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Abstract 

Over the past few decades, tremendous progress has been made in the development of 

particle-based discrete simulation methods versus the conventional continuum-based methods. In 

particular, the lattice Boltzmann (LB) method has evolved from a theoretical novelty to a ubiquitous, 

versatile and powerful computational methodology for both fundamental research and engineering 

applications. It is a kinetic-based mesoscopic approach that bridges the microscales and macroscales, 

which offers distinctive advantages in simulation fidelity and computational efficiency. Applications of 

the LB method are now found in a wide range of disciplines including physics, chemistry, materials, 

biomedicine and various branches of engineering. The present work provides a comprehensive review 

of the LB method for thermofluids and energy applications, focusing on multiphase flows, thermal 

flows and thermal multiphase flows with phase change. The review first covers the theoretical 

framework of the LB method, revealing certain inconsistencies and defects as well as common features 

of multiphase and thermal LB models. Recent developments in improving the thermodynamic and 

hydrodynamic consistency, reducing spurious currents, enhancing the numerical stability, etc., are 

highlighted. These efforts have put the LB method on a firmer theoretical foundation with enhanced LB 

models that can achieve larger liquid-gas density ratio, higher Reynolds number and flexible surface 

tension. Examples of applications are provided in fuel cells and batteries, droplet collision, boiling heat 

transfer and evaporation, and energy storage. Finally, further developments and future prospect of the 

LB method are outlined for thermofluids and energy applications.  
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1. Introduction 

    Energy and combustion systems typically involve fluid dynamics, chemical reactions, heat 

transfer, multiphase flows and phase change that occur over scales ranging from macroscale via 

mesoscale to microscale. Extensive examples are found in batteries, fuel cells, gas turbines, fluidized 

beds, coal-fired power plants, solar thermal power plants and nuclear power plants. The performance, 

reliability and safety of these technologies depend crucially on how to organize the fundamental 

thermal-fluids processes, which in turn requires accurate and reliable predictive and diagnostic 

methods. Since the 1970s, general-purpose computational fluid dynamics (CFD) based on solving the 

Reynolds-averaged Navier-Stokes (RANS) equations, pioneered by D. B. Spalding and others, has 

been developed to compute fluid flow, heat transfer and combustion with considerable success. With 

the emergence of supercomputers in the 1990s, more accurate but computationally demanding methods 

such as large eddy simulation (LES) and direct numerical simulation (DNS) have been in increasing 

use. These macroscopic methods, however, are all based on the assumption of continuum, which makes 

it difficult or even impossible to treat certain physical phenomena, especially at micro- and 

meso-scales. 

More fundamental approaches are particle-based (i.e. molecular cluster-based) discrete 

methods, such as molecular dynamics (MD), direct simulation Monte Carlo (DSMC), and 

dissipative particle dynamics (DPD). These methods are capable of simulating phenomena where 

the continuum assumption breaks down. On the other hand, the high computational cost renders 

these methods impractical for the majority of problems of practical concern in energy and 

combustion. The lattice Boltzmann (LB) method, sitting in the middle of the hierarchy of 

modeling and simulation methods (see Fig. 1), is a mesoscopic approach based on the kinetic 

theory expressed by the original Boltzmann equation. The LB equation can be either viewed as a 

special discrete solver for the Boltzmann equation or a minimal form of the Boltzmann equation in 

which the microscopic kinetic principles are preserved to recover the hydrodynamic behavior at 
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the macroscopic scale [1]. Therefore, the LB method is based on a particle picture, but principally aims 

to predict macroscopic properties [2]. This scale-bridging nature of the LB method is a fundamental 

advantage, which allows it to incorporate the essential microscopic or mesoscopic physics while 

recovering the macroscopic laws and properties at affordable computational cost. 

 

Fig. 1. A hierarchy of modeling and simulation approaches [3]. 

In the last 25 years, the LB method has been developed into an efficient and powerful simulation 

method for a wide range of phenomena and processes [1-16], such as single-phase flows, multiphase 

flows, turbulence, heat transfer, and phase change, as well as a numerical tool for nonlinear partial 

differential equations [17-22]. It exhibits many distinctive advantages over conventional numerical 

methods [2, 23]. First, in the LB equation the convective operator (the streaming process) is completely 

linear, whereas the convective terms of the Navier-Stokes equations are nonlinear. Second, in 

conventional numerical methods it is usually necessary and costly to solve a Poisson equation for the 

pressure field of incompressible flows, while in the LB method the fluid pressure can be simply 

calculated with an equation of state [2] (such an advantage can also be found in the artificial 

compressibility method, but only for steady-state flows). Third, complex boundary conditions in the 

LB method can be formulated with elementary mechanical rules such as bounce-back and reflection 

according to the interactions of the LB “molecules” with solid walls [23]. Moreover, the LB method is 
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ideal for parallel computing because of its explicit scheme, local interactions, and consequently 

very low communication/computation ratio. It is ideally situated to exploit the massively parallel 

supercomputers based on either CPUs or GPUs or heterogeneous architectures. Meanwhile, it 

should be noted that, as a natural-born dynamic scheme, the LB method is not a method of choice 

for steady-state computations [16]. In addition, the standard LB method is not well suited to 

body-fitted coordinates and adaptive time-stepping [16]. 

    Since the emergence of the LB method, its application in multiphase flows has always been a very 

important theme of the method. With the development in the past two decades, many multiphase LB 

models have been proposed. These models mostly fall into one of the following categories: the 

color-gradient LB method [24-30], the pseudopotential LB method [31-39], the free-energy LB method 

[40-44], and the phase-field LB method [45-53]. In addition, several multiphase LB models were 

recently developed based on the entropic LB method [54] and the discrete Boltzmann equation [55]. 

The color-gradient LB method was introduced by Gunstensen et al. [24], who employed red and blue 

particle distribution functions to represent two different fluids. Besides the standard collision operator, 

an additional collision operator was also utilized in this method, which can be regarded as a source 

term for generating the surface tension. Furthermore, to separate different phases and maintain 

interfaces, a recoloring process is required in the color-gradient LB models [24-30, 56]. 

    The free-energy LB method was proposed by Swift et al. [40, 41] based on thermodynamics 

considerations. The second-order moment of the equilibrium density distribution function was modified 

to include a non-ideal thermodynamic pressure tensor. The phase separation was therefore described by 

a non-ideal equation of state in the thermodynamic theory such as the van der Waals equation of state. 

However, the original free-energy LB model suffered from the lack of Galilean invariance owing to 

some non-Navier-Stokes terms [57], which resulted from the incorporation of pressure tensor using the 

equilibrium distribution function. To restore the Galilean invariance, some correction terms should be 

added to the equilibrium distribution function [41-44]. A similar problem also exists in the 
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color-gradient LB method, in which the pressure is changed by modifying the equilibrium distribution 

function. Therefore the color-gradient multiphase LB models also need some correction terms to 

eliminate the non-Navier-Stokes terms in the recovered macroscopic equations [58-60].  

    The pseudopotential LB method, which is the simplest multiphase LB method, was devised by 

Shan and Chen [31, 32]. In this method, the fluid interactions are mimicked by an interparticle potential, 

through which the separation of fluid phases or components can be achieved automatically, without 

resorting to any techniques to track or capture interfaces [61]. In fact, the interparticle potential will 

lead to a non-ideal pressure tensor, although it is different from that in the free-energy LB method. The 

pseudopotential LB method has become very popular in the multiphase LB community due to its 

conceptual simplicity and computational efficiency [2, 12, 62-64] and has been applied with great 

success to many problems. 

    The fourth category, the phase-field LB method, represents the multiphase LB models that are 

based on the phase-field theory, in which the interface dynamics is described by an order parameter that 

obeys the Cahn-Hilliard equation or a Cahn-Hilliard-like equation [65]. In 1999, an incompressible 

multiphase LB model was proposed by He et al. [45]. In this model, the liquid-gas interface was 

captured with the evolution of an index function (order parameter). Meanwhile, the recovered 

interface-capturing equation was found to be a Cahn-Hilliard-like equation. In this regard, He et al.’s 

model is a phase-field LB model, even though the model was not directly built on the phase-field 

theory. Similarly, the multiphase LB model devised by Lee and Lin [47] also belongs to this category.  

    Much progress has been made in the above four categories of multiphase LB methods since the 

aforementioned early studies. However, these multiphase LB methods exhibit different performances in 

simulating dynamic multiphase flows at large liquid-gas density ratios ( 310l gρ ρ   in real world), 

which may be related to the following issues. First, it can be found that in these multiphase LB 

methods the physical quantities that need to be evaluated across the liquid-gas interface are different. 

For instance, in the free-energy and the pseudopotential LB methods, the density and the 
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pseudopotential are used, respectively. Second, as just mentioned, the free-energy and the 

color-gradient LB methods need some correction terms to remove the non-Navier-Stokes terms in the 

macroscopic equations. These correction terms will introduce additional sources of numerical 

instability as they involve many density-gradient terms such as ρv∇  and ρ⋅v ∇ , where v  is the 

velocity [41-44, 58-60]. This is one of the reasons why the free-energy and the color-gradient 

multiphase LB methods usually suffer from severe numerical instability in simulating dynamic 

multiphase flows at large density ratios and high Reynolds numbers, although they are successful in 

static or quasi-static cases with large density ratios.  

In comparison with the free-energy and the color-gradient LB methods, the pseudopotential 

LB method and the phase-field LB method have been successfully applied to dynamic multiphase 

flows at large density ratios ( 310l gρ ρ  ) and relatively high Reynolds numbers (e.g., droplet 

splashing and droplet collision) [39, 46, 47, 49, 66-72]. Moreover, the pseudopotential and the 

phase-field multiphase LB methods have been widely employed to simulate multiphase flows in 

fuel cells (water-gas two-phase transport) and batteries (the electrolyte transport dynamics) [73-93] 

as well as phase-change heat transfer (boiling, evaporation, etc.) [94-116]. It is noticed that these 

two multiphase LB methods play an increasingly important role in modeling multiphase flow and 

phase-change heat transfer that are involved in energy science and technologies from the 

viewpoint of a mesoscopic numerical approach.  

With the increase of practical applications of the LB method, it is very necessary to review 

the related theories and clarify some theoretical issues that are crucial to applications. The purpose 

of this article is therefore to present a comprehensive review of the advances in the 

pseudopotential and the phase-field multiphase LB methods. Various theoretical aspects will be 

addressed, such as the fundamental theory and basic models, the elimination of 

thermodynamic/hydrodynamic inconsistency, the surface tension treatment, the adjustment of 

interface thickness, and the implementation of contact angles. Meanwhile, the thermal LB models 
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based on these two multiphase LB methods for simulating liquid-vapor phase change will also be 

critically reviewed. Furthermore, we will summarize several forcing schemes that are widely used in 

the LB method, which also play a crucial role in the multiphase LB methods. In addition, the thermal 

LB approaches on standard lattices, which are extensively involved in the LB simulations of 

phase-change heat transfer, will be discussed in detail.  

It is worth mentioning that there have been some excellent books on the LB method, covering 

different aspects of theories and applications, e.g., by Succi [1], Wolf-Gladrow [11], Sukop and Thorne 

[12], Mohamad [14], and Guo and Shu [15]. There have also been several comprehensive reviews in 

the field, e.g., by Benzi et al. [10], Chen and Doolen [2], and Aidun and Clausen [13]. The rest of the 

present paper is organized as follows. Section 2 describes the fundamentals of the LB method, the 

forcing schemes, and the thermal LB approaches on standard lattices. The pseudopotential and the 

phase-field multiphase LB methods are comprehensively reviewed in Sections 3 and 4, respectively. 

Section 5 reviews some applications of the multiphase and thermal LB methods, including the 

applications in fuel cells and batteries, droplet collision, boiling heat transfer and evaporation, and 

energy storage with phase change materials. Finally, Section 6 summarizes the key points of the present 

review and gives a brief discussion about the further developments and future prospects of the 

multiphase and thermal LB methods for thermofluids and energy applications. 

2. The basic LB formulations 

2.1 The LB-BGK formulation 

Historically, the LB method [4-9] originated from the lattice gas automata method [6, 117], which 

can be considered as a simplified fictitious molecular dynamics model in which the space, time, and 

particle velocities are all discrete. Later it was demonstrated that [118, 119] the LB equation can be 

rigorously derived from the Boltzmann equation in the kinetic theory, which not only establishes a 

direct connection between the LB method and the kinetic theory but also greatly solidifies the physics 

10 

 



base of the LB method. Nevertheless, it should be noted that the LB method is not limited to dilute 

gases (a limitation of the Boltzmann equation) because it can be extended to incorporate non-ideal 

interactions through the effective interactions in the spirit of density functional theory. In this paper we 

start with the Boltzmann equation [1, 11], which can be written as (without external forces) 

 f
f f
t

∂
+ ⋅ = Ω

∂
∇ξ ,  (1) 

where ( ), ,f f t= x ξ  is the single particle distribution function, ξ  is the microscopic velocity, and 

fΩ  is the collision term. Using the Bhatnagar-Gross-Krook (BGK) collision operator [8, 9], the 

collision term is given by ( )eq
f ff f τΩ = − − , in which fτ  is the relaxation time and eqf  is the 

continuous Maxwell-Boltzmann distribution function [1, 11] 

 
( )

( )2

2 exp
22

eq
Df

RTRT
ρ

π

 −
= − 

  

vξ
,  (2) 

where R  is the gas constant, D  is the spatial dimension, ρ  is the density, T  is the temperature, 

and v  is the macroscopic velocity. By discretizing the velocity ξ  into a set of lattice velocities: 

{ }αe , where 0,1, , 1nα = − , the following discrete Boltzmann-BGK equation can be obtained: 

 
eq

f

f f f
f

t
α α α

α α τ
∂ −

+ ⋅ = −
∂

e ∇ ,  (3) 

where fα  is the discrete density distribution function and eqfα  is its equilibrium distribution. 

Integrating Eq. (3) over a time interval tδ , we can obtain [118] 

 ( ) ( ), , dtt
eqt

t t t
f

f f
f t f t

δ α α
α α αδ δ

τ
+ −

+ + − = −∫x e x .  (4) 

If the integrand on the right-hand side of Eq. (4) is assumed to be constant over the time interval, then 

the following equation can be attained: 

 ( ) ( ) ( )1, , eq
t tf t f t f fα α α α αδ δ

τ
+ + − = − −x e x ,  (5) 

where f tτ τ δ=  is the non-dimensional relaxation time. The above equation is just the standard LB 

equation. The assumption that the collision term is constant in the time interval [ ], tt t δ+  will yield 
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an artificial viscosity at the Navier-Stokes level. Fortunately, the artificial viscosity can be absorbed 

into the real viscosity of the fluid [2, 9]. 

    The space x  is usually discretized in such a way that tαδe  is the distance between two 

neighboring grid points. Then after one time step tδ , ( ),f tα x  will arrive at its neighboring grid site 

along the lattice velocity direction αe . Hence the LB equation can be split into two processes: the 

“collision” process 

 ( ) ( ) ( ) ( )1, , , ,eqf t f t f t f tα α α ατ
∗  = − − x x x x ,  (6) 

and the “streaming” process 

 ( ) ( ), ,t tf t f tα α αδ δ ∗+ + =x e x .  (7) 

From Eqs. (6) and (7) we can see that the collision process is completely local and the streaming 

process is completely linear. Actually, many advantages of the LB method arise from such a feature. 

For instance, it can be seen that most of the computations take place locally at the collision process, 

which makes the LB method highly amenable to parallel computing [1, 23]. 

    In the literature, the set of the lattice velocities { }αe  is often denoted as the DdQn lattice model 

[9], where d  and n  represent the spatial dimension and the total number of the lattice velocities, 

respectively. The widely used two-dimensional nine-velocity lattice model is named “D2Q9” and its 

lattice velocities { }αe  are given by 

 
( )

( ) ( )( )
( ) ( )( )

0, 0 , 0,

cos 1 2 , sin 1 2 , 1 4,

2 cos 2 9 4 , sin 2 9 4 , 5 8,

c

c

α

α

α π α π α

α π α π α

 =
= − − = −       


− − = −       

e   (8) 

where x tc δ δ=  is the lattice constant and xδ  is the lattice spacing. The equilibrium distribution 

function eqfα  is given by [1, 2, 9] 

 
( )2

2 4

:
1 ,

2
seq

s s

c
f

c c
α αα

α αω ρ
 −⋅
 = + +
  

vv e e Ie v   (9) 

where I  is the unit tensor, 3sc c=  is the lattice sound speed, and αω  are the weights, which are 
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given as follows: 0 4 9ω = , 1 4 1 9ω − = , and 5 8 1 36ω − = . 

2.2 The LB-MRT formulation 

    Owing to its extreme simplicity, the BGK collision operator is still the most frequently used 

operator in the LB community. Nevertheless, the LB-BGK equation usually suffers from severe 

numerical instability at high Reynolds numbers (the relaxation time τ  is close to 0.5). Hence several 

alternative collision operators, such as the multiple-relaxation-time (MRT) collision operator [120-123] 

and the two-relaxation-time collision operator [124-126], have been proposed. The entropic LB method 

[127-132] and the cascaded LB method [133-136] have also attracted significant attention.  

The MRT collision operator is an important extension of the relaxation LB method proposed by 

Higuera et al. [5, 6] and the standard LB-MRT equation is given by [14, 120-123]: 

 ( ) ( ) ( ) ( ), , , ,eq
t tf t f t f t f tα α α αβ β βδ δ  + + = − Λ − x e x x x



,  (10) 

where 1−=


Λ Μ ΛΜ  is the collision matrix, in which Λ  is a diagonal matrix, Μ  is an orthogonal 

transformation matrix, and 1−M  is the inverse matrix of Μ . For the D2Q9 model, the transformation 

matrix Μ  can be given by (the lattice constant 1c = ) [121] 

 

1 1 1 1 1 1 1 1 1
4 1 1 1 1 2 2 2 2
4 2 2 2 2 1 1 1 1
0 1 0 1 0 1 1 1 1
0 2 0 2 0 1 1 1 1
0 0 1 0 1 1 1 1 1
0 0 2 0 2 1 1 1 1
0 1 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 1

 
 − − − − − 
 − − − −
 

− − − 
 = − − −
 

− − − 
 − − − 

− − 
 − − 

Μ .  (11) 

Using the transformation matrix, fα  and its equilibrium distribution function eqfα  can be projected 

onto the moment space. For the D2Q9 model, the following results can be obtained [121, 137]: 

 ( )T
M , , , , , , , ,x x y y xx xyf e j q j q p pαβ β ρ ς= = =m Mf ,  (12) 

 

( )
( )

T

T2 2 2 2

M , , , , , , , ,

1, 2 3 , 1 3 , , , , , ,

eq eq eq eq eq eq eq eq eq
x x y y xx xy

x x y y x y x y

f e j q j q p p

v v v v v v v v

αβ β ρ ς

ρ

= = =

= − + − − − −

m Mf

v v ,  (13) 
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where ( )T
0 1 8, , ,f f f=f  , ( )T

0 8, ,eq eq eqf f=f  , ρ  is the density, 2 = ⋅v v v , e  is the energy 

mode, ς  is related to energy square, ( ),x yj j  are the momentum components, ( ),x yq q  correspond 

to energy flux, ( ),xx xyp p  are related to the diagonal and off-diagonal components of the stress tensor, 

xv  and yv  are the x- and y-components of the macroscopic velocity v , respectively, and the 

superscript “T” denotes the transpose operator.  

For the D2Q9 model, the diagonal matrix Λ , which consists of the relaxation times, is given by 

 ( )1 1 1 1 1 1 1 1 1diag , , , , , , , ,e j q j q v vρ ςτ τ τ τ τ τ τ τ τ− − − − − − − − −=Λ ,  (14) 

where ρτ  and jτ  are the relaxation times of conserved moments and can be set to 1.0, vτ  

determines the dynamic viscosity ( )2 0.5s v tcµ ρ τ δ= − , and eτ  is related to the bulk viscosity. The 

transformation matrix Μ , the equilibria eqm , and the diagonal matrix Λ  of the D3Q15 and D3Q19 

models can be found in Refs. [122, 138]. The collision process of the LB-MRT equation (10) can be 

carried out in the moment space by multiplying through the transformation matrix to obtain 

 ( )eq∗ = − −m m m mΛ , (15) 

where ( )T

0 1 8, , ,m m m∗ ∗ ∗ ∗=m  . Then the streaming process can be formulated as follows: 

 ( ) ( ), ,t tf t f tα α αδ δ ∗+ + =x e x ,  (16) 

where 1 1Mf mα αβ β
∗ − ∗ − ∗= =M m . 

    The Chapman-Enskog analysis can be applied to the LB-MRT equation to derive the macroscopic 

equations. For details about this procedure, readers are referred to Refs. [137, 139-141]. In the 

literature, it has been demonstrated [123, 140, 142-148] that the MRT collision model is superior over 

the BGK collision model in terms of numerical stability because the relaxation times in the MRT 

collision operator can be individually tuned to achieve “optimal” stability [122].  

2.3 The forcing schemes 

    The forcing scheme, which is used to incorporate an external force into the LB equation, plays an 

14 

 



important role in the LB method. It determines whether the force of the system is correctly 

implemented and therefore affects the numerical accuracy of the LB model. Here we focus on 

introducing several forcing schemes that have been demonstrated to be accurate in recovering the 

unsteady macroscopic equations at the Navier-Stokes level in the low Mach number limit. In addition, 

a forcing scheme proposed by Kupershtokh et al. [149] will also be reviewed. For steady problems, 

readers are referred to the studies of Mohamad and Kuzmin [150] and Silva and Semiao [151]. 

2.3.1 He et al.’s scheme and Guo et al.’s scheme 

In 1998, He et al. [152] proposed a forcing scheme based on the complete Boltzmann-BGK 

equation with an external body force, which is given by 

 
eq

f

f f ff f
t ξ τ

∂ −
+ ⋅ + ⋅ = −

∂
∇ ∇ξ a ,  (17) 

where a  is the acceleration due to the body force ρ=F a  [139] and f fξ = ∂ ∂∇ ξ . Considering 

that the equilibrium distribution function eqf  is the leading part of the distribution function f  and 

the gradient of eqf  has the most important contribution to the gradient of f , He et al. assumed [152] 

that eqf fξ ξ≈∇ ∇ . With the aid of Eq. (2), they obtained ( )eq eqf f RTξ = − − v∇ ξ . Then the 

discrete Boltzmann-BGK equation with an external force can be written as follows: 

 ( )
2

eq
eq

f s

f f f
f f

t c
αα α α

α α ατ ρ
− ⋅∂ −

+ ⋅ = − +
∂

e v F
e ∇ ,  (18) 

where sc RT= . As mentioned earlier, the collision term can be integrated constantly over the 

integral interval. For the second term on the right-hand side of Eq. (18), He et al. [152] stressed that a 

trapezoidal rule is required in order to achieve second-order accuracy in time, which gives 

 ( ) ( ) ( ) ( )
2 2, ,

2
t

eq eqeq
t

t t
s st t

f ff f
f t f t

c c
α α α αα α

α α α

δ

δ
δ δ

τ ρ ρ
+

 − ⋅ − ⋅−  + + − = − + +
  

e v F e v F
x e x ,  (19) 

where ( ),eq eqf fα α ρ= v  and f tτ τ δ= . The implicitness of Eq. (19) can be eliminated with [152] 
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( )

22
eqt

s

f f f
c

α
α α α

δ
ρ
− ⋅

= −
e v F

.  (20) 

Using fα , Eq. (19) will become 

 ( ) ( ) ( )
2

1, , 1
2

eq
eq

t t t
s

f f
f t f t f

c
αα α

α α α αδ δ δ
τ τ ρ

− ⋅−  + + − = − + − 
 

e v F
x e x .  (21) 

The second term on the right-hand side of Eq. (21) is just the forcing term. Meanwhile, according to 

Eq. (20), the macroscopic density and velocity should be calculated by [152] 

 fα
α

ρ = ∑ , 
2

tfα α
α

δρ = +∑v e F .  (22) 

To sum up, Eq. (21) together with Eq. (22) constitutes He et al.’s forcing scheme. In fact, it can be seen 

that Eqs. (21) and (22) are self-consistent; hence the hat “ − ” of fα  in Eqs. (21) and (22) can be 

dropped in practical applications. However, the transformation given by Eq. (20) should be kept in 

mind in some cases, which will be mentioned below. 

