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Abstract

The stochastic behaviour of single ion channels is most often described as an aggre-
gated continuous-time Markov process with discrete states. For ligand-gated channels each
state can represent a different conformation of the channel protein or a different number
of bound ligands. Single channel recordings show only whether the channel is open or
shut: states of equal conductance are aggregated, so transitions between them have to be
inferred indirectly. The requirement to filter noise from the raw signal further complicates
the modelling process, as it limits the time resolution of the data. The consequence of the
reduced bandwidth is that openings or shuttings that are shorter than the resolution cannot
be observed; these are known as missed events. Postulated models fitted using filtered data
must therefore explicitly account for missed events to avoid bias in the estimation of rate
parameters and in order to assess parameter identifiability accurately.

In this paper we present the first Bayesian modelling of ion-channels with exact missed
events correction. Bayesian analysis represents uncertain knowledge of the true value of
model parameters by considering these parameters as random variables. This allows us to
gain a full appreciation of parameter identifiability and uncertainty when estimating val-
ues for model parameters. However, Bayesian inference is particularly challenging in this
context as the correction for missed events increases the computational complexity of the
model likelihood. Nonetheless, we successfully implemented a two-step Markov chain
Monte Carlo method which we called “BICME” which performs Bayesian inference in
models of realistic complexity. The method is demonstrated on synthetic and real single
channel data from muscle nicotinic acetylcholine channels. We show that parameter uncer-
tainty can be more accurately characterised compared with Maximum Likelihood methods.
Our code for performing inference in these ion channel models is publicly available.



Introduction

Ligand gated ion-channels are transmembrane proteins that enable fast cell to cell communica-
tion, which is crucial for the functioning of the nervous system and for the control of skeletal
muscle. Conformational changes in the protein are induced by the binding of an agonist, such
as a neurotransmitter, to the extracellular domain of the protein. These conformational changes
lead to the opening of the gate of the channel pore within the protein, enabling the flow of ions
down their electrochemical gradient. The resulting all-or-nothing current has an amplitude typ-
ically in the pA range at physiological membrane potential and ionic concentrations and can be
recorded by patch clamp techniques [1].

The conformational changes that occur during the gating process cannot be observed di-
rectly and therefore must be inferred from such recordings. These single-channel data are used
to fit and assess mechanistic Markov models that describe the binding events and conforma-
tional changes that occur during channel activation. Such mechanistic mathematical models
consist of components that may be directly interpreted as part of the system being modelled,
allowing investigation of the underlying physical process.

Ion channels are unique among proteins in allowing the prolonged recording of single
molecule activity at high temporal resolution. This in principle allows the fitting of models that
are unusually detailed and relatively close to the physical reality of activation. For instance,
in a ligand gated ion channel, this reaction consists of the binding of several neurotransmitter
molecules followed by conformational changes that eventually result in the channel opening.
Fitting an appropriately parameterised model to estimate the rate constants for the different
transitions allows us to establish the simplest model that adequately describes the observations
and thus to probe the energy landscape of the channel. In turn this is useful to compare with
structural information and with molecular dynamics simulations of protein dynamics.

Single channel records show only whether the channel is open or closed and realistic chan-
nel activation requires several closed and several open states. lon-channel kinetics may be
described mathematically using aggregated Markov models, since it is not possible to directly
observe the conformational state of the protein, and their memoryless nature appears to match
observed channel behaviour. There are obvious difficulties however. While temporal resolution
can be very good for single-channel recordings, 10-30us at best, it still is not infinite and this
prevents the identification of shorter dwells of the channel in the open or closed states. These
short dwells commonly occur in most ion-channels and, importantly, result in missing data,
which we must also account for in our modelling approach.

Recordings are usually “idealised”, that is, converted from digitised records to lists of inter-
vals using various methods, such as time course fitting, threshold crossing and Hidden Markov
Models to convert the recording to a putative sequence of open and closed intervals [2]. Mod-
els of increasing complexity are fitted to these idealised data until a reasonable description of
the channel behaviour is obtained. Maximum Likelihood (ML) methods have been to date
the most common inferential framework for estimating model parameters from single channel
data. This approach has been found to be useful in examining the activation of channels in the
nicotinic superfamily [3, 4, 5, 6, 7]. The main limitation of the ML approach however is that
it is not straightforward to check the parameter non-identifiability and the impact of parameter
uncertainty. Parameter non-identifiability can occur in two scenarios as outlined in [8]. First,
there may exist a continuum of parameter values at the Maximum Likelihood point such that
estimated values of the model parameters cannot be constrained within a finite range. Second,
there may exist multiple well-constrained but discrete solutions that describe the observed data
reasonably well. The first case, which we examine in this paper, can be a particular problem



for ion-channel models where the underlying structure of the physical process is not directly
observable. The model may consequently be overparameterised and there may be great un-
certainty in the parameter estimates. The ability to determine parameter identifiability and the
impact of parameter uncertainty is vital for allowing physiologically meaningful conclusions to
be drawn from a hypothesised ion-channel model, for example, when comparing the action of
different channel agonists on a receptor, or when assessing the physical impact of mutations on
channel behaviour. Theoretical work has explored the maximum number of parameters that can
be fitted to single channel recordings [9] and investigated non-uniqueness of models [10] but
these techniques are difficult to apply when fitting models to real experimental data. Assessing
the impact of parameter uncertainty on model predictions also remains a challenging problem.

Our group used the approach pioneered by Colquhoun & Hawkes [11, 12] to examine pa-
rameter identifiability by assessing standard errors and correlations derived using the empiri-
cal covariance matrix calculated at the Maximum Likelihood estimate. Thus we verified the
properties of the ML estimators for our main results on the nicotinic and glycine channel by
extensive simulations [5, 12] showing our approach can reliably detect rate constants as fast
as 130,000s~! for glycine channels [5]. This technique has also robustly revealed intermedi-
ate conformational states in the nicotinic and glycine channels [7] and in the ELIC receptor in
prokaryotes [13]. Despite these successes, there are limitations to the use of Maximum Like-
lihood inference. In particular, checking the validity of model parameter estimates by fitting
simulations remains an ad-hoc laborious process.

There is increasing interest in Bayesian approaches in biophysics [14, 15] and in particular
in single channel analysis e.g. [16, 17, 18]. In Bayesian methods, rate parameters are treated
as random variables with a known prior probability distribution. This allows the assessment
of parameter identifiability through the calculation of their posterior probability distributions.
The uncertainty in these distributions may therefore be directly propagated through in order
to examine uncertainty in the predictions of the model. Bayesian methods are more computa-
tionally expensive than ML estimation when the posterior probability distribution is not known
analytically and so Markov chain Monte Carlo (MCMC) sampling schemes are required to
facilitate Bayesian inference in such models. MCMC schemes are called “samplers” as they
derive estimates of this density by defining probabilistic Markov processes that draw samples
from such probability distributions.

However, to our knowledge, there is currently no Bayesian approach for ion-channel models
that exactly corrects the model likelihood for the two important, inevitable technical constraints
of the experimental data, namely the limited temporal resolution in the experimental record
and the lack of knowledge about the number of channels in the experimental patch. This paper
addresses this shortfall thus:

e We propose a practical approach specially tailored for performing highly efficient Bayesian
inference in ion-channel models using multiplicative Metropolis-within-Gibbs (MWG)
and Adaptive MCMC sampling in a package called “BICME” available at https://
github.com/miepstei/bicme.

e We examine how well our approach assesses parameter identifiability and parameter un-
certainty using the obtained posterior distribution. We examine how uncertainty in pa-
rameter values affects the uncertainty in model predictions and we apply our approach to
both synthetic and real experimental data for muscle nicotinic acetylcholine receptors.

e We correct the model likelihood for missed events and compare the results of MCMC
methods with those from existing ML and Bayesian methods [12, 19].


https://github.com/miepstei/bicme
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Materials and Methods

Ion-channel Stochastic Framework

The analysis aims to infer a continuous time Markov process from a discretely sampled signal
which has been idealised by a time course fitting procedure [2]. Idealisation deconvolves the
channel signal from the filtered output. Within a continuous time framework we seek an ex-
pression for the probability of observing an open or shut interval of length ¢ in the experimental
recording. To calculate the likelihood, we need the probability density of the length of time for
which the channel appears to be open (though it may contain missed brief shuttings) or shut.
Using the notation of Colquhoun and Hawkes [20] we outline the derivation for the required
probability as follows. Consider a continuous time finite-state Markov process S(t), r > 0, such
that S(7) = i denotes that the process is in state i at time ¢. The state space, I, of this process rep-
resents the conformational states of the proposed mechanism. The possible transitions between
states in this process are encoded and parameterised with a corresponding generator matrix Q,
which contain the rates of transition between the conformational states of the mechanism. Each
state in / is either open (set A), or closed (set F).

