Accepted Manuscript

Title: Continuous Theta Burst Stimulation Over the Dorsolateral Prefrontal Cortex and the Pre-SMA Alter Drift Rate and Response Thresholds Respectively during Perceptual Decision-Making

Author: Dejan Georgiev, Lorenzo Rocchi, Pierluigi Tocco, Maarten Speekenbrink, John C. Rothwell, Marjan Jahanshahi

S1935-861X(16)30054-7
http://dx.doi.org/doi: 10.1016/j.brs.2016.04.004
BRS 884
Brain Stimulation
24-7-2015
6-4-2016
8-4-2016

Please cite this article as: Dejan Georgiev, Lorenzo Rocchi, Pierluigi Tocco, Maarten Speekenbrink, John C. Rothwell, Marjan Jahanshahi, Continuous Theta Burst Stimulation Over the Dorsolateral Prefrontal Cortex and the Pre-SMA Alter Drift Rate and Response Thresholds Respectively during Perceptual Decision-Making, *Brain Stimulation* (2016), http://dx.doi.org/doi: 10.1016/j.brs.2016.04.004.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

1	Continuous theta burst stimulation over the dorsolateral prefrontal cortex and the
2	pre-SMA alter drift rate and response thresholds respectively during perceptual
3	decision-making
4	
5	Dejan Georgiev ^{1,2,3} , Lorenzo Rocchi ^{2,4} , Pierluigi Tocco ² ,
6	Maarten Speekenbrink ⁵ , John C. Rothwell ² , Marjan Jahanshahi ^{1,2}
7	
8	¹ Cognitive Motor Neuroscience Group
9	² Sobell Department of Motor Neuroscience & Movement Disorders
10	UCL Institute of Neurology
11	³ Department of Neurology, University of Ljubljana
12	⁴ Department of Neurology and Psychiatry, Università di Roma "Sapienza"
13	⁵ UCL Cognitive, Perceptual and Brain Sciences, Division of Psychology and Language
14	Sciences, London, UK
15	
16	COX COX
17	Dejan Georgiev, MD, PhD
18	Sobell Department of Motor Neuroscience and Movement Disorders, Institute of
19	Neurology, University College London, 33 Queen Square, London WC1N 3BG &
20	Department of Neurology, University of Ljubljana, Zaloška cesta 2, 1000 Ljubljana,
21	Slovenia. E-mail: <u>dejan.georgiev@kclj.si</u> ; <u>dgeorgiev@ucl.ac.uk</u> ;
22	georgievdejan@gmail.com; Phone: +44 7719 798 853; Contributions: Designed
23	research, Performed research, Analyzed data, Wrote the paper.

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

24	Lorenzo	Rocchi,	MD
----	---------	---------	----

- 25 Sobell Department of Motor Neuroscience and Movement Disorders, Institute of
- 26 Neurology, University College London, 33 Queen Square, London WC1N 3BG &
- 27 Department of Neurology and Psychiatry, Università di Roma "Sapienza", Viale
- dell'Università 30, 00185 Rome, Italy. E-mail: <u>rocchi.lor@gmail.com</u>;
- 29 Phone: +39 339 3840403; Contributions: Designed research, Performed research,
- 30 Reviewed the paper before submission.
- 31
- 32 Pierluigi Tocco, MD^{,33}
- 33 Sobell Department of Motor Neuroscience and Movement Disorders, Institute of
- 34 Neurology, University College London, 33 Queen Square, London WC1N 3BG. E-mail:
- 35 <u>pietocco@hotmail.com</u>; Phone: +39 0458124291; Contributions: Designed research,
- 36 Performed research, Reviewed the paper before submission.
- 37
- 38 Maarten Speekenbrink, PhD
- 39 UCL Cognitive, Perceptual and Brain Sciences, Division of Psychology and Language
- 40 Sciences, London WC1E 6BT. E-mail: <u>m.speekenbrink@ucl.ac.uk</u>; Phone: +44 7679
- 41 8548; Contributions: Designed research, Analyzed data.
- 42
- 43 Prof John C. Rotwell
- 44 Sobell Department of Motor Neuroscience and Movement Disorders, Institute of
- 45 Neurology, University College London, 33 Queen Square, London WC1N 3BG. E-mail:

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

46	j.rothwell@ucl.ac.uk; Phone: +44 20 7829 8725; Contributions: Designed research,
47	Reviewed the paper before submission.
48	
49	Address for correspondence: Prof Marjan Jahanshahi, UCL Institute of Neurology, The
50	National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N
51	3BG, UK, E-mail: m.jahanshahi@ucl.ac.uk ; Phone: + 44 20 7837 3611; Contributions:
52	Designed research, Participated in paper writing, Reviewed the paper before submission.
53	Highlights
54	e con
55	• What is the contribution of DLPFC and pre-SMA to perceptual decision-
56	making?
57	• Two versions of the moving dots task were used
58	• cTBS over the right DLPFC, pre-SMA and sham stimulation was applied
59	• Right DLPFC cTBS modulates drift rate as a function of task difficulty
60	• pre-SMA cTBS modifies boundary separation when accuracy is emphasized
61	
62	
63	Abstract
64	Background: The speed-accuracy trade-off (SAT) refers to the balancing of speed
65	versus accuracy during decision-making. SAT is very commonly investigated with
66	perceptual decision-making tasks such as the moving dots task (MDT). The dorsolateral
67	prefrontal cortex (DLPFC) and the pre-supplementary motor area (pre-SMA) are two
68	brain regions considered to be involved in the control of SAT.

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

69	Objectives/Hypotheses: The study tested whether the DLPFC and the pre-SMA
70	play an essential role in the control of SAT. We hypothesized that continuous theta burst
71	stimulation (cTBS) over the right DLPFC would primarily alter the rate of accumulation
72	of evidence, whereas stimulation of the pre-SMA would influence the threshold for
73	reaching a decision.
74	Methods: Fifteen (5 females; mean age=30, SD=5.40) healthy volunteers
75	participated in the study. We used two versions of the MDT and cTBS over the right
76	DLPFC, pre-SMA and sham stimulation. The drift diffusion model was fit to the
77	behavioural data (reaction time and error rate) in order to calculate the drift rate,
78	boundary separation (threshold) and non-decision time.
79	Results: cTBS over the right DLPFC decreased the rate of accumulation of
80	evidence (i.e. the drift rate from the diffusion model) in high (0.35 and 0.5) but not in low
81	coherence trials. cTBS over the pre-SMA changed the boundary separation/threshold
82	required to reach a decision on accuracy, but not on speed trials.
83	Conclusions: The results suggest for the first time that both the DLPFC and the
84	pre-SMA make essential but distinct contributions to the modulation of SAT.
85	
86	Keywords: speed-accuracy trade off, perceptual decision-making, continuous
87	theta burst stimulation, DLPFC, pre-SMA.
88	
89	Abbreviations: DLPFC=dorsolateral prefrontal cortex, pre-SMA=pre-
90	supplementary motor area, cTBS=continuous theta burst stimulation
91	

