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Abstract. Counting lattice points inside a ball of large radius in Euclidean
space is a classical problem in analytic number theory, dating back to Gauss.
We propose a variation on this problem: studying the asymptotics of the
measure of an integer lattice of affine planes inside a ball. The first term is
the volume of the ball; we study the size of the remainder term. While the
classical problem is equivalent to counting eigenvalues of the Laplace operator
on the torus, our variation corresponds to the integrated density of states of
the Laplace operator on the product of a torus with Euclidean space. The
asymptotics we obtain are then used to compute the density of states of the
magnetic Schrödinger operator.

1. Introduction and Main results

The first problem we are considering in this paper has several equivalent formu-
lations.

1.1. Number theoretic formulation. For ρ > 0 and k ∈ Rd, let B(ρ;k) be the
ball of radius ρ centered at k. Let S(ρ;k) be the number of integer points inside
the disk B(ρ,k) ⊂ R2. The classical Gauss Circle Problem consists in estimating
the remainder term

(1.1) R̃(ρ; 0) = S(ρ; 0)− πρ2

Hardy and (Edmund) Landau have found lower bounds for this problem, while the
current best upper bound is given by Huxley in [4]. This problem has also been
studied for balls of dimension higher than two, see e.g. [2], and it is well-known
that averaging over the radius of the ball improves regularity of the remainder.

In this paper, we consider a variation on this problem: we estimate the measure
of the intersection of affine planes sitting on integer coordinates with balls of large
radius in Rd. More precisely, put

(1.2) Ak := Zk × Rd−k ⊂ Rd

and let Bd(ρ,k) be a ball in Rd of radius ρ centred at k := (k1,k2) ∈ Rk × Rl,
where k + l = d. Denote by S(ρ;k1; d, k) the l-dimensional volume of the set
Bd(ρ,k1) ∩Ak. A simple observation shows that we have

(1.3) S(ρ;k1; d, k) = ωl
∑
γ∈Zk
|γ−k1|<ρ

(ρ2 − |γ − k1|2)l/2,

where ωd is the volume of the unit ball in Rd. One can see that the integral of
R̃(ρ,k) over k2 ∈ Tl = Rl/Zl, is the same as the remainder term

(1.4) R := S(ρ;k1; d, k)− ωdρd,
1
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obtained from Equation (1.3). Our aim is to compute an estimate of R for large
values of ρ. Before discussing the results, we would like to describe different for-
mulations of this problem.

1.2. First spectral theoretic formulation. Let

(1.5) H = −∆ + V

be a Schrödinger operator acting in Rd with a smooth real-valued periodic potential
V ; for simplicity we assume that the lattice of periods Γ = (2πZ)d, with dual lattice
Γ† = Zd Denote the integrated density of states (IDS) of H by N(λ) := N(λ;H).
It can be defined by the formula

(1.6) N(λ;H) := lim
L→∞

Ñ(λ;HL)

Ld
,

where HL is the restriction of H to the cube [0, L]d with appropriate self-adjoint
boundary conditions and Ñ(λ,HL) is the counting functions of the (discrete) eigen-
values of HL. Note that this parameter λ is related to the parameter ρ of the
previous section by ρ =

√
λ. While this formulation of the IDS is important for

Theorem 1.5, for periodic V we use an useful equivalent definition.
Following [10], we express H as a direct integral

(1.7) H =

∫ ⊕
Td
H(k) dk,

Then, one can express N(λ;H) in terms of the counting functions of the fibre
operators H(k):

(1.8) N(λ) :=
1

(2π)d

∫
Td
N(λ;H(k)) dk,

where N(λ,H(k)) is the eigenvalue counting function of H(k). Remarkably, despite
the fact that the asymptotic behaviour of N(λ,H(k)) for fixed k and λ → ∞ is
very irregular (so that even the precise size of the remainder

(1.9) R(λ;k) := N(λ,H(k))− Cdλd/2

is unknown), integration over all quasimomenta k ∈ Td := Rd/Zd makes things
extremely regular, so that there exists a complete asymptotic expansion of N(λ) in
powers of λ as λ→∞, [8, 9]. Here, we have denoted

(1.10) Cd =
ωd

(2π)d
and ωd =

πd/2

Γ(1 + d/2)

is the volume of the unit ball in Rd. The question we want to study is what would
happen if, instead of integrating against all quasimomenta, we integrate over a
subset of them, say over an affine plane. We write k = (k1,k2), where k1 ∈ Tk,
k2 ∈ Tl and define the partial density of states (PDS) as

(1.11) Np(λ;k1) = Np(λ;k1; d, k) :=
1

(2π)d

∫
Tl
N(λ,H(k1,k2)) dk2.