We begin by assuming that there is perfect resolution in the record. From [20], the Q matrix
is partitioned into conformations that produce one of two conductance levels, such that partition
Qa4 represents the transition rates between states that that are open and Qur represents the
rates of transitions from open to shut states. Partitions Qrr and Q4 are denoted similarly for
transitions within shut states and from shut states to open states, respectively. The initial goal
is to derive a probability for observing an open (or closed) interval of length ¢ given that we
cannot directly observe transitions within each conductance class A or F'. We can subsequently
derive a likelihood for the idealised recording from the probabilities of these individual sojourns
[11]. Conditional on the process starting in an open state i € A, the individual probabilities
of the process remaining within the set of open states A for a sojourn ¢, and instantaneously
transitioning to a shut state j € F are given by the elements of the matrix G4 (¢) in Equation 1
[20];

Gar(t) = exp(Qaat)Qar (D)

The overall probability of observing an opening of length ¢, where the process starts in any one
of the open states and finishes in any one of the closed states, is given in Equation 2,

fa(t) = 0AGar (t)ur (2)

where the initial vector ¢, denotes the probabilities of a sojourn starting in any one of the
hidden open states of the process, and the final column vector ur is a column of ones that sums
up the probabilities of finishing in each shut state. The analogous probabilities for a closed
sojourn are obtained by switching the partition labels A and F.

Accounting for Missed Events

Single channel recordings have finite time resolution, and channel events shorter than the res-
olution time are not observed in the idealised record. With the continuous time framework
outlined above, these unobserved transitions need to be accounted for within the likelihood,
and we used the exact missed events correction of [21, 22]. The probability of observing an
open interval of length 7, in the presence of missed events, can be calculated by noting that ¢
can be broken into three parts given the recording resolution time 7. The first part is the open
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interval of length # — T which may contain zero, one or many shuttings of length < 7 that are
undetected. This first element, R4 (7 — 7), is known as the “survivor function” as it represents
transitions from open states to closed states over a time ¢ — 7, during which shut intervals of
duration < T may occur but are not detected. The second component is the instantaneous tran-
sition from the open to the shut states, Q4. The third component is a shut interval of length 7
that must occur such that the open interval is brought to a close, which is simply exp(Qrr7).
We denote these probabilities analogously to Gar(t) as G4 (¢) [11];

Gir (1) = Ra(t — 7)Qar exp(QrF7) (3)

Calculating the correction for missed events (Equation 3) is much more involved than the
ideal case (Equation 1) as it requires calculating the convolution of open intervals with an
unknown number of short shut intervals, each less than 7 in length, over the period t — 7. The
required convolution can be expressed as the following Laplace Transform [11];

R} () = 1= G (5)Skr(5)GEa ()]~ (ST Qua) ™! 4)

where G, - (s) is the Laplace Transform of the G4 (t) matrix defined in equation 1 and Sy (s) =
(I—exp(—(sI—QprF)7)) represents the Laplace Transform of a short sojourn in the shut states.
A corresponding transform for observed shut intervals, R} (s), is found again by reversing the
partitioning labels.

Although the Laplace Transform in Equation 4 is intuitively simple to understand, it must
be inverted to provide expressions for probability densities of open and closed sojourns as a
function of time. Fortunately, an exact inversion of the transform in Equation 4 was found
by [21] in the form of a piecewise solution in multiples of the resolution time, such that a
different solution is obtained for 7 < ¢t < 271, 27 <t < 37, and so on. The solution relies on
evaluating a matrix polynomial of increasing order based on multiples of the resolution time, 7.
While this calculation becomes numerically unstable for large #,we can employ an asymptotic
form of the solution (found by [22]), which is accurate for periods of + > 37 [11]. Calculating
the asymptotic solution in part relies on a numerical root finding procedure that adds to the
computational burden of evaluating the corrected likelihood.

Accounting for the Number of Channels in the Patch

In general it is not known how many channels are present in the patch from which we are
recording. Counting the number of channels simultaneously open provides only a minimum
estimate. Our analysis therefore requires that records be broken up into stretches where it can
be assumed almost certainly that the gating of a single channel molecule is being observed,
because the gating of multiple channels would be detectable. These stretches of open and shut
times will be referred to as groups. At low concentrations, channel openings occur in groups
termed as “bursts”, during which it is possible to assume that only a single channel is operating,
since multiple channel openings during this interval would almost surely result in multiple
conductance levels observable in the record. Bursts are separated by long shut times that are
the expression of the time taken for the channel to rebind agonist and contain information on
the binding steps in the mechanism. The record can be broken up into groups by choosing
a time interval value, 7., on the basis of the dependence of the shut time distribution on the
agonist concentration. Shut intervals longer than . are deemed to separate the record into
bursts. Effectively, the long shuttings can be only shortened by the presence of more than
one channel in the patch. As a result, the analysis must take into account the fact that the



real shut sojourn before the first opening of the burst is equal to or longer than #.j. This
is done by employing corrected initial vectors, known as CHS vectors, [11] denoted ¢, .
Their use has been shown to increase the precision of estimates of rate constants from low
concentration records [12]. In contrast, a feature of channel activity at high concentrations
is the presence of channel desensitisation; long stretches of channel activity are separated by
desensitised shuttings where there is no observed opening. Given that desensitised states are
not typically incorporated in the model, these shuttings are excised from the record and are
not used for fitting [12]. The analysis uses the groups (clusters) of openings separated by the
desensitised gaps. The open probability in the clusters is high enough to be sure that only a
single molecule is active. In this instance, equilibrium vectors denoted ¢ “? are used to provide
the probability of starting in any open state at the start of the group.

Accounting for an unknown number of channels in the patch requires an alteration to the
likelihood calculation. At a given concentration of agonist, [x;], time interval, 7, and resolu-
tion time, 7, the log-likelihood of the series of bursts or clusters may be defined as the sum of
the log probabilities of N individual groups, each of varying length m;, observed in the record.
The initial vector, @ is either the CHS vector ¢ or the equilibrium vector ¢°¢ depending
on the agonist concentration in the experiments, as outlined above.

N
L] Qteriri, T [x6i]) = Y 10g[0aGAp (11,)Glp (12;)-- G (tm, ) uF] (5)
j=1
Equation 5 denotes the calculation of the corresponding log-likelihood over a series of record-
ings at different agonist concentrations which may similarly be defined as the sum of the log-
likelihood at each concentration. The code for this likelihood calculation is publicly available
at https://github.com/DCPROGS/HJCFIT.

An Introduction to Bayesian Inference and MCMC sampling

Unknown parameters in the model are specified as random variables in the Bayesian framework
(for further discussion see Supplementary Materials S1 and S2). Bayes Theorem for continuous
variables can be stated as per Equation 6 below:

_py[9)p@)  p(y[6)p(0)
PO ) = ) = Tolr | 8)p(6)d6

which requires the specification of a prior probability distribution, p(0), referred to as the
“prior”, which captures what is known about the model rate constants before any data is ob-
served. The combination of the model likelihood, p(y | 0) as calculated in Equation 5 , and the
prior p(6) results in a posterior probability distribution, p(6 | y), referred to as the “posterior”,
that may be calculated only pointwise up to a normalising constant. This means an analytical
description of the posterior as a normalised probability distribution is not available, but the
posterior distribution of the rate constants can be estimated using MCMC sampling.