    A similar forcing scheme was later devised by Guo et al. [153] in 2002. The major difference is 

that Guo et al.’s forcing term is written in a power series of αe : 

 
( )2

2 4

:

2
s

t
s s

c
F

c c
α αα

α αω δ
 −⋅
 = +
  

C e e IB e ,  (23) 

where B  and C  are functions of the force F  and determined by requiring that the moments of the 

forcing term Fα  are consistent with the target macroscopic equations. Using the Chapman-Enskog 

analysis, Guo et al. [153] found that B  and C  should be chosen as follows so as to recover the 

correct unsteady macroscopic equations at the Navier-Stokes level: 

 11
2τ

 = − 
 

B F ,  ( )11
2τ

 = − + 
 

C vF Fv . (24) 

The LB equation with Guo et al.’s forcing term is then given by [153] 

 ( ) ( ) ( )
2 4

1, , 1
2

eq

t t t
s s

f f
f t f t

c c
αα α α

α α α α αδ δ δ ω
τ τ

⋅ − − + + − = − + − + ⋅  
   

e ve v
x e x e F ,  (25) 

where ( ),eq eqf fα α ρ= v . Furthermore, Guo et al. [153] pointed out that the macroscopic variables 

should be defined as follows: 

 fα
α

ρ = ∑ , 
2

tfα α
α

δ
ρ = +∑v e F .  (26) 
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Comparing Eqs. (25) and (26) with Eqs. (21) and (22), we can find that He et al.’s scheme and Guo et 

al.’s scheme are basically the same except that the form of the forcing term is different. Actually, Guo 

and Zheng [137] have shown that the difference between these two forcing schemes lies in the 

second-order moment of the forcing term: 

 ( ), Guo
11
2tFα α α

α

δ
τ

 = − + 
 

∑e e vF Fv ,  (27) 

 , He 2

11
2t

s

F
cα α α

α

δ
τ

 ⋅ = − + −  
  

∑ F ve e vF Fv vv .  (28) 

The third-order velocity term in Eq. (28) is an error term resulting from the deviation between the 

third-order moment of eqfα  and that of the Maxwell-Boltzmann distribution function eqf . However, 

for low Mach number flows, the third-order velocity term can be neglected and then the two forcing 

schemes will be equivalent.  

Previously we have mentioned that the hat “ − ” of fα  in Eqs. (21) and (22) can be dropped in 

practical applications. Nevertheless, we should keep Eq. (20) in mind in some cases, e.g., in the case of 

calculating the strain rate tensor using the second-order moment of the non-equilibrium distribution 

function, which is often required in the LB simulations of non-Newtonian flows [154-157] and in the 

LB-based simulations of turbulent flows [158, 159]. According to the Chapman-Enskog analysis of the 

standard LB-BGK equation, namely Eq. (5), we can find that the strain rate tensor 

( )T 2 = + v vφ ∇ ∇  can be computed locally as follows [154, 158]: 

 ( )2

1
2

eq

s t

f f
c α α α α

αρ τδ
≈ − −∑e eφ .  (29) 

The above formulation is also valid for Eq. (19). Hence, when Eqs. (21) and (22) are used, fα  in Eq. 

(29) should be evaluated according to Eq. (20), which yields 

 ( )2 2

1 0.5
2

eq
t

s t s

f f
c cα α α α

α

δ
ρ τδ

  ⋅
≈ − − + + −  

   
∑ F vvve e vF Fvφ .  (30) 

Moreover, it can be found that fα  in Eqs. (25) and (26) is actually equivalent to fα  in Eqs. (21) and 

(22). Hence, for Guo et al.’s forcing scheme, one can replace fα  in Eq. (30) with fα  and remove the 
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third-order velocity term [160]. 

2.3.2 Wagner’s scheme and the exact-difference-method scheme 

    In 2006, Wagner [161] constructed a forcing scheme as follows: 

 ( ) ( ) ( )
,Wa

,
, ,

eq

t t

f f
f t f t Fα α

α α α α

ρ
δ δ

τ
−

+ + − = − +
u

x e x ,  (31) 

where the forcing term ,WaFα  satisfies the following constraints (see Eqs. (20), (21), and (59) in Ref. 

[161] and neglect the high-order term beyond the Navier-Stokes level): 

 , Wa 0Fα
α

=∑ , , Wa tFα α
α

δ=∑e F ,  (32) 

 ( ), Wa
11
4t tFα α α

α

δ δ
τ ρ

  = + + −    
∑ FFe e uF Fu .  (33) 

By conducting the Taylor expansion analysis of Eq. (31), Wagner stressed that the forcing term must 

satisfy Eqs. (32) and (33) in order to recover the correct unsteady macroscopic equations at the 

Navier-Stokes level. It can be seen that, in Wagner’s forcing scheme, the velocity in the equilibrium 

density distribution function and the forcing term is given by fα αα
ρ= ∑u e , while the actual fluid 

velocity is defined as ( )2tδ ρ= +v u F  [161]. Hence the equilibrium distribution function in Eq. (31) 

can be rewritten as 

 ( ) ( ) ( ) ( ), , , ,eq eq eq eqf f f fα α α αρ ρ ρ ρ ≡ + − u v u v ,  (34) 

which means that the actual forcing term of Wagner’s formulation is given by  

 ( ) ( )
,Wa ,Wa

, ,eq eqf f
F F α α

α α

ρ ρ
τ
−

= +
u v

.  (35) 

According to Eqs. (32), (33), and (35), it can be found that 

 , Wa
11
2tFα α

α

δ
τ

 = − 
 

∑e F


,  (36) 

 ( ), Wa
11
2t tFα α α

α

δ δ
τ ρ

  = − + +      
∑ FFe e uF Fu



.  (37) 

Substituting ( )2tδ ρ= +v u F  into Eq. (27), we can find that Eq. (27) and Eq. (37) are identical. 

Similarly, it can be found that Eq. (36) is the same as the result of Guo et al.’s forcing scheme, which 

means that Wagner’s forcing scheme is identical to Guo et al.’s forcing scheme, although they were 
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given in different forms. 

    A forcing scheme, which was named “exact-difference-method (EDM) scheme” by Kupershtokh 

et al. [149, 162], is now reviewed. On the basis of He et al.’s work [152], Kupershtokh et al. found that 

[162] eq eqf fξ = − u∇ ∇ . Meanwhile, the acceleration a  in Eq. (17) was expressed as d dt= ua . For 

isothermal flows, eqf  is a function of ρ  and u . With the chain rule, we can obtain 

 ( )d , d d
d d d

eq eq eqf f f
t t t
ρ ρ

ρ
∂ ∂

= ⋅ +
∂ ∂

u u
u

,  (38) 

where eq eqf f∂ ∂ = uu ∇ . Kupershtokh et al. [162] assumed that eqf  is only functional of u  and 

then obtained ( )d deq eqf t fξ= − ⋅u ∇a , which yields the following discrete Boltzmann-BGK 

equation: 

 ( )d
d

eqeq

f

ff f f
f

t t
αα α α

α α τ
∂ −

+ ⋅ = − +
∂

u
e ∇ .  (39) 

Integrating Eq. (39) over the time interval [ ], tt t δ+  gives 

 ( ) ( ) ( ) ( ), , t

eq
teq eq t

t t
f f

f t f t f fδα α
α α α α αδ δ

τ
+−

+ + = − + −x e x u u .  (40) 

The above equation is implicit because the velocity at the time level tt δ+  is unknown. Kupershtokh 

et al. therefore simplified Eq. (40) as 

 ( ) ( ) ( ) ( ) ( )1, , , , ,eq eq eq
t tf t f t f f f fα α α α α α αδ δ ρ ρ ρ

τ
 + + − = − − + + ∆ − x e x u u u u ,  (41) 

where ρ  and fα αα
ρ= ∑u e  are the density and the velocity at the t  time level, respectively, 

and tδ ρ∆ =u F . Equation (41) is the EDM forcing scheme defined by Kupershtokh et al. [149]. By 

comparing Eq. (41) with Eq. (40), it can be found that the velocity tt δ+u  was evaluated as follows: 

 d dt dt
d

t t
t

t tt t t t t
t tt

δ δδ δ
ρ ρ

+ ++ ≡ + = + ≈ +∫ ∫
Fu Fu u u u , (42) 

which indicates that the acceleration ρ= Fa  is assumed to be constant over the time.  

From the above analysis, we can see that several assumptions were used in deriving the EDM 

forcing scheme. Furthermore, Eq. (41) can also be analyzed by substituting the expression of eqfα  into 

the forcing term. According to Eq. (9), ( ),eqfα ρ + ∆u u  can be written as follows [163]:  
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 ( ) ( )
( ) ( )2

2 4

2 :
, ,

2
seq eq

s s

c
f f

c c
α αα

α α αρ ρ ρω
 ∆ ∆ + ∆ −∆ ⋅
 + ∆ ≡ + +
  

u u u u e e Iu e
u u u .  (43) 

With the aid of Eq. (43) and tδ ρ∆ =u F , Li et al. [163] obtained 

 
( ) ( )2

EDM EDM
,EDM 2 4

:
,

2
s

t
s s

c
F

c c
α αα

α αω δ
 + −⋅

= + 
  

v F Fv e e IF e   (44) 

where ( )EDM 2 2tδ ρ= + ∆ = +v u u u F . The above equation reveals that the forcing term of the EDM 

scheme can be written in the general form of forcing schemes and the velocity in the EDM forcing term 

is given by ( )EDM 2tδ ρ= +v u F  [163].  

Actually, Wagner’s forcing scheme and the EDM forcing scheme belong to the same class of 

forcing schemes, in which the velocity in eqfα  and the actual fluid velocity are given by 

fα αα
ρ= ∑u e  and ( )2tδ ρ= +v u F , respectively. For this class of forcing schemes, the usual 

Chapman-Enskog analysis in the literature should be revised so as to derive the actual macroscopic 

equations recovered from these forcing schemes. For the EDM forcing scheme, the following 

macroscopic momentum equation can be obtained at the Navier-Stokes level: 

 ( ) ( ) 2

4t tpρ ρ δ
ρ

 
∂ + ⋅ = − + ⋅ + − ⋅ 

 

FFv vv F∇ ∇ ∇ Π ∇ ,  (45) 

where Π  is the viscous stress tensor. The last term on the right-hand side of Eq. (45) is an additional 

(error) term. When the force F  is spatially uniform and the variation of density in space is very small, 

the error term in Eq. (45) can be neglected. 

2.3.3 The MRT forcing scheme 

In 2005, McCracken and Abraham [139] proposed a forcing scheme for the LB-MRT equation. 

Based on He et al.’s work [152], McCracken and Abraham started with the following equation: 

 ( ) ( ) ( )
( ) ( ) ( ), ,,

, ,
2 t t

eq t
t t t tt

f t f t f f G G
α

α α α αβ β β α αδ δ

δ
δ δ

+ +
 + + = − Λ − + + x e xx

x e x


,  (46) 

where ( ) ( )2eq
sG f cα α α ρ= − ⋅e v F . Similarly, the implicitness of Eq. (46) can be eliminated using 

 
2

tf f Gα α α
δ

= − ,  (47) 
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which yields [139] 

 ( ) ( ) ( )
( )

( )
( ), ,

, , 0.5eq
t t tt t

f t f t f f G Gα α α αβ β β α αβ βδ δ δ+ + = − Λ − + − Λ
x x

x e x
 

.  (48) 

As previously mentioned, the collision process of the LB-MRT equation can be implemented in the 

moment space. From Eq. (48), the following equation can be obtained [164] 

 ( )
2

eq
tδ∗  = − − + − 
 

m m m m I SΛ
Λ ,  (49) 

where =m Mf  with ( )T

0 1 8, , ,f f f=f   for the D2Q9 model and ( )0.5tδ −I SΛ  is the forcing 

term in the moment space with =S MG . The streaming process is given by 

 ( ) ( ), ,t tf t f tα α αδ δ ∗+ + =x e x , (50) 

where 1∗ − ∗=f M m . According to the formulation =S MG  and the expression of Gα , McCracken 

and Abraham [139] attained the following ( )T
0 1 8, , ,S S S=S   for the D2Q9 model:  

 

( )
( )

( )
( )

0

6

6

2

x x y y

x x y y

x

x

y

y

x x y y

x y y x

v F v F

v F v F

F
F

F
F

v F v F

v F v F

 
 

+ 
 
− + 

 
 
 = −
 
 
 −
 
 −
 
 + 

S ,  (51) 

where xF  and yF  are the x- and y-components of the force F , respectively. Note that the 

third-order velocity terms have been omitted in Eq. (51). When Gα  in Eq. (46) is taken following Guo 

et al.’s approach [153], the same S  will be obtained.  

    The macroscopic density and velocity are also calculated via Eq. (22). Through the 

Chapman-Enskog analysis, McCracken and Abraham [139] demonstrated that the macroscopic 

equations at the Navier-Stokes level with an external force can be correctly recovered using the above 

MRT forcing scheme. Moreover, according to the Chapman-Enskog analysis [137, 139], we can find 

that, due to the freedom of the MRT collision model, the MRT forcing term or any other source terms 

in the LB-MRT equation can be directly constructed in the moment space [15, 137] without resorting to 
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their BGK forms.  

In the LB-MRT method, the strain rate tensor ( )T 2 = + v vφ ∇ ∇  can also be calculated from 

the non-equilibrium part of the distribution functions, i.e., ( )eq−m m . For the D2Q9 model, the 

Chapman-Enskog analysis of the standard LB-MRT Eq. (10) will yield the following results [137]: 

 ( ) ( )1
1 2 ,e t x x y ym v vρτ δ− ≈ ∂ + ∂   (52) 

 ( ) ( )1
7

2 ,
3 v t x x y ym v vρτ δ− ≈ ∂ − ∂   (53) 

 ( ) ( )1
8

1 ,
3 v t x y y xm v vρτ δ− ≈ ∂ + ∂   (54) 

where 1m , 7m , and 8m  correspond to e , xxp , and xyp  in Eq. (12), respectively, and 

( )1 eqm m mα α α≈ − . The components of the strain rate tensor can be expressed using ( )1
1m , ( )1

7m  and ( )1
8m , 

as given in Eqs. (52)-(54). It can be found that the above results are also valid for Eq. (46). However, 

with the transformation given by Eq. (47), we should use 0.5 tδ= +m m S  [143]. Hence, when Eqs. 

(49)-(51) are employed, ( )1
1m , ( )1

7m , and ( )1
8m  in the above equations should be evaluated as follows: 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1
1 1 1 7 7 7 8 8 80.5 , 0.5 , 0.5 ,t t tm m S m m S m m Sδ δ δ= + = + = +   (55) 

where ( )1 eqm m mα α α≈ − . For the results of the D3Q19 model, readers are referred to Ref. [165]. 

2.4 The thermal LB method on standard lattices 

In this section, the thermal LB method for simulating thermal flows on standard lattices is 

introduced. The standard lattices [166] represent the lattice models that are commonly used in the LB 

method, such as the D2Q9, D3Q15, and D3Q19 lattice models [9]. The earliest attempts to construct 

thermal LB models were made by Massaioli et al. [167], Alexander et al. [168], and Qian [169] in 1993. 

Since then many thermal LB models have been developed and most of these models can be classified 

into the following categories [15, 137, 170]: the multispeed approach [145, 168, 169, 171-188], the 

double-distribution-function approach [189-211], and the hybrid approach [51, 104, 111, 212-216].  

    The multispeed approach is a straightforward extension of the isothermal LB method. In this 
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approach, high-order lattices are utilized and the equilibrium distribution function usually includes the 

higher-order velocity terms so as to recover the energy equation at the macroscopic level [174]. 

Numerous studies have been conducted within the framework of the multispeed LB approach and 

deserve a comprehensive review, which is beyond the scope of the present work. Readers can refer to 

Refs. [1, 15, 179] and the references therein. Here we briefly introduce the DDF approach and the 

hybrid approach, which are often constructed on the standard lattices and widely encountered in the 

simulations of thermal multiphase flows with the pseudopotential and the phase-field LB methods.  

2.4.1 The double-distribution-function (DDF) approach 

    Unlike the multispeed LB approach, in which only the density distribution function is involved, 

the DDF LB approach utilizes two different distribution functions, one (the density distribution 

function) for the flow field and the other for the energy or temperature field. In the literature, various 

DDF LB models have been devised from different points of view [189-195, 197-202]. For convenience, 

these models are classified according to their target macroscopic energy equation. 

    Firstly we give the macroscopic energy equation of ideal gases in terms of the internal energy and 

the total energy, respectively, which can be found elsewhere: 

 ( ) ( ) ( ) :t e e T pρ ρ λ∂ + ⋅ = ⋅ − ⋅ +v v v∇ ∇ ∇ ∇ Π ∇ ,  (56) 

 ( ) ( ) ( ) ( ) ( )t E E T pρ ρ λ∂ + ⋅ = ⋅ − ⋅ + ⋅ ⋅v v v∇ ∇ ∇ ∇ ∇ Π ,  (57) 

where ve c T=  is the internal energy, 20.5E e= + v  is the total energy, λ  is the thermal 

conductivity, p  is the pressure, Π  is the viscous stress tensor, p ⋅ v∇  denotes the compression 

work, and : vΠ ∇  is the viscous heat dissipation.  

The above two equations are equivalent for an ideal gas system without external forces. In the 

presence of an external force F , a term ⋅F v  should be added to the right-hand side of Eq. (57). 

When the compression work and the viscous heat dissipation can be neglected, the internal energy 

equation (56) will reduce to 
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 ( ) ( ) ( )t v vc T c T Tρ ρ λ∂ + ⋅ = ⋅v∇ ∇ ∇ .  (58) 

Furthermore, if the specific heat vc  is constant, then the following temperature equation can be 

derived from Eq. (58): 

 ( )1
t

v

T T T
c

λ
ρ

∂ + ⋅ = ⋅v ∇ ∇ ∇ .  (59) 

According to the target macroscopic equations, most of the existing DDF LB models fall into the 

following three types: the internal-energy-based model, the total-energy-based model, and the 

temperature-based model.  

2.4.1.1 The internal-energy- and total-energy-based DDF models 

    The internal-energy-based DDF LB model, which is also the most well-known DDF model in the 

LB community, was proposed by He et al. [189], who introduced an internal energy distribution 

function gα  to simulate the internal energy field, while the density and velocity fields are still 

modeled with the density distribution function fα . The two distribution functions fα  and gα  

satisfy the following discrete Boltzmann equations [189]: 

 ( ) ( )1 eq

f

f
f f f G

t
α

α α α α ατ
∂

+ ⋅ = − − +
∂

e ∇ ,  (60) 

 ( ) ( )1 eq

g

g
g g g f q

t
α

α α α α α ατ
∂

+ ⋅ = − − −
∂

e ∇ ,  (61) 

where gτ  is the relaxation time for the internal energy, which corresponds to the thermal conductivity 

( )2 2 2g sc D Rλ τ ρ= + , Gα  is the forcing term, eqgα  is the equilibrium internal energy distribution 

function, and ( ) ( )tqα α α= − ⋅ ∂ + ⋅  e v v e v∇ . The LB equations of fα  and gα  can be obtained by 

adopting a second-order integration for Eqs. (60) and (61) [189]. He et al. showed [189] that their 

model has excellent numerical stability and the viscous heat dissipation together with the compression 

work done by the pressure can be taken into account. The internal-energy-based DDF model has 

received much attention since its emergence and has been applied in many applications.  

From Eq. (61) we can see that a complicated term qα , which involves the temporal and spatial 

derivatives of macroscopic variables, exists in the evolution equation of the internal energy distribution 
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function. Guo et al. [190] pointed out that such a complicated term may introduce some additional 

errors and affect the numerical stability of the model. Based on He et al.’s work, Shi et al. [192] found 

that f qα α  in Eq. (61) can be simplified as ( ) :eqf q f fα α α α α α= − e e v∇  and demonstrated that such a 

change does not influence the recovered macroscopic equations at the Navier-Stokes level. 

Nevertheless, the calculation of the velocity gradient term v∇  is still required.  

    To solve this problem, Guo et al. [190] proposed a total-energy-based DDF LB model by 

introducing a total energy distribution function hα  to replace the internal energy distribution function 

gα . In Guo et al.’s model, the density distribution function fα  still obeys Eq. (60) but Gα  is 

different. The evolution equation of the total energy distribution function was also derived from the 

Boltzmann equation and is given by [190] 

 ( ) ( ) ( )1 eq eq

h hf

h Zh h h f f I
t
α α

α α α α α α ατ τ
∂

+ ⋅ = − − + − +
∂

e ∇ ,  (62) 

where hτ  is the relaxation time for the total energy, which corresponds to ( )2 2 2h sc D Rλ τ ρ= + , 

eqhα  is the equilibrium total energy distribution function, ( )hf f h h fτ τ τ τ τ= − , 2 2Zα α= ⋅ −e v v , 

and Iα  is related to the external force F . Similarly, the LB equations of fα  and hα  can be 

attained by integrating Eqs. (60) and (62) with a second-order integration [190]. From Eq. (62) it can 

be found that there are no complicated terms that consist of the gradients of macroscopic quantities. 

Hence in the total-energy-based DDF model, the inclusion of the compression work and the viscous 

heat dissipation is simpler and easier than that in the internal-energy-based DDF model. Recently, a 

similar total-energy-based DDF model has been developed by Karlin et al. [193]. In addition, based on 

Guo et al.’s work, Li et al. [144] have constructed a coupling DDF model on the standard D2Q9 lattice, 

which can recover the equation of state of ideal gases, p RTρ= . 

In some applications, the compression work and the viscous heat dissipation are negligible; thus 

Eq. (58) can be taken as the target macroscopic energy equation. On the basis of this consideration, 

several simplified internal-energy-based DDF models have been proposed by Peng et al. [191], Shi et 

al. [192], and Li et al. [194], respectively. The simplified thermal LB equation for gα  is given by 
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 ( ) ( ) ( )1, , eq
t t

g

g t g t g gα α α α αδ δ
τ

+ + − = − −x e x ,  (63) 

where the equilibrium internal energy distribution function can be chosen as eq eqg efα α= . In the 

presence of an external force F , an error term will exist in the macroscopic internal energy equation 

recovered from Eq. (63) [195]: 

 ( ) ( ) ( )t v vc T c T T Tρ ρ λ γ∂ + ⋅ = ⋅ + Fv∇ ∇ ∇ ,  (64) 

where pγ λ= . Such an issue arises from the coupling between the Chapman-Enskog analyses of Eq. 

(63) and the LB equation with a forcing term. To be specific, it is attributed to the evaluation of 0t∂ v  

in the Chapman-Enskog analysis of Eq. (63), which can be seen from Eq. (68). To eliminate the error 

term in Eq. (64), a correction term should be added to Eq. (63) [195]: 

 ( ) ( ) ( ) ( )
2

1 1, , 1
2

eq
t t t v

g g s

g t g t g g c T
c

α
α α α α α αδ δ δ ω

τ τ

  ⋅
+ + − = − − + −  

 

e F
x e x .  (65) 

The correction term does not affect the calculation of the macroscopic internal energy as its summation 

over α  is zero. In 2009, Li et al. [196] mentioned that a correction term is needed for Eq. (63) in the 

presence of a body force, but also pointed out that the correction term can be neglected. Recently, Li 

and Luo [195] showed that the error term arising from the external force will lead to significant 

numerical errors in certain cases, e.g., in the pseudopotential LB modeling of thermal flows.  

2.4.1.2 The temperature-based DDF models 

Now attention turns to the temperature-based DDF LB models, which are usually devised for 

solving Eq. (59). For incompressible flows with negligible density variations, the right-hand side of Eq. 

(59) can be rewritten as ( ) ( )vT c Tλ ρ χ⋅ ≈ ⋅∇ ∇ ∇ ∇ , where χ  is the thermal diffusivity. The most 

well-known temperature-based DDF LB model may be attributed to Shan [197], who treated the 

temperature as a passive scalar and introduced a temperature distribution function, which obeys 

 ( ) ( ) ( )1, , eq
t t

T

T t T t T Tα α α α αδ δ
τ

+ + − = − −x e x ,  (66) 

where Tα  is the temperature distribution function, Tτ  is the relaxation time for the temperature, and 
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eq eqT Tfα α ρ=  is the equilibrium temperature distribution function, in which eqfα  is given by Eq. (9). 