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

92	Introduction
93	Perceptual decision-making is widely held to involve the process of making a
94	choice from a set of alternative options based on accumulation of information from the
95	sensory systems [1]. It is proposed that sensory information accumulates from a starting
96	point until a threshold is reached favouring one option over another [2]. Making an
97	accurate decision requires spending a longer time to collect the relevant information,
98	making the decision processes slow; whereas making a fast decision entails spending less
99	time in accumulating evidence, with the potential cost of lower accuracy. This so-called
100	speed-accuracy trade off (SAT) [3] has been most commonly investigated in perceptual
101	decision-making tasks, such as the 'moving dots' task (MDT) [4].
102	One outstanding question is in relation to the brain areas involved in the
103	modulation of SAT [3, 5]. In imaging studies a number of prefrontal areas including the
104	DLPFC [6-11] and the pre-SMA [12, 13], as well as the striatum and the subthalamic
105	nucleus (STN), have been reported to be engaged during performance of tasks that
106	involve modulation of SAT [14]. While evidence from theoretical and imaging studies
107	suggest that the DLPFC and pre-SMA are involved in the modulation of SAT, because of
108	the correlational nature of imaging data, the specific contributions of these regions to
109	SAT regulation is not clear and differs between studies. For example, while both Ivanoff
110	et al. (2008)[6], and Vallesi et al. (2012)[11] found that the right and left DLPFC are
111	respectively involved in the regulation of the amount of information necessary to reach a
112	decision, the results from other studies suggest involvement of the DLPFC in regulation
113	of the speed/rate of data collection [7-9].

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

114	Thus, the primary aim of our study was to use the MDT and continuous theta
115	burst stimulation (cTBS) (that has inhibitory effects [15]) over the DLPFC and the pre-
116	SMA to <i>first</i> establish whether these brain areas make an essential contribution to
117	modulation of SAT and <i>second</i> to identify the nature of their respective contributions to
118	the modulation of SAT. Based on theoretical models [3, 5] and imaging data [7-10] we
119	predicted that cTBS over the right DLPFC would primarily change the rate of
120	accumulation of evidence (i.e. the drift rate), whereas stimulation of pre-SMA would
121	influence the amount of information needed in order to make a decision (i.e. the boundary
122	separation/threshold) during MDT performance [5, 12]. Furthermore, based on the
123	findings from recent studies [11, 16] as a part of the post-hoc analysis, we also analysed
124	the role of the right DLPFC and pre-SMA in the regulation of switching between speed
125	and accuracy strategies.
126	
127	Materials and Methods
128	Participants
129	Fifteen (5 females; 13 right handed, 2 ambidextrous; mean age =30, SD=5.40)
130	healthy volunteers participated in the study. All participants had normal or corrected-to-
131	normal vision. None of the participants had a history of neurological, psychiatric or
132	physical illness, head injury or drug or alcohol abuse. Handedness was assessed by the
133	Briggs and Nebbs handedness inventory [17].
134	

135 **Design and procedure**

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

136	A repeated measures design was used. Continuous theta-burst stimulation (cTBS)
137	over the right DLPFC, pre-SMA and left S1 leg area (sham stimulation) was administered
138	in three different sessions in a randomized fashion. During each session all participants
139	performed two versions of the moving dots task (see bellow). The minimal interval
140	between two consecutive sessions was 5 days (range: 5-16 days).
141	The joint ethics committee of the UCL Institute of Neurology and the National
142	Hospital for Neurology and Neurosurgery approved the study. Informed consent was
143	obtained from all participants.
144	S
145	The moving dots task
146	The speed-accuracy version of the MDT manipulated the speed-accuracy
147	instructions (Figure 1A). Participants were required to decide whether a cloud of dots,
148	with a fixed coherence level of 0.5 across trials, moved to the left or the right of the
149	screen. Each dot consisted of three pixels; the diameter of the entire cloud of dots was
150	250 pixels. At the beginning of each trial, a written cue, either FAST or ACCURATE,
151	was presented pseudorandomly, instructing participants to adopt different levels of
152	cautiousness. The participants decided on the direction of the moving dots by pressing
153	one of two buttons with either their left (for dots moving left) or right (for dots moving
154	right) index finger. Two blocks (100 trials each), with a short break between blocks, were
155	completed by every participant. At the end of each trial, participants received feedback:
156	on speed trials, whenever participants exceeded the reaction time criterion of 400 ms, a
157	TOO SLOW feedback was presented, otherwise they received an IN TIME message. The
158	criterion of 400 ms for the TOO SLOW feedback was adopted from previous studies

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

159	[12]. In the accuracy trials, participants were presented with an INCORRECT or
160	CORRECT feedback. If participants exceeded a time criterion of 1500 ms, a NO
161	RESPONSE feedback was presented on the screen. The negative feedbacks were
162	presented in red, while the positive feedbacks appeared in green.
163	In the coherence version of the task (Figure 1B) the participants were instructed to
164	perform the task as fast and as accurately as possible; no cues for speed or accuracy were
165	used in this task. However, the coherence ('difficulty') level of the moving dots changed
166	between trials. Six levels of coherence were set at 0.05, 0.10, 0.15 0.25, 0.35 and 0.50
167	with 20 trials per coherence level resulting in a block of 120 trials. Participants performed
168	two blocks of the task. The coherence level was manipulated to make it harder (0.05) or
169	easier (0.5) to decide the direction of the moving dots. At the end of each trial,
170	participants received INCORRECT, CORRECT or NO RESPONSE (if criterion of '1500
171	ms' was exceeded) feedback depending on their response.
172	The tasks were programmed and presented using PsychoPy software [18] on a 27
173	inch wide LG monitor (Flatron W2753VC) with a resolution of 1920×1080 and a
174	refresh rate of 60 Hz. Participants sat in a comfortable chair at a distance 100 cm from the
175	monitor. Before each task participants completed practice trials. The order of the tasks
176	performed in a single session was randomized. Completion of both tasks required about
177	35 minutes.
178	
179	- insert Figure 1 approximately here -
180	