We now provide a basic outline of MCMC sampling. We define a separate discrete-time
Markov chain, noting here that this is a different mathematical object from the aggregated
Markov process defined previously, which was used to define the likelihood function. The
aim of this Markov chain is to sample values from the posterior distribution and has the de-
sirable property that its stationary distribution is the posterior distribution under estimation.
The Markov chain is initialised at an initial set of parameters, 8¢, and the posterior probability
density at this point p(0¢ | y) is calculated. In each MCMC step, we define another probability

(6)
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distribution Q(. | 6¢), known as the proposal distribution, to propose a new set of parameters,
6%, given the current parameter values, for example a Gaussian distribution with mean equal
to the current parameters. The posterior probability density of the proposed parameters is then
calculated, p(0* | y). The move is accepted according to the Metropolis-Hastings acceptance
ratio [23], which means accepting the move with a probability given in Equation 7:

p(6” [y)q(6° | 67)
"p(6°]y)q(6* ] 6))
When the sampler uses a symmetric proposal distribution, Equation 7 simplifies to min(1,
p(0*1y)/p(6°|y)), the minimum of 1 and the ratio of the values of the posterior distribution
at 0 and 0¢. If the move is accepted, we set the current parameters equal to the proposed
parameters, 08¢ = 6%, else we retain the current parameters. At each iteration we record the
current parameters as another sample from the posterior distribution. The Metropolis-Hastings
ratio ensures that the samples we obtain are in fact distributed according to the posterior distri-
bution. We note that there is an initial period during which the chain is converging to the correct
distribution; this is known as the “burn in” phase of the chain. These initial samples generated
by our sampler are therefore typically discarded in subsequent analysis and an example of this
convergence is shown in Figure 3a.

The main aims when choosing different MCMC samplers are 1) to maximise the speed of
convergence of the chain and 2) to minimise the autocorrelations of the MCMC samples gen-
erated by the algorithm. The first can be assessed by plotting the parameters or the value of the
log-posterior as the MCMC chain iterates and collects the parameter samples. The second can
be assessed by calculating the autocorrelation lags of samples taken after the chain has con-
verged. A commonly used metric of sampling efficiency that incorporates the autocorrelation
of the samples is the Effective Sample Size (ESS), which gives an indication of the number of
equivalent independent samples drawn per sampling iteration or per unit of computational time.
Optimising an MCMC sampler often involves assessing different choices of proposal distribu-
tion Q(. | 6°). For a brief introduction to Bayesian methods and MCMC sampling algorithms,
please refer to the Supplementary Materials S1 and S2 and for a full primer in the context
of biophysics see [15]. We now outline a strategy which demonstrates an efficient sampling
approach for evaluating the ion-channel model posterior distribution.

(7)

min(1

MCMC Sampling of Ion-channel Models with Missed Events Correction

We assume with all our examples that we know little about the values of our rate constants,
so that all rate constants have uniform priors. Opening and closing rates and dissociation rates
have a prior, U0, 106], whereas association rates are limited by the theoretical rate of diffusion
of the agonist, for which we use a prior of U[0,10'°]. It should be noted that these are the same
bounds that are in place during a typical Maximum Likelihood model fitting, but within the
Bayesian framework they are specified as the prior probability distributions.

We propose a two-step MCMC sampling strategy which we present in our software package
BICME. First, we employ a pilot MCMC based on a Metropolis-within-Gibbs (MWG) sam-
pling scheme [24] in order to locate quickly the approximate mode of the posterior distribution
[25]. We then switch to an Adaptive MCMC sampler [26], that learns a covariance matrix based
on the empirical covariance between the model parameters at this mode. This relies on the as-
sumption that the posterior distribution is unimodal. In fact analysis of single channel records
at a single concentration can result in bi-modal distributions [12], although in practice the use
of multiple concentrations for fitting often removes this second “false” mode [27]. Nonethe-



less, a different starting position for the pilot MCMC sampler can be found by sampling initial
parameters from the prior distribution to assess convergence to the same mode. Our two step
approach greatly speeds up the inference, since the second Adaptive sampler would converge
much more slowly during the initial transient phase of the Markov chain’s exploration of the
parameter space.

The pilot MCMC chain (Algorithm S1) is based on a Multiplicative MWG algorithm [24],
which updates each parameter individually in log space with proposal distribution ¢* = ge”,
where y ~ N(0,X) (Algorithm S1). The proposal distribution is scaled during the burn-in phase
of the chain to account for varying parameter magnitudes. The benefit of this approach is
that the multiplicative proposals in the original parameter space speed up convergence of the
Markov chain compared to additive proposals. After convergence and location of the posterior
mode, an Adaptive MCMC algorithm [26] is employed (Algorithm S2). The second algorithm
learns an appropriate covariance structure from the sample history of the chain in such a way
that it still converges to the correct stationary distribution, see [28] for full details.

We consider the Effective Sample Size (ESS) (see Supplementary Materials S2) of each
sampler as a metric for sampling efficiency. For each sampling algorithm we can assess both the
ESS generated per iteration and the ESS per second of runtime, giving an assessment of overall
computational efficiency. In practice, it is the second measurement that is often more important,
since it gives a direct measure of computational efficiency across algorithms, although this may
be highly dependent on specific implementations in code.

Results

Bayesian inference with synthetic data

We initially evaluate our method by examining whether the dual MCMC sampling strategy
we propose works on simulated data produced with a well characterised ion-channel model.
Simulated data at three different agonist concentrations were fitted simultaneously. The model
we chose (shown in Figure 1a) was first proposed by Colquhoun and Sakmann in 1985 [29]
to describe single channel activity of the muscle nicotinic receptor and validated by other labs
[30]. Hatton et al. [3] investigated parameter identifiability when this model was used to fit
muscle nicotinic data using Maximum Likelihood inference [12]. This makes it ideal to test
whether Bayesian inference can also successfully identify the model parameters. In contrast to
Maximum Likelihood inference, we provide estimates of parameter uncertainty derived from
the posterior distributions. We display how the uncertainty over the estimated parameters af-
fects the predictions of the observable features of the data by drawing sets of parameters from
the posterior distribution and assessing the corresponding variability of the predictions.

The muscle nicotinic ion-channel model used for fitting (Figure 1a) has three open states,
four closed states and two binding sites, A and B. The dashed box contains a “desensitised”
state used only to simulate high concentration data [12]. This state is not fitted. We assume
that the binding sites are independent for this model, i.e. the presence of agonist bound to one
site (e.g. site A) does not impact the rates of binding or unbinding of agonist at the other site
(site B) and vice versa. As the channel is at steady-state, we can assume that the principle of
microscopic reversibility holds in the mechanism. This means that, for the mechanism with
a cyclic component in Figure la, the product of the rate constants going clockwise around
the cycle is equal to the product of the rate constants in the anti-clockwise direction [20].
This allows an additional rate constant to be constrained [31]. The assumption of independent
binding sites, together with the assumption of microscopic reversibility in the cycle of the
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Figure 1: 1a: Example model used for fitting. This seven state model has previously been used
for the analysis of parameter identifiability in acetylcholine receptor gating [3] with limited
time resolution using maximum likelihood estimation [12]. This model has three open states
(in red) and four closed states (in blue) and two agonist binding sites A and B. The data are
simulated assuming independent binding sites for the agonist. An additional eighth state inside
the dashed box is used to simulate data at high concentrations (10uM acetylcholine) but is not
used for fitting. 1b: Parameter values used to simulate data from the model [12].

mechanism, reduces the number of rate constants to be estimated from 14 to 10, since, as in
[12], k10 = k2as k1p = ki2p, k—1a = k—2q and k1, = k_2p.