The thermal diffusivity is given by ( )2 0.5s T tcχ τ δ= − . In 2002, Guo et al. [198] proposed a similar 

temperature-based DDF model using the D2Q4 lattice and eqTα  is given by 

( )20.25 1 2eqT T cα α= + ⋅e v . In recent years, several temperature-based DDF LB-MRT models have 

also been developed [146, 217, 218], in which the LB-BGK equations of the density and temperature 

distribution functions were replaced by an isothermal LB-MRT equation and a thermal LB-MRT 

equation, respectively. Numerical results showed that these temperature-based DDF LB-MRT models 

have better numerical stability than their BGK counterparts [146, 217, 218].  

Through Chapman-Enskog analysis, it can be found that the macroscopic temperature equation 

recovered from Eq. (66) with eq eqT Tfα α ρ=  is given by [200] 

 ( ) ( ) ( ) ( ){ }2
00.5t t T t sT T T T c Tδ τ  ∂ + ⋅ = ⋅ − ∂ + ⋅ + v v vv∇ ∇ ∇ ∇ .  (67) 

Some error terms can be observed in the recovered temperature equation. The first term in the bracket, 

( )0t T∂ v , can be rewritten as ( )0 0 0t t tT T T∂ = ∂ + ∂v v v  in which 0t∂ v  should be evaluated according 

to the Chapman-Enskog analysis of the LB equation for the density distribution function. For the 

standard LB equation with an external force, 0t∂ v  is given by [195] 

 ( )0
1

t p
ρ

∂ = − ⋅ + −v v v F∇ ∇ ,   (68) 

where 2
sp cρ= . Since ( )0 0t T T T∂ − ⋅ + ⋅ =v vv vv∇ ∇ , the error terms ( ) ( )0t T T∂ + ⋅v vv∇  in Eq. (67) 

can be rewritten as ( )T p ρ−F ∇ , which shows that the error terms mainly arise from ( )0t T∂ v  and 

one error term is proportional to 2
sp cρ ρ ρ=∇ ∇ , while the other error term is introduced by the 

external force F . We should be aware of these error terms because in certain cases they may result in 

considerable numerical errors, e.g., if the hydrodynamic model is a multiphase LB model, then ρ ρ∇  

cannot be neglected. For the temperature-based thermal LB equation on the D2Q4 or D2Q5 lattice, 

similar error terms can be found, whether using the BGK or MRT collision operator.  

A couple of improved DDF LB models [199, 200] have been recently developed to eliminate the 
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error terms in Eq. (67). Based on the isothermal LB model proposed by He and Luo [219], Chai and 

Zhao [199] have devised an improved DDF LB model by introducing an additional term into the 

equilibrium temperature distribution function as well as a source term into the thermal LB equation. 

Huang and Wu [200] have developed an improved thermal LB-MRT equation by modifying the 

collision process of the distribution functions in the moment space, which prevents the generation of 

( )0t T∂ v  in Eq. (67). Therefore the error terms resulting from ( )0t T∂ v  were removed. Meanwhile, 

the term ( )T⋅ vv∇  in Eq. (67) was eliminated by dropping the second-order velocity terms in the 

equilibria. Besides the above three types of DDF LB models, several DDF LB models have been 

developed based on the enthalpy and the total enthalpy [201, 202], which are similar to the models 

based on the internal energy and the total energy, respectively.  

2.4.2 The thermal boundary treatments 

In this subsection, the thermal boundary treatments for the DDF LB approach are briefly 

summarized. In LB simulations, after the streaming step, the distribution functions pointing into the 

fluid domain are unknown at the boundary nodes [1]. Evaluating these unknown distribution functions 

plays a crucial role in the LB method. For isothermal LB models, many boundary treatments have been 

devised [142, 220-225]. However, compared with the hydrodynamic boundary conditions, the thermal 

boundary conditions have not been satisfactorily addressed because the number of the unknown 

distribution functions at the boundary nodes is usually larger than the number of the constraints [184].  

For the internal-energy-based DDF LB model, an early thermal boundary treatment was 

developed by He et al. [189]. In their work, the non-equilibrium bounce-back rule proposed by Zou and 

He [221] was extended to impose thermal boundary conditions. Later, D’Orazio et al. [226] and 

D’Orazio and Succi [227] devised a counter-slip thermal boundary treatment for the 

internal-energy-based DDF LB model through calculating the unknown internal energy distribution 

functions from the equilibrium internal energy distribution functions with a counter-slip internal energy. 

In 2002, Guo et al. [198] proposed a non-equilibrium extrapolation treatment for their 

28 

 



temperature-based DDF LB model. The temperature distribution functions at the boundary nodes were 

decomposed into equilibrium and non-equilibrium parts. Meanwhile, the non-equilibrium part was 

evaluated with an extrapolation of the non-equilibrium part of the distribution functions at the 

neighboring nodes. Inspired by Guo et al.’s non-equilibrium extrapolation scheme, Tang et al. [204] 

have developed a thermal boundary treatment for the internal-energy-based DDF LB model. In addition, 

Guo et al. [190] have extended the non-equilibrium extrapolation scheme to their total-energy-based 

DDF LB model. 

Furthermore, Ginzburg [228] has proposed a multi-reflection scheme to mimic the Dirichlet and 

Neumann boundary conditions in the LB models for advection and anisotropic dispersion equations 

with arbitrarily shaped surfaces. In 2007, Kao and Yang [229] used the bounce-back scheme to 

implement the adiabatic boundary condition and employed the equilibrium distribution functions to 

treat boundaries with a constant temperature. Later, Kuo and Chen [230] developed a non-equilibrium 

mirror-reflection boundary treatment for the Dirichlet boundary condition and the adiabatic boundary 

condition, in which the relationship between the heat flux and the first-order moment of the 

non-equilibrium temperature distribution function was considered. In 2010, Liu et al. [231] suggested 

that the unknown energy distribution functions at the boundary nodes can be chosen to be functions of 

the local known energy distribution functions together with some corrections. 

Recently, Zhang et al. [232] have proposed a general bounce-back scheme to implement thermal 

and concentration boundary conditions. In addition, Li et al. [233] have also developed a thermal 

boundary treatment based on the bounce-back scheme and the interpolation of the distribution 

functions. Inspired by the idea of Yin and Zhang’s method [234], Chen et al. [235] have developed an 

improved bounce-back boundary treatment for thermal boundary conditions, in which the midpoint 

temperature value was utilized to modify the bounced-back population. It was shown that [235] the 

improved treatment has a simple algorithm and can easily deal with the boundaries of complex 

geometries. Besides the above thermal boundary treatments, several immersed-boundary-method-based 
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thermal boundary schemes have also been proposed [236, 237]. Moreover, Huang et al. [238], Chen et 

al. [239], and Li et al. [233] have developed thermal boundary treatments for curved boundaries.  

2.4.3 The hybrid approach 

The concept of hybrid thermal LB approach was formally introduced by Lallemand and Luo in 

2003 [214]. Before that time, Filippova and Hänel [212, 213] had practically implemented such an 

approach in modeling low Mach number combustion. Similar to the flow simulation in the DDF LB 

approach, in the hybrid approach the LB flow simulation is also separated from the solution of the 

temperature field, which is usually solved with conventional numerical methods, such as the 

finite-difference or finite-volume method [51, 104, 111, 212-216, 240]. 

Various finite-difference schemes can be found in the textbooks of computational fluid dynamics. 

Here we just take the second-order Runge-Kutta scheme as an example to illustrate the implementation 

of a finite-difference scheme in the hybrid LB approach. With a constant thermal conductivity, Eq. (59) 

can be written as 

 2
t

v

T T T
c
λ

ρ
∂ = − ⋅ + ∇v ∇ .  (69) 

Note that, if the thermal conductivity λ  is variable, the term ( )Tλ⋅∇ ∇  in Eq. (59) should be 

rewritten as ( ) 2T T Tλ λ λ⋅ = ⋅ + ∇∇ ∇ ∇ ∇ . For simplicity, the right-hand side of Eq. (69) is represented 

by ( )K T . Using the second-order Runge-Kutta scheme, Eq. (69) can be solved as follows: 

 ( ) ( ) ( )1 2, ,
2

t
tT t T t h h

δ
δ+ = + +x x ,  (70) 

in which 1h  and 2h  denote the calculations of the right-hand side of Eq. (69) and are given by 

 ( )1 2 1,
2

t t th T h T h
δ

Κ Κ  = = + 
 

,  (71) 

where ( ),tT T t= x . In calculating 2h , the density ρ  and the velocity v  are still at the t  time 

level since they are given by the hydrodynamic LB model. 

    For the spatial discretization, a second-order difference scheme can be used. In the framework of 

the LB method, a widely used scheme is the second-order isotropic difference scheme [47, 241], which 
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is constructed based on the following Taylor series expansion: 

 ( ) ( ) ( ) ( )
2

2
t

t k t k k l k le e eα α α α
δ

φ δ φ δ φ φ+ = + ∂ + ∂ ∂ +x e x x x  , (72) 

where φ  is an arbitrary quantity. According to Eq. (72), the second-order isotropic difference scheme 

for the spatial gradient of the quantity φ  is given as follows: 

 ( ) ( )2

1
i t i

s t

e
c α α α

α

φ ω φ δ
δ

∂ ≈ +∑x x e , (73) 

where ieα  is the i-component (x, y, or z) of αe  and the weights αω  are the same as those in Eq. (9). 

Similarly, the second-order isotropic difference scheme for the Laplacian of φ  is given by 

 ( ) ( ) ( )2
2 2

2
t

s tc α α
α

φ ω φ δ φ
δ

∇ ≈ + −  ∑x x e x .  (74) 

Note that both Eq. (70) and the second-order isotropic difference schemes are only applied in the 

interior field, namely the whole computational field except the boundaries. For the Dirichlet thermal 

boundary condition, the temperature at the boundary is known, wT T= . For the Neumann thermal 

boundary condition, the temperature at the boundary can be extrapolated from the interior flow field, 

where the temperature at the tt δ+  time level has been obtained according to Eq. (70). 

3. The pseudopotential multiphase LB method 

3.1 The basic theory 

3.1.1 The interaction force 

The pseudopotential multiphase LB method was proposed by Shan and Chen around 1993 [31, 32]. 

They introduced an interparticle potential ( )ψ x  to mimic the interactions among the particles on the 

nearest-neighboring sites. Theoretically, ( )ψ x  is not a potential as it depends on space only through 

the intermediate of the fluid density. This is why it is now widely called “pseudopotential”. For 

single-component systems, the interaction force acting on the particles at site x  is given by [32, 242] 

 ( ) ( ) ( ), tt G wα α α
α

ψ ψ δ= − +∑F x x x e e , (75) 

where G  is a parameter that controls the strength of the interaction force and wα  are the weights. 
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For the nearest-neighbor interactions on the D2Q9 lattice, the weights 1 3wα =  for 2 1α =e  and 

1 12wα =  for 2 2α =e  [242]. In some studies, the weights wα  are set to αω  in eqfα  or 2
sGc  is 

used in Eq. (75) instead of G . The conversion of G  between these choices should be noticed. 

The most distinctive feature of the pseudopotential LB method is that the phase segregation 

between different phases can emerge automatically as a result of the particle interactions, namely the 

interaction force Eq. (75). As highlighted by Succi [16], the magic of the simple interaction force lies 

in that it not only gives a non-monotonic equation of state supporting the phase transition but also 

yields non-zero surface tension. Therefore the interface between different phases can arise, deform and 

migrate naturally without using any techniques to track or capture the interface. Owing to its 

conceptual simplicity, computational efficiency and kinetic features, the pseudopotential LB method 

has attracted significant attention and has been applied in a variety of fields. In this section we will 

review some recent advances in the pseudopotential LB method as well as thermal pseudopotential LB 

models for simulating phase-change heat transfer. 

3.1.2 The Shan-Chen forcing scheme 

In the original pseudopotential LB model devised by Shan and Chen [31, 32], the interaction force 

was incorporated into the LB equation by shifting the velocity in the equilibrium density distribution 

function and the evolution equation is given by 

 ( ) ( ) ( )1, , ,eq eq
t tf t f t f fα α α α αδ δ ρ

τ
 + + − = − − x e x u . (76) 

The shifted equilibrium velocity equ  is defined as eq
tτδ ρ= +u u F , where fα αα

ρ= ∑u e . The 

actual fluid velocity can be defined as ( )2tδ ρ= +v u F  by averaging the moment before and after 

the collision process [243]. The forcing scheme given by Eq. (76) is referred to as the Shan-Chen 

forcing scheme.  

    In 2011, Gross et al. [244] pointed out that a forcing term can be depicted for the Shan-Chen 

forcing scheme by rewriting Eq. (76) as 
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 ( ) ( ) ( )( ) ( ) ( )1 1, , , , ,eq eq eq eq
t tf t f t f f f fα α α α α α αδ δ ρ ρ ρ

τ τ
 + + − = − − + − x e x u u u , (77) 

which means that the forcing term of the Shan-Chen forcing scheme is given by  

 ( ) ( ), SC
1 , ,eq eq eqF f fα α αρ ρ
τ

 = − u u . (78) 

Subsequently, Huang et al. [245] attained a form of , SCFα  by substituting the expression of the 

equilibrium distribution function into the above equation (see Eq. (16) in Ref. [245]). Later, by noting 

that ( ),eq eqfα ρ u  with eq
tτδ ρ= +u u F  can be written as [163] 

 ( ) ( )
( )2

2 4, , 2 :
2

seq eq eq t t t t

s s

c
f f

c c
α αα

α α α
τδ τδ τδ τδ

ρ ρ ρω
ρ ρ ρ ρ

 −  ≡ + ⋅ + + 
   

e e Ie F F F F
u u u ,  (79) 

Li et al. [163] obtained the following forcing term of the Shan-Chen forcing scheme: 

 
( ) ( )2

SC SC
,SC 2 4

:

2
s

t
s s

c
F

c c
α αα

α αω δ
 + −⋅
 = +
  

v F Fv e e Ie F ,  (80) 

where ( )SC 2tτδ ρ= +v u F . The above equation indicates that the Shan-Chen forcing term can be 

written in the general form of forcing schemes, i.e., Eq. (23), and the velocity in the forcing term is 

given by SCv . With this result, the differences between the Shan-Chen forcing scheme and Guo et al.’s 

forcing scheme, which has been demonstrated to be capable of correctly recovering the unsteady 

macroscopic equations at the Navier-Stokes level, can be clearly observed.  

Another forcing scheme that has received much attention in the pseudopotential LB method is the 

EDM forcing scheme proposed by Kupershtokh et al. [149], which has been discussed in detail in 

Section 2.3.2. It has been shown that several assumptions were used in the derivation of the EDM 

forcing scheme. A theoretical comparison between the Shan-Chen scheme, the EDM scheme, and Guo 

et al.’s scheme has been made by Li et al. [163], and can be found in Table 1, where fα αα
ρ= ∑u e . 

From the table we can see that the Shan-Chen scheme is identical to the EDM scheme when the 

non-dimensional relaxation time 1τ = , which was numerically reproduced by Sun et al. [246] (see Fig. 

3 in the reference). Moreover, both the Shan-Chen and the EDM forcing schemes suffer from the 

discrete lattice effects and therefore cannot recover the correct macroscopic equations. In addition, it 
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can be found that the Shan-Chen and the EDM forcing schemes share the following feature: the 

velocity in eqfα  is u , while the actual fluid velocity is defined as ( )2tδ ρ= +v u F . In Section 2.3.2, 

we have mentioned that the usual Chapman-Enskog analysis should be revised for this class of forcing 

schemes so as to derive the actual macroscopic equations.  

Table 1. Comparison between different forcing schemes. Adapted from Li et al. [163] with permission 

of the American Physical Society. 

scheme velocity in eqfα  velocity in Fα  fluid velocity discrete effects 

Shan-Chen u  
2

tτδ
ρ

+
F

u  
2

tδ
ρ

+
F

u  Yes 

EDM u  
2

tδ
ρ

+
F

u  
2

tδ
ρ

+
F

u  Yes 

Guo et al. 
2

tδ
ρ

+
F

u  
2

tδ
ρ

+
F

u  
2

tδ
ρ

+
F

u  No 

Huang et al. [245] and Sun et al. [246] have numerically investigated the performances of the 

Shan-Chen and the EDM forcing schemes in the pseudopotential LB modeling of multiphase flows. It 

was found [245] that the coexistence liquid-gas densities given by the Shan-Chen forcing scheme 

significantly vary with the non-dimensional relaxation time τ . Using the EDM forcing scheme, the 

effects of the relaxation time τ  were greatly reduced. Nevertheless, Huang et al. [245] found that the 

density ratios obtained by the EDM forcing scheme still change with τ  to some extent in the cases of 

large density ratios. Meanwhile, Huang et al. showed that the coexistence curves given by He et al.’s 

forcing scheme are essentially independent of τ .  

3.1.3 The mechanical stability condition 

In this subsection, the mechanical stability condition in the pseudopotential LB method is 

introduced, which can be established according to the pressure tensor given by a pseudopotential LB 

model. When the interaction force is recovered in the momentum equation without any additional terms 

at the Navier-Stokes level, the pressure tensor P  can be defined as [247] 
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 ( )2
scρ⋅ = ⋅ −P I F∇ ∇ .  (81) 

In 2008, Shan [242] clarified that in the pseudopotential LB method the discrete form of the pressure 

tensor must be used, which can be derived from the volume integral of Eq. (81). This point has also 

been demonstrated by Sbragaglia and Belardinelli [248] for multi-component systems. The 

corresponding discrete form of Eq. (81) is given by 

 2
scρ⋅ = ⋅ −∑ ∑ ∑P A I A F , (82) 

where A  is a closed area. According to Eqs. (82) and (75), the discrete form pressure tensor is [242] 

 

( ) ( )

( ) ( )

2

2 2
2

2

2 2

s t

s t

Gc w

Gc Gc w

α α α α
α

α α α α
α

ρ ψ ψ δ

ψ ψρ ψ δ ψ

= + +

 
= + + + −    

 

∑

∑

P I x x e e e

I x e x e e . (83) 

Using the Taylor series expansion (see Eq. (72)), the following second-order pressure tensor can be 

attained for the cases of nearest-neighbor interactions [39]: 

 
2 4 4

2 2 2

2 12 6s
Gc Gc Gccρ ψ ψ ψ ψ ψ

 
= + + ∇ + 

 
P I ∇∇ . (84) 

The last term on the right-hand side of Eq. (84) is related to the surface tension and the non-ideal 

equation of state is given by 

 ( )
2

2 2
EOS 2s

Gcp cρ ρ ψ= + .  (85) 

In some studies, wα  in Eq. (75) are set to αω  in eqfα , which gives ( ) 2 2 2
EOS 0.5s sp c Gcρ ρ ψ= + .  

According to Eq. (84), the normal pressure tensor of a flat interface is given by [242] 

 
2 4 2

2 2
2

d
2 4 dn s

Gc GcP c
n
ψρ ψ ψ= + + ,  (86) 

where n  denotes the normal direction of the interface. Using the following relationships [39]: 

 
22

2

d 1 d d
2 d dd nn

ψ ψ
ψ

 =  
 

,  d 1 d
d dψ ψ ρ

=
′

,  
2 2

2d d
d dn n
ψ ρψ   ′=   

   
, (87) 

where d dψ ψ ρ′ = , Eq. (86) can be rewritten as 

 
22 4

2 2 2d d
2 8 d dn s

Gc GcP c
n

ψ ρρ ψ ψ
ψ ρ

  ′− − =   ′    
. (88) 

According to Eq. (88) and the requirement that [242] at equilibrium nP  should be equal to the 
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constant static pressure in the bulk, bp , the following equation can be obtained: 

 
22

2 2 2
4

8 dd d
2 d

l l

g g

b s
Gcp c

Gc n

ρ ρ

ρ ρ

ψ ρρ ψ ρ ψ
ψ

 ′   ′− − =     
     

∫ ∫ , (89) 

where ( ) ( )EOS EOSb l gp p pρ ρ= = . Since d dnρ  is zero at lρ ρ=  and gρ , Eq. (89) yields [242] 

 
2

2 2 d 0
2

l

g

b s
Gcp c

ρ

ρ

ψρ ψ ρ
ψ

′ 
− − = 

 
∫ .  (90) 

The above equation is the so-called mechanical stability condition of the standard pseudopotential LB 

model with the nearest-neighbor interactions. 

The mechanical stability condition plays a very important role in the pseudopotential LB method 

because it determines the coexistence densities of liquid and gas phases ( lρ  and gρ ), which can be 

theoretically obtained by solving Eq. (90) and the relation ( ) ( )EOS EOSb l gp p pρ ρ= =  via numerical 

integration [242]. Meanwhile, in thermodynamic theory, the Maxwell equal-area construction that 

determines the liquid-gas coexistence densities is built in terms of ( )EOS d 0l

g
bp p V

ρ

ρ
ρ− =  ∫ , where 

1V ρ∝  [12], which yields the following requirement for the pseudopotential LB models: 

 
2

2 2
2

1 d 0
2

l

g

b s
Gcp c

ρ

ρ

ρ ψ ρ
ρ

 
− − = 

 
∫ . (91) 

From Eqs. (90) and (91), we can find that the mechanical stability condition does not meet the 

requirement of the thermodynamic theory unless ( )exp 1ψ ρ∝ − , which gives 21ψ ψ ρ′
 , such as 

( ) ( )0 0expψ ρ ψ ρ ρ= −  [12, 242]. With this choice, the phase separation can be achieved when an 

appropriate value of G  is adopted, e.g., for the case of 0 4ψ =  and 0 200ρ =  [12], 40G = −  leads 

to 514lρ ≈  and 79.5gρ ≈ [12, 249]. Similarly, it can be found that, when 0 1ψ =  and 0 1ρ = , 

10 3G = −  gives 2.78lρ ≈  and 0.367gρ ≈  [242, 250]. 

Actually, the interaction force given by Eq. (75) is nothing but a finite-difference scheme, which 

can be seen by comparing Eq. (75) with Eq. (73). Fortunately, this formulation can lead to a non-ideal 

pressure tensor, Eq. (84). For a standard free energy functional in thermodynamics, the following 
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non-ideal pressure tensor can be obtained [40]: 

 22
FE EOS 2

kp k kρ ρ ρ ρ ρ = − ∇ − + 
 

P I∇ ∇ ∇ .  (92) 

The Maxwell equal-area construction can be derived from the above pressure tensor [251]. It is obvious 

that Eq. (84) deviates from Eq. (92) in general. However, it has been shown that, with an appropriate 

choice of ( )ψ ρ , the Maxwell construction can be reproduced from Eq. (84). From this point, the 

pseudopotential LB method can be regarded as a “pseudo” free-energy approach [252], but note that in 

the pseudopotential LB method the non-ideal pressure tensor is established through the interaction 

force rather than changing eqfα , which suffers from the loss of Galilean invariance. 

Numerically, to guarantee thermodynamic consistency, an accurate forcing scheme should be 

employed even though the pseudopotential is chosen to be proportional to ( )exp 1 ρ− . In the literature, 

Yu and Fan [250] have shown that the numerical coexistence densities of liquid and gas phases 

obtained using the pseudopotential ( ) ( )0 0expψ ρ ψ ρ ρ= −  together with Guo et al.’s forcing scheme 

are basically independent of the non-dimensional relaxation time τ  and consistent with the results 

given by the Maxwell construction (see Table 1 in Ref. [250]).  

The problem that the Shan-Chen forcing scheme results in τ − dependent coexistence curves was 

found to be attributed to the additional terms introduced by the scheme into the macroscopic equations,  

which make the mechanical stability condition dependent on τ  and 2ψ ρ  [163]. For the EDM 

forcing scheme, the mechanical stability condition still depends on 2ψ ρ  due to the additional term 

( )ρ⋅ FF∇  in Eq. (45), although the relaxation time τ  is seemingly not involved. Obviously, when 

an additional term is introduced into Eq. (81), the pressure tensor will be modified, and then the 

mechanical stability condition will be changed correspondingly.  