Our aim is to investigate the asymptotic behaviour of the PDS as λ → ∞.
Obviously, the regularity at infinity will be improving as l increases and so the
larger l is, the more asymptotic terms we are likely to obtain. This asymptotic
problem can be treated in two steps:
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Step 1. Obtain the asymptotic behaviour of the PDS for unperturbed operator
H0 := −∆. More precisely, we want to obtain as good an estimate on

(1.12) R0(λ;k1; d, k) := N0
p (λ;k1; d, k)− Cdλd/2

as possible (of course, superscript 0 refers to the fact that we are dealing with the
case V = 0). A simple calculation shows that if k = 0, then R0(λ;k1; d, 0) = 0,
so this step is trivial when dealing with the IDS. In the case of k > 0 this step
becomes quite non-trivial and interesting. Once we have performed this step, we
can move to

Step 2. Compute (or estimate) the difference

(1.13) Np(λ;k1; d, k)−N0
p (λ;k1; d, k)

and try to obtain as many asymptotic terms of it as possible. It follows from a
simple computation that

(1.14) N0
p (λ;k1; d, k) = (2π)−dS(

√
λ;k1; d, k),

hence the main aim of this paper deals with the first step of this programme; we
intend to perform the second step in a separate publication.

1.3. Second spectral theoretic formulation. Consider the operator H̃ = −∆+
Ṽ acting on Tl×Rk with a smooth potential Ṽ : Tl×Rk → R. We assume that, as
a function on Rk, Ṽ is periodic with the lattice of periods (2πZ)k. Then, we have,
from the definition of both the IDS and the PDS that

(1.15) N(λ; H̃) =
1

(2π)k

∫
Tl
N(λ;H(k2)) dk2 = (2π)lNp(λ; 0; d, k),

that is to say that the integrated density of states equals the partial density of states
up to a constant. If we consider a more general (but also less natural) operator H̃k1

,
the domain of which consists of functions on Tl × Rk which become periodic after
multiplication by eik1x1 , then the IDS of H̃k1

equals, again up to the same constant,
Np(λ;k1; d, k). We would also like to mention that expression (1.3) appears in the
study of integer points in anisotropically expanding domains. This has applications
in the study of the asymptotic behaviour of the eigenvalue of the Laplace operator
on the torus in the adiabatic limit, and was developed in [5].

1.4. Main results. Our first main result is as follows:

Theorem 1.1. The error term R(ρ;k1; d, k) satisfies the asymptotic estimates

(1.16) R(ρ;k1; d, k) =


O
(
ρ(d−1)/2

)
if k < (d+ 1)/2,

O
(
ρ(d−1)/2 log ρ

)
if k = (d+ 1)/2,

O
(
ρd−

2k
1−d+2k

)
if k > (d+ 1)/2

uniformly in k1.

Remark 1.2. Recall that R(ρ;k1; d, 0) = 0 for all values of ρ,k1, d.

We do not pretend that all of these estimates are optimal, but some of them are,
as can be seen from the following result:
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Theorem 1.3. For k > 1 and ρ sufficiently large, there exists a positive constant
Cd,k and k1 ∈ Tk such that

(1.17) R(ρ;k1; d, k) ≥

{
Cd,kρ

d−1−ε
2 if d ≡ 1 mod 4

Cd,kρ
d−1
2 else,

where ε > 0 is arbitrary. When d 6≡ 1 mod 4, the lower bound R(ρ;k1; d, k) ≥
Cd,kρ

d−1
2 holds for k = 1.

In particular, this theorem means that for 1 ≤ k < d+1
2 and d 6≡ 1 mod 4, we

cannot get improvements on the upper bounds found in Theorem 1.1. It also means
that for d ≡ 1 mod 4, k 6= 1, we cannot get improvements in the exponent.

Remark 1.4. It seems interesting that, after we have integrated N(λ;H(k)) (d−
1)/2 times, additional integrations do not improve the remainder estimate, until we
perform the last (d-th) integration, which makes the remainder equal zero.

Open problem. The results in [2] imply that for k = d, our upper bound is not
optimal, but as d→∞, our upper bound converges to the optimal one, in the sense
that d− (d− 2k

1−d+2k )→ 2. Hence we may ask what is the optimal upper bound for
k ≥ d+1

2 .

1.5. Operators with constant magnetic field. Another type of problems we
consider in this paper is the asymptotic behaviour of the density of states of the
(Lev) Landau Hamiltonian (Schrödinger operator with constant magnetic field).

Let Dj = −i ∂
∂xj

. Then we define the Landau Hamiltonian Hd as the operator
acting in Rd whose action is given by:

Hd = (D1 + x2)2 +D2
2 + · · ·+D2

d.

Of course, only operators H2 and H3 make real physical sense, but for the sake of
completeness we will deal with all dimensions.