Our design for the experiments reproduce that in the previous ML identifiability study with
this model [12], with respect to the number of events, concentration values, the 7. times chosen
to divide the records into groups and the resolution imposed onto the raw records (25us).
The same rate parameters were used to generate raw records (Table 1b). Figure 2 shows the
workflow for the experiments. Two sets of intervals using low agonist concentrations of 30nM
and 100nM were simulated from the basic seven state model in Figure 1a. In addition, a set
of intervals at a high agonist concentration (10 M) was simulated from the same model that
includes the additional desensitised state AoD. The additional state is attached to the doubly
liganded opening A;R* with transition rate constants ap = 1.4, Bp = 5 and is represented by
the dashed box in Figure la. It introduces into the simulated data long shut times that mimic
the long silent periods that appear in real experiments at high acetylcholine concentrations. For
each of the three agonist concentrations, 20,000 intervals were generated reflecting the number
of events that can be gathered in a typical single channel experiment with the muscle nicotinic
channel. The ¢ time was set at 3.5ms for the low concentration recordings and 5 ms for the
high concentration recording. This 7. value is used to break up the resolved record into groups
of openings that almost certainly all originate from the same individual channel. For the low
concentrations, CHS vectors were used in the calculation of the likelihood (see Methods). We
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Figure 2: An experimental workflow to perform MCMC sampling using the muscle nicotinic
receptor in Figure la. Two low concentration datasets (30nM and 100nM) are simulated and
these records are separated into groups (bursts), to account for the lack of knowledge of the
number of channels in the patch. A high concentration recording is also separated into groups
discarding the intervals where the channel is desensitised. See Methods for the definition of
groups. The joint dataset comprising the groups for all three sets is then used for MCMC
sampling. The first sampler (MWGQ) is used to locate the posterior mode. The Adaptive sampler,
started at the mode, learns the covariances of the posterior distribution and then draws samples
for analysis.

apply the two-step MCMC sampling approach, described in the Methods, to this synthetic data.
For the initial pilot MWG chain, 10,000 samples were drawn from the posterior distribution,
of which 5,000 were discarded as burn-in samples. Subsequently, the Adaptive MCMC was
started at the posterior mode evaluated from the pilot chain output. 100,000 samples were then
drawn from the posterior distribution using this second chain and again half of these samples
were discarded as burn-in, since the chain is initially learning the correlation structure of the
posterior distribution and takes time to converge to the distribution of interest.

Whenever we employ MCMC to draw samples from a distribution, it is important to ex-
amine diagnostics of the Markov chain to ensure its convergence. We initially consider some
diagnostic plots of the pilot chain, the Multiplicative MWG sampler (Algorithm S1), used to
locate the posterior mode. One such diagnostic is to examine visually how quickly the chain
converges to the posterior distribution given its starting position. This can be done by observ-
ing how quickly the value of the log-posterior of the model approaches a stable, stationary
time-series using a trace plot of how the log posterior value changes, with each set of sampled
parameters, as the chain iterates. In Figure 3a, we observe the sampler converging quickly to
the posterior mode after fewer than 500 iterations. A second possible metric involves calcu-
lating and plotting the autocorrelations of the samples drawn by the MCMC chain after it has
converged. Although samples from the MCMC chain are invariably autocorrelated, we aim to
deploy an MCMC chain that exhibits as little autocorrelation as possible. The autocorrelations
of each series of parameter samples are considered a measure of the sampling efficiency of
the chain. This is distinct from any correlations which may be observable between parameters
in the posterior distribution. Higher levels of autocorrelation mean that the sampler takes a
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larger number of iterations to produce one independent sample from the posterior distribution.
In such cases we say that our Markov chain mixes poorly. This is seen to be the case in our
example with the MWG sampler, which displays very inefficient mixing after convergence. Al-
though it was observed in Figure 3a that the MCMC chain converged to the posterior mode in
around 500 iterations, however the proposal distribution was allowed to adjust according to the
acceptance rate until 5,000 samples had been drawn. We therefore still discard the first 5000 of
the drawn samples under the assumption that these samples are drawn when the MCMC chain
is still converging. We considered the next 5,000 of samples to be drawn from the posterior
distribution, and found that these 5,000 samples exhibit high levels of autocorrelation (shown
in Figure 3b for parameter o). This is shown by the persistence of the sample autocorrelation,
even after the 100th lag. The reason behind this can be examined by illustrating the distribution
of proposed points relative to those points that are accepted as samples. Figure 3c plots the
5,000 posterior samples of o, and 3,. This shows that many proposals (red points) are made in
areas of lower posterior probability density, away from the ridge of high posterior density. The
posterior density is formed by the accepted samples (in blue). The proposals clearly have an un-
correlated Gaussian shape, quite different from the correlated shape of the accepted parameter
values. We can conclude from this graph that this algorithm learns the required proposal scales
per parameter through adjusting the proposal variance, but cannot take into account the correla-
tions between parameters in the posterior distribution. This results in inefficient sampling after
convergence.

The mode of the posterior distribution represents the point of highest probability density in
the posterior distribution and has been located using the MWG algorithm. However, we have
shown that this sampler draws samples inefficiently once it has converged to this mode. This
is why we use the second sampler, the Adaptive MCMC algorithm (Algorithm S2), which is
started at the posterior mode obtained by the first sampler. The Adaptive sampler learns the
parameter correlation from the history of samples drawn by the chain and therefore, after the
burn-in period, makes correlated proposals that are more likely to be accepted as new parameter
samples in the Metropolis-Hastings acceptance step. This leads to a chain that exhibits a lower
level of autocorrelation and thus needs to be run for a shorter number of iterations to produce
the equivalent number of independent samples as the initial pilot MWG algorithm.

The bottom panel of Figure 3 demonstrates the benefit of using this Adaptive sampler ini-
tiated at the posterior mode (Figure 3d). This sampler learns the posterior correlations, and
this reduces the autocorrelation of the resulting samples (shown again by plotting parameter o
in Figure 3e). Figure 3f demonstrates the improved efficiency of sampling using an Adaptive
Markov chain. This is shown by the tight overlap of the proposed parameter values (in red)
with the samples that are actually accepted (in blue).

In Table 1 we compare the efficiency of the two samplers based on the Expected Sample
Size (ESS). This provides a measure of sampling efficiency per iteration and per unit of com-
putational time, as defined in the Methods. The Adaptive sampler is superior to the pilot MWG
sampler both in terms of equivalent independent samples per iteration and in terms of equiv-
alent independent samples generated per minute of computational time. This further validates
the approach of using a two-step sampling technique - firstly, the MWG sampler to quickly
locate the posterior mode and secondly, the Adaptive sampler to sample more efficiently from
the posterior distribution once this mode has been found. Although the Adaptive sampler can
be used in isolation, it takes longer to converge to the mode of the posterior. The run time (in
minutes) for the two algorithms is also shown and each sampler takes approximately an hour
to complete on an Intel 2.5 GHz core 17 Macbook Pro with 16GB of RAM.

We now examine the posterior samples generated by the Adaptive sampler. The individual
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MWG

Adaptive

Table 1: Effective sample sizes and run times for the converged MWG pilot and Adaptive
samplers for distribution of the o, parameter. Adaptive sampling is three times as efficient as
the MWG sampler, in terms of samples per iteration (see second line). Furthermore, it is much
more computationally efficient in terms of samples per minute. The number of significant lags
is the number of lags for which the autocorrelation coefficient is significantly greater than zero
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Figure 3: Chain diagnostics for MWG and Adaptive algorithms. Top Panel: MWG
Pilot sampler. 3a: The sampler converges quickly to the posterior mode. 3b: The
pilot MCMC chain exhibits high levels of autocorrelation in the posterior samples of
parameter 0. Autocorrelation within the o sample is defined as correlation between
values of o at the nth iteration and the value at the n — [th iteration where [/ is the
autocorrelation lag. 3c¢: 5,000 samples drawn from the posterior distribution show the
strong pairwise correlation between the rate constants 3, and a,. A similar correla-
tion is observed using experimental repetition in [12]. The random-walk nature of the
MWG sampler results in proposals (red points) away from the ridge of high posterior
density, and this increases the number of rejected samples. The accepted samples are
shown in blue. This is corrected by the Adaptive MCMC sampler (Bottom Panel).
3d: The chain is started at the posterior mode and continues to sample from it. 3e:
The level of autocorrelation of o has been reduced as the sampler has learned the
posterior correlation between 3, and op. 3f: The proposals become much more ef-
ficient. This is seen in the substantial overlap between the 5,000 accepted samples
(blue) and the 5,000 proposed samples (red).