3.2 Thermodynamic inconsistency 

3.2.1 Theoretical results 

The choice of ( ) ( )0 0expψ ρ ψ ρ ρ= −  can ensure the consistency between Eqs. (90) and (91). 

37 

 



However, by doing so the non-ideal equation of state is fixed. In 2002, He and Doolen [247] pointed 

out that, to reproduce a non-ideal equation of state in the thermodynamic theory, the pseudopotential 

should be chosen as follows (according to Eq. (85)): 

 
( )2

EOS
2

2 sp c

Gc

ρ
ψ

−
= .  (93) 

Here EOSp  represents a non-ideal equation of state in the thermodynamic theory, such as the van der 

Waals, the Carnahan-Starling, and the Peng-Robinson equations of state. Similar statements can be 

found in Refs. [34, 253]. In 2006, Yuan and Schaefer [33] numerically found that the achievable largest 

density ratio of the pseudopotential LB method can be significantly enhanced by choosing an 

appropriate equation of state in Eq. (93). For static cases, a liquid-gas density ratio in excess of 1000 

was successfully modeled, however, with very large spurious currents at 1τ =  [254]. Usually, when 

the relaxation time τ  decreases, the spurious currents will be further enlarged. Moreover, Eq. (93) 

will lead to thermodynamic inconsistency: the liquid-gas coexistence densities given by the mechanical 

stability condition Eq. (90) are inconsistent with the results of the Maxwell equal-area construction.  

In 2012, Li et al. [163] pointed out that, when using Eq. (93), the thermodynamic consistency can 

be approximately restored by adjusting the mechanical stability condition 

 
2

2 2
1 d 0

2

l

g

b s
Gcp c

ρ

ε
ρ

ψρ ψ ρ
ψ +

′ 
− − = 

 
∫ ,  (94) 

where ε  is a produced parameter that controls the mechanical stability condition. For the standard 

pseudopotential LB model with the nearest-neighbor interactions, we can obtain the numerical results 

of the case 0ε =  (namely Eq. (90)) by employing an accurate forcing scheme in the standard LB 

approach, such as Guo et al.’s scheme or the MRT forcing scheme in Section 2.3.3. It can be found that 

the results of 0ε =  significantly deviate from those given by the Maxwell construction when Eq. (93) 

is applied. The Shan-Chen and the EDM forcing schemes usually yield a positive ε  ( 0ε > ); however, 

the specific value of ε  depends on τ  and/or 2ψ ρ . Analytically, the liquid-gas coexistence 

densities can be obtained by solving Eq. (94). For example, when 2ε = , Eq. (94) gives 
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Since d dψ ρ ψ′ = , Eq. (95) can be transformed to [163] 

 ( )
2

2 2
2 2

1 1ln d 0
2 2 2

l l l

ggg

b s s
Gcp c c

ρ ρ ρ

ρρρ

ρ ψ ρ
ψ ψ

   
− − − + − =   

   
∫ . (96) 

With Eq. (96) and the relationship ( ) ( )EOS EOSb l gp p pρ ρ= = , the analytical solution ( bp , lρ , and gρ ) 

of the mechanical stability condition at 2ε =  can be obtained via numerical integration. In a similar 

way, the solution of the Maxwell construction ( ) 2
EOS d 0l

g
bp p

ρ

ρ
ρ ρ ρ− =  ∫  can also be attained. 
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Fig. 2. Analytical solutions of the mechanical stability condition at 1ε =  and 2ε =  for the 

Carnahan-Starling equation of state. Reprinted from Li et al. [163] with permission of the American 

Physical Society.  
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By taking the Carnahan-Starling equation of state as an example, Li et al. [163] have compared 

the analytical solutions of the mechanical stability condition at 1ε =  and 2  with the solution given 

by the thermodynamic consistency requirement (i.e., the Maxwell construction). The results can be 

found in Fig. 2. It can be seen that there are nearly no differences in the liquid-phase density between 

the analytical solutions of 1ε =  and 2ε = , which are both in good agreement with the results given 

by the Maxwell construction. Meanwhile, it can be observed that the gas-phase density given by the 

Maxwell construction is larger than the gas-phase density of 1ε =  but is smaller than that of 2ε = , 

which indicates that there exists a value of ε  (1 2ε< < ) that can make the mechanical stability 

solution approximately identical to the solution given by the Maxwell construction [163]. In other 

words, thermodynamic consistency can be approximately restored by producing a suitable value of ε  

in the mechanical stability condition. According to Fig. 2, the value of ε  that can provide 

thermodynamically consistent results falls into the interval [ ]1, 2ε ∈  and is close to 2.  

3.2.2 Numerical treatments 

Based on theoretical analysis, Li et al. [163] proposed a modified forcing scheme as follows: 

 
( ) ( )2

new newnew
2 4

:11
2 2

s
t

s s

c
F

c c
α αα

α αω δ
τ

 + −⋅  = − + 
   

v F Fv e e IF e ,  (97) 

which is identical to Guo et al.’s forcing scheme except that the velocity in the forcing term is modified 

as ( ) 2
new 0.5 tσ τ δ ψ = + − v v F , where σ  is a constant. With this change, the second-order 

moment of the forcing term is given by 

 new
, Guo 2

2F Fα α α α α α
α α

σ
τψ

= +∑ ∑ FFe e e e .  (98) 

The first term on the right-hand side of Eq. (98) is defined by Eq. (27). From the Taylor series 

expansion of Eq. (75), it can be found that 2Gc ψ ψ≈ −F ∇ , which yields 2 2 4G cψ ψ ψ≈FF ∇ ∇ . 

According to Chapman-Enskog analysis, the new second-order pressure tensor is given by [163] 

 2 4
original 2G c σ ψ ψ≈ +P P ∇ ∇ ,  (99) 

where originalP  denotes the original pressure tensor given by Eq. (83). With the modification of the 
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pressure tensor, the mechanical stability condition is changed and the produced parameter ε  is given 

by 16Gε σ= −  [163]. Note that, when the pseudopotential ψ  is calculated via Eq. (93), the only 

requirement for G  is to ensure that the whole term inside the square root in Eq. (93) is positive [33, 

34] and the value of G  does not affect the numerical results. In many cases, G  can be set to 

1G = − . For the EDM forcing scheme, an additional term that is proportional to ( )2ψ ρ ψ ψ∇ ∇  will 

be introduced into the pressure tensor owing to the term ( )ρ⋅ FF∇  in Eq. (45). As a result, the 

parameter ε  yielded by the EDM forcing scheme will be dependent on 2ψ ρ . 

In Ref. [149], Kupershtokh et al. have proposed a mixed interaction force to adjust the coexistence 

densities of liquid and gas phases, which is given by 

 ( ) ( ) ( ) ( ) ( )2, 1 2 t tt G w A G w Aα α α α α α
α α

ψ ψ δ ψ δ = − − + − +    ∑ ∑F x x x e e x e e ,  (100) 

where the parameter A  is utilized to tune the mixed interaction force. Such a treatment has been 

applied in several studies [96, 149, 255], but no physical explanation was given about the reason why it 

is able to adjust liquid-gas coexistence densities. Actually, using the Taylor series expansion and 

evaluating the discrete form pressure tensor, one can find that Eq. (100) will introduce a term 

proportional to ψ ψ∇ ∇  into the pressure tensor. In this regard, the treatments given by Eqs. (97) and 

(100) share the same feature, i.e., thermodynamic inconsistency is approximately eliminated by 

modifying the mechanical stability condition. Similarly, they also share the same weakness, namely the 

surface tension will be affected because a term proportional to ψ ψ∇ ∇  has been added to the 

anisotropic part of the pressure tensor. Recently, Hu et al. have conducted theoretical and numerical 

analyses of the mixed interaction force given by Eq. (100) and the details can be found in Ref. [256]. 

To overcome the above weakness, Li et al. [39] in 2013 proposed an improved forcing scheme 

based on the LB-MRT equation, which utilizes the following forcing term: 
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where ( )2 2 2
x yF F= +F . Obviously, when 0σ = , Eq. (101) reduces to Eq. (51). According to the 

Chapman-Enskog analysis, the discrete form pressure tensor resulting from Eq. (101) is given by [39] 

 22 4
original 2G c σ ψ≈ +P P I∇ .  (102) 

The ε  produced in the mechanical stability condition is still given by 16Gε σ= − , but here it can be 

seen that the mechanical stability condition is tuned by changing the isotropic part of the pressure 

tensor rather than the anisotropic part, therefore avoiding affecting the surface tension term. Moreover, 

it can be found that F  in the additional terms of newv  and Eq. (101) actually serves as an 

approximation for ψ ψ∇ . At large density ratios, the higher-order terms in F  will also exert an 

influence on the liquid-gas coexistence densities. For the BGK scheme, the additional term in newv  is 

proportional to ( )0.5τ −F . As a result, the coexistence densities at large density ratios will vary with 

viscosity to some extent when τ  changes with viscosity. Using the MRT scheme, the influence of 

viscosity at large density ratios can be significantly reduced because only vτ  changes with viscosity 

and the other relaxation times including eτ  and ςτ  in Eq. (101) remain unchanged. 

For the Carnahan-Starling equation of state, Li et al. [39] numerically found that thermodynamic 

consistency can be approximately achieved when 1.7ε  , which agrees with the theoretical analysis 

that 1 2ε< <  and ε  is close to 2. The numerical coexistence curves obtained by the improved MRT 

forcing scheme for the Carnahan-Starling equation of state can be found in Fig. 3, which shows that the 

numerical coexistence curves are in good agreement with the results given by the Maxwell construction 

42 

 



and are essentially independent of the viscosity (the relaxation time vτ ). Using the improved MRT 

forcing scheme, Li et al. [39] have simulated droplet splashing on a thin liquid film at the density ratio 

750l gρ ρ   ( 0.5cT T = ) and Re 1000= . Several treatments have been introduced to reduce the 

spurious currents and increase the achievable highest Reynolds number. Some numerical results can be 

found in Fig. 4. The approach has been applied to simulate droplet impact on a solid surface at a large 

density ratio by Zhang et al. [70], who have extended the improved MRT forcing scheme to three 

dimensions using the D3Q19 lattice [71]. The three-dimensional scheme has been applied to study 

coalescence-induced droplet jumping on superhydrophobic textured surfaces and liquid condensate 

adhesion on slit and plain fins [257]. Moreover, Xu et al. [258] have proposed an alternative 

three-dimensional version using the D3Q15 lattice. 
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Fig. 3. Comparison of the numerical coexistence curves between the original and the improved MRT 

forcing schemes. Reprinted from Li et al. [39] with permission of the American Physical Society.  
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Finally, it should be stressed that adjusting the mechanical stability condition is an approximate 

approach to achieving thermodynamic consistency for Eq. (93) because a fitting procedure is required. 

Recently, Khajepor et al. [259] proposed a multi-pseudopotential interaction force to eliminate 

thermodynamic inconsistency, which consists of several exponential pseudopotential interactions, 

( )expi iG λ ρ− , where the subscript 1, 2, ,i n=   ( n  is the total number of the pseudopotential 

interactions). A fitting procedure is utilized to adjust iG  and iλ  so as to match the results given by 

the prescribed equation of state such as the Carnahan-Starling equation of state (see Appendix B in Ref. 

[259]). Because the exponential pseudopotential interaction does not contain the temperature, the 

parameters iG  and iλ  should change with the reduced temperature cT T . 

 

 

 

 

Fig. 4. Numerical results of droplet splashing at 750l gρ ρ   and Re 1000= . From top to bottom: 

0.25t∗ = , 0.75, 1.5, and 1.9. Reprinted from Li et al. [39] with permission of the American Physical 

Society. 
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3.3 Spurious currents and the interface thickness 

Despite its undeniable success, the pseudopotential LB method has also drawn much criticism 

because of the large spurious currents produced near curved interfaces [36]. The spurious currents, 

which are also called spurious velocities, have been observed in almost all the simulations of 

multiphase flows involving curved interfaces. When the spurious currents are as large as the 

characteristic velocities of the problem under study, it is difficult to distinguish the physical velocity 

from the spurious velocity and then the flow physics may be misinterpreted [260]. Therefore it is very 

important to suppress or reduce the spurious currents when simulating multiphase flows. In 2006, Shan 

[261] pointed out that the spurious currents produced by the pseudopotential LB models mainly arise 

from insufficient isotropy of the discrete gradient operator and can be reduced by using high-order 

isotropic gradient operators in calculating the interaction force. 

Later, Sbragaglia et al. [36] extended the idea of Shan to include more neighbors. They showed 

that the spurious currents can be further reduced when higher-order isotropic operators are employed to 

calculate the interaction force. However, it was also pointed out that [36, 260], when additional 

neighbors are included, the implementation of boundary conditions (particularly for wall boundaries) 

will become complex. Moreover, Sbragaglia and Shan [262] found that, when using the high-order 

isotropic operators, the pseudopotential should be modified from ( ) ( )0 0expψ ρ ψ ρ ρ= −  to 

 ( )
1 ε

ρψ ρ
ρ

 
=  ε + 

,  (103) 

so as to satisfy the thermodynamic consistency, where ε  is determined by the mechanical stability 

condition of the higher-order interactions. 

In 2009, Yu and Fan [38] developed an MRT version of the pseudopotential LB model and found 

that the MRT collision model can reduce the spurious currents as compared with the BGK collision 

model, which can be seen in Fig. 5. For the studied case, it was shown that the maximum magnitudes 

of the spurious currents given by the BGK and MRT models are 0.028 and 0.0053, respectively [38]. 

Besides the above approaches, a refinement of curved interfaces is also capable of reducing the 
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spurious currents, which is based on the fact that a better resolved interface provides a better resolution 

for the density gradient and thus can give a reduction of spurious currents. Sbragaglia et al. [36] found 

that, for the pseudopotential ( ) ( )0 01 expψ ρ ρ ρ ρ= − −   , the interface thickness can be adjusted 

by tuning 0ρ . They stressed that increasing the interface thickness is more effective than the use of 

high-order isotropic gradient operators in terms of reducing the spurious currents, as the former 

treatment is found to give a numerical reduction of the maximal spurious current up to a factor of 10 by 

only doubling the interface thickness, while a 10th-order (or even higher) isotropic gradient operator is 

required to reach similar level of accuracy [36]. 

  

(a) BGK model 

 

(b) MRT model 

Fig. 5. Comparison of the spurious currents between the BGK and MRT collision models. Reprinted 

from Yu and Fan [38] with permission of the American Physical Society.  
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For the pseudopotential ( )2 2
EOS2 sp c Gcψ ρ= − , the interface thickness was found to be 

affected by EOSp . In the LB community, Wagner and Pooley [263] first conducted research on the 

influence of the equation of state on interface thickness. They introduced a pre-factor 0p  into the 

pressure tensor, which gives new
EOS 0 EOSp p p= . It was found that lowering 0p  can increase the interface 

thickness and the achievable largest density ratio can be enhanced by widening the interface thickness, 

which can be seen in Fig. 6. A similar treatment has also been proposed by Hu et al. [264] for the 

pseudopotential LB method. 

 

Fig. 6. The numerical van der Waals phase diagram with different interface thickness (w, in lattice unit). 

Here cθ θ  is the reduced temperature cT T . Reprinted from Wagner and Pooley [263] with 

permission of the American Physical Society.  

Moreover, Huang et al. [245] found that the parameters a  and b  in the equations of state [33] 

affect the interface thickness. Similarly, Li et al. [39] found that the interface thickness is 

approximately proportional to 1 a  when the other parameters are fixed. Meanwhile, it was shown 

that the interface thickness decreases when the reduced temperature cT T  decreases (see Fig. 3 in Ref. 

[39]). With the usual choice of the parameters a  and b , such as 1a =  and 4b =  for the 

Carnahan-Starling equation of state [33], the interface will become very sharp in the cases of small 
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cT T  (corresponding to large density ratios). Using a sharp interface, the spurious currents will be 

magnified dramatically. This is one of the reasons why the spurious currents shown in Yuan and 

Schaefer’s work [33] are very large at high density ratios. Montessori et al. [265] recently also found 

that the spurious currents can be significantly reduced when decreasing the parameter a  (see Fig. 5 in 

the reference). Here it should also be mentioned that, at a given density ratio, the interface thickness 

produced by different equations of state is often different, unless an adjustment of the interface 

thickness has been made. 

Using new
EOS 0 EOSp p p=  or tuning the parameter a  in the equation of state will not change the 

liquid-gas coexistence densities given by the Maxwell construction [39, 264]. However, the 

coexistence densities produced by the pseudopotential LB models will be affected, because the 

mechanical stability condition will be changed due to the term ψ ψ′  in Eq. (90). Accordingly, the 

constant σ  in Eq. (101), which is used to tune the mechanical stability condition, should be slightly 

changed with the parameter a  [39]. 

Furthermore, it should be noted that the sound speed (related to p ρ∂ ∂ ) in both the liquid and 

gas phases will decrease when 0p  is lowered [263]. A similar trend can be found when decreasing the 

parameter a  in the equation of state (see Eq. (33) in Ref. [39] and notice that 2
cp a b ), which will 

lead to a relatively strong dependence of the coexistence densities on the droplet/bubble radius 

according to Laplace’s law [266]. For circular droplets, Laplace’s law is given by l gp p rϑ− = , 

where r  is the radius of the droplet; lp  and gp  are the pressures of the liquid and gas phases, 

respectively, which can be described as [266]: 

 
ee

e e
e e e e, gl

l l g g
l g l g

p p p p
r r

ρρ ϑ ϑ
ρ ρ ρ ρ

   = + = +   − −   
,  (104) 

where the superscript “e” denotes the equilibrium properties of flat interfaces ( r → ∞ ). The pressure 

difference ( )e
g g gp p p∆ = −  can be defined as ( ) ( )( )2

e
g g g gp pρ ρ ρ∆ = − ∂ ∂  [267], in which 

( )gp ρ∂ ∂  is the gas-phase sound speed. With this relationship, Li and Luo [267] obtained 
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( )

e
e

e e

1 g
g g

l ggp r
ρ ϑρ ρ

ρ ρ ρ
 − =  ∂ ∂ −  

.  (105) 

According to Eq. (105), it is obvious that, when ( )gp ρ∂ ∂  decreases, the variation of the gas-phase 

density gρ  with the droplet radius r  will be enlarged. Similar results can be found for lρ . 

In other words, for the classical equations of state in the thermodynamic theory such as the van 

der Waals and the Carnahan-Starling equations of state, the variations of the liquid-gas coexistence 

densities with the droplet/bubble radius (or the curvature of the liquid-gas interface) will be magnified 

when the interface is widened by lowering ( )p ρ∂ ∂ . To reduce such an influence, for isothermal 

systems an alternative choice may be adopting a piecewise equation of state proposed by Colosqui et al. 

[268], through which ( )p ρ∂ ∂  can be controlled separately in every single phase region and the 

mixed region ( 0p ρ∂ ∂ < ). Li and Luo [267] showed that, using a piecewise equation of state, the 

interface can be widened by adjusting ( )p ρ∂ ∂  in the mixed region. Meanwhile, they found that [267] 

the sound speeds in the liquid and gas regions, ( )lp ρ∂ ∂  and ( )gp ρ∂ ∂ , should be of the same 

order of magnitude as the lattice sound speed sc  so that the dependence of the coexistence densities 

on the droplet size can be significantly reduced.  

3.4 The surface tension treatment 

    Another drawback of the original pseudopotential LB model is that the surface tension given by 

the model cannot be tuned independently of the density ratio [36]. This problem can be found from the 

definition of the surface tension. For a flat interface, the surface tension ϑ  can be evaluated as 

 ( )dn Tp p nϑ
+∞

−∞
= −∫ ,  (106) 

where np  is the normal pressure tensor and Tp  is the transversal pressure tensor. Taking the x 

direction as the normal direction of the flat interface, we have n xxp P=  and T yyp P=  [242]. 

According to the discrete form of the pressure tensor, i.e., Eq. (84), Eq. (106) gives 

 
4 2 4

2

d dd d
6 6 dd

Gc Gcx
xx

ψ ψϑ ψ ψ
+∞ +∞

−∞ −∞

 = ≡  
 ∫ ∫ .  (107) 
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Using integration by parts and noting that d d 0xψ =  at x = ±∞ , one can obtain 

 
4 4

2d dd d
6 d 6 d

l

g

Gc Gc
x x

ρ

ρ

ψ ρϑ ψ ψ ρ
+∞

−∞

   ′= − = −   
   ∫ ∫ ,  (108) 

where d dψ ψ ρ′ = . It seems that the surface tension can be adjusted by G  in Eq. (108). However, in 

the original pseudopotential LB model, G  controls the interaction strength. Different values of G  

correspond to different liquid-gas coexistence densities. For the square-root pseudopotential given by 

Eq. (93), G  in front of the integral in Eq. (108) and 1 G  in 2ψ ′  will cancel each other out. As a 

result, G  has no influence on the surface tension. This conclusion is also applicable to circular and 

spherical interfaces, although Eq. (108) is the analytical expression for flat interfaces. For circular and 

spherical interfaces, the surface tension can be numerically evaluated via Laplace’s law. Here it should 

also be noted that the definition of the surface tension in the pseudopotential LB method is different 

from that in thermodynamic theory, in which the surface tension is defined as ( )2d d dx xϑ ρ
+∞

−∞
∝ ∫  

[34, 247] for flat interfaces. 

Several attempts have been made to enable a tunable surface tension. A well-known approach is 

the multi-range interaction force proposed by Sbragaglia et al. [36] 

 ( ) ( ) ( ) ( )1 2, 2t tt w G Gα α α α
α

ψ ψ δ ψ δ= − + + +  ∑F x x x e x e e .  (109) 

When 1G G=  and 2 0G = , the multi-range interaction force reduces to the standard interaction force 

given by Eq. (75). Later, based on Sbragaglia et al.’s work, Falcucci et al. [37] and Chibbaro et al. [269] 

proposed a two-belt multi-range interaction force. In addition, Falcucci et al. [270] have shown that the 

cooperation between the short- and mid-range interactions permits the achievement of phase-separation 

at liquid-gas density ratios in excess of 500. Using the Taylor expansion, Sbragaglia et al. have 

obtained the following continuum form pressure tensor of the multi-range interaction force [36]: 

 ( )
44 4

2 2 2
2 12 6 6

A cc cp Aρ ψ ψ ψ ψ ψ
  

= + + ∇ −  
  

P I∇ ∇ ∇ , (110) 

where 2 1 28A G G= +  and ( ) 2 2 2
1 2sp c A cρ ρ ψ= +  is the equation of state with 1 1 22A G G= + . 

With a fixed 1A , the surface tension can be adjusted by tuning 2A .  
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Table 2. Density ratios given by the multi-range interaction force for different surface tensions. 

Reprinted from Huang et al. [245] with permission of the American Physical Society.  

cT T  2 1A A  ( )310ϑ −×  l gρ ρ  

0.85 1.0 2.683 0.2768 / 0.02250 

0.85 1.458 4.199 0.2785 / 0.02587 

0.85 1.904 5.461 0.2795 / 0.02775 

0.775 1.0 5.661 0.3175 / 0.003745 

0.775 1.458 7.939 0.3191 / 0.008159 

0.775 1.904 10.57 0.3201 / 0.010520 

In 2011, Huang et al. [245] found that the density ratio of the system changes when the 

multi-range interaction force is employed to adjust the surface tension. The results can be found in 

Table 2, which shows that the multi-range interaction force can provide a tunable surface tension at a 

given cT T ; nevertheless, the density ratio changes considerately with the surface tension. In fact, the 

multi-range interaction force is capable of separating the equation of state from the surface tension. 

However, in the pseudopotential LB method, the liquid-gas coexistence densities are not only related to 

the equation of state but also dependent on the mechanical stability condition.  

In 2013, following the statement of Shan [242], i.e., in the pseudopotential LB method the discrete 

form pressure tensor should be used, Li and Luo [249] derived the discrete form pressure tensor of the 

multi-range interaction force and found that the mechanical stability condition given by the multi-range 

interaction force depends on the parameters 1G  and 2G , which may be the reason why the density 

ratio of the system changes when the multi-range interaction force is used to adjust the surface tension.  