Let Ωd(ρ) for d ≥ 2 be the parabolic domain in Rd given by

(1.18) Ωd(ρ) :=
{

(x0, x) ∈ Rd : 0 ≤ x0 ≤ ρ− |x|2
}
.

Defining P (ρ; d, k) analogously to S(ρ; 0; d, k), that is,

(1.19) P (ρ; d, k) = Voll(Ω
d(ρ) ∩Ak),

one can see that

(1.20) P (ρ; d, k) =

bρc∑
j=0

S((ρ− j)1/2; 0; d− 1, k − 1).

The IDS N(λ;Hd) is related to P (ρ; d, k) by the following proposition.

Proposition 1.5. Let Hd be the d-dimensional Landau Hamiltonian. Then, its
integrated density of states is given by

(1.21) N(λ;Hd) = 2
−d
2 π1−dP

(
λ− 1

2
; d− 1, 1

)
for ρ ≥ 1, and 0 otherwise.
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We get an asymptotic expression for P (ρ; d, k), via the next theorem. Defining
E0(ρ) := E0(ρ, d) = 2

d+1ρ
(d+1)/2 + 1

2ρ
(d−1)/2 and

En(ρ) := En(ρ, d) = E0 +

n∑
k=1

B2k

(2k!)

Γ(d+1
2 )

Γ(d+3−4k
2 )

ρ
d+1−4k

2 ,

we obtain the following theorem.

Theorem 1.6. As ρ→∞, P (ρ; d, k) admits the asymptotic expansions:

(1.22) P (ρ; d, 1) = ωd−1Eb d+1
4 c

(ρ) +O(1),

(1.23) P (ρ; d, d) =
2ωd−1

d+ 1
+O

(
ρ
d2−d+2

2d

)
.

If k > d+2
2 , we have

(1.24) P (ρ; d, k) = Eb k−1
4k−2 c

(ρ) +O(ρ
1
2 (d−1− 2k−2

2k−d )).

Finally, if k ≤ d+2
2 ,

(1.25) P (ρ; d, k) = Eb d−4
8 c

(ρ) +O(ρ
d+4
4 (log ρ)δ),

where δ = 1 if k = d+2
2 and 0 otherwise.

Replacing the result in Proposition 1.5 with the asymptotics in Theorem 1.6, we
immediately deduce the following corollary.

Corollary 1.7. The integrated density of states of the Landau Hamiltonian on R3

admits the asymptotic expansion

N(λ;H3) =
1

6π2
λ3/2 +O(1)

for large enough λ.

The rest of the paper is organised as follows: in Section 2 we formulate several
results which will be used in the proof of the main theorems, but we will postpone
their proofs until Section 6. In Section 3 we prove the upper bounds in the Laplace
case, and in Section 4 we obtain lower bounds. Finally, in Section 5 we deal with
the magnetic case.
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2. Auxiliary results

In order to prove Theorem 1.1, it will be useful to give an alternate expression
for S(ρ;k1; d, k). Let us define the function χ : Rk → R as

(2.1) χ(x) =

{
(1− |x|2)l/2 if |x| < 1,

0 otherwise.

We can then observe that

(2.2) S(ρ; 0; d, k) = ωlρ
l
∑
n∈Zk

χ(n/ρ).

We would like to use Poisson’s summation formula

(2.3)
∑
n∈Zk

f(n) =
∑
m∈Zk

f̂(m)

with f = χ. This will allow us to get upper bounds for all k1 ∈ Tk, from the
relation

(2.4) F(f(x− k1)) = e−2πik1·ξ(Ff)(ξ),

where F is the Fourier transform operator. For the rest of this section, we therefore
consider k1 = 0, and it will be seen in the proof of Lemma 2.2 that this assumption
is made without loss of generality. In order for Equation (2.3) to hold we need to
smooth out χ. To do so, we will consider its convolution with Friederichs’ mollifier
Ψε. Hence, setting χε = Ψε ∗ χ we get that

(2.5) χ̂ε(ξ) = Ψ̂ε(ξ)χ̂(ξ).

Theorem 1.1 follows from two lemmas. The first one finds asymptotic upper and
lower bounds for S:

Lemma 2.1. Let χ+
ε and χ−ε be defined on Rk by

(2.6) χ±ε (x) =
1

(1∓ ε)l
χε((1∓ ε)x).

Then, we have that

(2.7) χ−ε (x) ≤ χ(x) ≤ χ+
ε (x)

for all x ∈ Rk. Immediately, if we define

(2.8) S±ε (ρ) = ωl
∑
n∈Zk

χ±ε (n/ρ),

we get that

(2.9) S−ε (ρ) ≤ S(ρ) ≤ S+
ε (ρ).