181 Continuous Theta Burst Stimulation (cTBS)

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

182	Magstim (Magstim Company Ltd, Wales, UK) stimulators (Magstim 200 for
183	single pulse TMS, and Magstim Rapid ² stimulator for cTBS) were used for stimulation.
184	Active motor threshold (AMT) for the first dorsal interosseus muscle (FDI) was obtained
185	by applying monophasic pulses with a 7 cm figure-of-eight-coil placed tangentially over
186	the participants' right M1 with the handle kept 45° backwards and laterally over the
187	hotspot for the left FDI. AMT for the tibialis anterior (TA) was obtained by using a
188	double-cone coil (P/N 9902-00; Magstim Co. Ltd) to stimulate M1 for the left leg. AMT
189	was defined as the stimulator output at which a motor evoked potential (MEP) higher
190	than 200 μ V was elicited on five out of ten trials while participants maintained an FDI or
191	TA contraction of approximately 20% of their maximal force measured by surface EMG
192	[19].
193	The cTBS protocol, consisting of a series of bursts of three pulses 20 ms apart
194	repeated every 200 ms for 40 s (600 pulses) [15] was used to stimulate the right DLPFC,
195	
175	pre-SMA and for sham stimulation. The right DLPFC was stimulated with a power of
196	pre-SMA and for sham stimulation. The right DLPFC was stimulated with a power of 80% of the ATM for the left FDI by placing the figure-of-eight-coil at a position F4
196 197	pre-SMA and for sham stimulation. The right DLPFC was stimulated with a power of 80% of the ATM for the left FDI by placing the figure-of-eight-coil at a position F4 according to the 10-20 system as described in Beam et al. [20]. We opted to stimulate the
196 197 198	pre-SMA and for sham stimulation. The right DLPFC was stimulated with a power of 80% of the ATM for the left FDI by placing the figure-of-eight-coil at a position F4 according to the 10-20 system as described in Beam et al. [20]. We opted to stimulate the right DLPFC rather than the left because there is evidence that in addition to the left
196 197 198 199	 pre-SMA and for sham stimulation. The right DLPFC was stimulated with a power of 80% of the ATM for the left FDI by placing the figure-of-eight-coil at a position F4 according to the 10-20 system as described in Beam et al. [20]. We opted to stimulate the right DLPFC rather than the left because there is evidence that in addition to the left DLPFC, already probed in a repetitive TMS study [10], the right DLPFC is also involved
196 197 198 199 200	 pre-SMA and for sham stimulation. The right DLPFC was stimulated with a power of 80% of the ATM for the left FDI by placing the figure-of-eight-coil at a position F4 according to the 10-20 system as described in Beam et al. [20]. We opted to stimulate the right DLPFC rather than the left because there is evidence that in addition to the left DLPFC, already probed in a repetitive TMS study [10], the right DLPFC is also involved in SAT regulation [6, 7]. The pre-SMA was stimulated with 80% of the AMT for the left
 196 197 198 199 200 201 	 pre-SMA and for sham stimulation. The right DLPFC was stimulated with a power of 80% of the ATM for the left FDI by placing the figure-of-eight-coil at a position F4 according to the 10-20 system as described in Beam et al. [20]. We opted to stimulate the right DLPFC rather than the left because there is evidence that in addition to the left DLPFC, already probed in a repetitive TMS study [10], the right DLPFC is also involved in SAT regulation [6, 7]. The pre-SMA was stimulated with 80% of the AMT for the left TA at a point located 5 cm anterior to the hotspot for TA over Cz according to the 10-20
 196 197 198 199 200 201 202 	 pre-SMA and for sham stimulation. The right DLPFC was stimulated with a power of 80% of the ATM for the left FDI by placing the figure-of-eight-coil at a position F4 according to the 10-20 system as described in Beam et al. [20]. We opted to stimulate the right DLPFC rather than the left because there is evidence that in addition to the left DLPFC, already probed in a repetitive TMS study [10], the right DLPFC is also involved in SAT regulation [6, 7]. The pre-SMA was stimulated with 80% of the AMT for the left TA at a point located 5 cm anterior to the hotspot for TA over Cz according to the 10-20 system [21, 22] by using a double-cone coil. The 7 cm-figure-of-eight coil tilted 90° to

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

- the S1 area for the left leg, defined as 2 cm posterior to the FDI hot spot in the centralmidline area [23].
- 206
- 207 Diffusion model analysis

208 Diffusion model analysis was performed by the use of *fast-dm* [24]. This program 209 estimates the parameters of Ratcliff's [2] drift diffusion model (DDM). The model can be 210 applied in cognitive tasks with binary decisons, such as the MDT [25]. The basic 211 assumption of this model is that during a binary decisions information accumulates 212 continusously from a certain predifined starting point until it reaches a threshold, when a 213 decision is made. One of the advantages of the DDM model is that the parameters allow 214 for a high degree of information utilisation [26]. Thus, instead of relying solely on the 215 behavioural measures of performance - the mean reaction time (RT) and mean error rate 216 (ER) – the so called problem of common metrics –, performance can be presented by 217 DDM parameters that take into account the distribution of both correct and incorrect RTs 218 [25], which avoids the reliance on different measures. Indeed, by analysing the RT and 219 ER separately the probability of Type I error increases [25]. In addition, whenever 220 differences in performance spread over the two metrics, a reduction of statistical power 221 might occur possibly producing non-significant effects for both RT and ER [25]. Thus, 222 DDM provides a powerful tool for a more detailed analysis of the processes underlying 223 the behavioural measures [26].

224 Several parameters are calculated from applying the diffusion model [27]. The 225 boundary separation (*a*) represents the difference between baseline activity and the 226 response threshold to reach a decision - the larger the distance between the starting point

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

227	and decision threshold, the longer it takes to make a decision, hence the longer the RT
228	and the less likely errors are. Drift rate (v) refers to the speed with which evidence for the
229	correct response accumulates; a high drift rate results in more accurate and faster
230	responses. The non-decision time (t_0) captures the time needed for other processes such
231	as stimulus encoding and motor execution. The starting point (z) reflects possible <i>a priori</i>
232	biases in the decision threshold.
233	One of the important steps when applying DDMs is to decide which of the above
234	mentioned parameters (a , v , t_0 , z) are to be fixed and which are to be allowed to vary
235	across conditions. In general, models should be defined as parsimoniously as possibly, as
236	numerous free parameters might lead to overfitting and make the results unreliable
237	especially in cases of low trial numbers [28], which calls for a careful selection of free
238	parameters for the models depending on the task [25]. For example, because changing the
239	characteristics of the sensory information changes the speed of information accumulation,
240	the drift rate should be left to vary freely in tasks with trials with variable sensory content
241	[27]. Therefore, in the coherence task separate drift rates were calculated for each
242	coherence level for the three brain regions – right DLPFC, pre-SMA and sham; the
243	values for the boundary separation and the non-decision time were allowed to vary
244	relative to brain region only.
245	In contrast, based on the classical proposal that under speed instructions there is a
246	reduction of the distance between the baseline and the threshold, in the speed-accuracy

247 version of the task both, the boundary separation and the non-decision times were

