Webster and 604 

Zelditch 2011a, b; Maxwell and Dececchi 2012; Meloro and Slater 2012; Gerber 2013; Goswami 605 

et al. 2015). Alongside this extension of taxonomic and temporal sampling, there has been an 606 

expansion of analytical tools for the evaluation of modularity and integration. Confirmatory 607 

approaches, in particular, have received much attention in recent years, with RV coefficient 608 

analysis in particular being heavily applied to the analysis of modularity. However, these 609 

approaches by and large are limited to the direct comparison of models with similar complexities 610 

and do not allow for mixed models, where some traits are highly integrated and others are not. 611 

The issues caused by these weaknesses in the existing approaches will become increasing 612 

problematic as workers diverge from well-studied models into new systems without well-613 

established a priori hypotheses of trait relationships.  614 

 615 
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Here, we have presented a maximum likelihood and model selection approach to the evaluation 616 

of modularity, which can directly compare highly complex hypotheses of trait relationships, 617 

including comparisons of nested and non-nested models. We demonstrate this approach using 618 

multidimensional vector correlation matrices for a large dataset of macaque crania, confirming 619 

the results of previous analyses, but allowing, for the first time, robust discrimination of 620 

alternative models. Our results support a highly parameterized model of six cranial modules, 621 

with distinct levels of integration within modules, as well as between pairs of modules. This 622 

method is applicable to any metric of trait relationship, given the availability of an appropriate 623 

transformation, has appropriate Type I error rates, is robust to low sample sizes, and should be 624 

incorporated into the existing toolbox for the study of phenotypic modularity in diverse systems.  625 
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FIGURE CAPTIONS 787 

Figure 1.  Schematic depiction of three alternative partitions of the macaque cranium.  A) No 788 

modularity, with similar levels of correlation among all landmarks.  B) Two modules, 789 

corresponding to facial and neurocranial regions.  C) Six modules, corresponding approximately 790 

to Cheverud’s model (1982).  Colored circles indicate module associations. Solid lines indicate 791 

within-module correlations.  Dotted lines indicate between-module correlations.  792 

 793 

Figure 2. Schematic depiction of the four alternative parameterizations of a single six-module 794 

model structure.  A) Basic structure of landmark associations in six modules, indicated by 795 

colours. The six modules may have either similar (B) or different (C) magnitudes of within-796 

module correlations.  The intermodule correlations may also be similar (D and F) or different (E 797 

and G) among all pairs of modules.  Each distinct estimated value of ρ is counted as a parameter, 798 

along with one additional parameter for estimated variance. Solid lines indicate within-module 799 

correlations. Dashed lines indicate between-module correlations. Line colours indicate similar or 800 

different estimated values for ρ (e.g., in B, the black lines indicate that all of the six modules 801 

have the same estimated within-module correlation).  802 

 803 

Figure 3.  Results of simulations demonstrating accuracy in model selection for different model 804 

structures (no modularity, two modules, or six modules), complexity (similar or different within-805 

module correlations), and magnitudes of within-module correlations, modelled with varying 806 

standard deviations of A) σ = 0.01 or B) σ = 0.05.  Stacked bars show percentage of simulations 807 
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identifying: the correct model (green), an alternative parameterization of the same model 808 

structure, i.e., a related model, with posterior probability < 0.50 (dark blue), a related model with 809 

posterior probability > 0.50 (light blue), an unrelated model with posterior probability < 0.50 810 

(pink), or an unrelated model with posterior probability > 0.50 (red). Simulated mean within-811 

module correlations, or all correlations for no modularity models, are indicated on the x-axis. 812 

100 simulations were run for each model, resulting in a total of 4200 simulations. Results show 813 

that this method is highly accurate at identifying the correct model structure, except where higher 814 

standard deviations are combined with extremely high correlations and simple model structures  815 

(no modularity, in particular).  816 

 817 
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TABLES 

Table 1: Model descriptions and parameterizations for the 31 model structures explored in this study. Base models structures follow the 

allocation of landmark variables in Table S1. Model parameters are a sum of the number of estimated correlations within modules and 

across modules, plus one (for the estimate of the variance of the population correlation).  