MWG | Adaptive

Number of significant lags | 137 81
ESS/sample 0.01 0.03
ESS/minute 0.99 23.65
Runtime, mins 57 64

and so these lags are used in the calculation of the ESS estimates.
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Figure 4: Marginal posterior distributions for model parameters obtained from synthetic data
are shown in blue. The black vertical lines indicate the parameter values used to generate the
data. The association rate constants k;,, and k1, are in s~ M~ units, otherwise the units
are s~ . The posterior parameter distributions enclose the rate constants and show that the
Bayesian approach can recover the rate parameters used to generate the data. Plotted in red are
Gaussian distributions obtained from the Hessian at the mode. This shows that the posterior

distributions in this example are approximated well by Gaussian distributions.

posterior distributions for the ten rate parameters, known as marginal distributions, are shown
in Figure 4 (in blue). The rate parameters used to generate the synthetic data are shown by
the dashed black lines. The fact that each distribution is constrained and encloses the true rate
constant demonstrates that the correct rate constants originally used to generate this data can
be identified and recovered as in the original ML study [12]. Next, we observe that the shape of
the marginal distributions appears Gaussian. Given our choice of uniform priors (see Methods),
we note that the location of the posterior mode has to be the same as the location of the MLL
estimates and therefore we can directly compare each marginal distribution to the Gaussian
distribution that would be used to estimate asymptotic standard errors for parameter estimates
in a ML estimation. We obtain estimates of the standard errors by inverting an estimate of
the Hessian at the posterior mode. Comparing the shape of the error distributions (in red,
Figure 4) with the obtained marginal distributions for the parameters reveals that the shape
of the posterior distributions are indeed approximately Gaussian. Hence in this case, similar
conclusions would be drawn about parameter identifiability and uncertainty using Bayesian
inference and ML.

We can now illustrate the impact of the uncertainty in the estimated parameter posterior
distribution on the uncertainty of model predictions, by taking samples from the posterior dis-
tribution and using them to simulate predictions of open and shut interval distributions and
the correlation between the durations of adjacent open and shut intervals from the model. All
predictions are corrected for missed events so that they can be compared directly to the ob-
served data. 100 parameter samples were taken at random from the posterior distributions of
the Adaptive sampler (shown in Figure 4). Predicted distributions were then calculated using
these samples in order to assess how well they reproduce the observed data and how variable
the model predictions are. These predictions are shown in Figure 5.

The variability in the predictive open time distributions, at low concentration (30 nM) and
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Conc = 30nM

Conc = 10uM

high concentration (10 M), are shown in Figures 5a, 5d. As expected from previous identifi-
ability analysis of the channel [12], the model fit is very good across all concentrations. This
Figure demonstrates that uncertainty in the model predictions decreases as the agonist con-
centration increases. This is apparent as the range of the curves evaluated from the parameter
samples becomes narrower as the thickness of the superimposed predicted curves (red) is re-
duced. Note the higher variability in the prediction of short open times at low concentration.
This is to be expected as low concentration records contain sparse information compared to
high concentration records, since they have fewer usable shut times because of the short 7
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Figure 5: Predicted distributions of model behaviour at low (30nM, Top Panel) and
high acetylcholine concentrations (10uM, Bottom Panel). 100 samples taken at ran-
dom from the posterior distributions of Model 1a, fitted to synthetic data, are used
to calculate predictive open time distributions (5a, 5d), shut time distributions (Sb,
Se) and correlations between adjacent closed-to-open sojourns (Sc¢, 5f). The open
and shut time distributions show the predicted durations of intervals with the imposed
resolution of 25us (red), and with perfect resolution (green) and are overlaid by the
observed durations summarised as a histogram (blue). Open-shut correlations are ex-
amined by calculating the mean of the succeeding open interval against the mean of
the preceding shut interval, conditional on range of preceding shut interval durations
[11]. Mean durations predicted by the model are denoted by red points. These are
consistent with the conditional mean calculated from the observed experimental data
(blue points with standard deviation error bars, connected with a blue line). The shut
range intervals used to calculate the conditional means are [0.025-0.05, 0.05-0.1, 0.1-
0.2, 0.2-2, 2-20, 20-200, 200-2000] ms. The plots in Figures Sa, 5d, Sb and Se show
that there is excellent agreement of the predictions from the fit with the time resolved
open and shut distributions and that it becomes more precise as the agonist concentra-
tion increases. In practice, the shut distributions and correlations can be interpreted
only up to the value of the 7. interval (marked on the graph) as it is not known how
many channels are in the patch. The model can also recover the correlations observed
in the adjacent shut to open intervals up to the 7. value.
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required to separate the record into individual channel activations. They are nonetheless the
predominant source of information on single-liganded openings in the model. At high concen-
trations, the record is rich with predominantly diliganded openings and so this aspect of the
channel is very accurately predicted. Shut time distributions (Figures 5b, 5e) are predicted well
across both concentrations, since although we have treated the recordings so that there may be
multiple channels in the patch, in reality, we have simulated the data with only one channel. In
practice, we would not be able to predict accurately the shut time distribution beyond 7. In
all open and shut distributions, the impact of not taking missed events into account is illustrated
by the difference between the green probability densities (which are the open or closed prob-
ability densities assuming perfect resolution calculated from Equation 2) and the red densities
(which correctly assume the finite recording resolution using Equation 3). This illustrates the
importance of applying the missed events correction in the open and closed probability density
functions in order to compare the model predictions to what is actually observed.

One of the key considerations of any proposed ion-channel model is the ability of the pos-
tulated model to reproduce the degree of correlations between adjacent open and shut intervals
observed in experimental data. A feature of nicotinic muscle channel behaviour is that at low
concentrations there is a negative correlation between the length of the open interval and the
length of the preceding shut interval. Predictions of such model correlations are shown along-
side correlations observed in the empirical data in Figure 5c for low concentration and Figure
5f for high concentration. The model correctly recovers, with high accuracy, the negative cor-
relation between the duration of shut intervals and the duration of the following open intervals
observed at low concentrations, as does the original ML fit [12]. At high concentrations, no
correlation is predicted or observed. This is because diliganded openings are predominantly
observed at this concentration. This represents only one kind of opening in the channel and so
correlations are absent [32].

Sampling with experimental data results in a non-Gaussian posterior dis-
tribution

Real data from a nicotinic acetylcholine receptor [3] were used in order to test our MCMC
approach. As with the simulated data, the experimental recordings were taken at three concen-
trations. A summary of these three datasets and their experimental conditions are described in
Table 2.

Set | ACh Conc (uM) | # Resolved intervals | #. (ms) | # groups | use CHS vectors
1 0.05 14,056 2 4134 yes
2 0.1 24,230 3.5 8471 yes
3 10 13,822 35 134 no

Table 2: Experimental conditions and summary data for real acetylcholine receptor recordings
from [3]. The resolution for all recordings was 25us.The table summarises the number of
resolved intervals in the experimental patch, the 7. interval used to separate the resolved in-
tervals into groups, the number of resulting individual groups (see Methods) and whether CHS
vectors are required for initial openings in each group.

Similarly to the synthetic example, we begin our analysis by considering the diagnostic
output from our MCMC sampler. The pilot MWG sampler successfully located the posterior
mode and at this stage we consider only the output of the Adaptive sampler. Figure 6a shows
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how the Adaptive chain samples starting from the posterior mode, Figure 6b shows how the
Adaptive sampler draws samples efficiently from the posterior distribution of a, given the
correlation between rate parameters o and 3, that was observed also in the synthetic example
(Figure 6¢). This demonstrates that our MCMC approach successfully samples from both real
and synthetic data.
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Figure 6: Chain diagnostics for the Adaptive algorithm with experimental data (cf. Figures 3d-
3f). 6a: The Adaptive chain is started at the posterior mode, as shown by the red horizontal
dotted line. 6b: The Adaptive sampler produces efficient samples from o, parameter as it has
learned the pairwise posterior correlation between o, and 3, shown in 6¢. This is shown by the
tight overlap between the proposed samples (red) and the accepted samples (blue) between the
oy and fB; parameters.
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Figure 7: Marginal Posterior parameter distributions calculated using experimental data using
Adaptive MCMC are shown in blue. The Gaussian approximation obtained from the Hessian
at the mode are shown in red. It is clearly seen that the posterior of parameters ¢, and f3y; ex-
hibit non-Gaussian distributions. This uncertainty is more accurately captured by the Bayesian
approach. The association rate constants ko, and k. 1;, again are in s~ !M~! units, otherwise

the units are s~ 1.