An alternative approach was therefore proposed by Li and Luo [249] based on the LB-MRT 

equation. The basic idea is adding a source term into the LB-MRT equation and then Eq. (49) becomes 

 ( )
2

eq
t tδ δ∗  = − − + − + 
 

m m m m I S CΛ
Λ ,  (111) 

where the source term C  is given by [249] 
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C .  (112) 

The discrete lattice effect [153] has been included to the source term C , which actually takes the form 

( )0.5 ′= −C I CΛ . The three variables xxQ , yyQ , and xyQ  in Eq. (112) are calculated via [249] 

 ( ) ( ) ( )
8

12 t
G wα α α α

α

κ ψ ψ δ ψ
=

= + −  ∑x x e x e eQ ,  (113) 

where the constant κ  is used to tune the surface tension. It can be seen that Q  is based on the 

standard discrete form pressure tensor defined by Eq. (83) and is consistent with the calculation of the 

pseudopotential interaction force, Eq. (75). Through Chapman-Enskog analysis, it can be found that 

Eqs. (111) and (112) lead to the following second-order discrete form pressure tensor [249]: 

 ( ) ( ) ( )
4 4

2
new EOS 1 2 1

12 6
Gc Gcp ρ κ ψ ψ κ ψ ψ

 
= + + ∇ + − 

 
P I ∇∇ ,  (114) 

where ( ) 2 2 2
EOS 0.5sp c Gcρ ρ ψ= + . The surface tension can be tuned via κ  since the coefficient in 

front of the term ψ ψ∇∇  has been modified from 1 to ( )1 κ− . Meanwhile, the coefficient in front of 

the term 2ψ ψ∇ I  has also been changed, which ensures that the normal pressure tensor given by Eq. 

(114) for flat interfaces is the same as Eq. (86). In other words, the coefficient in front of the term 

2 2d dnψ ψ  in Eq. (86) remains unchanged. Thus the mechanical stability condition, which determines 

the coexistence densities, will not be affected when the surface tension is adjusted [249].  

    Numerical results showed that the surface tension can be adjusted over a wide range and the 

density ratio can be kept essentially unchanged (see Tables II and III in Ref. [249]). The surface tension 

was found to be approximately proportional to the coefficient ( )1 κ−  in the cases of ( )1 0.1κ− > . 

The linear relationship may not be valid when ( )1 0.1κ− <  because Eq. (114) is the second-order 
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pressure tensor. Some higher-order terms, which are truncation error terms for the surface tension and 

not shown in Eq. (114), may noticeably contribute to the surface tension when the coefficient in front 

of the term ψ ψ∇∇  is very small. Recently, following the above approach, Xu et al. [258] have 

devised a three-dimensional pseudopotential LB-MRT model with flexible surface tension. In addition, 

the approach has been employed by Hu et al. [271] to adjust the surface tension given by the mixed 

interaction force, Eq. (100).  

It is worth noting that the theoretical frameworks of all the existing multiphase LB methods are 

based on second-order Chapman-Enskog analysis. Wagner [161] argued that second-order 

Chapman-Enskog analysis may be insufficient for a multiphase LB model because the higher-order 

derivatives are seemingly not derivable with a second-order expansion. By taking the free-energy 

multiphase LB method as an example, Wagner [161] has conducted a high-order Taylor expansion 

analysis to identify the high-order terms recovered in the macroscopic equations (see Eq. (49) in the 

reference). Nevertheless, Wagner also stressed that there is still much debate about whether a Taylor 

expansion analysis is equivalent to a Chapman-Enskog analysis in high orders. Moreover, Wagner [161] 

has proposed a forcing scheme based on the Taylor expansion analysis, which has been introduced in 

Section 2.3.2 and shown to be identical to Guo et al.’s forcing scheme. 

Recently, based on Wagner’s work, Lycett-Brown and Luo [272] have performed a high-order 

Taylor expansion analysis for the standard pseudopotential LB model. An assumption 2
sc ρ=F ∇  was 

employed (see Eq. (A8) in Ref. [272]). The surface tension was tuned in a way that is similar to Eq. 

(113). In addition, a forcing scheme similar to Eq. (97) was utilized to adjust the mechanical stability 

condition. Without the adjustment of the surface tension, the forcing term in Ref. [272] satisfies the 

following relationship (see Eqs. (34) and (37) in the reference): 

 0
, LyB 2 2

11
4 8 s

F
Gcα α α

α

ε
τ ρ τψ

 = + + − − 
 

∑ FF FFe e uF Fu .  (115) 

The first three terms on the right-hand side of Eq. (115) are the results of Wagner’s forcing term 

( 1tδ = ), which can be seen from Eq. (33). The last terms in Eqs. (98) and (115) are similar since σ  
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in Eq. (98) is given by 16Gσ ε= −  and 0ε  in Eq. (115), which was numerically determined by Eq. 

(35) in Ref. [272], corresponds to 0ε ε= . The appearance of 2
sc  in Eq. (115) is due to its existence in 

the interaction force in Ref. [272].  

3.5 The contact angle treatment 

Wetting phenomena are widespread in natural and industrial processes. The wettability of a solid 

surface by a liquid is often quantified via the contact angle [273-275]. There have been many studies of 

wetting phenomena using the pseudopotential LB model since its emergence. The first attempt was 

made by Martys and Chen in 1996 [276]. In their study, a fluid-solid interaction force was introduced 

to describe the interaction between the fluid and the solid wall 

 ( ) ( )fs w tG sα α α
α

ρ ω δ= − +∑F x x e e ,  (116) 

where wG  is an adsorption parameter for adjusting the value of the contact angle and ( )ts αδ+x e  is 

a “switch” function, which is equal to 1 or 0 for a solid or a fluid phase, respectively. It means that an 

adhesion force is acted on the lattice nodes that are located in the fluid with neighboring solid nodes.  

    Later, Raiskinmäki et al. [277, 278] proposed another type of fluid-solid interaction, which was 

reformulated by Sukop and Thorne as follows [12]: 

 ( ) ( )fs w tG sα α α
α

ψ ω δ= − +∑F x x e e .  (117) 

The difference between Eq. (116) and Eq. (117) lies in that the pre-sum factor in Eq. (116) is the 

density ( )ρ x , while in Eq. (117) the pre-sum factor is the pseudopotential ( )ψ x . For simplicity, 

these two types of fluid-solid interaction are referred to as the ρ − based interaction and the ψ − based 

interaction, respectively. In the literature, Kang et al. [279, 280] have extended Martys and Chen’s 

ρ − based fluid-solid interaction to the D2Q9 lattice model.  

In 2006, Benzi et al. [281, 282] introduced a parameter ( )wψ ρ  to fix the pseudopotential at the 

solid wall via a virtual wall density wρ . By introducing a suitable value for wρ , the contact angle can 

be adjusted between o0  and o180 . Some numerical results obtained with such a treatment can be 
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found in Fig. 7. It can be seen that the contact angle approaches o0  and o180  when the virtual wall 

density wρ  is close to the liquid-phase density lρ  and the gas-phase density gρ , respectively.  

 
Fig. 7. Simulation of contact angles with a virtual wall density wρ . The corresponding liquid and gas 

densities are 6.06lρ =  and 0.5gρ = , respectively. Reprinted from Huang et al. [283] with 

permission of John Wiley & Sons, Inc.  

     In 2013, Colosqui et al. [284] proposed a new fluid-solid interaction, which is composed of a 

repulsive core and an attractive tail 

 ( ) ( ) ( )fs FS t Sα α α
α

ρ ω ψ δ= + +∑F x x e e F x∆ ,  (118) 

where ( )SF x∆  introduces a momentum exchange between the fluid and solid molecules due to the 

short-range interactions in the region adjacent to the solid surface and ( ) ( ) ( )FS R R A AG Gψ ψ ψ= +x x x , 

in which Rψ  and Aψ  are the repulsive and attractive potentials, respectively, and RG  and AG  are 

the attraction parameters. With the new fluid-solid interaction force, Colosqui et al. [284] successfully 

simulated both static contact angles and contact angle hysteresis; nevertheless, they pointed out that 

their approach is stable and robust at low and moderate density ratios ( 10l gρ ρ  ). 

Recently, Li et al. [285] have conducted a comparative study between the ρ − based interaction 

and the ψ − based interaction at a high density ratio ( 500l gρ ρ = ). For liquid contact angles, it was 

found that the ψ − based interaction works well for w 0G < . However, when w 0G > , the ρ − based 

interaction performs much better than the ψ − based interaction in terms of the achievable contact 
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angle and the deviations (from equilibrium) of the maximum and minimum densities. A modified 

ψ − based interaction was therefore formulated in Ref. [285] for liquid contact angles with w 0G >  

 ( ) ( )fs w tG Sα α α
α

ψ ω δ= − +∑F x x e e ,  (119) 

where ( ) ( ) ( )t tS sα αδ φ δ+ = +x e x x e , in which ( )φ x  can be chosen as ( ) ( )φ ψ=x x . It was shown 

that the modified ψ − based interaction is superior over the ρ − based interaction in light of the 

deviations (from equilibrium) of the maximum and minimum densities. 

When the fluid-solid interaction force is exerted on the lattice nodes adjacent to the solid wall, it 

can be found that the mechanical stability condition at these lattice nodes will be affected. As a result, 

the liquid-gas coexistence densities at these lattice nodes will be changed. This is the reason why the 

maximum and minimum densities deviate from the equilibrium liquid and gas densities, respectively 

[285]. Moreover, it should be noted that the status of the fluid-fluid interaction force (namely Eq. (75)) 

at the solid wall will also affect the contact angle according to Young’s law. For a given contact angle, 

the values of wG  are usually different between the cases with and without the fluid-fluid interaction 

force at the solid wall. 

Although substantial progress has been made in simulating contact angles with the 

pseudopotential LB method, many more efforts are still required to address several critical issues, such 

as the large spurious currents around the three-phase contact line in the cases with low relaxation times 

and the problem that the value of the contact angle cannot be simply prescribed before simulations. 

Recently, Hu et al. [286] presented an alternative treatment to implement contact angles in the 

pseudopotential LB modeling of wetting based on the geometric formulation approach, which was 

proposed by Ding and Spelt [287] within the framework of the phase-field method and has been 

demonstrated to be capable of exactly reproducing a given contact angle. The geometric formulation 

approach will be reviewed in Section 4.4. 

3.6 Thermal models for liquid-vapor phase change 

In this subsection, the thermal pseudopotential LB models for simulating liquid-vapor phase 
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change are reviewed. Historically, the first thermal pseudopotential LB model may be attributed to 

Zhang and Chen [94]. They devised a new force expression and successfully modeled the nucleate 

boiling. Later, an important contribution was made by Házi and Márkus [95, 96], who established the 

target governing equation of the temperature for the thermal pseudopotential LB method. 

    Házi and Márkus [95] started from the local balance law for entropy (the viscous heat dissipation 

was neglected) [288] 

 ( )DsT T
Dt

ρ λ= ⋅∇ ∇ ,  (120) 

where s  is the entropy, λ  is the thermal conductivity, and ( ) ( ) ( )tD Dt = ∂ + ⋅v  ∇  is the 

material derivative. Using the thermodynamic relationships of non-ideal gases [95], Márkus and Házi 

[96] obtained the following target temperature equation: 

 ( ) EOS1
t

v v

pTT T T
c c T ρ

λ
ρ ρ

∂ ∂ + ⋅ = ⋅ − ⋅ ∂ 
v v∇ ∇ ∇ ∇ . (121) 

In the thermal pseudopotential LB method, the liquid-vapor phase change is driven by the equation of 

state EOSp . Hence no artificial phase-change terms need to be added to the temperature equation. A 

similar treatment can also be found in Refs. [289, 290]. With such a treatment, the rate of the 

liquid-vapor phase change is a computational output rather than a prerequisite input.  

    Since T⋅v ∇  and ( ) ( )vT cλ ρ⋅∇ ∇  in Eq. (121) cannot be directly recovered with a thermal LB 

equation, Márkus and Házi [96] rewrote Eq. (121) as follows: 

 ( ) ( ) ( ) ( ) EOS1
t

v v

pTT T k T T k T T
c c T ρ

λ
ρ ρ

 ∂ ∂ + ⋅ = ⋅ + ⋅ − ⋅ + − ⋅  ∂   
v v∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ .  (122) 

To mimic Eq. (122), the following temperature-based thermal LB equation was employed [96]: 

 ( ) ( ) ( )1, , eq
t t

T

T t T t T T Sα α α α α αδ δ
τ

+ + − = − − +x e x ,  (123) 

where the equilibrium temperature distribution function eqTα  is taken as ( ) 21eq
sT T cα α αω  = + ⋅ e v  

and the source term Sα  is utilized to recover all the terms on the right-hand side of Eq. (122) except 

the first term ( )k T⋅∇ ∇ .  
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Using the model, Márkus and Házi [96] have reproduced nucleate boiling. However, the error 

terms in the recovered temperature equation should be noticed. The macroscopic temperature equation 

recovered from the standard temperature-based thermal LB equation, namely Eq. (123) without the 

source term, has been discussed in Section 2.4.1. Details can be found in the paragraph below Eq. (67). 

Using the equilibrium distribution ( ) 21eq
sT T cα α αω  = + ⋅ e v , the error term ( )T⋅ vv∇  in Eq. (67) 

can be eliminated. However, the main error term ( )0t T∂ v , which yields an error proportional to 

( )2
sc ρ ρ−F ∇ , still exists. Furthermore, it is worth mentioning that the discrete lattice effects [153] 

should also be considered when incorporating a source term into a thermal LB equation. 

In 2012, Biferale et al. [98] proposed a three-dimensional thermal pseudopotential LB model. The 

target macroscopic temperature equation is similar to Eq. (121). The main difference is that the 

exponential-form pseudopotential ( ) ( )exp 1ψ ρ ρ= −  is adopted in Biferale et al.’s work and the 

equation of state is given by ( )2 2
EOS 0.5p RT Gcρ ψ ρ= + . Hence ( )EOSp T R

ρ
ρ∂ ∂ = . Using the 

model, Biferale et al. have performed three-dimensional numerical simulations of boiling phenomena 

at the Rayleigh number 7Ra 10 . Some numerical results can be found in Fig. 8. In Ref. [98], the 

ideal part of the equation of state, Idp RTρ= , was incorporated into the model by modifying the 

equilibrium density distribution function. Similar treatments can be found in the free-energy and the 

color-gradient multiphase LB models. It is now widely accepted that, when the equation of state or the 

pressure is changed by modifying the equilibrium density distribution function, the Galilean invariance 

is lost [42, 43]. Some correction terms, which usually involve the derivatives of the density, should be 

added to either the equilibrium distribution function or the LB equation to restore the Galilean 

invariance [42, 43, 137]. 
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Fig. 8. Three-dimensional thermal pseudopotential LB modeling of nucleate boiling. Bubbles are in 

blue. Regions with high temperature are in red. Reprinted from Biferale et al. [98] with permission of 

the American Physical Society.  

Gong and Cheng [99, 100] have also proposed a thermal pseudopotential LB model and simulated 

bubble growth and departure. The model has been applied to simulate film condensation by Liu and 

Cheng [101]. In 2013, Kamali et al. [102] constructed a thermal pseudopotential LB model based on 

the energy conservation equation of mixtures and successfully simulated the evaporation of a liquid 

film upon heating. Similarly, in Kamali et al.’s work the energy equation was mimicked by a thermal 

LB equation with a source term. Here it is stressed again that, when a thermal LB equation is employed 

together with a multiphase LB model, special attention should be paid to the correct recovery of the 

target temperature or energy equation. Some error terms, which are very small in single-phase 

incompressible flows, are non-negligible in multiphase flows. Li and Luo [195] have shown that, in the 

pseudopotential LB modeling of thermal flows, the error term in the recovered energy equation will 

lead to significant numerical errors. Recently, Li et al. [104] developed a hybrid thermal 

pseudopotential LB model, in which the pseudopotential LB method was used to simulate the density 

and velocity fields and a finite-difference scheme was employed to solve Eq. (121). Its applications 

will be discussed in Section 5.3. 
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3.7 Multi-component formulations 

Besides its use in modeling single-component multiphase flows, the pseudopotential LB method 

has also been widely applied to simulate multi-component multiphase flows. Here we briefly 

summarize the multi-component formulations of the pseudopotential LB method. For multi-component 

systems, the fluid-fluid interaction force is given by [12, 31, 243] 

 ( ) ( ) ( ),k k tk k k
k

t G wα α α
α

ψ ψ δ= − +∑ ∑F x x x e e ,  (124) 

where k kG  is a parameter reflecting the interactive strength and satisfies k k k kG G= , and the 

subscripts k  and k  denote the components, in which k  is a free index and k  is a dummy index,  

e.g., for a two-component system with components A  and B , the interaction force AF  is given by 

 ( ) ( ) ( ) ( )A A AA A AB B, t tt G w G wα α α α α α
α α

ψ ψ δ ψ δ = − + + +  
∑ ∑F x x x e e x e e .  (125) 

The force BF  can be formulated similarly. Note that, when k k= , k kG  represents the interaction 

within each component. For ideal gases, k kG  can be set to zero. 

In the original pseudopotential LB model, the LB equation for each component is given by [243] 

 ( ) ( ) ( ),1, , ,k k k eq k eq
t t k

k

f t f t f fα α α α αδ δ ρ
τ

 + + − = − − x e x u .  (126) 

Obviously, the above equation is a direct extension of Eq. (76) for multi-component systems. The 

shifted equilibrium velocity of each component is defined as eq
k k k k kρ ρ τ′=u u + F , in which 

k
k fαα

ρ = ∑  and ′u  is given as follows [243]: 

 k k k

k kk k

ρ ρ
τ τ

′ = ∑ ∑uu ,  (127) 

where k
k k fα αα

ρ = ∑u e . Previously it has been mentioned that the Shan-Chen forcing scheme, i.e., Eq. 

(76), will introduce some error terms into the macroscopic equations and lead to τ − dependent 

numerical results for single-component multiphase flows. In 2012, Porter et al. [291] found that Eqs. 

(126) and (127) also yield τ − dependent properties (see Fig. 4 in the reference). To solve this problem, 

they extended He et al.’s forcing scheme to multi-component systems [291] 
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 ( ) ( ) ( ) ( ),
,

2

, 1, , 1
2

k eq k eq eq
k kk k eq k

t t t
k k k s

f f
f t f t f

c
α α α

α α α α

ρ
δ δ δ

τ τ ρ

− − ⋅ 
+ + − = − + − 

 

u e u F
x e x ,  (128) 

where the equilibrium velocity equ  in ,eq kfα  and the forcing term is given by eq ′=u u  with k kρ u  

in Eq. (127) being replaced by 0.5k
k k t kfα αα

ρ δ= ∑u e + F . The corresponding mixture velocity is 

defined via k kk
ρ ρ= ∑u u , where kk

ρ ρ= ∑ . Here it is seen that equ  in Eq. (128) is not equal to 

the mixture velocity u . Meanwhile, we also notice that, in the studies of Chai and Zhao [292] and 

Sbragaglia and Belardinelli [248], where the MRT version of Guo et al.’s forcing scheme was 

employed, the velocity used in the equilibrium distribution function and the forcing term is defined as 

( )0.5k
t kk

fα αα
δ ρ= ∑ ∑u e + F , which is just the mixture velocity. The latter treatment is seemingly 

more reasonable, but further studies are still needed to clarify this issue.  

In Section 3.1.3 we have mentioned that Sbragaglia and Belardinelli [248] demonstrated that the 

discrete form of the pressure tensor should also be used in the multi-component pseudopotential LB 

models. For single-component models, it has been shown that the discrete form pressure tensor leads to 

a mechanical stability condition like Eq. (90), from which the coexistence densities can be analytically 

obtained via numerical integration. Meanwhile, the form of the pseudopotential can be determined 

according to thermodynamic consistency or the requirement of reproducing a non-ideal equation of 

state in the thermodynamic theory. When the thermodynamic consistency is satisfied or approximately 

restored, the coexistence densities obtained from the Maxwell construction can serve as the initial 

densities in numerical simulations. However, for the multi-component pseudopotential LB models, 

there have been no such principles for determining the form of the pseudopotential kψ  and the initial 

densities. Some empirical choices of kψ  were therefore employed in the literature, such as k kψ ρ=  

[248, 293], ( )1 expk kψ ρ= − −  [248, 292], and the square-root form adopted in several studies [294, 

295]. In spite of the fact that much progress has been achieved in the multi-component pseudopotential 

LB method, significant efforts are still required as its theory is far from being complete. 
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4. The phase-field multiphase LB method 

4.1 The phase-field theory 

4.1.1 Governing equations 

    The phase-field theory is a descendant of van der Waals [296] and Cahn-Hilliard’s [297, 298] 

classical field theoretical approaches, in which the local state of matter is represented continuously by a 

single variable known as the order parameter ( ), tφ x  that monitors the transition between different 

states or phases. The set of values of the order parameter over the whole occupied space is the so-called 

phase-field.  

    For a fluid, its thermodynamic behavior can be expressed by a free energy that is functional of the 

order parameter ( ), tφ x  as follows [299]: 

 ( ) ( ) 21 d
2V

k Vφ φ φ = + 
 ∫  ∇ ,  (129) 

where V  is the region of space occupied by the system. The term 20.5k φ∇  denotes the interfacial 

energy density, in which k  is a positive constant, and ( )φ  is the bulk energy density which has 

two minima corresponding to the two phases of the fluid. The chemical potential φµ  is defined as the 

variation of the free energy with respect to the order parameter [65, 300] 

 
( ) ( ) 2kφ

δ φ
µ φ φ

δφ
′= = − ∇


 , (130) 

where ( ) ( )d dφ φ φ′ =  . van der Waals [296] hypothesized that the equilibrium interface profiles 

can be obtained by minimizing ( )φ , i.e., the equilibrium profiles satisfy ( ) 2 0kφµ φ φ′= − ∇ =  

[300], which can be viewed as the governing equation for the order parameter at equilibrium. Later, 

Cahn and Hilliard [297, 298] generalized the time-dependent governing equation for φ  by 

approximating the interfacial diffusion flux J  as being proportional to φµ∇  

 ( )M
t φ
φ µ∂

= ⋅ = ⋅
∂

J∇ ∇ ∇ ,  (131) 

where M  is the mobility coefficient. Then the convective Cahn-Hilliard equation is given by [300] 
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 ( )M
t φ
φ φ µ∂

+ ⋅ = ⋅
∂

v ∇ ∇ ∇ .  (132) 

The fluid dynamics is described by the Navier-Stokes equations with a surface tension term 

 0⋅ =v∇ ,  (133) 

 sp
t

ρ ∂ + ⋅ = − + ⋅ + ∂ 

v v v F∇ ∇ ∇ Π ,  (134) 

where Π  is the viscous stress tensor and sF  is the surface tension force, which can be given by 

s φφ µ= −F ∇  [65] or s φµ φ=F ∇  [300]. Note that these two-type surface tension forces are 

theoretically equivalent since ( )φ φ φµ φ µ φ φ µ≡ −∇ ∇ ∇ , in which ( )φµ φ∇  can be absorbed into the 

pressure gradient term in Eq. (134). Nevertheless, the numerical performances of these two forms are 

usually different as the variations of φ  and φµ  across the interface are different. There are also some 

other forms of the surface tension force, which can be found in Ref. [301]. Khan remarked that [302] 

the existence of so many forms of the surface tension force is because further efforts are needed to 

simulate the problems with large density and viscosity ratios. 

The coupled Cahn-Hilliard-Navier-Stokes equations, Eqs. (132), (133), and (134), have been 

demonstrated to be valid for both density-matched binary fluids [65, 303] and two-phase fluid flows 

with a density contrast [304]. For density-matched binary fluids, the density ρ  in Eq. (134) is the 

average density, which is nearly a constant, while for two-phase fluid flows the density ρ  is 

functional of the order parameter φ . 

4.1.2 Interface properties 

 The equilibrium interface profiles can be obtained by solving ( ) 2 0kφµ φ φ′= − ∇ = . In the 

phase-field method, the bulk energy density is usually chosen to have a double-well form [300] 

 ( ) ( ) ( )2 2
φ β φ φ φ φ∗ ∗= − + ,  (135) 

where φ∗  is a constant that defines the two phases of the fluid at φ φ∗= ±  and β  is a parameter 

that can be used together with k  in the chemical potential to control the surface tension and the 

interface thickness. According to Eqs. (130) and (135), the chemical potential is given by 

63 

 



 ( )3 2 24 kφµ β φ φ φ φ∗= − − ∇ .  (136) 

The one-dimensional (e.g., along the x-direction) solution of 0φµ =  is [300] 

 ( ) tanh
2
xx
w

φ φ∗  =  
 

,  (137) 

where ( )1 2w kφ β∗= . In some studies [48, 305], the interface thickness is defined from 

2x w= −  to 2x w= , making the total interface thickness equal to ( )2 2 1 2W w kφ β∗= = . 