Model ID Base Model Structure # Modules Model description # Parameters 

1 No Modules 0 1 ρ for all correlations 2 

2 Neurocranial/Facial model 2 1 within module ρ for both modules, 1 between-module ρ 3 

3 Neurocranial/Facial model 2 2 within-module ρ's and 1 between-module ρ 4 

4 Cheverud model 6 1 within-module ρ and 1 between-module ρ 3 

5 Cheverud model 6 Separate within-module ρ 's and 1 between-module ρ 8 

6 Cheverud model 6 1 within-module ρ and separate between-module ρ 's 17 

7 Cheverud model 6 Separate within-module ρ‘s and separate between-module ρ 's 22 

8 Goswami model 6 1 within-module ρ and 1 between-module ρ 3 

9 Goswami model 6 Separate within-module ρ 's and 1 between-module ρ 8 

10 Goswami model 6 1 within-module ρ and separate between-module ρ's 17 

11 Goswami model 6 Separate within-module ρ’s and separate between-module ρ's 22 

12 Cheverud/Goswami  8 1 within-module ρ and 1 between-module ρ 3 
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combined model 

13 

Cheverud/Goswami  

combined model 

8 Separate within-module ρ's and 1 between-module ρ 10 

14 

Cheverud/Goswami  

combined model 

8 1 within-module ρ and separate between-module ρ's 30 

15 

Cheverud/Goswami  

combined model 

8 Separate within-module ρ’s and separate between-module ρ's 37 

16 Tissue Origin model 3 1 within-module ρ and 1 between-module ρ 3 

17 Tissue Origin model 3 1 within-module ρ and separate between-module ρ's 5 

18 Tissue Origin model 3 Separate within-module ρ and 1 between-module ρ's 5 

19 Tissue Origin model 3 Separate within-module ρ and separate between-module ρ's 7 

20 

Cheverud-based 

“monotreme” model 

3 

1 within-module ρ (for modules 1, 2, and 6 only), 1 pooled 

between-module and unintegrated ρ 

3 

21 

Cheverud-based 

“monotreme” model 

3 

1 within-module ρ (for modules 1, 2, and 6 only), 1 between-

module ρ, and 1 unintegrated ρ 

4 

22 

Cheverud-based 

“monotreme” model 

3 

Separate within-module ρ’s (for modules 1, 2, and 6 only), 1 

pooled between-module and unintegrated ρ  

5 

23 Cheverud-based 3 Separate within-module ρ’s (for modules 1, 2, and 6 only), 1 6 
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“monotreme” model between-module ρ, and 1 unintegrated ρ 

24 

Cheverud-based 

“monotreme” model 

3 

1 within-module ρ (for modules 1, 2, and 6 only), separate 

between-module ρ’s, and 1 unintegrated ρ 
6 

25 

Cheverud-based 

“monotreme” model 

3 

Separate within-module ρ’s (for modules 1, 2, and 6 only), 

separate between-module p’s, and 1 unintegrated ρ 
8 

26 

Goswami-based 

“monotreme” model 

3 

1 within-module ρ (for modules 1, 2, and 6 only), 1 pooled 

between-module and unintegrated ρ 

3 

27 

Goswami-based 

“monotreme” model 

3 

1 within-module ρ (for modules 1, 2, and 6 only), 1 between-

module ρ, and 1 unintegrated ρ 

4 

28 

Goswami-based 

“monotreme” model 

3 

Separate within-module ρ’s (for modules 1, 2, and 6 only), 1 

pooled between-module and unintegrated ρ  

5 

29 

Goswami-based 

“monotreme” model 

3 

Separate within-module ρ’s (for modules 1, 2, and 6 only), 1 

between-module ρ, and 1 unintegrated ρ 

6 

30 

Goswami-based 

“monotreme” model 

3 

1 within-module ρ (for modules 1, 2, and 6 only), separate 

between-module ρ’s, and 1 unintegrated ρ 
6 

31 

Goswami-based 

“monotreme” model 

3 

Separate within-module ρ’s (for modules 1, 2, and 6 only), 

separate between-module p’s, and 1 unintegrated ρ 
8 
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Table 2: Results for the Sub-Adult (M2 erupted) data set (n=48) using congruence coefficients. Model parameters, raw log-

likelihood fits for each tested model, AICc and ∆AICc scores are provided. Model log-likelihoods and the model posterior 

probability are also shown. Sample size used to calculate AICc was 1830. See methods for details. Model ID’s correspond to 

the numbering in Table 1. The optimal model in the set of evaluated models is highlighted in bold italics. 

Model ID K LogL AICc ∆AICc Model LogL Model Post. Prob. 