248 calculated separately for 'speed' and 'accuracy' trials relative to the region of

stimulation; whereas the drift rate was allowed to vary freely only for the brain region,

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

250	but not for the type of instructions (FAST vs. ACCURATE). Indeed, the results from a
251	recent study have shown that while the effect of the speed-accuracy instructions on
252	boundary separation is present during multiple sessions of the MDT, a presumed effect of
253	speed-accuracy instructions on the drift rate could only be traced at the beginning of
254	training; after training the speed accuracy instructions change solely the boundary
255	separation [29].
256	The starting point in both tasks was fixed to zero. Optimization criterion based on
257	the Kolmogorov-Smirnov (KS) statistics was used in both tasks. The KS approach yields
258	robust results in the presence of relatively smaller number of trials [25]. The assessment
259	of model fit was performed based on the values of the KS statistics.
260	The DDM and behavioural parameters were subjected to statistical analysis using
261	SPSS. The Shapiro-Wilk test was used to test for normality. A two-way repeated measure
262	ANOVA with factors brain region (right DLPFC, pre-SMA and sham) and task
263	difficulty/coherence level (0.05, 0.10, 0.15 0.25, 0.35 and 0.50) for the coherence task
264	and brain region (right DLPFC, pre-SMA and sham) and instructions (Speed vs.
265	Accuracy) for the speed-accuracy task, as well as <i>t</i> -tests where appropriate, were used to
266	analyze the data. As part of the post-hoc analysis, we also tested the effect of the right
267	DLPFC and pre-SMA on switching between speed and accuracy strategies on the
268	behavioural and DDM parameters. For this analysis, the RTs and ERs in speed and
269	accuracy trials were first separated into "switch" and "no-switch" trials, and then the
270	DDM parameters calculated as explained above. A three-way repeated ANOVA with
271	factors instructions (Speed vs. Accuracy), brain region (right DLPFC, pre-SMA and
272	sham) and switching (Switch vs. No-switch Trial) was then used to analyse both the

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

273	behavioural and DDM parameters. If the assumption of sphericity was violated
274	(Mauchly's test), a Greenhouse-Geisser correction was used. Probability value of $p=0.05$
275	was used as a criterion for statistical significance. A Bonferroni correction was used to
276	control for multiple comparisons.
277	
278	Results
279	Behavioural Measures
280	Speed-accuracy task - behavioural measures
281	Mean RT in speed-accuracy task. As expected, the RTs for the speed trials were
282	shorter than for the accuracy trials ($F(1,14)=19.34$, $p=0.001$) (Figure 2 A). Although the
283	mean RT after right pre-SMA stimulation was shorter than the RT after right DLPFC or
284	sham stimulation, the main effect of brain region ($p=0.254$) and the brain region \times
285	instructions interaction ($p=0.689$) were not significant.
286	×
287	- insert Figure 2 approximately here -
288	
289	Mean ER in speed-accuracy task. Participants made more errors after speed than
290	after accuracy instruction ($F_{(1,14)}$ =17.88, p =0.001) (Figure 2 B). The main effect of
291	brain region ($p=0.883$) and the brain region × instruction interaction ($p=0.571$) were not
292	significant.
293	Post-hoc analysis of the switch vs. non-switch trials. There was no main effect of
294	switching or brain region or any significant interactions on mean RTs or ER (all
295	ps > 0.252) on both speed and accuracy trials.

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

296	
297	Coherence task - behavioural measures
298	Mean RT in coherence task. As expected, the main effect of coherence was
299	significant ($F(5,70)=34.48$, $p<0.0001$) (Figure 3A) indicating shorter RTs in higher than
300	in the lower coherence trials. Neither the main effect of brain region ($p=0.494$) nor the
301	brain region × coherence interaction (p =0.440) were significant.
302	
303	 – insert Figure 3 approximately here –
304	S
305	Mean ER in coherence version of the task. The main effect of coherence was
306	significant ($F(5,70)$ =88.07, p =0.001) with higher ER in low coherence trials (Figure 3B).
307	The main effect of stimulation target ($p=0.922$) and brain region × coherence interaction
308	(p=0.530) were not significant.
309	
310	Drift Diffusion Model (DDM) analysis
311	The Kolmogorov-Smirnov tests revealed no significant results at the alpha level
312	of 0.05 for the model fits in both tasks, indicating that the individual models described
313	the RT distribution well.
314	
315	Speed-accuracy task – DDM results
316	Boundary separation in the speed-accuracy task. As expected, the boundary
317	separation for the speed trials was lower compared to accuracy trials ($F(1,14)=11.41$,
318	p=0.005) (Figure 4A). The main effect of brain region was significant ($F(2,28)=4.46$,

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

319	p=0.021) indicating a significant decrease of the boundary separation after stimulation of
320	the pre-SMA compared to the right DLPFC and sham stimulation. The significant brain
321	region × instructions interaction ($F(2,28)$ =4.26, p =0.024) indicated a differential effect of
322	the stimulation over the pre-SMA depending on instructions. Namely, the decrease of the
323	boundary separation after stimulation of pre-SMA in accuracy trials was significant
324	compared to both right DLPFC ($t(14)=2.46$, $p=0.027$) and sham stimulation ($t(14)=2.33$,
325	p=0.035). By contrast, with speed instructions, the decrease of the boundary separation
326	after pre-SMA stimulation was not significant relative to either the right DLPFC
327	($p=0.067$), or sham stimulation ($p=0.205$). There was no significant difference in
328	boundary separation in either accuracy ($p=0.382$), or speed trials ($p=0.946$) when
329	stimulation of the right DLPFC was compared to sham stimulation.
330	
331	- insert Figure 4 approximately here -
332	ר
333	Non-decision time in the speed-accuracy task. The non-decision time was
334	shorter for speed as compared to accuracy trials ($F(1,14)=16.40$, $p=0.001$) (Figure 4B).
335	There was no effect of brain region on the non-decision time ($p=0.534$). The brain region
336	\times instructions interaction was also not significant (<i>p</i> =0.195).
337	Drift rate in the speed-accuracy task. As mentioned above, the drift rate was
338	calculated for the brain region regardless of instruction. There was no effect of brain
339	region on the drift rate ($p=0.442$) in the speed-accuracy task.
340	Post-hoc analysis of the switch vs. non-switch trials. There was no significant
341	main effect of switching or brain regions or any significant interactions on the boundary