Obviously, such a choice defines the interface thickness from ( )tanh1 0.76φ φ φ∗ ∗= − ≈ −  to 

0.76φ φ∗≈ . In Refs. [65, 300, 306], the interface thickness is calculated from 0.9φ φ∗= −  to 

0.9φ φ∗= , with the corresponding formulation ( )12 2 tanh 0.9W w −= ≈ 4.164w . According to Fig. 9, 

the latter treatment is more reasonable.  

    At equilibrium the surface tension is equal to the integral given by Eq. (129) along the interface 

[300]. For a flat interface along the x-direction, the surface tension can be calculated by 

 ( )
2d d

2 d
k x

x
φϑ φ

+∞

−∞

  = +  
   

∫  .  (138) 

Meanwhile, the requirement ( ) 2 0kφµ φ φ′= − ∇ =  gives 

 ( ) 22

2

d d d d
d d 2 d d

kk
x x

φ φ φ
φ φ

 = ≡  
 


.  (139) 

Since ( )* 0φ± =  and d d 0xφ =  at *φ φ= ± , integrating Eq. (139) will lead to the following 

relationship: 

 ( )
2d

2 d
k

x
φφ  =  

 
 .  (140) 

Substituting Eq. (140) as well as Eq. (137) into Eq. (138) yields 

 
2 3

2d 4 1 4d 2
d 3 32

k x k k
x w
φ φϑ φ β

+∞ ∗
∗

−∞

 = = = 
 ∫ .  (141) 

The above formulations of the interface thickness and the surface tension are based on Eq. (135). For a 

general choice of ( )φ , such as ( ) ( ) ( )22
l gφ β φ φ φ φ= − − , the constant φ∗  in Eq. (141) can be 

replaced with ( ) 2l gφ φ−  [307]. It can be seen that both the interface thickness and the surface 
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tension are related to k  and β . In numerical simulations, when the interface thickness and the 

surface tension are given, the parameters k  and β  can be determined.  
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Fig. 9. The interface profile given by Eq. (137). The solid red line denotes the interface thickness 

defined from 0.9φ φ∗= −  to 0.9φ φ∗= , while the solid blue line represents the interface thickness 

calculated from 0.76φ φ∗≈ −  to 0.76φ φ∗≈ . 

4.2 The isothermal phase-field LB models 

4.2.1 Early models 

    In 1999, He et al. [45] proposed an incompressible LB model for simulating multiphase flows, in 

which they used an index function to track the interface between different phases. Two distribution 

functions were employed in the model, the index distribution function fα  and the pressure 

distribution function gα , which satisfy the following evolution equations [45, 308]: 

 ( ) ( ) ( ) ( ) ( ) ( )2

1 1, , 1
2

eq
t t t

s

f t f t f f
c

α
α α α α α αδ δ δ ϕ φ

τ τ
Γ + + − = − − − − − ⋅ 

 

v
x e x e v ∇ ,  (142) 

 ( ) ( ) ( ) ( )1 1, , 1
2

eq
t t tg t g t g gα α α α α αδ δ δ

τ τ
 + + − = − − + − − ⋅ 
 

x e x e v Φ ,  (143) 

where ( ) ( ) 2
EOS sp cϕ φ φ φ= −  and ( )( ) ( ) ( ) ( )0s gα α α ϕ ρ= Γ + − Γ − Γ  v F F vΦ ∇ , in which sF  is 

the surface tension force, gF  is the gravity force, and ( )ϕ ρ  and ( )αΓ v  are given by, respectively 

 ( ) 2
sp cϕ ρ ρ= − ,  (144) 
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 ( ) ( ) ( )2 2

2 4 21
2 2s s sc c c

α α
α αω

 ⋅ ⋅
Γ = + + −  

 

e v e v v
v ,  (145) 

where p  is the hydrodynamic pressure and the weights αω  are the same as those in Eq. (9). The 

variable φ  in ( )ϕ φ  is an order parameter and is calculated via fαα
φ = ∑ . The recovered 

macroscopic hydrodynamic equations are 

 2

1 0
s

p p
c tρ

∂ + ⋅ + ⋅ = ∂ 
v v∇ ∇ ,  (146) 

 
( ) ( ) s gp

t
ρ

ρ
∂

+ ⋅ = − + ⋅ + +
∂

v
vv F F∇ ∇ ∇ Π .  (147) 

For incompressible flows, t p∂  is very small and p⋅v ∇  is the order of ( )3MaΟ , where Ma is the 

Mach number, thus approximately satisfying the divergence-free condition ( 0⋅ =v∇ ). Meanwhile, the 

recovered governing equation for φ  is [309] 

 ( ) ( )EOSp p
t φ
φ φφ λ φ

ρ
  ∂

+ ⋅ = ⋅ −  ∂   
v∇ ∇ ∇ ∇ ,  (148) 

where φλ  is related to the relaxation time. In Ref. [309], Eq. (148) was interpreted as a level-set-like 

equation. Lee and Lin [310] pointed out such an interpretation is not appropriate. It is more appropriate 

to regard Eq. (148) as a Cahn-Hilliard-like equation. From this point, He et al.’s model is the first 

phase-field LB model for incompressible multiphase flows. Nevertheless, this model was found to be 

limited to moderate density ratios.  

Later, an incompressible multiphase LB model was proposed by Inamuro et al. [46] for multiphase 

flows at large density ratios. Inamuro et al.’s model also utilized two different particle distribution 

functions: one for the order parameter and the other for solving the velocity field without the pressure 

gradient. The model is then supplemented by a relationship between the velocity correction and the 

pressure gradient, which is determined by solving a Poisson equation at every collision-streaming step. 

Inamuro et al. [46] showed that their model recovers the following macroscopic equations: 

 ( )Mt
φ φ θ∂

+ ⋅ = ⋅ ⋅
∂

v P∇ ∇ ∇ ,  (149) 

 0⋅ =v∇ ,  (150) 

66 

 



 ( )21 1 gk
p

t
ρ ρ ρ

ρ ρ ρ
 ∂

+ ⋅ = − + ⋅ + ⋅ − ∂  

v v v I∇ ∇ ∇ Π ∇ ∇ ∇ ∇ ,  (151) 

where Mθ  is the mobility coefficient, P  is the thermodynamic pressure tensor, and gk  is a constant 

determining the surface tension. Equation (149) is the recovered phase-field advection-diffusion 

equation for the order parameter φ . Using the model, Inamuro et al. successfully simulated rising 

bubbles in a square duct at the density ratio 1000l gρ ρ = .  

    In 2005, Lee and Lin [47] devised a three-stage stabilized LB model for simulating incompressible 

multiphase flows at large density ratios. Similarly, two particle distribution functions were used in their 

model: the density distribution function fα  and the pressure distribution function gα , which obey the 

following discrete Boltzmann-BGK equations, respectively 

 ( ) ( ) ( ) ( ) ( )2 2
2

1 eq
s

s

f f f f c k
t c

αα
α α α α α φρ ρ µ ρ

τ
Γ∂  + ⋅ = − − + − ⋅ − − ∇ ∂

v
e e v∇ ∇ ∇ ,  (152) 

 ( ) ( )2

1 1eq

s

g
g g g

t c
α

α α α α ατ
∂

+ ⋅ = − − + − ⋅
∂

e e v∇ Φ ,  (153) 

where φµ  is the chemical potential and ( ) ( ) ( ) ( )20s scα α α ρ= Γ + Γ − Γ  v F vΦ ∇ . It was shown that 

the following macroscopic equations can be recovered from Eqs. (152) and (153) [47]: 

 ( ) ( )2
sc

t φ
ρ ρ µ µ∂  + ⋅ = ⋅  ∂

v∇ ∇ ∇ ,  (154) 

 2

1 0
s

p
tcρ

∂
+ ⋅ =

∂
v∇ ,  (155) 

 ( ) ( ) sp
t

ρ
ρ

∂
+ ⋅ = − + ⋅ +

∂
v

vv F∇ ∇ ∇ Π .  (156) 

Lee and Lin pointed out that 2
scµ  in Eq. (154) acts as the mobility in the Cahn-Hilliard-like equation 

[47]; thus in this model the density ρ  serves as the order parameter. To stabilize the LB scheme at 

large density ratios, the second-order discretizations of Eqs. (152) and (153) were solved in three steps 

and the gradient terms were evaluated using different forms before and after the streaming step [47]. A 

second-order mixed difference scheme, which is a combination of a second-order central difference 

scheme and a second-order biased difference scheme, was introduced to evaluate some spatial 

derivatives, e.g., for the directional derivatives (of a variable ϕ ), the second-order central and biased 

difference schemes are given by, respectively [47] 
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( )

( ) ( )CD

,

1
2t t ttα α αδ ϕ ϕ δ ϕ δ⋅ = + − −  x

e x e x e∇ ,  (157) 

 
( )

( ) ( ) ( )BD

,

1 2 4 3
2t t ttα α αδ ϕ ϕ δ ϕ δ ϕ⋅ = − + + + −  x

e x e x e x∇ .  (158) 

The mixed difference scheme can be given by ( )MD CD BD 2t t tα α αδ ϕ δ ϕ δ ϕ⋅ = ⋅ + ⋅e e e∇ ∇ ∇  [49]. 

Numerical results showed that Lee and Lin’s model is capable of simulating multiphase flows at 

the density ratio 1000l gρ ρ = . Nevertheless, Chiappini et al. [311] analytically demonstrated that the 

different discretization of the streaming operator along the directions of molecular versus fluid motion 

is in principle non-conservative. Lou et al. [312] also found that the second-order mixed difference 

scheme, which plays a critical role in Lee and Lin’s model for enhancing the numerical stability at large 

density ratios, is non-Galilean invariant and does not conserve the total mass of the system. Meanwhile, 

it was shown that [312] the second-order isotropic difference scheme (see the Appendix in Ref. [47] or 

Eqs. (73) and (74) in the present paper) can ensure that the total mass of the system is conserved, 

although the isotropic difference scheme is seemingly inefficient at large density ratios. 

4.2.2 Improved models 

In 2006, Zheng et al. [48] pointed out that the above three models cannot correctly recover the 

Cahn-Hilliard equation, which can be seen by comparing Eqs. (148), (149), and (154) with Eq. (132). 

A new model was therefore developed in Ref. [48]. To recover the Cahn-Hilliard equation, Zheng et al. 

[48] proposed a modified LB equation for the order parameter distribution function 

 ( ) ( ) ( ) ( ) ( ) ( )1, , 1 , ,eq
t t tf t f t f f q f t f tα α α α α α α α

φ

δ δ δ
τ

+ + − = − − + − + −  x e x x e x ,  (159) 

where ( )1 0.5q φτ= + . Furthermore, the particle distribution function for the average density 

( )A B 2n n n= + , in which An  and Bn  are the densities of fluid A and fluid B respectively, satisfies 

the following evolution equation: 

 ( ) ( ) ( )1, , eq
t t t

n

g t g t g g Fα α α α α αδ δ δ
τ

+ + − = − − +x e x ,  (160) 

where the forcing term Fα  is given by 
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 ( ) ( )2 4

11
2 s g

n s s

F
c c

α αα
α αω

τ
⋅   −

= − + ⋅ +   
   

e v ee v F F .  (161) 

Zheng et al. showed [48] that their model recovers the following macroscopic equations: 

 ( ) ( )Mt φ
φ φ θ µ∂

+ ⋅ = ⋅
∂

v∇ ∇ ∇ ,  (162) 

 ( ) 0n n
t

∂
+ ⋅ =

∂
v∇ ,  (163) 

 ( ) ( ) ( ) s g

n
n p

t φφµ
∂

+ ⋅ = − + + ⋅ + +
∂

v
vv F F∇ ∇ ∇ Π ,  (164) 

where Mθ  is the mobility coefficient. 

Previously it has been mentioned that the phase-field theory is valid for both density-matched 

binary fluids and two-phase fluids with a density contrast. For density-matched binary fluids, the 

density ρ  in Eq. (134) is the average density. The first LB model for binary fluids was devised by 

Swift et al. [41]. A couple of LB models for binary fluids can also be found in Xu et al.’s studies 

[313-315]. Actually, Zheng et al.’s model is also an LB model for density-matched binary fluids since 

the density in Eqs. (163) and (164) is the average density ( )A B 2n n n= + . This point was 

demonstrated by Fakhari and Rahimian [305], who showed that Zheng et al.’s model gives the same 

results for the cases with an equal average density, e.g., for the case A 1n =  and B 1000n =  with the 

case A 500n =  and B 501n = , which can be seen in Fig. 10. 

 

Fig. 10. Flow pattern around a moving droplet for cases with the same average density. Top: A 1n =  

and B 1000n = ; bottom: A 500n =  and B 501n = . Reprinted from Fakhari and Rahimian [305] with 
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permission of the American Physical Society. 

    To simulate two-phase fluid flows with a density contrast, Fakhari and Rahimian [305] presented a 

modified phase-field LB model based on Zheng et al.’s work. A similar LB equation was used to mimic 

the Cahn-Hilliard equation. Meanwhile, following the line of He et al.’s work [45], Fakhari and 

Rahimian employed the pressure distribution function gα  to solve the incompressible Navier-Stokes 

equation, which obeys the following evolution equation [305]: 

 ( ) ( ) ( ) ( )1 1, , 1
2

eq
t t t

g g

g t g t g gα α α α α αδ δ δ
τ τ

 
+ + − = − − − − − ⋅  

 
x e x e v Φ .  (165) 

Here ( ) ( ) ( ) ( ) ( )20s g scα α α ρ= Γ + + Γ − Γ  v F F vΦ ∇ , in which ( )αΓ v  is still given by Eq. (145). 

The density ρ  is defined as ( ) ( ) ( )2g l gρ ρ φ φ ρ ρ φ∗ ∗= + + − . Fakhari and Rahimian [305] showed 

that their model works well at the density ratio 1000l gρ ρ =  for static cases. For dynamic 

multiphase flows, the achievable highest liquid-gas density ratio decreases to around 10. 

In 2010, Lee and Liu [49] proposed a modified phase-field LB model based on Lee and Lin’s 

model [47]. In the modified model, the pressure distribution function gα  still obeys the discrete 

Boltzmann equation given by Eq. (153), but the density distribution function fα  is replaced by an 

order parameter distribution function hα , which satisfies the following equation so as to recover the 

Cahn-Hilliard equation [49]: 

 

( ) ( )

( ) ( ) ( )

2

2

1 eq

s

h
h h h M

t

p
c

α
α α α α φ α

α φ α

µ
τ

φφ φ µ
ρ

∂
+ ⋅ = − − + ∇ Γ

∂
 

+ − ⋅ − + Γ 
 

e v

e v v

∇

∇ ∇ ∇ .  (166) 

To enhance the numerical stability at large density ratios, the second-order mixed difference scheme 

was employed to evaluate some spatial derivatives; thus the weakness of the mixed difference scheme 

[312] was retained. 

Wang et al. [67] have developed a multiphase LB flux solver for simulating incompressible 

multiphase flows at large density ratios and high Reynolds numbers. The LB flux solver was based on 

the following hydrodynamic equations: 
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 2 0s
p p c
t

ρ∂ + ⋅ + ⋅ = ∂ 
v v∇ ∇ ,  (167) 

 ( ) ( ) sp
t

ρ
ρ

∂
+ ⋅ = − + ⋅ +

∂
v

vv F∇ ∇ ∇ Π .  (168) 

The above equations were then transformed to the governing equation of the density distribution 

function, which was solved by the finite-volume method and the flow variables were updated using a 

third-order Total-Variation-Diminishing (TVD) Runge-Kutta temporal scheme. The convective 

Cahn-Hilliard equation was solved with the finite-difference method and the convective term was 

discretized by a fifth-order Weighted Essentially Non-Oscillatory (WENO) scheme [67]. Owing to the 

use of these contact discontinuity capturing schemes, which are widely adopted in the simulations of 

compressible flows with shock waves [179, 316-318], the multiphase LB flux solver works well at the 

density ratio of 1000 [67]. Recently, Wang et al. [319] have improved their multiphase LB flux solver 

and developed a three-dimensional version using the D3Q15 lattice. Some numerical results can be 

found in Fig. 11. 

Similarly, in a recent study carried out by Shao and Shu [68], the convective Cahn-Hilliard 

equation was solved with a third-order TVD Runge-Kutta scheme for the temporal discretization and 

an upwind WENO scheme for discretizing the convection term. The incompressible Navier-Stokes 

equations were still mimicked by an LB model [68]. Using such a hybrid phase-field LB model, Shao 

and Shu [68] successfully simulated droplet splashing at 1000l gρ ρ =  and Re 500= . Their work 

implies that the numerical stability of a phase-field LB model at large density ratios may mainly 

depend on the solver for the Cahn-Hilliard equation. 

     
T = 0                  T = 0.5                  T = 1 

     
T = 1.5                  T = 2                  T = 2.5 
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T = 3                   T = 4 

Fig. 11. Simulation of three-dimensional droplet splashing at 1000l gρ ρ =  and Re 2000=  with a 

multiphase LB flux solver. Here “T” denotes non-dimensional time. Reprinted from Wang et al. [319] 

with permission of Elsevier.  

4.3 Hydrodynamic inconsistency 

In 2012, Li et al. [50] found that, in most of the previous incompressible multiphase LB models, 

the recovered momentum equation is inconsistent with the target momentum equation of 

incompressible multiphase flows, i.e., Eq. (134). Most of the above-mentioned models use the pressure 

distribution function gα  to simulate the Navier-Stokes equations and the equilibrium pressure 

distribution function eqgα  usually satisfies 

 2

1 eq

s

g
c α α

α

ρ=∑ e v ,  2

1 eq

s

g p
c α α α

α

ρ= +∑ e e vv I . (169) 

Correspondingly, the recovered momentum equation takes the following form: 

 ( ) ( ) R. H. S.
t

ρ
ρ

∂
+ ⋅ =

∂
v

vv∇ ,  (170) 

where “R. H. S.” denotes the right-hand side of the recovered momentum equation, which is often the 

same as the right-hand side of Eq. (134). Nevertheless, the left-hand side of Eq. (170) deviates from 

that of Eq. (134) because [50] 

 ( ) ( ) ( )
t t t

ρ ρρ ρ ρ
∂ ∂ ∂   + ⋅ ≡ + ⋅ + + ⋅   ∂ ∂ ∂   

v vvv v v v v∇ ∇ ∇ .  (171) 

When ( ) 0t ρ ρ∂ + ⋅ =v∇ , the left-hand sides of Eqs. (170) and (134) will be identical. However, in the 

phase-field theory for incompressible multiphase flows, the density ρ  is an affine function of the 

order parameter φ . As a result, the usual mass conservation ( ) 0t ρ ρ∂ + ⋅ =∇ u  is no longer a 

consequence of the incompressibility condition ( 0⋅ =u∇ ) since [50] 
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 ( ) ( ) ( )d d
d dt t M φ
ρ ρρ ρ φ φ µ
φ φ

∂ + ⋅ = ∂ + ⋅ = ⋅∇ ∇ ∇ ∇u u .  (172) 

It can be found that, when the phase-field theory with a Cahn-Hilliard-like interface capturing equation 

is applied, the incompressibility condition and the usual mass conversation cannot be simultaneously 

satisfied at the interface (the mixing layer) [65, 300, 304]. 

Hence the recovered momentum equation (170) should be rewritten as 

 ( ) R. H. S.
t t

ρρ ρ∂ ∂   + ⋅ = − + ⋅ +   ∂ ∂   

v v v v v∇ ∇   (173) 

Obviously, an additional term ( )a t ρ ρ= − ∂ + ⋅  F v v∇  is included in the recovered momentum 

equation as compared with Eq. (134). According to Eq. (172), aF  is zero in every single-phase region 

but nonzero at the interface. Li et al. [50] pointed out that aF  can be interpreted as an additional 

interfacial force and can be eliminated by adding a−F  into the forcing term of the LB model. It was 

numerically found that [50], with the increase of the velocity or the Reynolds number, the additional 

interfacial force gradually has an important influence on the evolution of the interface and affects the 

numerical accuracy, which can be seen in Fig. 12.  

In some recent studies of the phase-field multiphase LB method [51, 320, 321], the elimination of 

the additional interfacial force was taken into account. In addition, Liu et al. [51] found that a similar 

error term exists in the recovered Cahn-Hilliard equation of Lee and Liu’s model if the additional 

interfacial force is not eliminated (see Eq. (30)-Eq. (32) in Ref. [51]). Moreover, Liang et al. [320] have 

proposed an improved LB-MRT model to solve the Cahn-Hilliard equation. A source term was added to 

the LB-MRT equation to remove the error term in the recovered Cahn-Hilliard equation. Liang et al. 

showed that their LB-MRT model is better than some previous models in terms of numerical accuracy 

and stability. Recently, Zheng et al. [322] have also constructed an improved LB model for the 

Cahn-Hilliard equation. 
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Fig. 12. Evolution of a falling droplet under gravity. Left: with the additional interfacial force. Right: 

the additional interfacial force is eliminated. Reprinted from Li et al. [50] with permission of the 

American Physical Society.  

Finally, it should be noted that, although mass conservation ( ) 0t ρ ρ∂ + ⋅ =v∇  is not satisfied at 

the interface when the incompressibility condition is imposed, the total mass of the whole system can 

be conserved as long as there is no interfacial diffusion flux across the boundaries ( M φµ∇  denotes the 

interfacial diffusion flux), which can be found by integrating Eq. (172) over the occupied space and 

then using the divergence theorem [304]. Hence, in phase-field models, the no-flux boundary condition 

should be applied to the chemical potential φµ , i.e., 0φµ⋅ =n ∇ , where n  is the normal unit vector. 

4.4 The contact angle treatment 

In this section, the approaches used in the phase-field method for simulating contact angles are 

briefly reviewed. 

4.4.1 The surface energy density 

In the phase-field method, the first study about the implementation of contact angles might be 

attributed to Cahn [323], who assumed that the interaction between the solid surface and the fluid is 
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sufficiently short-range so that it contributes a surface term to the total free energy of the system. With 

such an assumption, the free energy defined by Eq. (129) can be rewritten as [324, 325] 

 ( ) ( ) ( )21 d d
2 sV S

k V + Sφ φ φ φ = + 
 ∫ ∫  ∇  ,  (174) 

where S  is the solid surface bounding the volume V , sφ  is the value of φ  on the solid surface, 

and the surface energy density ( )sφ  represents the influence of the surface on the free energy. 

    To implement wetting boundaries in the phase-field method, the key issue is to find the 

relationship between the boundary condition of the order parameter φ  and the value of the contact 

angle Wθ . According to Ref. [324], the natural boundary condition of φ  is given by 

 ( )d
d

s

s

k
φ

φ
φ

⋅ =n


∇ ,  (175) 

where k  is the constant in the free energy ( )φ  and n  is the unit vector normal to the boundary. 

Many forms of ( )sφ  have been proposed in the literature. The simplest ( )sφ  is linearly 

proportional to sφ  [324, 326]: ( )s c sφ λ φ= − , where cλ  is a constant. Then Eq. (175) becomes 

 ck φ λ⋅ = −n ∇ .  (176) 

From Eq. (176) it can be seen that the boundary condition of φ  has been linked to cλ . Meanwhile, 

the contact angle can be determined by the Young’s law [324] 

 Wcos sg slϑ ϑ
θ

ϑ
−

= ,  (177) 

where ϑ , sgϑ , and slϑ  are the liquid-gas, solid-gas, and solid-liquid surface tensions, respectively. 

For the linear surface energy density ( )s c sφ λ φ= − , the surface tensions sgϑ  and slϑ  can be 

related to cλ  as follows (Details can be found in Refs. [324, 325]): 

 
( ) ( )3 21

2 2 2
l g

sg c

φ φ ϑ ϑϑ λ
+

= − + − − Ω ,  (178) 

 
( ) ( )3 21

2 2 2
l g

sl c

φ φ ϑ ϑϑ λ
+

= − + − + Ω ,  (179) 

where ( )2
4 2c l g kλ φ φ βΩ = −  is the wetting potential. 