Since χ±ε are smooth functions, we can use Poisson’s summation formula to
compute the asymptotic expansion of S±ε . The second lemma therefore gives the
asymptotic expansion of χ̂(ξ).
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Lemma 2.2. The Fourier transform of χ satisfies

(2.10) χ̂(ξ) =
C

|ξ|(d+1)/2
cos

(
2π|ξ| − (d+ 1)π

4

)
+O(|ξ|−(d+3)/2)

for some C > 0 as |ξ| → ∞. Furthermore, its derivative satisfies

(2.11)
d

d|ξ|
χ̂(ξ) =

C̃

|ξ|(d+1)/2
sin

(
2π|ξ| − dπ

4

)
+O(|ξ|−(d+3)/2)

In particular, the asymptotic behaviour of both χ̂(ξ) and its derivative does not
depend on the co-dimension k.

We will postpone the proof of these lemmas until Section 6.

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 using both Lemmas 2.2 and 2.1. We have
that

(3.1) S−ε (ρ) ≤ S(ρ) ≤ S+
ε (ρ).

Let us therefore find asymptotic expansions on S±ε . We shall split those computa-
tions in two cases : whether k ≥ (d+ 1)/2 or k < (d+ 1)/2

3.1. Case 1. Here, we assume that k ≥ (d + 1)/2. Let us find asymptotic expan-
sions on S±ε . Since χε is a smooth compactly supported function of x, we may use
Poisson’s summation formula (2.3) to obtain

(3.2) S±ε = ωdρ
l
∑
n∈Zk

χ±ε (n/ρ) = ωdρ
d
∑
m∈Zk

χ̂±ε (ρm).

Since we have that

(3.3) χ̂±ε (mρ) =
1

(1∓ ε)d
Ψ̂(εmρ)χ̂(

mρ

1∓ ε
),

we get, assuming ε� 1/ρ, that
(3.4)

S±ε = ωd
∑
m∈Zk

(1 +O(ε))ρdΨ̂(εmρ)χ̂(mρ) +O

 ∑
m∈Zk

εmρd+1Ψ(εmρ) |χ̂′(mρ)|

 ,

which directly implies

(3.5)

S±ε = ωdρ
d +O(ερd) +O

 ∑
m∈Zk
|m|6=0

ρdΨ̂(εmρ) |χ̂(mρ)|


+O

 ∑
m∈Zk

εmρd+1Ψ(εmρ) |χ̂′(mρ)|

 .

Observe that Ψ̂(ξ) = O(|ξ|q) for any q whenever |ξ| > 1 and bounded for |ξ| ≤ 1.
Recall from Lemma 2.2 that χ̂(ξ) = O(|ξ|−(d+1)/2). Hence, choosing q = d−2k−1

2 ,



8 JEAN LAGACÉ & LEONID PARNOVSKI

the third summand in (3.5) can be split into two terms, becoming

(3.6) O

ρ(d−1)/2

 ∑
m∈Zk

1≤|m|≤1/ερ

1

|m|(d+1)/2
+

∑
m∈Zk
|m|>1/ερ

1

(ερ)(2k+1−d)/2|m|k+1


 .

The first sum can be estimated by

(3.7)

∑
m∈Zk

1≤|m|≤1/ερ

1

|m|(d+1)/2
∼
∫ 1/ερ

1

rk−1

r(d+1)/2
dr

=

{
O
(

(ερ)
d+1−2k

2

)
if k > (d+ 1)/2,

O(log ερ) if k = (d+ 1)/2.

The second sum can be estimated by∑
m∈Zk
|m|≥1/ερ

1

(ερ)(2k−d+1)/2|m|k+1

∼
∫ ∞

1/ερ

1

(ερ)(2k−d+1)/2

rk−1

rk+1
dr = O

(
(ερ)

d+1−2k
2

)
.

(3.8)

As for the last summand, it is easy to see with the same computations and using
Ψ̂(ξ) = O

(
|ξ| d−2k−3

2

)
that the extra power of ερ exactly compensates the extra

power of m, and we have that the asymptotic behavior in ερ is the same for all
for summands whenever k > (d + 1)/2. Furthermore, when equality holds, the
polynomial component is the same. Therefore, we have to choose ε = ρ−j such that

(3.9) ερd = ρ(d−1)/2(ερ)
d+1−2k

2 .

This is achieved exactly when

(3.10) j =
2k

1− d+ 2k
.

This gives us the announced asymptotic estimates when k ≥ (d+ 1)/2, that is

(3.11) S(ρ) =

{
ωdρ

d +O(ρd−
2k

1−d+2k ) if k > (d+ 1)/2,

ωdρ
d +O(ρ

d−1
2 log ρ) if k = (d+ 1).

3.2. Case 2. We now assume that k < (d + 1)/2. In this case, we have that the
sum converges with Ψ̂ = O(1). Hence, the asymptotic expansion for S±ε simplifies
to

(3.12)

S±ε = ωdρ
d+O(ερd)+O

ρ(d−1)/2
∑
m∈Zk
|m|6=0

1

|m|(d+1)/2

+O

ρ(d−1)/2
∑
m∈Zk
m 6=0

ερΨ̂(εmρ)

|m|(d−1)/2

 .