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

342	separation or non-decision time parameters (all $ps>0.156$) on both the speed and
343	accuracy trials.
344	
345	Coherence task - DDM results
346	Drift rate in the coherence task. As expected, the main effect of coherence level
347	was significant and the drift rate was lower on trials with lower coherence than higher
348	coherence ($F(5,70)$ =84.86, p <0.0001) (Figure 5). The main effect of brain region was not
349	significant ($p=0.141$). However, the brain region × coherence level interaction was
350	significant ($F(10,140)=2.03$, $p=0.025$), which indicated a differential effect of stimulation
351	of different cortical regions depending on the coherence level. Namely, there was a
352	decrease of drift rate at high coherence levels (0.35 and 0.5) after stimulation of the right
353	DLPFC compared to the stimulation of the right pre-SMA (coherence level 0.35: $t(14)$ =-
354	2.69, $p=0.018$, coherence level 0.5: $t(14)=-2.07$, $p=0.047$) and the sham stimulation
355	(coherence level 0.35: $t_{(14)}$ =-2.77, p=0.015, coherence level 0.5: $t(14)$ =-2.53, p=0.024),
356	but not at coherence levels below 0.25 ($p=0.485$). The drift rates were not significantly
357	different for stimulation of the right DLPFC and for sham stimulation ($p=0.230$).
358	
359	– insert Figure 5 approximately here –
360	Boundary separation and non-decision time in the coherence task. The boundary
361	separation and the non-decision time were calculated for stimulation of the right DLPFC,
362	right pre-SMA and after sham stimulation regardless of the level of coherence. The effect
363	of stimulated brain region on boundary separation ($p=0.260$) and non-decision time
364	(p=0.453) was not significant (see Table 1).

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

365	
366	- insert Table 1 approximately here -
367	
368	Discussion
369	There are three main findings from the study. First, disruption of the activity of
370	both the right DLPFC and the pre-SMA with cTBS significantly altered the parameters
371	derived from the drift diffusion model compared to sham stimulation. Second, cTBS over
372	the pre-SMA selectively decreased the boundary separation on accuracy trials. Third,
373	cTBS over the right DLPFC decreased the drift rate on high coherence trials (0.35 and
374	(0.5) but not in low coherence trials (lower than (0.25)). The latter two findings will be
375	discussed below.
376	
377	Stimulation of the pre-SMA decreases the boundary separation on accuracy trials
378	Although imaging studies [6, 12-14, 30] clearly showed engagement of the pre-
379	SMA in SAT control, the functional significance of activation of the pre-SMA in relation
380	to SAT control remained unclear. Our results provide the first evidence that inhibition of
381	the pre-SMA with cTBS induces a decrease in the boundary separation when accuracy is
382	emphasized over speed, suggesting a decrease of the amount of information needed to
383	reach threshold before a decision was made under accuracy instructions.
384	At first glance this finding may seem to be in contradiction to the imaging
385	literature showing greater activation of the pre-SMA under speed instructions [6, 11, 12,
386	14], because this would lead to the assumption that since there is a greater activation of
387	the pre-SMA when speed is emphasized over accuracy, stimulation of the pre-SMA

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

388	would affect primarily the responses under speed rather than under accuracy instructions.
389	However, activation of the pre-SMA by speed instructions is related to the decrease of
390	the boundary separation [13]; whereas the opposite holds true when accuracy is
391	emphasized - accuracy instructions increase boundary separation; the latter was also
392	shown in our study. Boundary separation represents the level of cautiousness, such that
393	higher boundary separation indicates higher levels of cautiousness as in the case of
394	accuracy trials [27]. Therefore, because the level of cautiousness and boundary separation
395	were higher under accuracy than under speed trials, cTBS was able to selectively alter
396	(decrease) the boundary separation on accuracy trials, and failed to modulate it on speed
397	trials for which the boundary separation was low even before cTBS was applied over the
398	pre-SMA.
200	
399	
400	Stimulation of the right DLPFC decreases the drift rate in high coherence ('easy')
400 401	Stimulation of the right DLPFC decreases the drift rate in high coherence ('easy') trials
399400401402	Stimulation of the right DLPFC decreases the drift rate in high coherence ('easy') trials The second key finding of the present study is that stimulation over the right
 400 401 402 403 	Stimulation of the right DLPFC decreases the drift rate in high coherence ('easy') trials The second key finding of the present study is that stimulation over the right DLPFC selectively decreased the drift rate in high coherence ('easy') as compared to low
 399 400 401 402 403 404 	Stimulation of the right DLPFC decreases the drift rate in high coherence ('easy') trials The second key finding of the present study is that stimulation over the right DLPFC selectively decreased the drift rate in high coherence ('easy') as compared to low coherence ('difficult') trials.
 399 400 401 402 403 404 405 	Stimulation of the right DLPFC decreases the drift rate in high coherence ('easy') trials The second key finding of the present study is that stimulation over the right DLPFC selectively decreased the drift rate in high coherence ('easy') as compared to low coherence ('difficult') trials. Our finding that cTBS over the right DLPFC differentially decreased the rate of
 399 400 401 402 403 404 405 406 	Stimulation of the right DLPFC decreases the drift rate in high coherence ('easy') trials The second key finding of the present study is that stimulation over the right DLPFC selectively decreased the drift rate in high coherence ('easy') as compared to low coherence ('difficult') trials. Our finding that cTBS over the right DLPFC differentially decreased the rate of accumulation of information as a function of task difficulty is consistent with the fMRI
 399 400 401 402 403 404 405 406 407 	Stimulation of the right DLPFC decreases the drift rate in high coherence ('easy') trials The second key finding of the present study is that stimulation over the right DLPFC selectively decreased the drift rate in high coherence ('easy') as compared to low coherence ('difficult') trials. Our finding that cTBS over the right DLPFC differentially decreased the rate of accumulation of information as a function of task difficulty is consistent with the fMRI results of Heekeren and coauthors [8, 9], who found that the DLPFC is more active
 399 400 401 402 403 404 405 406 407 408 	Stimulation of the right DLPFC decreases the drift rate in high coherence ('easy') trials The second key finding of the present study is that stimulation over the right DLPFC selectively decreased the drift rate in high coherence ('easy') as compared to low coherence ('difficult') trials. Our finding that cTBS over the right DLPFC differentially decreased the rate of accumulation of information as a function of task difficulty is consistent with the fMRI results of Heekeren and coauthors [8, 9], who found that the DLPFC is more active during easy decisions than during harder decisions, which is in turn in line with the
 399 400 401 402 403 404 405 406 407 408 409 	Stimulation of the right DLPFC decreases the drift rate in high coherence ('easy') trials The second key finding of the present study is that stimulation over the right DLPFC selectively decreased the drift rate in high coherence ('easy') as compared to low coherence ('difficult') trials. Our finding that cTBS over the right DLPFC differentially decreased the rate of accumulation of information as a function of task difficulty is consistent with the fMRI results of Heekeren and coauthors [8, 9], who found that the DLPFC is more active during easy decisions than during harder decisions, which is in turn in line with the theoretical assumptions that areas representing decision variables at a more abstract level
 399 400 401 402 403 404 405 406 407 408 409 410 	Stimulation of the right DLPFC decreases the drift rate in high coherence ('easy') trials The second key finding of the present study is that stimulation over the right DLPFC selectively decreased the drift rate in high coherence ('easy') as compared to low coherence ('difficult') trials. Our finding that cTBS over the right DLPFC differentially decreased the rate of accumulation of information as a function of task difficulty is consistent with the fMRI results of Heekeren and coauthors [8, 9], who found that the DLPFC is more active during easy decisions than during harder decisions, which is in turn in line with the theoretical assumptions that areas representing decision variables at a more abstract level show greater activation on trials when the available sensory evidence required to make a

