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Abstract

Spatial navigation can serve as a model systenogmitve neuroscience, in which specific
neural representations, learning rules and cordtdtegies can be inferred from the vast
experimental literature that exists across mangispgincluding humans.

Here, we review this literature, focusing on thatdbutions of hippocampal and striatal systems,
and attempt to outline a minimal cognitive archiiee that is consistent with the experimental
literature and which synthesizes previous relatednputational modeling. The resulting
architecture includes striatal reinforcement leagnbased on egocentric representations of
sensory states and actions, incidental Hebbiarcedgm of sensory information with allocentric
state representations in the hippocampus, andaibit of the outputs of both systems based on
confidence/uncertainty in medial prefrontal cort&e discuss the relationship between this
architecture and learning in model-free and modaleld systems, episodic memory, imagery and
planning, including some open questions and dwestfor further experiments.

1 Introduction

Goal-directed spatial navigation is a good modeldeneral issues in cognitive neuroscience.
Like many daily tasks, goal-directed navigationaiomplex task that involves a variety of
sensory and proprioceptive stimuli, storage analrenf information, and the elaboration of
plans. Moreover, there is now an unparalleledditee concerning the neural representations
involved (as reflected in the 2014 Nobel Prize, seg, Burgess, 2014) and a vast array of
experimental data relating behavior to environmlestaeurophysiological manipulations.

There are many ways to find a goal location, ared ridlevant cognitive functions have been
categorized in various ways. Here, we follow themeaclature coming from behavioral and
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lesion experiments in animals, following from theggestion that the hippocampus provides a
‘cognitive map’ (O’Keefe and Nadel, 1978), see beldhus, one might navigate by following a
sensory cue that directly indicates the goal locafi'piloting’), by following a well-learned
sequence of actions, each depending on the preaicn or a sensory cue (‘response learning’
using ‘route’ or ‘taxon’ strategies), or by follomg a flexible internal representation of spatial
layout (‘place learning’, using ‘cognitive map’ docale’ strategies). The emphasis on the
‘flexibility’ of a cognitive map refers to the aliyf to use it from a new starting location (which
would undermine the use of a route) or in the atsel subsets of specific sensory cues (which
could undermine the use of piloting or route sgeg). This hypothesis that the hippocampus
supports a flexible representation of the spaékdtionships present in the environment has been
extended to include non-spatial information in tektional theory of memory function (Cohen
and Eichenbaum, 1993).

Here we examine the cognitive architecture of spatavigation, with a focus on hippocampal
and striatal systems and their interaction. We tnoutline the general principles that can be
derived from experimental data and how they comstitze development of formal models of
spatial cognition.

2. Brain regions associated with spatial navigation

Like any complex task, spatial navigation involwesch of the brain, not least sensory and motor
areas. Here we review some of the systems assbaidate specific roles in navigation. The
hippocampus has long been known to be importanefpmsodic memory (Scoville and Milner,
1957), and the discovery of place cells drew atterto its role in spatial memory (O’Keefe and
Nadel, 1978), see below. Subsequent experimentg wke Morris water maze (Morris et al.,
1982), T maze alternation (e.g. Cohen et al., 1@ntl) the 8 arm maze (e.g. Olton et al., 1977)
demonstrated certain aspects of navigation to logcpkarly sensitive to hippocampal damage.
These include navigation to an unmarked locatiomfivariable start locations and navigation
that requires memory (and potentially avoidance)poéviously visited locations. Equally
importantly, control conditions in these tasks sadvwnsensitivity to hippocampal damage when
piloting or response learning was possible, and hasiged the importance of distal cues in
orienting the animal within its environment.