The third sum converges and the last one as well if k < d−1
2 . In that case, choosing

ε = ρ−(d+1)/2 satisfies Theorem 1.1, and choosing ε smaller does not improve the
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estimate. If k = d
2 or k = d−1

2 , using Ψ̂(ξ) = O
(
|ξ|−1

)
for m > (ερ)−1 yields the

same result, finishing the proof.
Note that Equation (2.4) ensures that these estimates hold for all k1 ∈ Tk.

4. Lower bounds

Let us first follow the argument given in [1] for d = k = 2. The beginning of the
argument is the same, which we add for completeness. Since R(ρ;k1) is periodic in
k1 with respect to Γ, we can compute its Fourier coefficients, obtaining
(4.1)∫

Tk
R(ρ;k1)e−2πik1·γ dk1 =

∫
Tk

−ωdρd + ρl
∑
γ∈Γ

χ

(
γ − k1

ρ

)
e−2πik1·γ

 dk1

=

∫
Rk
ρlχ

(
k1

ρ

)
e−2πik1·γ dk1

= ρd
[

C

(ρ|γ|)(d+1)/2
cos

(
2πρ|γ| − (d+ 1)π

4

)
+O(|ργ|−(d+3)/2)

]
,

from Lemma 2.2. Additionally, we have that

(4.2)
∫
Tk
R(ρ;k1) dk1 = 0.

Hence, for all γ ∈ Γ \ {0}, we have that
(4.3)∫

Tk
|R(ρ;k1)|dk1

≥ max

(∣∣∣∣∫
Tk
R(ρ;k1)e−2πik1·γ dk1

∣∣∣∣ , ∣∣∣∣∫
Tk
R(ρ;k1)e−4πik1·γ dk1

∣∣∣∣)
≥ C ρ

d−1
2

γ
d+1
2

max

(∣∣∣∣cos

(
2πρ|γ| − (d+ 1)π

4

)∣∣∣∣ , 1

2
d+1
2

∣∣∣∣cos

(
4πρ|γ| − (d+ 1)π

4

)∣∣∣∣)
− c ρ

d−1
2

γ
d−1
2

for C, c positive constants whose value can change throughout. Whenever d 6≡ 1
mod 4, we have that

(4.4) 0 < inf
x∈R

max

(∣∣∣∣cos

(
x− (d+ 1)π

4

)∣∣∣∣ , ∣∣∣∣cos

(
2x− (d+ 1)π

4

)∣∣∣∣) ,
hence in that case, fixing γ ∈ Γ, we conclude that there exists r∗ such that for all
r ≥ r∗

(4.5)
∫
Tk
|R(ρ;k1)|dk1 ≥ Cρ

d−1
2 .

We conclude that whenever d 6≡ 1 mod 4,

(4.6) sup
k1∈Tk

R(ρ;k1) ≥ Cρ
d−1
2 .

The remaining case, that is when d ≡ 1 mod 4 is more subtle. We will use
results found in [7][Theorem 3.1, Lemma 3.3]. Indeed, from Equation (4.3), we
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have

(4.7)
∫
Tk
|R(ρ;k1)|dk1 ≥ C

ρ
d−1
2

γ
d+1
2

∣∣∣cos
(

2πρ|γ| − π

2

)∣∣∣− c ρ d−1
2

γ
d−1
2

.

From Lemma 3.3 in [7], we know that, if k ≥ 2, for all ε > 0, there exists ρ0 > 0 and
α ∈ (0, 1/2) such that for all ρ > ρ0 there exists γ ∈ Γ such that |γ| < (2πρ)ε and
the distance from 2ργ to an integer is greater than α. Choosing such a γ bounds
cos(2πρ|γ| − π/2) away from 0, and we get that

(4.8)
∫
Tk
|R(ρ;k1)|dk1 ≥ Cρ

d−2
2 −ε

d+1
2 .

Since ε > 0 is arbitrary, we get the desired result.

5. An application to the Landau Hamiltonian

5.1. The Landau Hamiltonian. Decomposing Hd = H2 ⊕ Dd−2, we can first
study the problem

H2u = λu.

Consider the definition (1.6) for N(λ;Hd), with periodic boundary conditions for
x1 and Dirichlet boundary conditions for x = (x2, . . . , xd).

For H2, we can write the solutions as u(x1, x2) = e
2πin
L x1f(x2), which reduces

the problem to solving the eigenvalue problem(
(ξ1 + x2)2 +D2

2

)
f(x2) = λf(x2).