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

411	decision is greater, such as on the easier trials. In a recent fMRI study, however, by using
412	a visual searching task Vallesi et al [31] found higher activation of the right DLPFC on
413	target-absent and salient trials, when the stimuli should be evaluated to prevent false
414	alarms; and target-absent and non-salient trials, when the cognitive system should be
415	engaged more extensively in visual search to check for the absence of the target stimulus,
416	i.e. on harder trials. Similarly, Fleck et al. [32] reported a greater activation of the right
417	DLPFC for low (harder to decide) than for high confidence (easier to decide) trials during
418	episodic retrieval/visual perception tasks. The difference in the results from these studies
419	and the results from our study and the studies mentioned before [8, 9] might be due to the
420	difference in tasks used: while Fleck et al. [32] and Vallesi [31] (but see also [33, 34])
421	used more complex tasks that engage frontal cognitive abilities more extensively, in our
422	study as well as in the study of Heekeren et al. [9] a MDT task was used to assess
423	perceptual decision-making, which does not depend as extensively on frontal control
424	mechanisms. Similar results have also been reported with a facial recognition as a
425	measure of perceptual decision-making [8, 10].
426	Philiastides et al. [10] applied 1 Hz rTMS over the left DLPFC for 12 minutes and
427	examined two levels of difficulty on the facial recognition test. 1 Hz rTMS over the left
428	DLPFC reduced the drift rate, providing evidence for left DLPFC involvement in the
429	process of evidence accumulation. Our study extends the findings of Philiastides et al.
430	[10] in two important ways. First, we showed that stimulation of the right DLPFC could
431	also decrease the drift rate, hence suggesting that there is no specific hemispheric
432	specialization for the involvement of the DLPFC in relation to accumulation of sensory
433	information. Second, with our six levels of task difficulty we have shown that the

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

434	decrease of drift rate by right DLPFC stimulation is a function of the level of task
435	difficulty, i.e. the rate of accumulation of sensory evidence was distorted by cTBS on
436	high coherence (easy) trials (0.35 and 0.5) and was not changed by stimulation on low
437	coherence (difficult) trials (0.05, 0.1, 0.15 and 0.25). Furthermore, the use of cTBS,
438	which has longer lasting effects of about 45-60 minutes [15] covered the whole period of
439	task performance in our study, rather than the first half of the trials only, as in the
440	Philiastides et al. [10] study. Therefore, our data and the data from Philiastides et al. [10]
441	provide further evidence that the DLPFC is important in linking sensation to action, as
442	previously shown in animal studies [35, 36].
443	The effect of switching between speed and accuracy strategies has been recently
444	addressed in a few studies from the Valessi group [11, 16]. In a fMRI study with healthy
445	participants, they first showed that switching from a quick to an accurate strategy was
446	associated with activation of the left middle frontal gyrus [11]. In a later study employing
447	patients with brain tumors (and after their subsequent surgical removal) located in the left
448	or right prefrontal cortex, they found that flexibility of selecting an accurate strategy after
449	adoption of a fast strategy is impaired in patients with left prefrontal tumors [16]. We,
450	however, failed to find any effect of stimulation of the right DLPFC or pre-SMA on
451	switching strategies. Campanella et al. [16] compared the effect of brain tumors in
452	patients with left and right prefrontal lesions and found a failure to flexibly switch from
453	speed to accuracy instructions in patients with left prefrontal lesion only, but not in
454	patients with right prefrontal brain tumors, suggesting that the switching between speed-
455	accuracy strategies might be functionally segregated in the left prefrontal cortex. In
456	addition, while we used the MDT in our study, they used a color discrimination task,

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

457 which might also explain the differences in the results obtained in this study and their 458 studies. However, the effect of stimulation on switching between strategies was not a 459 primary aim of our study and it was examined as a post-hoc analysis. 460 There are a few limitations of the study. Even though the RT and ER in general 461 showed similar trends as the parameters derived from the DDM, the differences between 462 stimulated brain areas failed to reach significance for these measures. However, there 463 were significant effects when comparing the DDM parameters. As noted in the methods 464 section, one of the advantages of the DDM model is that the DDM parameters allow for a 465 high degree of information utilisation relative to the behavioural measures [26], since the 466 DDM parameters take into account the distribution of both correct and incorrect RT 467 simultaneously. Thus, instead of solely relying on behavioural measures, the performance 468 as presented by the DDM parameters allows for more subtle inferences about the 469 mediating processes [25]. Furthermore, in the speed-accuracy task we used a fixed 470 criterion of 400 ms such that whenever the reaction time of the participant exceeded the 471 value of 400 ms a "TOO SLOW" feedback appeared on the screen. However, this 472 criterion might have been too strict for some and too lenient for other participants. 473 Adjustment of the feedback criterion more flexibly according to each individual's average 474 speed may have been more appropriate. We, however, decided to use a fixed criterion of 475 400 ms based on the previous studies [12], which also makes the results of this study 476 more directly comparable to the results of these previous studies. We used a double cone 477 coil for cTBS, which is considered suitable for stimulating deeper brain structures such as 478 the pre-SMA [37]. However, taking into account the size of the coil and the overall low 479 spatial resolution of TMS [38], an effect due to stimulation of other more superficial