By contrast with the hippocampal formation, cortlzmsal ganglia circuits (loops) are thought to
store stimulus-response associations and procedueahories (which may underlie route
learning or piloting). These loops connect speaiféocortical areas unidirectionally to striatal
subregions, which project to downstream structsteh as the pallidum and the substantia nigra
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(SN). These areas connect to the thalamic nuciithturn project back to the same neocortical
sites of origin. Within this picture, the striatunas been subdivided into several functional
regions: the dorsolateral striatum (DLS) associatétt stimulus—response learning and habit
formation, the dorsomedial striatum (DMS) associatgh action—outcome learning, and ventral
striatum (VS) associated with motivational and etffee processing (Corbit and Balleine, 20083;
Packard and McGaugh, 1992; Voorn et al., 2004;arid Knowlton, 2006).

An important aspect of theorizing about the functaf the striatum concerns its dopaminergic
input. In a series of influential experiments Sthuhnd colleagues recorded the firing of
dopamine neurons in the SN/VTA of monkeys perfognionditioning experiments. The firing
of these neurons was found to be consistent wigahinergic signaling of the reward prediction
error (Schultz et al., 1997) used in theoreticatiets of reinforcement learning (RL). The strong
dopaminergic projections to the striatum strengtiteassociation with RL, with suggestions that
an actor/critic- type functional architecture maysein dorsal and ventral striatum respectively
(e.g. O’Doherty et al., 2004; Bornstein and DawlP0Pennartz et al., 2011), see Box 1 and
Figure 1.
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Figure 1. Simplified schematic of the cortical and subcotticannections of the hippocampus and the striatum.
Most of the hippocampus's neocortical inputs comenfthe perirhinal and parahippocampal cortices §hown),
via the Entorhinal cortex. The striatum is partloé basal ganglia (including SNr, GP, SNc, VTA),iebthwe have
here represented in a compact form for the sakdlanity. The ‘dorsal striatum’ usually includes tbaudate and



putamen with the nucleus accumbens in the ‘vergtaatum’. Abbreviations: SNr/SNc: substantia nigrars
reticulata/compacta, GP: globus pallidus, STN: thatamic nucleus, VTA: ventral tegmental area.

In humans the hippocampus has been specificallyidgatpd in accurate spatial navigation, both
in terms of the effects of lesions and metabolitvag during virtual navigation, although
showing a greater (right) lateralization of funatithan in rodents (see Burgess et al., 2002 for a
review). Indeed, virtual reality analogues of bebeal tests in rodents show similar associations
of hippocampal and striatal activity with place aedponse learning respectively (Doeller et al.,
2008; Hartley et al., 2003; laria et al., 2003).

Finally, we note the importance of the parietalteorin spatial processing. Damage to the
posterior parietal cortex often results in optiexga — impaired visuospatial coordination of
reaching and grasping, consistent with the prestdreze of neurons tuned to encode the location
of visual attention and aspects of reaching angdpyng (e.g. Hwang et al., 2014). A common
consequence of unilateral damage to the parietédxc¢most often on the right side) is a clinical
syndrome known asnilateral neglect:an impairment in noticing or paying attention tgects
and events in the contralateral hemifield, or tbat@lateral side of objects. Patients suffering
from unilateral neglect can experien@presentational neglecaffecting their spatial imagery
and memory performance, as distinct from the mammmon perceptual neglect (Bisiach and
Luzzati, 1978), with neglect in imagery (ratherrthgerception) being more strongly linked to
deficits in navigation (Guariglia et al., 2005).

3. Neuronal codes

Single neuron recordings from the hippocampus @&lfr moving rats showed the existence of
‘place cells’ in regions CA1 and CAS3: cells thatefionly when the animal is within a limited
region of the environment (the 'place field'; O’lfee@nd Dostrovsky, 1971; Figure 2A). Place
cell firing patterns are established very rapidlyanw an animal enters an environment for the first
time and are stable over the course of several ([Bysmpson and Best, 1990). These firing
patterns ‘remap’ between different environments l{&fuand Kubie, 1987), but are robust to
smaller changes such as eliminating a subset afc@mental cues (O’Keefe and Conway, 1978;
Quirk and Muller, 1990), a capacity for “pattermngaetion” associated with synaptic plasticity
in CA3 (Marr, 1971; Nakazawa et al., 2002). Nondaiscues, like olfactory traces or auditory
signals, can also contribute to self-location arelsafficient to guide behavior if visual cues are
not accessible (Maaswinkel and Whishaw, 1999; Wall&t al., 2002). Place cells have
subsequently been identified in a wide range of mals including bats and humans (Ekstrom et
al., 2003; Ulanovsky and Moss, 2007).