This is a shifted quantum harmonic oscillator. We have that σ(H2) = {2j + 1 : j ∈
N}, each with infinite multiplicity. It is a standard computation, see e.g. [6], that

(5.1) N(λ;H2) =
1

2π

⌊
λ− 1

2

⌋
,

for λ ≥ 1, and 0 otherwise. Extending the methods of [6] to higher dimensions, it
is again a simple computation to show that for λ ≥ 1,

(5.2) N(λ;Hd) =
ωd−2

(2π)d−1

bλ−1
2 c∑

n=0

(λ− 2n− 1)(d−2)/2.

Thus, from the definition of P (ρ; d, k), we have indeed that

(5.3) N(λ;Hd) = 2
−d
2 π1−dP

(
λ− 1

2
; d− 1, 1

)
.

5.2. Computations for general paraboloids. In this section we prove Theorem
1.6. Consider the expression

(5.4) P (ρ; d, k) =

bρc∑
j=1

S((ρ− j)1/2; 0; d− 1, k − 1).

By Theorem 1.1, we have
bρc∑
j=0

S((ρ− j)1/2; 0; d− 1, k − 1) =

bρc∑
j=0

(
ωd−1(ρ− j)(d−1)/2 +O(X(ρ))

)
,
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where

(5.5) X(ρ) =


ρ

1
2 (d−1− 2k−2

2k−d ) if k > (d+ 2)/2,

ρ(d−2)/4 log ρ if k = (d+ 2)/2,

ρ(d−2)/4 if 1 < k < (d+ 2)/2,

0 if k = 1.

Comparing with the integral, we get that for all X as defined above,

(5.6)
bρc∑
j=0

X(ρ) = O(ρX(ρ)).

For any d, we can use the Euler-Maclaurin formula :

(5.7)

b∑
n=a

f(n) =

∫ b

a

f(x) dx+
f(a) + f(b)

2

+

p∑
k=1

B2k

(2k)!

(
d2k−1f

dx

∣∣∣∣
x=b

− d2k−1f

dx

∣∣∣∣
x=a

)
+O

(∫ b

a

∣∣∣∣ d2pf

dx2p

∣∣∣∣
x=t

dt

)
,

for any integer p ≥ 1, where Bk is the kth Bernoulli number. Note that for integer
a,

(5.8)
a∑
j=0

(a− j)(d−1)/2 =

a∑
j=0

j(d−1)/2.

Hence, by the Euler-Maclaurin formula, we get that

(5.9)

a∑
j=0

(a− j)(d−1)/2

=

∫ a

0

t(d−1)/2 dt+
a(d−1)/2

2
+
∑

k≤ d+1
4

B2k

(2k!)

Γ(d+1
2 )

Γ(d+3−4k
2 )

a
d+1−4k

2 +O(a−1/2).

Obviously, when d is odd, this last sum is actually finite and the error term 0.
When ρ is not an integer, we can write ρ = a+ τ , where τ is the fractional part.

In that case, using the Euler-Maclaurin formula again, we get
a∑
j=0

(a+ τ − j)(d−1)/2 =

a∑
j=0

(j + τ)(d−1)/2

=

∫ a

0

(t+ τ)(d−1)/2 dt+
1

2

(
τ (d−1)/2 + ρ(d−1)/2

)
+
∑

k≤ d+1
4

B2k

(2k!)

Γ(d+1
2 )

Γ(d+3−4k
2 )

(
ρ
d+1−4k

2 − τ
d+1−4k

2

)
+O(τ)

=
2

d+ 1

(
ρ(d+1)/2 − τ (d+1)/2

)
+

1

2

(
τ (d−1)/2 + ρ(d−1)/2

)
+
∑

k≤ d+1
4

B2k

(2k!)

Γ(d+1
2 )

Γ(d+3−4k
2 )

(
ρ
d+1−4k

2 − τ
d+1−4k

2

)
+O(τ).
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Let us observe that

lim
ρ→∞

−2
d+1ρ

(d+1)/2 +
∑a
j=0(ρ− j)(d−1)/2

1
2ρ

(d−1)/2

= lim
ρ→∞

− 4
d+1τ

(d+1)/2 + τ (d−1)/2 + ρ(d−1)/2 +O(ρ(d−3)/2)

ρd−1

= 1.

This is because τ = O(1). Similarly, if we define E0 = 2
d+1ρ

(d+1)/2 + 1
2ρ

(d−1)/2 and

En = E0 +

n∑
k=1

B2k

(2k!)

Γ(d+1
2 )

Γ(d+3−4k
2 )

ρ
d+1−4k

2 ,

we get that

lim
ρ→∞

−En +
∑a
j=0(ρ− j)(d−1)/2

ρ(d−1)/2−2n−1
=

B2(n+1)

(2(n+ 1))!
(
d− 1

2
)2n+1

whenever (d−1)/2−2n−1 > 0, after which point the contribution of the fractional
remainder τ gets more important than the denominator. Hence, we obtain the
asymptotic expansion

(5.10)

bρc∑
j=0

(ρ− j)(d−1)/2 =
2

d+ 1
ρ(d+1)/2 +

1

2
ρ(d−1)/2

+
∑

k≤ d−3
4

B2k

(2k!)