> 21 Page 21 of 31

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

480	prefrontal areas cannot be completely ruled out. Nevertheless, the difference in the effects
481	of stimulation of the pre-SMA versus DLPFC on the DDM parameters in both tasks
482	argues against this possibility. Another factor, which might have limited stimulation
483	accuracy, is our reliance on craniometric measures to localize target areas instead of a
484	neuronavigation system. However, the craniometric measurement have been used
485	successfully many times in TMS research so far [20-22] and have been shown to be able
486	to reach desired cortex regions reliably [39]. Furthermore, there is a high inter-participant
487	variability of TBS protocols on neurophysiological outcome measures [40]. Indeed, some
488	participants respond to the cTBS "as expected" (i.e. inhibition of the cortical activity),
489	others do not show any response to the protocol, while for other participants cTBS may
490	produce the opposite effect – a facilitation rather than inhibition of cortical activity [41].
491	This variability might be due to inter-individual differences in the recruitment of
492	interneuron networks [41], but can also be accounted for by the different level of
493	contraction/relaxation of the recording muscle, i.e. it can be abolished by tonic
494	contraction while cTBS is applied [42], or it can even be reversed to facilitation by phasic
495	contraction of the muscles [43]. Nevertheless, we were very persistent in our demands to
496	the participants to relax the muscles as much as possible. In addition, it is known that the
497	effect of cTBS depends on the stimulation intensity [40]. However, we were very
498	cautious to apply cTBS at the level 80% of the AMT at FDI for each participant. There is
499	still a need for more meticulous recruitment of participants in future studies based on
500	their individual response to cTBS.
501	

501

502 **Conclusions**

503	In conclusion, the selective decrease of boundary separation on accuracy trials
504	with stimulation over the pre-SMA, and the decrease of the drift rate on high but not low
505	coherence trials with stimulation over the right-DLPFC, provide evidence that causally
506	relates pre-SMA and the right-DLPFC to the regulation of SAT. The 'selective influence'
507	assumption of the DDM refers to the idea that changes in specific cognitive processes
508	such as urgency or increased caution selectively influence one parameter of the model
509	[44], which has been supported by simulated data (e.g. Ratcliff and Frank, 2012 [45]).
510	Our data provide support for the 'selective influence' assumption by showing that cTBS-
511	induced disruption of the pre-SMA and DLPFC selectively alter boundary separation and
512	drift rate respectively.
513	
514	Acknowledgements
515	This work was supported by a grant awarded to Dejan Georgiev (ARRS 30915).
516	The authors declare no competing financial interests.
517	
518	Conflicts of interest: No conflicts of interest are declared by the authors.
519	
520	
521	
522	
523	
524	
525	

526		References
527	1.	Gold JI, Shadlen MN. The neural basis of decision making. Annu Rev Neurosci
528		2007 30:535-574
529	2.	Ratcliff R. A theory of memory retrieval. Psychol Rev 1978 85:59-108
530	3.	Bogacz R, Wagenmakers EJ, Forstmann BU, Nieuwenhuis S. The neural basis of
531		the speed-accuracy tradeoff. Trends Neurosci 2010 33:10-16
532	4.	Britten KH, Shadlen MN, Newsome WT, Movshon JA. The analysis of visual
533		motion: a comparison of neuronal and psychophysical performance. J Neurosci
534		1992 12:4745-4765
535	5.	Standage D, Blohm G, Dorris MC. On the neural implementation of the speed-
536		accuracy trade-off. Front Neurosci 2014 8:236
537	6.	Ivanoff J, Branning P, Marois R. fMRI evidence for a dual process account of the
538		speed-accuracy tradeoff in decision-making. PLoS One 2008 3:e2635
539	7.	Domenech P, Dreher JC. Decision threshold modulation in the human brain. J
540		Neurosci 2010 30:14305-14317
541	8.	Heekeren HR, Marrett S, Bandettini PA, Ungerleider LG. A general mechanism
542		for perceptual decision-making in the human brain. Nature 2004 431:859-862
543	9.	Heekeren HR, Marrett S, Ruff DA, Bandettini PA, Ungerleider LG. Involvement
544		of human left dorsolateral prefrontal cortex in perceptual decision making is
545		independent of response modality. Proc Natl Acad Sci U S A 2006 103:10023-
546		10028

547	10.	Philiastides MG, Auksztulewicz R, Heekeren HR, Blankenburg F. Causal role of
548		dorsolateral prefrontal cortex in human perceptual decision making. Curr Biol
549		2011 21:980-983

- 550 11. Vallesi A, McIntosh AR, Crescentini C, Stuss DT. fMRI investigation of speedaccuracy strategy switching. Hum Brain Mapp 2012 33:1677-1688
- 552 12. Forstmann BU, Dutilh G, Brown S, Neumann J, von Cramon DY, Ridderinkhof
- 553 KR, Wagenmakers EJ. Striatum and pre-SMA facilitate decision-making under
 554 time pressure. Proc Natl Acad Sci U S A 2008 105:17538-17542
- Mansfield EL, Karayanidis F, Jamadar S, Heathcote A, Forstmann BU.
 Adjustments of response threshold during task switching: a model-based
 functional magnetic resonance imaging study. J Neurosci 2011 31:14688-14692
- van Veen V, Krug MK, Carter CS. The neural and computational basis of
 controlled speed-accuracy tradeoff during task performance. J Cogn Neurosci
 2008 20:1952-1965
- 561 15. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst
 562 stimulation of the human motor cortex. Neuron 2005 45:201-206
- 563 16. Campanella F, Skrap M, Vallesi A. Speed-accuracy strategy regulations in
 564 prefrontal tumor patients. Neuropsychologia 2016 82:1-10
- 565 17. Briggs GG, Nebes RD. Patterns of hand preference in a student population.
 566 Cortex 1975 11:230-238
- 567 18. Peirce JW. PsychoPy--Psychophysics software in Python. J Neurosci Methods
 568 2007 162:8-13

- 569 19. Rothwell JC, Hallett M, Berardelli A, Eisen A, Rossini P, Paulus W. Magnetic 570 stimulation: motor evoked potentials. The International Federation of Clinical 571 Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 1999 52:97-103 572 20. Beam W, Borckardt JJ, Reeves ST, George MS. An efficient and accurate new 573 method for locating the F3 position for prefrontal TMS applications. Brain Stimul 574 2009 2:50-54 575 21. Cunnington R, Iansek R, Thickbroom GW, Laing BA, Mastaglia FL, Bradshaw 576 JL, Phillips JG. Effects of magnetic stimulation over supplementary motor area on 577 movement in Parkinson's disease. Brain 1996 119 (Pt 3):815-822 578 22. Rushworth MF, Hadland KA, Paus T, Sipila PK. Role of the human medial 579 frontal cortex in task switching: a combined fMRI and TMS study. J 580 Neurophysiol 2002 87:2577-2592 581 23. Moore JW, Ruge D, Wenke D, Rothwell J, Haggard P. Disrupting the experience 582 of control in the human brain: pre-supplementary motor area contributes to the 583 sense of agency. Proc Biol Sci 2010 277:2503-2509 584 Voss A, Voss J. Fast-dm: a free program for efficient diffusion model analysis. 24. 585 Behav Res Methods 2007 39:767-775 586 Voss A, Nagler M, Lerche V. Diffusion models in experimental psychology: a 25. practical introduction. Exp Psychol 2013 60:385-402 587
- 588 26. Voss A, Rothermund K, Voss J. Interpreting the parameters of the diffusion
 589 model: an empirical validation. Mem Cognit 2004 32:1206-1220
- 590 27. Ratcliff R, McKoon G. The diffusion decision model: theory and data for two591 choice decision tasks. Neural Comput 2008 20:873-922