A complementary representation is provided by “hé@ection cells”. These neurons signal the
orientation of the animal’s head in the horizomtiaine, and are tuned to a narrow range of head
directions centered on a preferred firing direct{@aube et al., 1990; Figure 2C). These cells
were first reported in the dorsal presubiculum Eari985; Taube et al., 1990) and later in a
network of structures along the classic Papez itjirowcluding the thalamic nuclei (Mizumori
and Williams, 1993; Taube, 1995), mammillary bod{&ackman and Taube, 1998), and
entorhinal cortex (Sargolini and al., 2006). Ingtigly, if two cells share a preferred firing
direction in one environment, they will continue tespond in the same way in a second
environment even if the absolute firing directidrboth cells may have changed (i.e. they remain
“in register”).

A third type of spatial cell, “grid cells”, are fod in the medial entorhinal cortex (mEC; Hafting
et al., 2005) and subicular complex (Boccara et2810). They share some similarities with
place cells, but have multiple firing fields arradgon an equilateral triangular grid that covers
the environment (Figure 2B). Grid cells appeareagtouped into functional clusters within mEC
that share similar characteristics: neighborindgscebssess the same grid orientation and scale,
having only a different translational offset, whitee grid scale increases ventrally along the mEC
in discrete steps (Barry et al., 2007; Stensola.e012). Moreover, similarly to head direction
cells, their relative position is maintained evéteraenvironmental manipulations that change or
disrupt the fields of individual cells (Stensolaaét 2012; Yoon et al., 2013).

The sources of information that dictate these apagisponses can be divided into self-motion
and environmental sensory inputs. The strong isitinrganization of the firing patterns of head
direction and grid cells, irrespective of the segsmvironment, suggests a significant influence
of self-motion on their firing patterns. Accordiggimodels of head direction and grid cells often
rely on continuous attractor dynamics via symmatricecurrent connectivity (Fuhs and

Touretzky, 2006; McNaughton et al.,, 2006; Zhang96)9 In these models, the spatial

representation is updated by self-motion (a procdss known as ‘path integration’) via

asymmetric interactions (Zhang, 1996), which cambleieved in an accurate manner by cells
with a conjunctive representations of space and em@nt, such as head direction firing

modulated by angular velocity (e.g. Stackman andb&a 1998) or grid cells modulated by

movement velocity (Sargolini and al., 2006), seeré® and Fiete, 2009; Conklin and Eliasmith,
2005; Skaggs et al., 1994) for computational models