1 2 2078.86 -4153.72 916.21 1.11E-199 1.11E-199 

2 3 2134.49 -4262.97 806.96 5.89E-176 5.89E-176 

3 4 2147.54 -4287.06 782.88 1.00E-170 1.00E-170 

4 3 2219.34 -4432.67 637.26 4.17E-139 4.17E-139 

5 8 2380.83 -4745.58 324.35 3.69E-71 3.69E-71 

6 17 2395.76 -4757.18 312.75 1.22E-68 1.22E-68 

7 22 2557.25 -5069.93 0.00 1.00 1.000 

8 3 2153.94 -4301.87 768.06 1.65E-167 1.65E-167 

9 8 2226.56 -4437.03 632.90 3.69E-138 3.69E-138 

10 17 2257.63 -4480.93 589.01 1.26E-128 1.26E-128 

11 22 2330.25 -4615.93 454.00 2.60E-99 2.60E-99 

12 3 2172.35 -4338.69 731.24 1.63E-159 1.63E-159 

13 10 2246.04 -4471.95 597.98 1.41E-130 1.41E-130 
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14 30 2417.44 -4773.85 296.09 5.07E-65 5.07E-65 

15 37 2491.12 -4906.68 163.26 3.54E-36 3.54E-36 

16 3 2079.47 -4152.93 917.00 7.50E-200 7.50E-200 

17 5 2214.56 -4419.08 650.85 4.67E-142 4.67E-142 

18 5 2109.73 -4209.43 860.51 1.39E-187 1.39E-187 

19 7 2244.82 -4475.57 594.36 8.62E-130 8.62E-130 

20 3 2262.47 -4518.93 551.01 2.24E-120 2.24E-120 

21 4 2265.54 -4523.05 546.88 1.76E-119 1.76E-119 

22 5 2324.39 -4638.75 431.18 2.34E-94 2.34E-94 

23 6 2327.46 -4642.87 427.06 1.84E-93 1.84E-93 

24 6 2286.11 -4560.17 509.76 2.03E-111 2.03E-111 

25 8 2348.03 -4679.99 389.95 2.11E-85 2.11E-85 

26 3 2181.12 -4356.23 713.70 1.05E-155 1.05E-155 

27 4 2181.12 -4354.23 715.71 3.85E-156 3.85E-156 

28 5 2204.15 -4398.27 671.66 1.42E-146 1.42E-146 

29 6 2204.15 -4396.26 673.67 5.17E-147 5.17E-147 

30 6 2195.90 -4379.76 690.18 1.35E-150 1.35E-150 

31 8 2218.93 -4421.78 648.15 1.80E-141 1.80E-141 

Page 41 of 46



For Peer Review Only

42 

 

Table 3: Optimal values of ρ within the six modules and for the 15 inter-module correlations 

estimated in Model 7 for each of the macaque data sets partitioned by ontogenetic stage.  

Adult 

Females 

Adult 

Males 

Sub-Adult 

(M2 erupted) 

Juvenile  

(M1 erupted) 

Infant  

(Deciduous only) 

Module 1 0.43 0.46 0.43 0.44 0.55 

Module 2 0.77 0.77 0.81 0.76 0.67 

Module 3 0.24 0.35 0.40 0.19 0.22 

Module 4 0.15 0.18 0.14 0.16 0.15 

Module 5 0.12 0.23 0.14 0.17 0.23 

Module 6 0.28 0.29 0.30 0.30 0.28 

M1 to M2 0.10 0.13 0.13 0.13 0.13 

M1 to M3 0.22 0.29 0.35 0.21 0.31 

M1 to M4 0.18 0.22 0.14 0.14 0.20 

M1 to M5 0.21 0.21 0.22 0.22 0.29 

M1 to M6 0.19 0.17 0.22 0.20 0.28 

M2 to M3 0.13 0.22 0.08 0.08 0.12 

M2 to M4 0.14 0.08 0.12 0.08 0.14 

M2 to M5 0.07 0.09 0.10 0.13 0.10 
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M2 to M6 0.12 0.27 0.08 0.17 0.08 

M3 to M4 0.11 0.15 0.11 0.11 0.13 

M3 to M5 0.16 0.12 0.16 0.09 0.16 

M3 to M6 0.11 0.12 0.15 0.10 0.14 

M4 to M5 0.14 0.15 0.11 0.12 0.13 

M4 to M6 0.13 0.12 0.11 0.11 0.11 

M5 to M6 0.17 0.17 0.14 0.16 0.15 
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