Γ(d+1
2 )

Γ(d+3−4k
2 )

ρ
d+1−4k

2 +O(τ).

When k = 1, we already have that X(ρ) = 0. Therefore, we have that

P (ρ, d, 1)

ωd−1
=

2

d+ 1
ρ(d+1)/2 +

1

2
ρ(d−1)/2

+
∑

1≤k< d−3
4

B2k

(2k!)

Γ(d+1
2 )

Γ(d+3−4k
2 )

ρ
d+1−4k

2 +O(τ),

from which we recover a (quite sharp) asymptotic integrated density of states for
the magnetic Hamiltonian Hd+1.

Let us combine equations (5.5) and (5.10). When k = d, we get that the error
term from X is greater than d−1

2 , and as such,

P (ρ; d, d) =
2ωd−1

d+ 1
+O

(
ρ
d2−d+2

2d

)
.

When k > d+2
2 , we get that

P (ρ; d, k)

ωd−1
=

2

d+ 1
ρ
d+1
2 +

1

2
ρ
d−1
2

+
∑

1≤j< k−1
4k−2

B2j

(2j)!

Γ(d+1
2 )

Γ(d+3−4j
2 )

ρ
d+1−4j

2 +O(ρ
1
2 (d−1− 2k−2

2k−d )).
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Finally, when k ≤ d+2
2 , we get that

P (ρ; d, k)

ωd−1
=

2ωd−1

d+ 1
ρ
d+1
2 +

1

2
ρ
d−1
2

+
∑

1≤j< d+4
8

B2j

(2j)!

Γ(d+1
2 )

Γ(d+3−4j
2 )

ρ
d+1−4j

2 +O(ρ
d+4
4 (log ρ)δ),

where δ = 1 if k = d+2
2 and 0 otherwise.

6. Proofs of auxiliary results

6.1. Smoothing of the cut-off function. Let us define a smooth, even bump
function ψ in C∞c (R), supported in [−1, 1], such that the integral

(6.1)
∫ ∞

0

ψ(r)rk−1 dr =
1

Vk−1
,

where Vk−1 is the area of the unit sphere in Rk.
Using this function, we can define the radial bump function Ψε on Rk, of total

mass 1 to be given by

(6.2) Ψε(x) =
1

εk
ψ(
|x|
ε

).

Let Ψ := Ψ1 and χε(x) = Ψε(x) ∗ χ(x). Its Fourier transform is given by

(6.3) χ̂ε(ξ) = Ψ̂(εξ)χ̂(ξ).

Let χ+
ε and χ−ε be defined on Rk by

(6.4) χ±ε (x) =
1

(1∓ ε)l
χε((1∓ ε)x).

We can now proceed with the proof of Lemma 2.1.

Proof. To show that χ−ε (x) ≤ χ(x) ≤ χ+
ε , the idea is to obtain χ±ε (x) by averaging

χ(x) on a ball of radius 0 < ε < x about each x. To do so, first notice that

(6.5)

χε(x) ≤ sup
|t|≤ε

(χ(x− t))
∫
Rk

Ψε(x) dx

=

{
1 if |x| ≤ ε,
(1− (|x| − ε)2)

l
2 if ε ≤ |x| ≤ 1 + ε.

If we show that

(6.6) χε(x) ≤ (1 + ε)lχ

(
x

1 + ε

)
,

we get the desired lower bound. Indeed, taking y = x
1+ε in the preceding equation

yields

(6.7) χ(y) ≥ 1

(1 + ε)l
χε((1 + ε)y) = χ−ε (y).

Therefore, it only remains to show that (6.6) holds for all x ∈ Rk. First note that
if |x| ≥ 1 + ε, both sides are 0. We shall split the remaining cases in |x| ≤ ε and
ε < |x| < 1 + ε.
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Restricting ourselves to the first case, if |x| = ε, we get that

(6.8)

(1 + ε)lχ

(
x

1 + ε

)
= (1 + ε)l

(
1− ε2

(1 + ε)2

) l
2

= (1 + 2ε)
l
2

≥ 1

≥ χ−ε (x)

Since χ( x
1+ε ) is a decreasing function of |x|, we conclude that (6.6) holds for 0 ≤

|x| ≤ ε.
In the case where ε < |x| ≤ 1 + ε, we need to show that

(6.9) (1− (|x| − ε)2)
l
2 ≤ (1 + ε)l

(
1− |x|2

(1 + ε)2

) l
2

.