However, all allocentric (i.e. world-centred) sphtsignals relying on self-motion (or ‘path
integration’) need resetting relative to the emwiment to avoid accumulating error.
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Correspondingly, spatial firing patterns are stignigpfluenced by the environment. Distant
visual cues, where available, have a controllifflyjénce on head direction and the orientation of
other spatial responses (e.g. Taube et al., 199@)boundaries of an environment also appear to
play an important role in determining the firing&tions of place cells. Place cell firing patterns
across manipulations of environmental shape reftecjunctions of distances and allocentric
directions to environmental boundaries (Hartleyakf 2000; O’Keefe and Burgess, 1996),
whereas discrete intra-maze landmarks have relatitide influence (e.g. Cressant et al., 1997).
The predicted ‘boundary vector cells’ mediatingstimformation were subsequently found in
subiculum (Barry et al., 2006; Lever et al., 20680 mEC (Solstad et al., 2008; Figure 2D).
Environmental boundaries also affect the firingtgrat (Barry et al., 2007) and orientation
(Krupic et al., 2015; Stensola et al., 2015) ofdgcells, consistent with a role in reducing
cumulative error (Hardcastle et al., 2015).
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Figure 2. Examples of spatial cells associated with navigtiecorded in freely moving rats, showing firirage as
a function of location or head direction (peaknfiyirate shown in Hz). (A) Place cells, found inaar€A3 and CAl
of the hippocampus proper, typically fire in a rieséd portion of the environment. (B) Grid celtsund in medial
entorhinal cortex and pre- and parasubiculum, glhidire in a regular triangular array of locatgrDirectional grid
cells or “conjunctive” cells, whose grid-like spal firing is also modulated by head directione also found in
these regions. (C) Head-direction cells, foundha presubiculum and deep layers of medial entorliogex,
typically fire for a narrow range of allocentric kéay directions. (D) Boundary cells, found in sulbion and
entorhinal cortex, typically fire at a specific diste from an environmental boundary along a spealfocentric
direction. (E) A trajectory neuron from parietaliex, shown for outbound (upper plots) and inbo(lndier plots)
traversals of a path (dashed yellow lines). A-C ptdd from (Hartley et al., 2014), E adapted frixitz, 2006,
with permission.

In contrast to the explicit representation of sgaitnformation in the hippocampal formation,

neuronal activity in the striatum is more strongifluenced by task stage (Barnes et al., 2005),
being modulated by choice points, reward delivend atereotyped egocentric responses
(Schmitzer-Torbert and Redish, 2004; Berke et 2009). However, these responses do not
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specifically encode route-trajectory informatiovidence for this type of information is found in
the posterior parietal cortex (PPC) of navigatiags r(McNaughton et al., 1994; Nitz, 2006;
Figure 2E). Interestingly, in a very structured ieowment, grid cell firing patterns become more
trajectory dependent (Derdikman et al., 2009) sstjgg an influence from parietal cortex
combined with a strong contextual modulation (\WduK et al., 2012). More generally, parietal
neurons tend to code all phases of the action seggaused to solve or plan a task (Fogassi et
al., 2005; Harvey et al., 2012).

Posterior parietal neurons in monkeys can exhibitjunctive ‘gain field’ responses tuned to
visual (retinotopic) receptive fields but modulateg eye, head, or body position (Andersen,
1995; Snyder et al., 1998). These responses may aétermination of the location of visual
objects relative to the body or in a world-refemshdrame (Pouget and Sejnowski, 1997). In
particular, area 7a, which contains neurons withdveferenced gain fields (Snyder et al., 1998)
projects to the parahippocampal gyrus and preslumcuand so may allow translation between
egocentric parietal representations and allocemtiéclial temporal representations (Burgess et
al., 2001; Byrne et al., 2007).