Substituting Eqs. (178) and (179) into Eq. (177), one can find [324, 325, 327] 
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( ) ( )3 2 3 2

W

1 1
cos

2
θ

+ Ω − − Ω
= .  (180) 

For a given contact angle, the value of cλ  can be obtained from Eq. (180); thus the boundary 

condition of φ  can be determined via Eq. (176) and the following formulations can be used [328] 

 
0

c

zz k
λφ

=

∂
= −

∂
,  (181) 
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1 3 4
2 z z zz z z zz

φ φ φ φ

= = ==

 ∂ ∂ ∂ ∂
≈ − + − ∂ ∂ ∂∂  

,  (182) 

where z  is the perpendicular direction to the wall. Briant et al. [328] suggested that 
1z

zφ
=

∂ ∂  can 

be calculated with a central finite-difference scheme. In addition, they found that the best choice for 

2z
zφ

=
∂ ∂  is a left-handed finite-difference scheme, i.e., ( )2 2 1 0

0.5 3 4
z z z z

zφ φ φ φ
= = = =

∂ ∂ ≈ − + .  

Moreover, Pooley et al. [329] have investigated the performances of the BGK and MRT collisions 

models when the above approach is employed to implement the contact angles. It was found that, for 

the BGK collision model, strong spurious currents appear when the relaxation time 1τ ≠ . Pooley et al. 

demonstrated that the spurious currents mainly arise from two effects: the long-range contribution to 

the equilibrium distribution function near the contact line and the bounce-back boundary treatment. 

They suggested using the MRT collision model for cases when the simulated two components/phases 

have different viscosities. Recently, Taghilou and Rahimian [330] successfully applied the above 

approach to simulate the penetration of a liquid droplet in a porous media with wetting boundaries. 

Some numerical results can be found in Fig. 13. 

Besides the linear form of the surface energy density, some other forms can be found in Refs. 

[331-333]. For example, a quadratic form surface energy density and a cubic form surface energy 

density were proposed in Ref. [331], with the relationship between the boundary condition of φ  and 

the contact angle being derived in a similar way. Numerical investigations on the performances of these 

different forms have been conducted by Liu and Lee [331] and Huang et al. [333]. 
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Fig. 13. Simulation of impact of droplet on the permeable surface at different porosities. The contact 

angle was implemented via Eqs. (181) and (182). Reprinted from Taghilou and Rahimian [330] with 

permission of Elsevier. 

4.4.2 The geometric formulation 

In 2007, Ding and Spelt [287] found that the approach based on the surface energy density cannot 

give a slope of the interface that is completely consistent with the prescribed value of the contact angle. 

The detailed explanations can be found in Section II.B in Ref. [287]. To solve this problem, Ding and 

Spelt proposed a geometric formulation to implement wetting boundaries in the phase-field method.  

Wθn
sn

interface

 

Fig. 14. The geometric information of a contact angle. 

According to the geometric information in Fig. 14, the following equation was obtained [287]: 

 
( ) ( )Wtan

2
s

s s

π φθ
φ φ

⋅ ⋅ − = =  − ⋅ − ⋅ 

n n n
n n n n n n

−∇
∇ ∇

,  (183) 

77 

 



where n  is the unit vector normal to the wall and s φ φ= −n ∇ ∇  is the normal unit vector.  

Equation (183) is the so-called geometric formulation for computing the contact angle Wθ . Its 

discretized form (using a central finite-difference scheme) is given by [287] 

 ,0 , 2 W 1, 1 1, 1tan
2i i i i
πφ φ θ φ φ+ −

 = + − − 
 

.  (184) 

Here the index i  represents the coordinate along the solid wall. Ding and Spelt [287] pointed out that 

the geometric formulation can provide a good approximation for the contact angle Wθ  as long as 

enough grid points (usually 4–8) are used to resolve the interface and the diffuse interface is at 

equilibrium or near equilibrium at the solid substrate. It was found [287] that the geometric formulation 

gives more accurate results in comparison with the surface-energy-density-based approach. 

Nevertheless, it should also be noted that the geometric formulation requires more neighboring 

information; therefore its application to rough surfaces may need more careful treatment.  

4.5 Thermal models for liquid-vapor phase change 

In this section, the thermal phase-field LB models for simulating liquid-vapor phase change are 

reviewed. The existing thermal phase-field LB models can be classified into three types. The first-type 

thermal phase-field LB model was proposed by Dong et al. [106] based on Zheng et al.’s binary-fluid 

model, in which the phase change was defined by adding a source term to the Cahn-Hilliard equation: 

 ( ) ( )
2

2Ja
Pe

l

g

M T
t φ

ρφ φ µ
ρ

∂
+ ⋅ = ⋅ − ∇

∂
v∇ ∇ ∇ ,  (185) 

where ( ), satJa p l fgc T T h∞= −  is the Jacob number and Pe lUL χ=  is the Peclet number, in which 

fgh  is the latent heat of vaporization, U  is the characteristic velocity, L  is the characteristic length, 

and lχ  is the thermal diffusivity of liquid phase. The temperature equation was simulated by a 

temperature distribution function Tα , which obeys [106] 

 ( ) ( ) ( ) ( )
1, ,

Ja
geq

t t
T l l g

T t T t T Tα α α α α α

ρ φδ δ ω
τ ρ ρ ρ

′
+ + − = − − +

−
x e x ,  (186) 

where tφ φ′ = ∆ ∆ . The last term on the right-hand side of Eq. (186) is the latent heat term defined by 

Dong et al. [106]. The order parameter φ  ranges from φ∗−  to φ∗ , but the complete Eqs. (185) and 
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(186) are only applied in the region 0φ < ; when 0φ ≥ , the source terms are ignored. In other words, 

the phase change terms are considered in the vapor region only [106]. The model has been employed to 

simulate bubble growth on and departure from a superheated wall [106-108] and has been extended to 

three dimensions by Sun and Li [109]. Some numerical results can be found in Fig. 15.  

 

Fig. 15. Bubble growth on and departure from a superheated wall. Reprinted from Sun and Li [109] 

with permission of Elsevier. 

The second-type thermal phase-field LB model was developed by Safari et al. [110, 111] based on 

Lee and Liu’s isothermal phase-field LB model [49]. The liquid-vapor phase change was incorporated 

by redefining the divergence of the velocity field. From the continuity equations of local densities, the 

following velocity divergence was obtained [110] 

 1 1

g l

m
ρ ρ

 
′⋅ = −  
 

v∇ ,  (187) 

where m′  is the mass flux due to the liquid-vapor phase change. The above formulation can also be 

found in Refs. [334, 335]. When the density is defined as ( ) ( ) ( )g g l g l gρ ρ φ φ ρ ρ φ φ= + − − − , the 

Cahn-Hilliard equation should be rewritten as 

 ( ) ( ) g l

g l

M m
t φ

φ φφ φ µ
ρ ρ

 ∂ ′+ ⋅ = ⋅ + −  ∂  
v∇ ∇ ∇ .  (188) 

If we choose 1lφ =  and 1gφ = − , the last term on the right-hand side of Eq. (188) will yield 
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( )l g l gmρ ρ ρ ρ′− +  [335]. In Safari et al.’s model, the mass flux m′  is defined as 

 
fg

Tm
h

λ φ⋅′ =
∇ ∇ ,  (189) 

where λ  is the thermal conductivity and fgh  is the latent heat of vaporization. In Ref. [110], the 

model was validated by simulating a one-dimensional Stefan problem and two-dimensional droplet 

evaporation. Recently, this model has been applied by Begmohammadi et al. to simulate bubble growth 

on and departure from a superheated wall [112]. Using Lee and Liu’s mixed difference scheme, 

Begmohammadi et al. successfully simulated bubble growth at a large density ratio ( 1000l gρ ρ = ). 

With the mass flux defined by Eq. (189), an initial small bubble is often placed on the wall for 

simulating bubble growth because there will be no liquid-vapor phase change when the order parameter 

φ  is uniform in the whole computational domain. 

The third type of thermal phase-field LB model was devised by Tanaka et al. [113] on the basis of 

Inamuro et al.’s isothermal phase-field model [46]. Similar to the thermal pseudopotential LB models, 

Tanaka et al.’s model also employs the temperature T  in the equation of state ( ) 2
0 1p T b aφ φ φ= − −  

[113] to drive the phase change from the liquid state to vapor state. Hence in Tanaka et al.’s model the 

rate of the liquid-vapor phase change is also a computational output, while in the above two types of 

thermal phase-field LB models, the phase change rate is a prerequisite input. Owing to this feature, the 

bubble growth and departure can be simulated by Tanaka et al.’s model without placing an initial 

bubble on the superheated wall [113, 114].  

Finally, it is noticed that in some of the above thermal phase-field LB models the target 

macroscopic temperature equation takes the following form: 

 ( )t RT T T Sχ∂ + ⋅ = ⋅ +v ∇ ∇ ∇ ,  (190) 

where χ  is the thermal diffusivity and RS  is a source term. Different models use different source 

terms: for instance, RS  is given by ( )fgR pS m h cρ′= −  in Ref. [111]. Although in the phase-field 

theory there has not been a unified definition for the source term RS , it is believed the first term on the 

right-hand side of Eq. (190) should at least be 
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λ
ρ

⋅∇ ∇ ,  (191) 

which can be observed in the studies of thermal phase-field algorithms with conventional numerical 

methods: see Eq. (10d) in Ref. [334] and Eq. (3) in Ref. [335]. Since the density usually varies 

significantly across the liquid-vapor interface, it is inappropriate to replace Eq. (191) with ( )Tχ⋅∇ ∇ , 

which can also be seen from Eq. (121). 

5. Some applications of multiphase and thermal LB methods 

In the above sections, we have introduced the fundamentals of the LB method and reviewed the 

advances in the theories of two popular multiphase LB methods. In this section we shall review some 

applications of these two multiphase LB methods as well as the application of thermal LB approaches 

in energy storage with phase change materials. 

5.1 Fuel cells and batteries  

A fuel cell, which consists of an anode, a cathode, a membrane, and an electrolyte, is an energy 

conversion device that converts the chemical energy stored in fuels and oxidants into electricity 

through electrochemical reactions [336, 337]. Fuel cells can be classified into different types according 

to the electrolyte in use, among which the proton exchange membrane (PEM) fuel cell, also known as 

the polymer electrolyte membrane fuel cell, is widely regarded as one of the most promising types of 

fuel cells [336, 338-340] due to its advantages such as low operating temperature, high power density, 

and zero/low emission. There are many phenomena involved in a PEM fuel cell, e.g., heat transfer, 

species and charge transport, multiphase flows, and electrochemical reactions. In particular, the 

water-gas two-phase flow in the gas diffusion layer (GDL) has been identified as an important 

phenomenon because it affects the amount of water in the catalyst layer and membrane, and plays a 

crucial role in the water management of PEM fuel cells.  

In the literature, the first attempt of applying a multiphase LB model to simulate the water-gas 

transport in the GDL of a PEM fuel cell was attributed to Niu et al. [73] and Sinha et al. [74] in 2007. 
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By employing a three-dimensional MRT version of Zheng et al.’s binary-fluid phase-field LB model, 

Niu et al. [73] investigated the effects of the pressure drop, the wettability, and the viscosity ratio on 

the liquid-gas transport process in the GDL of a PEM fuel cell. They observed that an increase in the 

viscosity ratio results in a decreased relative permeability of the liquid phase. Meanwhile, Sinha et al. 

[74] utilized a multi-component pseudopotential LB model to simulate the liquid water distribution in 

an initially air-saturated carbon paper GDL. The influence of the capillary pressure was investigated 

and some results can be found in Fig. 16, which show that, at a low capillary pressure, the invading 

front overcomes the barrier pressure only at some preferential locations depending upon the pore size. 

With the increase of the capillary pressure, it can be seen that the liquid water gradually penetrates into 

the domain occupied by air. Moreover, the difference of the liquid water distribution between a 

hydrophobic GDL and a mixed wettability GDL has also been studied [74]. 

 

Fig. 16. Numerical simulation of the liquid water distribution in a reconstructed non-woven GDL 

microstructure with increasing capillary pressure. The pseudopotential LB method was used. Reprinted 

from Sinha et al. [74] with permission of the Royal Society of Chemistry. 

Later, Koido et al. [75] employed a combination of the standard single-phase LB method and the 
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pseudopotential LB method to predict the relative permeabilities of liquid and gas phases versus the 

saturation of the GDL of a PEM fuel cell. The shape of the curve of the experimentally measured 

gas-phase relative permeability was correctly captured by the numerical prediction. The effect of 

wettability on the liquid water distribution in the GDL was also investigated. It was found that the 

liquid water tends to be present in large pores as spheres in a hydrophobic GDL and in small pores as 

thin films in a hydrophilic GDL [75]. In the meantime, by adopting the pseudopotential LB method, 

Park and Li [76] carried out a numerical study on the two-phase flow through a complicated porous 

medium, which represents a carbon paper GDL.  

In 2009, using Inamuro et al.’s phase-field LB model, Tabe et al. [77] studied the dynamic 

behavior of condensed water and gas flow in a PEM fuel cell with a simplified GDL. Their results 

showed that the wettability of the flow channel has a strong effect on the two-phase flow in PEM fuel 

cells. Tabe et al. suggested that controlling the wettability of the porous separator can be used to 

produce an efficient distribution of the water and gas flow. At the same time, Mukherjee et al. [78] 

employed the pseudopotential LB method coupled with the stochastic microstructure reconstruction 

method to investigate the influences of the pore structure and the surface wettability on the liquid water 

transport, and the flooding dynamics in the catalyst layer and the GDL of a PEM fuel cell. In addition, 

Hao and Cheng [79] used a binary-fluid phase-field LB model to simulate the formation and removal 

of water droplets in the micro-gas flow channel of a PEM fuel cell. It was found that increasing the gas 

flow velocity and enhancing the GDL hydrophobicity can promote the formation of small droplets and 

thus reduce the time of water droplets adhering to the GDL surface near the emergence pore. Moreover, 

Hao and Cheng [80, 81] have also studied the effect of wettability on the water transport dynamics in a 

carbon paper GDL. It was shown that, for high hydrophobicity, the water transport in the GDL falls 

into the regime of capillary fingering, whereas for neutral wettability, the water transport exhibits stable 

displacement characteristics even for a capillary force dominated flow.  

Zhou and Wu [82] have applied the pseudopotential LB method to study the liquid water transport 

mechanism in the GDLs of PEM fuel cells. It was found that the distribution of the fibers and the 
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spatial mixed-wettability play an important role in the liquid water transport. Chen et al. [83] 

investigated the pore-scale flow and mass transport in the GDL of an interdigitated PEM fuel cell using 

the pseudopotential LB method. The GDL was reconstructed with the stochastic microstructure 

reconstruction method. They showed that the pore-scale behavior of the liquid water in the GDL can be 

classified as slow creeping in the regions with slow air flow and quick moving in the regions with fast 

air flow. Ben Salah et al. [84] utilized Inamuro et al.’s phase-field LB model to study the droplet 

behavior in the gas flow channel of a PEM fuel cell. They found that hydrophilic channel walls result 

in better gas transport characteristics than hydrophobic walls. Using the pseudopotential LB method, 

Han et al. [85] have also studied the liquid droplet dynamics in the gas flow channel of a PEM fuel cell. 

The development and interaction of two liquid droplets were simulated. It was found that increasing the 

gas stream velocity and the liquid pore distance can prevent the interaction of liquid droplets and 

enhance the removal of droplets. In addition, Han and Meng [86] have simulated the liquid water 

transport in two different types of serpentine gas channels of PEM fuel cells. They found that a smooth 

U-shaped turning region is beneficial to the liquid water removal in a serpentine gas channel.  

Moreover, Han and Meng [87] have applied the pseudopotential LB method to investigate the 

interfacial phenomena of liquid water transport in the porous diffusion layers of PEM fuel cells. They 

showed that the liquid water moves preferentially through the regions with large perforated pores. In 

addition, Gao et al. [88] have simulated the water and gas flow in porous GDLs reconstructed from 

micro-tomography and found that, with an increase in hydrophobicity, the liquid water transport in 

GDLs changes from piston flow to channel flow. Recently, using the pseudopotential LB method, 

Molaeimanesh and Akbari [89] studied the two-phase flow through the GDL of a PEM fuel cell with 

the non-homogeneous and anisotropic transport properties being considered. Furthermore, they have 

studied the pore-scale flows in three reconstructed GDLs with different anisotropic parameters using a 

three-dimensional pseudopotential LB model [90]. Some results can be found in Fig. 17. In case a the 

carbon fibers are mostly oriented normal to the catalyst layer, while in case c the carbon fibers are 

mostly oriented parallel to the catalyst layer. The results showed that, when the carbon fibers are more 
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likely oriented normal to the catalyst layer, the distributions of the oxygen and water vapor become 

more disturbed. Moreover, Kim et al. [91] have investigated the effects of micro-porous layers (MPLs) 

in PEM fuel cells using the pseudopotential LB method. It was found that the liquid water inside the 

GDL is reduced as the thickness of the MPLs increases. 

   

Fig. 17. Oxygen mole fraction distribution (left) and water vapor mole fraction distribution (right) in 

three different reconstructed GDLs. Reprinted from Molaeimanesh and Akbari [90] with permission of 

Elsevier. 

Recently, the LB method has also been applied to batteries [92, 93, 341]. The first study was 

conducted by Qiu et al. [341]. In their study, the flow of electrolyte through the pore space in a 

vanadium redox flow battery [342] was modeled by the standard single-phase LB method with the 

species and charge transport being solved using the finite-volume method. Recently, Lee et al. [92] 

successfully applied the pseudopotential multiphase LB method to simulate the dynamic behavior of a 

liquid electrolyte in the porous electrode of a lithium-ion battery, which is a member of rechargeable 
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batteries family. In lithium-ion batteries, the lithium ions move from the negative electrode to the 

positive electrode during the discharge process and move back when charging. Lee et al. found that the 

wettability in a porous electrode was strongly affected by the two-phase liquid electrolyte and gas flow, 

and enhanced wettability can be achieved through controlling the material properties. Furthermore, Lee 

et al. [93] have studied the influence of the electrode compression ratio on the wettability of a 

lithium-ion battery. Some results can be found in Fig. 18: it can be seen that a higher compression ratio 

leads to a reduced liquid electrolyte distribution.  

 

Fig. 18. The liquid electrolyte in the cathode with the compression ratios being (a) 0%, (b) 10%, (c) 

20%, (d) 30%, and (e) 40%. Reprinted from Lee et al. [93] with permission of Elsevier. 

5.2 Droplet collisions 

Understanding droplet collisions is of crucial importance in many industrial processes such as 

inkjet printing, spray cooling, and spray combustion [343]. Here droplet collisions include 

droplet-droplet collisions and droplet-wall collisions. The first study of droplet collisions in the LB 

community may be attributed to Schelkle and Frohn [344], who applied the pseudopotential LB method 

to simulate binary collisions between equal-size droplets. Owing to the limitations of the original 

pseudopotential LB model, the liquid-gas density ratio, the Reynolds number, and the Weber number in 

Schelkle and Frohn’s study are relatively low.  

In 2004, Inamuro et al. [46, 345] studied binary droplet collisions at a high Reynolds number 

( Re 2000= ) with their phase-field LB model. The liquid-gas density ratio is 50. Three types of 
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collisions were reproduced, i.e., coalescence collision, reflexive separation collision, and stretching 

separation collision. The results of a stretching separation collision can be found in Fig. 19. The impact 

parameter is defined as ( )1 2B X R R= + , where 1R  and 2R  are the initial radii of the two droplets, 

respectively, and X  is the distance between the centers of the droplets, perpendicular to their 

direction of motion. It can be seen that at * 1.38t =  only a portion of the droplets contacts directly due 

to the high impact parameter. The remaining portions of the droplets still move in the direction of their 

initial velocities and the collision finally leads to two major droplets with a small satellite droplet [345].  

 

Fig. 19. A stretching separation collision between off-center binary droplets. The Weber number is 79.5, 

the Reynolds number is 2000, and the impact parameter is 0.5. Reprinted from Inamuro et al. [345] 

with permission of Elsevier. 

Later, Premnath and Abraham [346] studied binary droplet collisions using both axisymmetric and 

three-dimensional MRT versions of He et al.’s multiphase LB model. For head-on collisions, it was 

shown that the droplet coalescence occurs at low Weber numbers and the coalesced droplet entraps a 

micro-bubble. When the Weber number increases, the colliding droplets separate rather than coalescing 

permanently. Furthermore, the effects of the droplet size ratio were also studied in Premnath and 

Abraham’s work [346]. Similarly, Sakakibara and Inamuro [347] have investigated binary collisions of 

two unequal-size droplets with a three-dimensional version of Inamuro et al.’s phase-field LB model. 
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They showed that the available theoretical prediction of the boundary between the coalescence 

collision and the stretching separation collision fails in the case of a low diameter ratio ( 0.25 ). 

Furthermore, Mukherjee and Abraham [348] have simulated collisions between a droplet and a flat 

solid wall with an axisymmetric version of He et al.’s model. They reported two outcomes of 

droplet-wall collisions: deposition and rebound, and found that the transition between deposition and 

rebound is influenced by the Weber number, the Ohnesorge number, and the advancing and receding 

static contact angles.  

 

Fig. 20. Simulation of micro-scale droplet-wall collisions. The initial droplet diameter is approximately 

50 μm  and the static contact angle is o107θ = . Reprinted from Lee and Liu [49] with permission of 

Elsevier. 

In 2010, Gupta and Kumar [349] employed a three-dimensional pseudopotential LB model to 

simulate droplet collisions on a dry solid wall. The effects of the impact Reynolds number, the Weber 

number, and the Ohnesorge number were analyzed with the density ratio around 10 . It was found that 

the maximum spreading factor obeys the power law 0.250.5Re . In the meantime, Lee and Liu [49] 

investigated micro-scale droplet-wall collisions at a large density ratio ( 842l gρ ρ ≈ ) using their 

phase-field LB model. Some results can be found in Fig. 20, from which the spreading and retraction 

processes can be clearly observed. In addition, it can be seen that the droplet rebounds in the final stage 
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but fails to lift off from the solid surface. Lee and Liu [49] found that the influence of the Weber 

number emerges in the later stage of spreading. Lycett-Brown et al. [66] have studied binary droplet 

collisions using a multi-speed pseudopotential LB model. The simulations were conducted at a large 

density ratio but small Reynolds and Weber numbers. 

Furthermore, Huang et al. [350] have investigated the phenomenon of bubble entrapment during 

the collision of a droplet on a solid wall with a phase-field LB model. Four types of entrapment were 

observed under different Weber numbers, Reynolds numbers, and surface wettability. They found that 

large Ohnesorge numbers ( Oh We Re= ) can prevent the phenomenon of bubble entrapment from 

occurring. In addition, using Inamuro et al.’s phase-field LB model, Tanaka et al. [351] have simulated 

the collision of a falling droplet with a stationary droplet on a solid surface. The influence of the Weber 

number on the dynamic behavior of the droplets and the mixing process of the collision were studied. 

Shen et al. [352] have investigated droplet collisions on the surface of a circular pipe with the 

pseudopotential LB method. They found that the droplets drip down on hydrophilic surfaces and splash 

when the impact velocity increases, while on hydrophobic surfaces the droplets splash even at a small 

impact velocity. 

Zhang et al. [70] have also simulated droplet collisions on a circular pipe. A high density ratio 

( 580l gρ ρ = ) was achieved using Li et al.’s improved MRT forcing scheme for the pseudopotential 

LB models. According to the dynamic behavior of the droplets, three temporal states were observed: 

the initial droplet deformation state, the inertia dominated state, and the viscosity dominated state. The 

effects of the Reynolds number, the Weber number, and the Galileo number on the dynamic behavior 

were analyzed. Later, Zhang et al. [71, 353] studied three-dimensional droplet collisions on flat and 

spherical surfaces using a three-dimensional pseudopotential LB model. Recently, Lycett-Brown et al. 