Figure 7 shows the marginal posterior distribution of the rate constants. Most rate constants
are close in shape to a Gaussian distribution, and hence approximated well by the Hessian

derived at the mode. However, that is not so for the faster monoliganded opening and shutting
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rates, those for the B binding site, Bj, and a;,. For these rates the posterior distributions
are non-symmetrical and consequently their uncertainty is not directly captured well by the
Gaussian error approximation used in a typical ML approach.

We can again assess the impact of parameter uncertainty on the predicted output of the
model (Figure 8). 100 samples were again taken at random from the posterior distribution in
Figure 7 and used to calculate summary distributions of open, closed and conditional mean
open times. Predictions of open time distributions again become more certain with increas-
ing concentration, with the short openings at low concentration being most variably predicted
(Figures 8a and 8d). Shut interval distributions at low concentration (Figure 8b) illustrate the
ambiguity posed by not knowing how many channels are in the experimental patch. Although
the short shut interval components are well predicted, longer shut interval durations are not,
since the presence of many channels in the low concentration experimental patches makes the
observed lifetime in the long shut state appear to be shorter than it actually is. In practice, it
is accepted that due to this limitation, only short shut events up to #.j; can be inferred reliably
from the experimental data.

In determining the model prediction of the mean open time conditional on the preceding
mean shut time, model predictions are fairly accurate across agonist concentrations (Figures
8c and 8f). The negative correlation with the preceding shut interval duration is reasonably
accounted for by the model at low concentrations, although predictions of mean intervals after
f.rit, indicated on each chart, for the experimental patch must be taken with caution given the
unknown number of channels in the patch [3].

Inferential approaches should account accurately for the limitations of raw
recordings

We have shown, using our synthetic example, that a model likelihood based on a continuous-
time Markov model can recover rate constants used to generate datasets from a physiologically
realistic model of a muscle nicotinic receptor. The key to the success of this approach is an
accurate idealisation of the noisy filtered record and the correction for missed events which arise
from the filtering of the raw recordings, as described in the Methods. In practice, the incomplete
detection of opening and shut intervals is a very real problem for accurately inferring model
parameters from single-channel recordings. Indeed, it was estimated in a real channel record
that even with good resolution as many as 88% of short shuttings may be missed [5].

An alternative practical Bayesian approach to single channel analysis has recently been
described [18, 19]. It has been claimed that this method can detect model overparameterisation
more robustly than a Maximum Likelihood inferential method that provides an approximate
correction for missed events [33]. Broadly, the method of [19] relies on estimating a model
likelihood from sampled points in the single-channel record. The model likelihood makes
no probabilistic statement about the states of the channel between sampling points and it is
claimed therefore that this method does not need to correct for missed events. It is therefore a
natural step to compare our Bayesian method with missed events correction with the Bayesian
approach of [19] using datasets which have missed events incorporated into the channel record
to mimic the effect of filtering the raw trace.

The method of [19] can briefly be defined as follows. Raw sampling points are taken at
time intervals Or from an experimental trace. These points are classed into open or closed
observations in the trace by half thresholding each sampling point. These are the data on which
inference of the model rate constants is performed. Note that experimental noise and missed
events may cause the classification of the open and closed points to be wrong.
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Figure 8: Predicted distributions of model behaviour at low (50nM, top row) and high
Acetylcholine concentrations (10uM, bottom row). 100 samples from the posterior
distributions of the model (Figure 1a), fitted with real data, are used to calculate pre-
dicted distributions, analogous to those generated in Figure 5. The predicted durations
of intervals with the imposed resolution of 25us are again shown in red, and with
perfect resolution in green. The predicted distributions of the model are less precise
with this real dataset than for the synthetic dataset. The open time distributions are
still generally well predicted, but show variability near the resolution time. The long
component of the low concentration shut intervals (Figure 8b) is poorly predicted as
expected as no information is available about the numbers of channels in the patch.
This results in accurate inferences about the shut time distribution being restricted to
the dwell times up to the 7. interval.

The rate constants in the Q matrix are then used to calculate a Markov transition matrix
T = exp(QJt¢) that denotes the individual probabilities of moving from one state at the start
of the sampling interval to another at the end of the sampling interval. This uses the whole Q
matrix (as for macroscopic currents), and considers only the state of the system at the sampling
points [20]. There may be any number of transitions between the sampling points. A discrete
likelihood for the entire record is then calculated using this transition matrix and projections
for each sampling point that restrict the entry and exit states of the process as defined by the
thresholding. The likelihood is calculated using a forward algorithm commonly used to es-
timate likelihoods in discrete HMM models. This likelihood, in combination with a weakly
informative prior distribution for the rate constants forms the posterior distribution which is
sampled using an MCMC algorithm. [19].

We reproduced the synthetic experiment from [19] in conditions of perfect resolution and
after imposing progressively worse resolution in order to emulate the process by which filtering
raw experimental traces results in missed events in the outputted signal. We did this to test
empirically whether the analysis method from [19] and from the present paper are equivalent
in retrieving the rate constants of the model.

We have used the 4-state ion-channel model and rates described in [19] (Figure 9), to sim-
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Model and rates from [19]

k31 ka3 k24
©1) —(Cs Ca) —(O2
k13 k34 ka2

v
Simulate 15,000 inter-
vals (about 5s of data)

v

Create six time resolved
datasets by imposing reso-
lutions of 0,10,20,30,40,50

s on the raw dataset

Sample 100,000 discrete Save sojourns used to create
points at an interval of 50us —»| each discrete record for
from each resolved dataset continuous time datasets

A: Sample model pa- B: Sample model parameters
rameters using MCMC using MWG MCMC with
and likelihood from [19] Missed Events correction

Plot posterior parameter dis- Plot posterior parameter dis-

tributions for the different sets tributions for the different sets

Figure 9: Experimental workflow in order to examine the requirement for missed events cor-
rection. Raw data was initially simulated from the 4-state ion-channel model and rates from
[19]. k13 = 3500, k31 = 7000, k34 = 400, k43 = 500, k4p = 100, k4 = 50. Rates in s—L

ulate 15,000 sojourns assuming unrealistically that there is only one channel in the patch. This
perfect resolution dataset, R, was sampled at 50us to produce 100,000 points, as in [19]. The
original sojourn intervals were also stored for comparison with the likelihood and sampler de-
scribed in the Methods.

This ideal, perfect resolution record R, was then subjected to increasing coarsening of time
resolution. Separate datasets of continuous records were generated from R with time reso-
lutions of 10 us, 20 us, 30 us, 40 us and 50 us. This concatenates shorter intervals than the
resolution with the adjacent resolved intervals. This distorts the channel record to an increasing
degree as the resolution time worsens and mimics the act of filtering in real experimental traces.
Next, for each dataset, the data was again sampled at 50us to produce 100,000 discrete data
points. Posterior parameter samples were generated using these datasets with the discrete likeli-
hood MCMC algorithm and codebase (https://github.com/merlinthemagician/ahmm/)
of [19]. The continuous time sojourns for each dataset were then analysed separately using the
initial MWG pilot MCMC algorithm described in the Methods. Thus the performance of the
two methods can be compared over with the same amount of information. The prior for the
rate constants in both sets of experiments was the same as [19]. Posterior distributions were
estimated after both MCMC samplers had converged.

The posterior distributions from the Siekmann likelihood [19] and that from our method,
which uses the likelihood of [11], were examined at each resolution in order to establish
whether they could recover the rate constant values that generated the initial dataset, R. The
comparison for the faster rate k3; is shown in Figure 10a. It is clear that estimates obtained
with the method of [19] become increasingly biased as the resolution worsens. Even with an
optimistic resolution of 20us , the posterior distribution of rate constant k3 is biased away from
the correct value (dashed red line). In contrast, the correct rate constant can still be recovered
using our analysis (Figure 10b) even at the worst resolution (50 us). It is interesting to note
that even in these limited MCMC runs the inference over the rate constant k3 in Figure 10b
becomes less precise. This is seen by a broadening of the posterior and would be expected
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despite the missed events correction, as more information is removed from the record.