- 592 28. Voss A, Voss J, Lerche V. Assessing cognitive processes with diffusion model
 593 analyses: a tutorial based on fast-dm-30. Front Psychol 2015 6:336
- 594 29. Zhang J, Rowe JB. Dissociable mechanisms of speed-accuracy tradeoff during
 595 visual perceptual learning are revealed by a hierarchical drift-diffusion model.
 596 Front Neurosci 2014 8:69
- 597 30. Forstmann BU, Anwander A, Schafer A, Neumann J, Brown S, Wagenmakers EJ,
- 598Bogacz R, Turner R. Cortico-striatal connections predict control over speed and599accuracy in perceptual decision making. Proc Natl Acad Sci U S A 2010
- 600 107:15916-15920
- 601 31. Vallesi A. Monitoring mechanisms in visual search: an fMRI study. Brain Res
 602 2014 1579:65-73
- Fleck MS, Daselaar SM, Dobbins IG, Cabeza R. Role of prefrontal and anterior
 cingulate regions in decision-making processes shared by memory and
 nonmemory tasks. Cereb Cortex 2006 16:1623-1630
- 606 33. Vallesi A, Mussoni A, Mondani M, Budai R, Skrap M, Shallice T. The neural
 607 basis of temporal preparation: Insights from brain tumor patients.
 608 Neuropsychologia 2007 45:2755-2763
- 609 34. Vallesi A, Shallice T, Walsh V. Role of the prefrontal cortex in the foreperiod
 610 effect: TMS evidence for dual mechanisms in temporal preparation. Cereb Cortex
 611 2007 17:466-474
- 612 35. Kim JN, Shadlen MN. Neural correlates of a decision in the dorsolateral
 613 prefrontal cortex of the macaque. Nat Neurosci 1999 2:176-185

- 614 36. Funahashi S, Bruce CJ, Goldman-Rakic PS. Mnemonic coding of visual space in
- 615 the monkey's dorsolateral prefrontal cortex. J Neurophysiol 1989 61:331-349
- 616 37. Cai W, George JS, Verbruggen F, Chambers CD, Aron AR. The role of the right
- 617 presupplementary motor area in stopping action: two studies with event-related
- 618transcranial magnetic stimulation. J Neurophysiol 2012 108:380-389
- 619 38. Sandrini M, Umiltà C, Rusconi E. The use of transcranial magnetic stimulation in
 620 cognitive neuroscience: a new synthesis of methodological issues. Neurosci
 621 Biobehav Rev 2011 35:516-536
- Accolla E, Caputo E, Cogiamanian F, Tamma F, Mrakic-Sposta S, Marceglia S,
 Egidi M, Rampini P, Locatelli M, Priori A. Gender differences in patients with
 Parkinson's disease treated with subthalamic deep brain stimulation. Mov Disord
 2007 22:1150-1156
- 40. Brownjohn PW, Reynolds JN, Matheson N, Fox J, Shemmell JB. The effects of
 individualized theta burst stimulation on the excitability of the human motor
 system. Brain Stimul 2014 7:260-268
- 41. Hamada M, Murase N, Hasan A, Balaratnam M, Rothwell JC. The role of
 interneuron networks in driving human motor cortical plasticity. Cereb Cortex
 2013 23:1593-1605
- 42. Huang YZ, Rothwell JC, Edwards MJ, Chen RS. Effect of physiological activity
 on an NMDA-dependent form of cortical plasticity in human. Cereb Cortex 2008
 18:563-570

CCEP

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

635	43.	Iezzi E, Conte	A, Suppa A,	Agostino R	R, Dinapoli L,	Scontrini A,	Berardelli A.
-----	-----	----------------	-------------	------------	----------------	--------------	---------------

- Phasic voluntary movements reverse the aftereffects of subsequent theta-burst stimulation in humans. J Neurophysiol 2008 100:2070-2076
- 44. Rae B, Heathcote A, Donkin C, Averell L, S. B. The hare and the tortoise: emphasizing speed can change the evidence used to make decisions. J Exp Psychol Learn Mem Cogn 2014 40:1226-1243
- Ratcliff R, Frank MJ. Reinforcement-based decision making in corticostriatal 45.
- rain circuits: mutual constraints by neurocomputational and diffusion models. Neural
- Comput 2012 24:1186-1229

658	Figure 1. The Moving dots task used in the study; A) Speed-accuracy version of the task;
659	B) Coherence version of the task, in which the coherence (difficulty) level of the moving
660	dots was manipulated.
661	
662	Figure 2. Mean Reaction Time in milliseconds (ms) (A) and Mean Error Rate in the speed
663	and accuracy trials after stimulation of the right dorsolateral prefrontal cortex (right
664	DLPFC), right pre-supplementary motor area (pre-SMA) and after sham stimulation.
665	
666	Figure 3. Mean Reaction Time in milliseconds (ms) (A) and Mean Error Rate for 6
667	different coherence levels after stimulation of the right dorsolateral prefrontal cortex
668	(right DLPFC), right pre-supplementary motor area (pre-SMA) and after sham
669	stimulation.
670	
671	Figure 4. Effect of stimulation (right dorsolateral prefrontal cortex – right DLPFC, pre-
672	supplementary area – pre-SMA and sham) on boundary separation (A) and non-decision
673	time (B) in speed-accuracy task as a function of instructions (Speed vs. Accuracy). The
674	significant effects of stimulation are marked with *.
675	
676	Figure 5. Effect of stimulation (right dorsolateral prefrontal cortex – right DLPFC, pre-
677	supplementary area – pre-SMA and sham) on the drift rate as a function of the coherence
678	level of the task. The significant effects of stimulation are marked with *.
679	
680	

CCEPT ΞD ISCE

Effect of cTBS over DLPFC and pre-SMA on perceptual decision making

- 681 Table 1. Mean boundary separation (a) and mean non-decision time (t_0) before and after
- 682 continuous theta burst stimulation over the right dorsolateral prefrontal cortex (r-
- 683 DLPFC), pre-supplementary area (pre-SMA) and during sham stimulation in the
- 684 coherence version of the moving dots task.

	a before	SD	a after	SD	$t_{\rm o}$ before	SD	$t_{\rm o}$ after	SD
r-DLPFC	0.903	0.275	0.914	0.248	0.373	0.076	0.345	0.059
pre-SMA	0.831	0.220	0.811	0.136	0.378	0.058	0.367	0.056
sham	0.952	0.272	0.894	0.237	0.388	0.065	0.364	0.052

685

686