[354] investigated three-dimensional binary droplet collisions with a cascaded pseudopotential LB 

model. Head-on and off-center collisions were mimicked under various Weber and Reynolds numbers. 

Moreover, Lycett-Brown et al. [354] have studied the effects of the droplet size ratio and found that the 

numerical errors (compared with the theoretical analysis) decrease as the droplet size ratio increases. 
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Sun et al. [355] have investigated head-on collisions of equal-size droplets and unequal-size 

droplets using an axisymmetric phase-field LB model. They found that, in the axial deformation cases, 

“coalescence” occurs at a low Weber number and “reflexive separation with satellite droplets” appears 

at a high Weber number. Moreover, by incorporating Li et al.’s axisymmetric LB-MRT scheme [143] 

into Lee et al.’s phase-field LB model, Sun et al. [72] successfully simulated head-on collisions of 

unequal-size droplets at a large density ratio ( 830l gρ ρ = ) and a low viscosity. It was shown that, in 

the cases of low Ohnesorge numbers, the smaller droplet tends to penetrate deeply into the larger one. 

With the increase of the Ohnesorge number, the smaller droplet spreads on the surface of the larger one. 

Recently, Zhou et al. [356] studied collisions between multiple droplets and a solid wall with a 

phase-field LB model. Some results of two droplets can be found in Fig. 21. It can be seen that in the 

early stage the two droplets behave independently of each other. Later, during the spreading process the 

two droplets contact each other. Subsequently, droplet coalescence occurs and a large droplet is formed. 

The collisions between an array of droplets and a solid wall has also been studied in Zhou et al.’s work. 

 

Fig. 21. Simulation of the collision between two droplets and a solid wall. The Weber number is 

We 100=  and the Ohnesorge number is Oh 0.04= . Reprinted from Zhou et al. [356] with 

permission of the American Physical Society. 

5.3 Boiling and evaporation 
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Boiling heat transfer is used in a wide field of applications: from cooking activities in everyday 

life to various energy conversion and heat exchange systems as well as cooling of high-energy-density 

power/electronic devices [357, 358], such as boiling water reactors in nuclear power plants. While 

boiling phenomena can be encountered in daily life, the boiling processes are extremely complex and 

elusive because many physical components are involved and interrelated, such as the nucleation, 

growth, departure, and coalescence of vapor bubbles, the transport of latent heat, and the instability of 

liquid-vapor interfaces [290].  

Boiling of stationary or non-flowing fluid is known as pool boiling with three boiling stages: 

nucleate boiling, transition boiling, and film boiling [359]. Nucleate boiling, which is a very efficient 

mode of heat transfer, occurs when the temperature of the heating surface is higher than the saturated 

fluid temperature by a certain amount but the heat flux is below the critical heat flux. Film boiling, 

which is of great interest to certain applications such as quenching of steel and spray cooling of very 

hot surfaces, appears when the surface temperature is increased above the so-called Leidenfrost 

temperature. In film boiling, the heating surface is completely covered with a continuous vapor film. 

Transition boiling is an unstable boiling mode between nucleate boiling and film boiling [359].  

In spite of the fact that boiling heat transfer has been intensively studied in the past years, many 

aspects of boiling are still not well understood. For example, the physical mechanism causing the 

critical heat flux has not been satisfactorily addressed, because the correlations developed by 

experiments rely heavily on empirical parameters that are only valid in a narrow parameter range and 

numerical simulations based on traditional numerical methods mostly involve many assumptions and 

empirical correlations [360]. In Sections 3.6 and 4.5, we have introduced the thermal models for 

simulating liquid-vapor phase change within the frameworks of the pseudopotential and the phase-field 

multiphase LB methods. In this section, some applications of these models are reviewed. In particular, 

we put our focus on boiling and evaporation. The simulations of bubble growth and departure using 

point heating will not be discussed here. 
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The first numerical simulation of boiling using the LB method was reported by Zhang and Chen 

[94]. By considering a standard Rayleigh-Bénard setup, in which the upper and lower solid walls obey 

the no-slip boundary condition and the horizontal boundary condition is periodic, they successfully 

reproduced a nucleate boiling process, which can be seen in Fig. 22. To enhance bubble formation, 

small temperature fluctuations were added to the equation of state in the first grid point layer near the 

bottom solid wall. From the figure two nucleation sites can be clearly observed. In addition, the bubble 

rising and coalescence phenomena can also be seen in Fig. 22. Zhang and Chen [94] have analyzed the 

corresponding temperature distribution and found that the temperature is relatively low in the 

vapor-phase domains near the liquid-vapor interfaces.  

 

 

Fig. 22. Snapshots of a nucleate boiling process. Light gray and dark gray represent the liquid and 

vapor phases, respectively. Reprinted from Zhang and Chen [94] with permission of the American 

Physical Society. 
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In 2011, Márkus and Házi [96] simulated a heterogeneous boiling process using their thermal 

pseudopotential LB model. A uniform heat flux was applied at the bottom of a plate and a cavity was 

placed at the center of the plate with the heat conduction in the heated plate being taken into account. 

The bubble formation from the cavity was well simulated. Later, Márkus and Házi [97] investigated the 

influences of the heated plate configuration. Three different configurations were considered and a film 

boiling process was reproduced in the configuration when the heated plate is represented by a constant 

heat flux boundary. The results can be found in Fig. 23, which shows the variation of the surface 

temperature against the heat flux. From the figure a thin vapor film can be observed in the case with a 

high heat flux. However, an important feature of boiling heat transfer was not captured in Márkus and 

Házi’s study. It is well-known that, in a surface-heat-flux-controlled boiling system, the boiling process 

will instantly enter into the film boiling regime (see Fig. 25(b), from point “C” to point “E” along the 

straight line) when the surface heat flux reaches the critical heat flux, which will result in a sharp and 

large increase in the surface temperature. Nevertheless, there is no such feature in Fig. 23. 

 

Fig. 23. Variation of the surface temperature against the heat flux. The heated plate is represented by a 

constant heat flux boundary. Reprinted from Márkus and Házi [97] with permission of Elsevier. 

In 2012, by conducting a three-dimensional simulation of nucleate boiling, Biferale et al. [98] 

demonstrated that the pseudopotential LB model with a non-ideal thermodynamic pressure tensor can 

lead to a consistent definition of latent heat with the Clausius-Clapeyron relation being satisfied. Using 
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Tanaka et al.’s thermal phase-field LB model, Sattari et al. [114] have also simulated a boiling process 

(see Fig. 11 in the reference). They found that the boiling phenomenon begins with generating bubbles 

at the center of a surface and then starts to spread along the surface. Moreover, Gong and Cheng [103] 

have investigated the effects of mixed surface wettability on nucleate boiling heat transfer using their 

model proposed in Ref. [99]. The corresponding target temperature equation is similar to Eq. (190), 

namely the first term on the right-hand side of Eq. (121) was replaced with ( )Tχ⋅∇ ∇ . The mixed 

wettability was obtained by placing hydrophobic spots on smooth hydrophilic surfaces. The influences 

of the size of the hydrophobic spots and the pitch distance between the hydrophobic spots were 

analyzed. Gong and Cheng [103] showed that mixed wettability surfaces can promote bubble 

nucleation, enhance boiling heat transfer, and reduce the nucleation time as compared with uniform 

hydrophilic surfaces.  

 
(a) nucleate boiling 

 
(b) transition boiling 

 
(c) film boiling 

Fig. 24. The hybrid thermal pseudopotential LB modeling of boiling heat transfer. The three boiling 

stages: (a) nucleate boiling, (b) transition boiling, and (c) film boiling. Reprinted from Li et al. [104] 

with permission of Elsevier. 

Recently, Li et al. [104] reproduced the three boiling stages of pool boiling using a hybrid thermal 

pseudopotential LB model, as shown in Fig. 24. In transition boiling, it can be seen that a great portion 
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of the heating surface is covered by vapor patches, which essentially insulate the bulk liquid from the 

heating surface, while in film boiling the whole surface is covered with a continuous vapor film. Some 

other features of pool boiling heat transfer were also captured, such as the severe fluctuation of 

transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient 

lies at a lower wall superheat than that of the critical heat flux. A boiling curve obtained in Li et al.’s 

study can be seen in Fig. 25(a), which reproduces the features of a typical boiling curve of pool boiling 

in Fig. 25(b). Moreover, they have investigated the effects of the heating surface wettability on the 

boiling curve and found [104] that an increase in contact angle promotes the onset of boiling but 

reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a 

lower wall superheat. Similar trends have also been found by Gong and Cheng [105]. 
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Fig. 25. (a) A boiling curve obtained in Li et al.’s study with the liquid-phase contact angle being 

o44.5  [104] (reprinted with permission of Elsevier) and (b) a typical boiling curve of pool boiling, 

which is reprinted from Chen et al. [361] with permission of the American Chemical Society. 

Besides the applications in boiling heat transfer, the pseudopotential and the phase-field LB 

methods have also been applied to simulate droplet evaporation, which is of great importance to many 

scientific and technical applications, such as liquid-fueled combustion and spray drying. The first 

attempt was made by Safari et al. [110] using their thermal phase-field LB model, who simulated a 

two-dimensional droplet evaporation process and found that the well-known D2 law was satisfied. The 

so-called D2 law was firstly found in the study of an evaporating fuel droplet in combustion [362, 363], 
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which predicts that the square of the evaporating droplet diameter varies linearly during the lifetime of 

the droplet. Later, Safari et al. [111] investigated the evaporation process of a droplet in a laminar 

forced convective air environment. The effects of the Reynolds number and the Schmidt number were 

studied and compared with an empirical correlation. Recently, Ledesma-Aguilar et al. [115] studied the 

evaporation of a sessile droplet on a flat chemically patterned surface using a binary-fluid phase-field 

LB model. They showed that the flow pattern of the droplet is reversed when the contact line moves 

from a hydrophobic ring to another hydrophobic ring. Moreover, Albernaz et al. [116] have employed a 

thermal pseudopotential LB model to simulate droplet evaporation under convective effects. It was 

shown that the evaporation rate increases when the convection becomes stronger. Furthermore, they 

found that the evaporating droplet exhibits an oscillatory behavior at higher Reynolds and Peclet 

numbers. 

5.4 Energy storage with phase change materials 

    In recent years, phase change materials have attracted significant attention due to their ability to 

store thermal energy and have been widely used in thermal energy storage systems [358, 364-368] for 

heat pumps, solar engineering, and spacecraft thermal control applications. Unlike conventional 

(sensible) storage materials, phase change materials are latent heat storage materials and capable of 

storing and releasing large amounts of energy at a nearly constant temperature [368]. The solid-liquid 

phase change is the most used phase change process for phase change materials. The corresponding 

thermal energy transfer occurs when the material changes from solid to liquid (melting), or liquid to 

solid (solidification) [358].  

In recent years, the LB method has been extensively used to simulate solid-liquid phase change 

problems with complicated moving boundaries of solid-liquid interface and variable thermophysical 

properties. Generally, the existing LB models for solid-liquid phase change problems can be classified 

into two major categories: the solid-liquid phase-field LB method [369-373] and the thermal LB 

method with an enthalpy-updating scheme [374-383]. Additionally, a couple of models were recently 
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constructed based on interface-tracking methods [384, 385]. In the solid-liquid phase-field LB method, 

the governing equation of the order parameter, namely the interface-capturing equation [386, 387], is 

different from that in the phase-field method for liquid-gas two-phase flows. This method was first 

introduced by Miller et al. [369], who have applied the method to simulate the melting of gallium, 

anisotropic crystal growth [370], dendritic growth of a pure crystal [371], and binary-alloy 

solidification [372]. In addition, Medvedev and Kassner [373] have employed the solid-liquid 

phase-field LB method to study the crystal growth in external flows. 

The thermal LB method with an enthalpy-updating scheme is a commonly used method in the 

current LB simulations of solid-liquid phase change. Both the DDF thermal LB approach and the 

hybrid thermal LB approach have been applied to investigate solid-liquid phase change phenomena. 

The first work was conducted by Jiaung et al. [374], who proposed an extended temperature-based 

thermal LB model in conjunction with an enthalpy formulation in which the interfacial position of 

solid-liquid phase change was determined through the liquid-phase fraction. The net enthalpy is 

defined as p a lH c T L f= + , where pc T  is the sensible enthalpy and a lL f  is the latent enthalpy in 

which aL  is the latent heat of phase change and lf  is the liquid-phase fraction ( 1lf =  and 0  

represent the liquid and solid phases, respectively). A source term was added to the thermal LB 

equation to account for the latent heat source term ( )t a lL f∂ . Using the model, Jiaung et al. [374] 

successfully simulated some melting and solidification problems. Nevertheless, iterations were needed 

in Jiaung et al.’s work because the transient term t lf∂  was calculated by a forward finite-difference 

scheme and the liquid-phase fraction at the tt δ+  level was a priori unknown.  

Later, following the line of He et al.’s internal-energy based DDF LB model, Chatterjee and 

Chakraborty [201, 375, 376] proposed a series of enthalpy-based DDF LB models for solid-liquid 

phase change. In their models, a fixed-grid enthalpy-porosity approach was utilized. Moreover, the 

morphology of the phase change region (i.e., the mushy zone) was treated as an equivalent porous 

medium that offers a resistance force towards the fluid flow through the phase change region, thus one 

does not need to impose hydrodynamic or thermal boundary conditions at the interface. Using the 
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models, Chatterjee and Chakraborty have simulated the dendritic growth [375], the melting of gallium 

[201], and the Bridgman crystal growth [376]. In addition, Chakraborty and Chatterjee [377] have 

presented a hybrid thermal LB model for studying convection-diffusion phenomena with solid-liquid 

phase change.  The thermofluidic aspects of solid-liquid phase change were also handled with the 

fixed-grid enthalpy-porosity approach, but the temperature field was solved by a control-volume-based 

fully implicit finite-difference method.  

Using a modified version of Jiaung et al.’s model, Huber et al. [378] proposed a 

temperature-based DDF LB model for simulating melting coupled with natural convection. The model 

was employed to investigate convection melting in a porous medium. Later, Parmigiani et al. [379] 

developed an LB model for simulating multiphase flows with phase change (melting/solidification) of 

the solid phase in a porous medium by coupling the pseudopotential LB method with Huber et al.’s 

model. The effects of melting on the flow of an invading non-wetting fluid in a buoyancy-driven 

capillary channel were studied. Figure 26 shows the influence of the Stefan number on the stability of 

the non-wetting fluid channel. From the left panel of Fig. 26 it can be seen that the non-wetting fluid 

channel is well-defined and stable at a low Stefan number. However, with the increase of the Stefan 

number, the channel becomes less stable and the fluid eventually breaks into slugs or bubbles.  

 

Fig. 26. Comparison of the non-wetting phase distribution between three cases with different melting 

efficiencies. The Stefan number, which represents the melting efficienty, is given by St 0.01= , 0.1, 

and 1  (from left to right). Reprinted from Parmigiani et al. [379] with permission of Cambridge 

University Press. 
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Gao and Chen [380] have developed a temperature-based DDF LB model for melting with 

convection heat transfer in porous media at the representative elementary (REV) scale on the basis of 

the generalized non-Darcy model. The effects of the Rayleigh number, Darcy number, and porosity on 

the melting processes were investigated. In addition, Liu and He [381] have presented an 

temperature-based DDF LB-MRT model for solid-liquid phase change with natural convection in 

porous media at the REV scale. However, to deal with the latent heat source term, iterative schemes 

were used in most of the aforementioned studies, which may greatly increase the computational cost 

and reduce the efficiency of the model. To overcome this drawback, Eshraghi and Felicelli [382] 

proposed a modified temperature-based thermal LB model for simulating solid-liquid phase change 

phenomena, in which the latent heat source term was treated by an implicit approach, but iterations 

were avoided by solving a group of linear equations. Using the model, Eshraghi and Felicelli [382] 

successfully simulated binary-alloy solidification and showed that their model is superior over the 

finite-element method in terms of computational efficiency.  

By combining the transient term ( )t pc T∂  with the latent heat source term ( )t a lL f∂ , Huang et 

al. [383] developed a novel enthalpy-based DDF LB model for solid-liquid phase change. In their 

model, the equilibrium distribution function for the energy field was modified so as to recover the 

target governing equation of enthalpy. The temperature field and the liquid-phase fraction were 

determined by the enthalpy, which avoids iterations or solving a group of linear equations in 

numerical simulations. The efficiency of the model was demonstrated by the problems of 

conduction-induced melting and melting coupled with natural convection. 

Furthermore, Huang and Wu [384] have proposed an immersed boundary DDF LB-MRT model 

for simulating solid-liquid phase change problems. In the model, the usual enthalpy-updating scheme 

was not used and the solid-liquid interface was viewed as a boundary with no thickness immersed in 

the fluid and traced by the Lagrangian grid. The velocity and thermal boundary conditions at the 

solid-liquid interface were handled by the immersed boundary method. The model was successfully 
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applied to simulate convection melting in a circular cylinder with the motion of the solid phase being 

considered. The effect of the motion of the solid phase on the melting processes at different Fourier 

numbers (the Fourier number 2Fo ct lα= ) were investigated, which can be found in Fig. 27. When the 

solid phase is free, it can be seen that the solid phase is pushed toward the bottom of the circular 

cylinder as time progresses, while the fluid rises to the top. The numerical results showed that the 

motion of the solid phase accelerates the melting process [384]. 

 

Fig. 27. The temperature field, the streamlines (denoted by the black solid lines), and the solid-liquid 

phase interface (denoted by the red solid line) of melting in a circular cylinder at different Fourier 

numbers. Reprinted from Huang and Wu [384] with permission of Elsevier. 

Recently, Li et al. [385] have also developed an LB model for simulating solid-liquid phase 

change. In their model, the Navier-Stokes equations and the temperature equation were mimicked by a 

DDF LB model, while the melting front location was tracked by an interface-tracking scheme. The 

model has been validated by both conduction- and convection-dominated melting problems. In some of 

the aforementioned studies, the enthalpy, which consists of the sensible enthalpy and the latent enthalpy, 

was claimed to be “total” enthalpy. It should be noted that in thermodynamics the total enthalpy is the 

enthalpy at a stagnation point. For the liquid phase, the total enthalpy contains a term associated with 
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the kinetic energy of the liquid [202].  

Using Huang et al.’s model, Luo et al. [388] have investigated convection melting in a 

shell-and-tube energy storage system filled with phase change materials. The influences of the 

Rayleigh and Stefan numbers as well as the arrangements of tubes on the melting dynamics of the 

shell-and-tube energy storage system were studied in detail. The effect of the number of inner tubes can 

be seen in Fig. 28. Luo et al. [388] showed that the melting time decreases as the number of inner tubes 

increases, which was found to be attributed to the increase of the surface area and the enhancement of 

the convection around the tubes.  

 

Fig. 28. Simulation of the melting process in a shell-and-tube energy storage system. (a) one tube at 

Fo 20= , (b) four tubes at Fo 8= , and (c) nine tubes at Fo 4= . The temperature distribution (left) 

and the streamlines (right). Reprinted from Luo et al. [388] with permission of Elsevier. 

Furthermore, Huo and Rao [389] have employed Huang et al.’s model to study the solid-liquid 
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phase change phenomenon of phase change materials under constant heat flux. Three kinds of heat flux 

distributions were investigated. It was found that increasing the uniform heat flux accelerates the rate 

of the solid-liquid phase change process. Nevertheless, the ability of the phase change material for 

maintaining the temperature becomes poorer after raising the heat flux. In addition, Talati and Taghilou 

[390] have applied Eshraghi and Felicelli’s model to simulate the solidification of phase change 

materials within a rectangular finned container. It was shown that the maximum required time for the 

solidification process of phase change materials inside the container occurs when the container aspect 

ratio equals 0.5 and changing the fin’s material from aluminum to copper has no significant impact on 

the freezing history even at low aspect ratios. 

6. Summary and outlook 

As a latecomer to the family of modeling and simulation tools, the LB method has witnessed an 

astonishing growth in its methodology development and application over the past quarter of a century. 

It fills a vital gap between the macroscopic continuum approaches such as the Navier-Stokes solvers 

and the particle-based microscopic approaches such as molecular dynamics. Such a mesoscopic 

approach has found applications in almost all areas of energy and combustion. The present review has 

focused on multiphase flow and phase-change heat transfer, in which the LB method has demonstrated 

distinctive strengths in comparison with both macroscopic and microscopic approaches. On the other 

hand, the LB method is still an evolving methodology yet to reach its maturity, where both theoretical 

exploration and new applications are continually appearing.  

For multiphase flows, the pseudopotential LB method and the phase-field LB method have been 

particularly successful and popular. They have been developed and applied to study the dynamics of a 

wide range of multiphase flows at realistic density ratios, Reynolds numbers and Weber numbers. In 

the latest development, the dynamics process of droplet collision has been successfully simulated by a 

cascaded-based pseudopotential LB model with an improved forcing scheme at a density ratio of 1000, 
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Reynolds number of 6200 and Weber number of 440 [391].  

In the pseudopotential multiphase LB method, the interfacial dynamics and phase separation 

are described by interparticle interactions. As a result, in the pseudopotential LB simulation of 

multiphase flows, the interface can arise, deform and migrate naturally without resorting to any 

techniques to track or capture the interface. In recent years, advances have been made in 

eliminating the thermodynamic inconsistency, reducing the spurious currents, adjusting the 

surface tension and the interface thickness, etc. These developments have significantly enhanced 

the capability of the pseudopotential LB method for multiphase flow simulations. It should be 

noted that the forcing scheme plays a very important role in the pseudopotential LB method 

because it affects the mechanical stability condition, which determines the coexistence densities 

given by the pseudopotential LB models. Moreover, to decouple the surface tension from the 

density ratio, the mechanical stability condition should remain unchanged. Future developments 

can focus on the enhancement of numerical stability at lower relaxation times and further reducing 

the spurious currents around the three-phase contact line. 

In the phase-field multiphase LB method, the interface is captured with the evolution of an 

order parameter, which is governed by the Cahn-Hilliard equation or a Cahn-Hilliard-like equation. 

In this paper, the basic formulations of the phase-field theory have been described and the 

different definitions of interface thickness have been clarified. Moreover, developments in the 

phase-field multiphase LB method for isothermal models, elimination of hydrodynamic 

inconsistency, implementation of contact angles, and thermal models for liquid-vapor phase 

change have been discussed in detail. With the aid of a mixed difference scheme or a 

finite-difference solver for the Cahn-Hilliard equation, the phase-field LB method has been 

successful in modeling dynamic multiphase flows at large density ratios. Nevertheless, further 

efforts are still required as the mixed difference scheme suffers from the lack of Galilean 

invariance. 
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For thermal applications, we have reviewed thermal LB approaches on standard lattices. In 

particular, a simplified internal-energy-based DDF LB model and the usual temperature-based DDF LB 

model have been analyzed, showing the error terms in the recovered macroscopic equations (see Eqs. 

(64), (67), and (68)). It is worth mentioning again that, when employing a multiphase LB model 

together with a thermal LB model to simulate thermal multiphase flows, special attention should be 

paid to the correct recovery of the target temperature/energy equation. Some error terms, which may be 

very small in single-phase flows, are non-negligible in multiphase flows. 

Finally, applications of multiphase and/or thermal LB methods have been highlighted for fuel cells, 

batteries, droplet collisions, boiling, evaporation, and energy storage with phase change materials. For 

instance, the liquid-gas transport in PEM fuel cells has been extensively investigated with the 

pseudopotential and the phase-field LB methods, leading to detailed information about the dynamic 

features of PEM fuel cells under various conditions. Moreover, it is very inspiring that a typical boiling 

curve of pool boiling and the three boiling stages have been numerically reproduced by the LB method 

without using the empirical assumptions involved in conventional algorithms. There is no doubt that 

ever more applications of the LB method as a powerful mesoscopic numerical tool will be found in a 

variety of fields including energy and combustion. An important future development will be in the 

hybrid methods, which will significantly expand the capability of the LB method. For example, the 

combination of the LB method with the immersed boundary method [16] can tackle phase change 

problems with complex boundaries and/or solid-structure interactions, e.g., boiling flow in rod-bundle 

geometries, which is a critical issue in boiling water reactors in nuclear power plants. Furthermore, 

applications of the LB method in micro energy systems and energy system analysis and optimization 

[392] also have great potential. 
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