It is equivalent to show that 1− (|x| − ε)2 ≤ (1 + ε)2 − |x|2. This is the case if

(6.10)

1− |x|2 + 2|x|ε− ε2 ≤ 1 + 2ε+ ε2 − |x|2

⇔ 2|x|ε ≤ 2ε(1 + ε)

⇔ |x| ≤ 1 + ε.

Since the last line is true by hypothesis, we can conclude that the left-hand side
inequality of (2.7) is true.

In order to get an upper bound on χ(x), we proceed in a similar fashion, averaging
χε(x) on a ball of radius ε around x, which yields

(6.11)

χε(x) ≥ inf
|t|<ε

χ(x− t)

≥

{(
1− (|x|+ ε)2

) l
2 if |x| < 1− ε,

0 otherwise.

As we did before, it suffices to show that

(6.12) χε(x) ≥ (1− ε)lχ
(

x

1− ε

)
.

Notice that the left hand side of that equation is 0 whenever |x| ≥ 1 − ε. Like
before, we see that

(6.13) (1− (|x|+ ε)2)
l
2 ≥ (1− ε)l

[
1−

(
|x|

1− ε

)2
] l

2

is equivalent to |x| < 1− ε. This concludes the proof. �

6.2. Fourier transform of χ.

Proof. Let us compute χ̂(ξ). We will split the cases k = 1, k = 2, and k > 2. If
k = 1, then
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(6.14)

χ̂(ξ) =

∫ 1

−1

(1− x2)(d−1)/2e−i2πxξ dx

=
C

|ξ|d/2
Jd/2(2π|ξ|)

=
C

|ξ|(d+1)/2
cos

(
2π|ξ| − (d+ 1)π

4

)
+O(|ξ|(d+3)/2),

using [3][Eq.3.387 and 8.451], which is the desired result.
We also obtain that, following [3][Eq. 3.621]

(6.15) χ̂(0) = 2dB(
d+ 1

2
,
d+ 1

2
).

Using identities of the Gamma function, we get that

(6.16) ωl2
dB(

d+ 1

2
,
d+ 1

2
) =

πd/2

Γ(d2 + 1)
= ωd,

which is the desired value.
If k = 2, then the Fourier transform is given by

(6.17) χ̂(ξ) =

∫
R2

χ(x)e−i2πx·ξ dx.

Working in polar coordinates, we get that

(6.18)

χ̂(ξ) =

∫ 1

0

∫ 2π

0

r(1− r2)(d−2)/2e−i2πr|ξ| cos θ dθ dr

=

∫ 1

0

r(1− r2)(d−2)/2J0(2π|ξ|r) dr

=
C

|ξ|d/2
Jd/2(2π|ξ|)

=
C

|ξ|(d+1)/2
cos

(
2π|ξ| − (d+ 1)π

4

)
+O(|ξ|(d+3)/2),

which is the desired result. [3][Eq. 8.411, 6.567 and 8.451] were used respectively
for an integral formula for the Bessel function, its integral, and its asymptotic
expansion.

We also obtain that

(6.19) χ̂(0) =
2π

d
.

Using identities of the Gamma function, we get that

(6.20) ωl
2π

d
=

πd/2

Γ(d2 + 1)
= ωd,

which is the desired value. Finally, if k > 2, then, working in spherical coordinates,
we get that the Fourier transform of χ is, for some constant C,
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(6.21)

χ̂(ξ) = C

∫ 1

0

∫ π

0

rk−1(1− r2)l/2 sink−2 θe−i2πr|ξ| cos θ dθ dr

=
C

|ξ|(k−2)/2

∫ 1

0

rk/2(1− r2)l/2J(k−2)/2(2π|ξ|r) dr

=
C

|ξ|(k−2)/2

1

|ξ|(l+2)/2
Jd/2(2π|ξ|)

=
C

|ξ|(d+1)/2
cos

(
2π|ξ| − (d+ 1)π

4

)
+O(|ξ|(d+3)/2).

using [3][Eq. 8.411] in the first line, which is the desired result.
Additionnally, we have that

(6.22)
χ̂(0) = Vol(Sk−1)

∫ 1

0

rk−1(1− r2)(d−k)/2 dr

=
πk/2B(k2 ,

d−k+2
2 )

Γ(k2 )
.

Using identities of the Gamma function, we get that

(6.23) χ̂(0)ωd−k = ωd

which is once again the desired value.
One can note that in each of those cases, we ignored the trigonometric term to

get an upper bound, considering it to be 1. Hence, since translation by k1 is simply
multiplication by a complex exponential in Equation (2.3), it can be ignored in just
the same fashion.

Finally, we get the result for the derivative using the identity J ′ν = 1
2 (Jν−1−Jν+1)

and basic trigonometric identities. This completes the proof of Lemma 2.2. �
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