4. Systems neur oscience of spatial learning

The dependence of place cell firing on environmemtaundaries rather than intra-maze
landmarks is also reflected in hippocampal-depehdavigation. Pearce et al. (1998) adapted the
water maze by adding a local cue at a fixed bedrmm the submerged escape platform (Figure
3A). Rats learn relatively direct paths to the gmatr the course of a few trials. After four trials
(one session), the escape platform and the landararknoved together to a new location. Rats
with and without hippocampal lesions both are ableeach the hidden platform but present
distinct performance curves. Hippocampal lesiomats quickly locate the platform on the first
trial of a new session, using the intramaze lan@traara cue (i.e. following a ‘piloting’ strategy),
whereas the control animals are slower, contintingearch at the previous location in the maze
(i.e. following a cognitive map strategy). On ththey hand, control animals learn the new
location within each session, and out-perform #&oned animals by the fourth trial of the
session. Thus, the hippocampus appears to sumgaorting of the platform location relative to
the maze, rather than the landmark, which can hipddormance when the platform location is
moved. Moving the maze relative to the testing rammfirms the rats are using the boundary of
the maze in combination with distal cues for ordioin (e.g. Hamilton et al., 2007).
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Figure 3. A) Schematic of the water maze used by Pearce ,ef1898). A submerged platform (white circle) and
intra-maze landmark (black circle) are placed i thaze at 8 different locations on different sessidout always
with a fixed offset from each other. C) The meacage latency for the first (continuous line) andrth (dashed
line) trials in each of the 11 sessions for thetdrand hippocampal lesion rats. Adapted from Beat al. (1998).
The hippocampal rats perform better at the startawfh session, the control rats at the end of easkion. B)
Schematic of the plus maze used by Packard and MyiG41996). Rats learn to find the food placethatend of
an arm from the start location. In unrewarded priviads the rat’s starting position is moved to tipposite side of
the maze. D) Number of rats in the probe trialsdags 8 and 16, with either lidocaine or salinedtigs in the
caudate nucleus or hippocampus. White bars inditatge showing a “place” strategy (i.e., goinghe tewarded
location in the room), while dark bars indicategb@howing a “response” strategy (i.e. making dvearded body-
turn). The place strategy is sensitive to hippocamipactivation on day 8, the response strategycdadate
inactivation on day 16. Adapted from Packard andsliagh (1996).

The distinct styles of learning supported by higpopal and striatal systems are further
illustrated by experiments using a “plus” maze @ad and McGaugh, 1996), after (Cohen et
al., 1971). Rats were trained to approach a camlgtbaited arm in the plus maze, starting from
the stem (Figure 3B). After several days a singtée trial was given, in which rats were placed

8



in a start arm opposite that used in training (Sgare 3). Control rats displayed “place learning”
(i.e. going to the same allocentric location in thaze) on the Day 8 probe trial and “response
learning” (i.e. making the same body turn) on thay[d6 probe trial, indicating that with
extended training there is a shift in the systenamtrolling behavior. Supporting this
interpretation, rats with inactivation of the stuian displayed place learning on both Day 8 and
Day 16 probe trials, whereas rats with inactivatminthe dorsal hippocampus showed no
preference for place or response learning on thg ®arobe trial, but displayed response
learning on the Day 16 probe trial. Thus, it sedhe response learning, i.e. association of
reward with a body-turn, depends on the striatureaglace learning, i.e. association of reward
with an environmental location, depends on the tdpmpus.

4.1 Learning rulesin spatial navigation.

There is a long history of debate concerning thteireaof spatial learning, spanning from the
proponents of stimulus-response associative legmmi@chanisms driven by trial and error (Hull,
1943; Mackintosh, 1983; Rescorla and Wagner, 18Y#)e proponents of incidental learning of
internal representations capable of supporting itogn(Tolman, 1948). These arguments are
brought to current thinking on spatial navigationterms of reinforcement learning (RL) based
on prediction error (Sutton and Barto, 1981; Foseral., 2000) and the proposal that the
hippocampus is a “cognitive map” (O'Keefe and Nad&d78) or relational (Cohen and

Eichenbaum, 1993) or episodic (Hirsh, 1974; Sce\alhd Milner, 1957) memory system.

The chief characteristic of RL is that it relies prediction error, i.e. the difference between
actual reward and expectation based on experiaesogyposed to a memory system that relies on
incidental one-shot association. There are seweraequences of relying on a single prediction
error signal. One is that only the amount of futteeard associated with a choice can be used to
direct behavior, but not the type of reward. Tdude behavior that can be ‘goal-directed’ (i.e.,
aimed at a specific type of reward) requires a netaborate model of the world, perhaps coming
closer to the idea of a cognitive map. A secondsequence is that learning outcomes based on
multiple cues will show “blocking” and “overshadow’ (Kamin, 1969; Pavlov, 1927) between
cues. Thus, if a first stimulus already fully predireward, learning about a second stimulus that
might also predict reward will be “blocked” as thaés no prediction error, and partial association
of one stimulus to reward reduces the strengthssb@ation of a second concurrent cue to
reward.