It is worth noting also that a rate constant value of 7000 s~! is relatively slow for an ion
channel. At aresolution of 50us, the fraction of events that can be expected to be missed is this
example is only 29% of openings and 16% of shuttings. It is to be anticipated that this problem
will worsen with faster channels with their quicker rate constants.
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Figure 10: A simulation based on an example from [19] highlights the requirement for missed
events correction. 10a: Posterior distributions of rate constant k3; using the likelihood of [19]
sampled from data with worsening resolution times imposed (Ous - 50us). These distributions
become more biased as the resolution worsens. 10b: The same analysis with our likelihood
[11] and Pilot MWG MCMC sampler. This true parameter value is shown as the red dashed
line on both charts.

Discussion

In the context of modern single molecule biophysics, the modelling of single ion-channels using
Markov processes has a comparatively long history. Inferential techniques for rate parameters
have progressed from the fit of exponential components to dwell-time distributions [29] to max-
imum likelihood approaches that use the sequence of the observed signal [11, 33]. Current “full
likelihood” approaches broadly consist of two alternative methods. The first involves fitting a
continuous time Markov process to a signal idealised from the raw, filtered data typically by
the use of threshold crossing or by time course fitting idealisation [2]. Filtering of the original
signal is needed to enable event detection, but events of short duration are absent in the filtered
record and subsequent idealisation. This requires an explicit correction for missed events, as
the model likelihood makes probabilistic statements regarding the state of the process through
time (Equation 1). The most widely used modelling approaches employ maximum likelihood
estimation with a continuous time model with either an approximate [33] or an exact correction
[11, 21, 22] in the likelihood for missed events.

A second approach using discrete Hidden Markov Models has been applied to extract infor-
mation directly from the raw data, without the idealisation step [34]. HMMs often require the
estimation of the distribution over hidden states at each sampling point during the likelihood

21



calculation. Calculating the likelihood directly from raw recordings in practice can require im-
plementing higher order Markov models, to account for correlated experimental noise [35, 36],
and this increases the computational complexity of calculating the model likelihood. More re-
cent methods avoid this issue by classifying points as either open or closed [19]. Maximum
likelihood inference of rate constants in HMM models is often achieved by implementing be-
spoke Forward-Backward algorithms combined with Baum‘s re-estimation [37] or direct opti-
misation [38]. We note that likelihoods defined in this manner make no probabilistic statement
about channel activity between sampling points and it has been claimed that no missed events
correction is necessary [18]. However, we have demonstrated that even for a simple ion chan-
nel model with four hidden states, HMM approaches that do not account for the unavoidable
consequences of filtering and experimental noise, for example by fixed rather than probabilistic
classifications of sampling points into conductance classes, result in severely biased inferences
when using realistically sampled data.

We must seek to evaluate the quality of our estimates whenever we infer parameter values
from data. This should involve establishing as realistically as possible that they are unbiased
and measuring the extent of our uncertainty in their values. For single channel modelling, this
has been achieved in examples where ML point estimates were used by using simulation [5, 12]
although this simulation can be a laborious approach. The use of Bayesian inference, where by
definition we obtain the posterior distribution rather than point estimates of the parameters, is
beneficial in making these checks efficient and systematic. Bayesian approaches to date have
either used MCMC sampling in combination with either the continuous time [39, 40] or discrete
likelihoods [16, 18, 19] in order to compute posterior distributions. We have demonstrated in
this paper that the correction for missed events is still vitally important in order to recover
the correct rate constants in even small model examples. We therefore investigated MCMC
sampling approaches that use a model likelihood that both corrects exactly for missed events
and takes into account the unknown numbers of channels in each experimental patch [11].

We have proposed a two-stage sampling approach for performing Bayesian inference in
these computationally expensive models, and made the package “BICME” available to down-
load as MATLAB code. The first step relies on a MWG pilot algorithm to efficiently locate the
posterior mode. This is followed by an Adaptive MCMC sampler, which learns the covariance
structure of the joint posterior distribution in order to sample the posterior distributions more
efficiently. With these tools we performed our Bayesian analysis on a physiologically realistic
ion-channel model for a muscle nicotinic acetylcholine receptor. This model’s identifiabil-
ity has previously been evaluated using Maximum Likelihood estimation [12]. The sampling
approach was initially evaluated using synthetic data and demonstrates how parameter identi-
fiability can be established and how uncertainty in model parameterisation can help examine
directly the uncertainty in model predictions. A subsequent application using experimental
data confirms the proposed approach can implement Bayesian inference in these models by ef-
ficiently sampling from the resulting posterior distribution. We show that, with real data, some
posterior distributions are non-Gaussian in shape.

As in a typical Bayesian analysis, we report the full posterior distributions of the rate param-
eters rather than point estimates. We do note, however, that for our choice of prior distribution,
the point estimates of rate constants as defined by the posterior mode would be the same as
those that would be found by ML estimation. In the example with synthetic data, the pos-
terior distributions are close to Gaussian and their shape well approximated by a covariance
matrix calculated at the ML estimate. This is not the case with experimental data. In this in-
stance the Bayesian approach has the advantage in cases where the posterior distributions are
non-symmetrical, in which case the posterior distribution gives a more realistic estimate of the
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uncertainty in the parameter estimates than error estimates derived from ML estimation.

Our approach was specifically designed to sample effectively for higher dimensional ion-
channel models and will form the basis for future work examining candidate models with larger
numbers of rate parameters. In such models it has been shown that robust model parameter-
isation and comparison remains statistically challenging [7]. In the latter case, this sampling
method will help measure uncertainty in the competing mechanistic models through the esti-
mation of marginal likelihoods, which will form the basis of future research.
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Supplementary Materials

S1 Bayesian Overview

Bayesian approaches in Systems Biology are increasingly popular for charac-
terising the inherent uncertainty observed in biological systems. Such a for-
malism provides a mathematically consistent framework for reasoning with
and propagating uncertainty, from model parameterisation through to model
prediction.

Bayesian reasoning may be implemented through the specification of a
probabilistic model assumed to be the generative process of the data and
the specification of prior probability distributions that incorporate existing
knowledge regarding the model parameters which are to be estimated are
unknown. In the Bayesian framework we model the parameters and the un-
certainty regarding their true, fixed values as random variables. The aim is
to update our knowledge of the model parameters by gathering additional
experimental data and applying Bayes’ theorem, which combines the prior
and the model likelihood to produce a posterior distribution over the pa-
rameter values. These distributions express our updated knowledge of the
model’s parameters after taking into account the experimental data. Our
use of Uniform prior distributions results in point estimates being derived
from estimating the mode of the posterior being the same values as the point
estimates derived from an ML analysis.

Mathematically, Bayes’ rule is simply the application of the rules of joint
and conditional probability, which may be stated as,

(y [ 0)p(0) _ p(y|0)p(0) (1)
p(y) Jp(y | 0)p(6)do
where 6 is the vector of unknown parameters, and y is the observed data. The
main benefit of the Bayesian approach is that uncertainty about parameter
estimates is directly encoded within the well defined posterior probability
distribution obtained after examining the experimental data, rather than
estimating a single “true” parameter value with accompanying assumptions
about estimation errors. Posterior distributions can then be sampled to prop-
agate parameter uncertainty through to the predictions that the model makes
about observable quantities. This can be achieved by sampling parameter
values from the posterior distribution and calculating model predictions from
these samples to see how they vary. A specified model can be judged not
only through its predictive power of the “best” set of model parameters but
also through the certainty of its predictions given the uncertainty of the pa-
rameter values. The posterior distribution represents the uncertainty in our

p(O|y) =L



knowledge regarding the true values of the rate constants.

S2 Sampling from the Posterior Distribution of Ion-
channel models

Computing posterior probability distributions, as opposed to maximum like-
lihood estimation, often faces significant statistical challenges as the posterior
distributions of interest are often known pointwise up to a normalising con-
stant. Many challenges in Bayesian statistics, for example the estimation of
the normalising constant for model evidence, arise from the need to calculate
expectations with respect to probability distributions whose analytic form
may not be known.

Consider an arbitrary probability distribution g(6) from which we would
want to estimate an expectation of the form Eyq)(f(0)) = [ f(x)g(x)dz.
If we do not know the analytical distribution of g(6) but are able to draw
realisations from ¢(f), we can calculate the function f(6) and hence the
integral can be numerically estimated. In such instances we can use the
weak law of large numbers, that is, for any e,

P(| fo—psl<e) =1 as n— oo (2)

where p; is the true expectation of f(f) and f, is the estimator for the ex-
pectation after the nth sample. An ideal estimator for f, is the Monte Carlo
integrator f, = %Z?:l f(6;). This requires the ability to draw independent
and identically distributed samples from g(6). In practice, it is very difficult
to draw such samples but the Monte Carlo estimator remains the ideal esti-
mator as the rate of convergence of the estimator scales favourably with the
dimensionality of the sampled probability distribution.

Fortunately, Markov chain Monte Carlo methods are an invaluable tool
that can be used to perform sampling in this context. These methods employ
a probabilistic process whose stationary distribution is our target probability
distribution and hence allows us to draw samples from it. The most widely
known algorithm for such a process is the Metropolis-Hastings algorithm
1, 2].

MCMC methods typically require significantly more computational power
than optimisation methods for Maximum Likelihood inference. This means
that the efficient design of these sampling algorithms is of crucial importance
particularly as the dimension of models increase. Although the converged
Markov chain defined by the Metropolis-Hastings algorithm will draw sam-
ples from the exact target distribution, they will not be uncorrelated as the
next proposed point depends on the current position for the chain. The pres-



ence of autocorrelation within the samples drawn increases the variance of
the Monte Carlo estimator. We can assess the impact of autocorrelation on
our sampling by considering the Effective Sample Size (ESS) of our samples.
This is the equivalent number of independent samples given the autocorre-
lation present in the samples. The ESS for a given parameter 6 is given
by:

ESS(0) = NL (3)

(1+232,7(0)

where S°7, (1) is the sum of the L significant autocorrelation lag coefficients
of the converged chain and N is the number of samples drawn. A lag is
determined to be significant if its coefficient is different from zero. The
total number of significant lags can be established by visually examining
the autocorrelation plot or with by calculating a confidence interval for the
autocorrelation sequence of a white noise process with which to compare with
the empirical coeflicients.

The auxiliary proposal distribution Q(. | x) is often manipulated to speed
up the convergence of the chain and reduce the level of autocorrelation in
collected samples. Such schemes often use information that is available at the
current point in the parameter space. These schemes often integrate gradient
information about the log-target density e.g. HMC[3] or MALA [4] or utilise
Riemannian geometry [5] in order to make more informed proposals. These
schemes work well when analytic derivatives of the log-likelihood are available
to use, or at least can be approximated in a computationally timely fashion.
Unfortunately the missed events correction in Equation 3 (main text) does
not have analytical expressions for the derivatives and the computational
expense of evaluating derivative information numerically outweighs the gain
in sampling efficiency for these models.




S3 Algorithms

Algorithm S1 Multiplicative Metropolis-within-Gibbs algorithm [6] with
scaling during burn-in

1:

10:
11:
12:

13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

1=0

burnin = N/2 > Set number of burn-in samples
AC(1:K)=0 > Number of acceptances over each adjust period
adjust(1: K) =X > Consider adjusting SF every X samples during
burn-in

5 SF(1: K)=1 > Initialise scale factor for proposal covariance
6: 0, =06

7
8
9

Y=1I

: while 7 < N do

for each k in K do
0 = N(B(k);, SF() = S(k, }))
Yo~ q(0 ] 0(k);)
0(k)* = 0(k)e”
pw(k)*)q(e(k»|9(k)*>m§;k9<j>1e(k>*)
p(8(k))q(8(k)*|6(k):) TT}* (6(5):)
if u~ UJ0,1] < o then
0(k)ir1 = 0(k)"
AC =AC+1
else
0(k)ir1 = 0(k);
end if
if mod(i,adjust(k)) == 0 and i <= burnin then
if AC/adjust(k) < 0.1 then > reduce the step size
SF(k)=SF(k)*0.9
else if AC/adjust(k) > 0.5 then > increase the step size
SF(k)=SF(k)*1.1
end if
AC(k) =0
end if
end for
i=i+1
end while

a=min |1,

In Algorithm S1, an iteration of the MCMC sampler proceeds as follows.
At the ith step for parameter k, the proposal distribution ¢ is constructed
as a univariate Gaussian distribution with mean 6(k), the current parameter



value, and standard deviation X(k, k) where 3(k, k) is the diagonal element of
the covariance matrix Y scaled by the individual scaling factor for parameter
k.

A parameter value for #(k)* is then proposed by exponentiating a sam-
ple drawn from the proposal distribution and multiplying it by the current
parameter value 0(k);. This proposal is accepted with probability a accord-
ing to the Metropolis-Hastings acceptance ratio which has been adjusted to
account for the fact that proposals are being made in log-space. If the move
is accepted, the value of the i 4+ 1th value of parameter £ is set to the pro-
posed parameter 6(k)* and the acceptance counter for parameter k, AC(k)
is iterated. If the move is not accepted, the value of the kth parameter set
to the current value. At this point, if we are still in the burnin phase and
the current iteration is a multiple of the adjustment period (denotes by the
modulus of 7 and adjust(k)), then a decision is made as to whether to adjust
the scale factor for the proposal distribution for parameter k. Briefly, if the
proportion of acceptances in the last X samples is less than 0.1 then the scale
factor for parameter k is reduced and if it is greater than 0.5 the scale factor
is lengthened.

Regardless of whether an adjustment is made, the acceptance counter is
reset to 0 for the next set of X samples. If we are not in the burn-in phase
or the current iteration is not a multiple of the adjustment period then the
algorithm updates to the i+ 1th iteration and the next sample is drawn. The
process continues until /V iterations have been performed.



Algorithm S2 Adaptive algorithm of [7]
1: =0
2: 9 - 91
3: while i < N do
4: if + <= 2K then

o: q=N(0, (O;)I) > where K is number of params

6: else

7 q=(1—-pB)N(0, (25’(82)2 + BN (0, (0'712)1) > where [ is the mixture
parameter

8: end if

9: 0* ~ q(0|0;)

) — s p(0*)q(6:167)
0 o= min (150
11: if u ~ UJ0,1] < a then

12: Qi+1 = f*

13: else

14: 01 =0,

15: end if

16: 3 = cov(d(.)) © Update the covariance matrix with all the samples

17: =17+ 1
18: end while

In Algorithm S2, an iteration of the MCMC algorithm proceeds as fol-
lows. If the current iteration ¢ is less that 2K where K is the number of
parameters, then the proposal distribution ¢ is set to a multivariate Gaus-
sian distribution with mean vector of 8, the current set of parameter values,
and a scaled identity matrix for the covariance matrix. This is to ensure
that the process proposes moves with a small step size at the start, in order
to build up the initial estimation of the sample covariance. If the current
iteration is greater than 2K then the proposal distribution is made up of a
multivariate Gaussian mixture distribution composed of an estimate of the
current covariance distribution ¥ and an uncorrelated Gaussian. The frac-
tion of each is decided by the [ parameter which is fixed at § = 0.05 as
per [7]. A vector of parameters 6 is then proposed from this distribution,
and the vector is accepted according to the probability derived from the
Metropolis-Hastings ratio. The final step of the iteration is to update the
sample covariance 3 with all of the samples derived so far. The process
terminates after N samples have been drawn. Similarly to Algorithm S1, a
burn-in phase was also incorporated where a global scaling factor is used to
increase or decrease the proposal step size according to the global parameter
acceptance rate. This has been omitted from Algorithm S2 for clarity.
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