A recent experiment used a virtual reality adaptatf the Pearce et al. (1998) rodent experiment
to test whether different types of learning occuthim hippocampal and striatal systems in
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humans, following (Hirsh, 1974; O’Keefe and Nad&§78). Using fMRI, this experiment

showed that learning object-locations relative lte environmental boundary correlated with
hippocampal activity, whereas learning object-lmoet relative to an intra-maze landmark
correlated with activity in striatum (and also gtai cortex; Doeller et al., 2008). Moreover,
parallel behavioral experiments showed that legrnielative to an intra-maze landmark is
blocked and overshadowed by a second cue (whetlaedenark or boundary), whereas learning
relative to an environmental boundaries is not euaing incidentally to other cues (Doeller and
Burgess, 2008).

Taken together, these results suggest that thegwstriuses RL to associate actions to specific
stimuli or landmarks that predict reward (includirgpod performance in the case of
conscientious human participants). Whereas the oegoppus forms incidental associations
between objects (which might include, but is nogtiieted to, rewarding objects) and the
environmental locations in which they are encowetteimhe diverse functions and learning rules
of these two systems beg the question of how thegract to support a common behavioral
outcome. In this context, we note that a large bofdyesearch has highlighted the role of the
prefrontal cortex in the control and organizatioh goal-directed behavior (Tremblay and
Schultz, 1999; Watanabe, 1996), the monitoringrgfaing voluntary action sequences (Gehring
and Knight, 2000), the planning and selection gfrapriate actions based on anticipated reward
(Petrides, 1995; Rowe et al., 2000), and the ghuitlearn the contingency between actions and
specific outcomes (Balleine and Dickinson, 1998).

The rodent medial prefrontal cortex (MPFC) comprige ventral infralimbic cortex underneath
the more dorsal prelimbic and anterior cingulatgiaes (Fisk and Wyss, 1999). The former
region projects to a variety of limbic and autonomegions, including the hypothalamus, the
amygdala, and the shell region of the nucleus abems (Berendse et al., 1992; Hurley et al.,
1991; Sesack et al., 1989). In contrast, the morsall prelimbic region of PFC projects to core
regions of the nucleus accumbens and to dorso-hredi@ns of the dorsal striatum (Berendse et
al., 1992; Gorelova and Yang, 1997), and has recgb indirect connections with premotor and
motor cortices (Bates and Goldman-Rakic, 1993;tLal.e 1994). Direct projections to the mPFC
stem from the CAl/subiculum of the ventral parttteé hippocampus (VHPC) (Jay and Witter,
1991; van Strien et al., 2009). Cells in mPFC camlst location specific firing and lesion in
VHPC disrupts they goal-related activity (Burtonaét 2009). Anatomical connectivity suggests
that the mPFC could be capable of integrating mfdion from brain regions mediating
appetitive and emotional motivation, and goal-diedcand habitual responses. Consistent with
this idea, Doeller et al. (2008) found that, whdetivity in either hippocampus or striatum
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indicated use of the corresponding strategy, im@éamPFC activity was seen when both
systems were similarly active — suggesting a nolmeédiating between them.

5. Towards a computational account of spatial navigation

In this section we first briefly review classicainsputational models of how the hippocampus
and the striatum might support spatial navigatang then describe recent developments that try
to reproduce the experimental and neurophysiolbdita reviewed above.

A number of earlier models of navigation combines thnsupervised learning of place
representation with variants of RL (e.g. Brown &fuarp, 1995; Foster et al., 2000). However,
this is somewhat at odds with the idea of a distmapid incidental learning system in the
hippocampus in combination with a slower RL meckan{see above and Lengyel and Dayan,
2007; Sheynikhovich et al., 2009) and related psafs for complementary hippocampal and
neocortical learning systems (Marr, 1971, 1970; M#and et al., 1995). Viewed as a memory
system, learning in the hippocampus need not beenrby reward — its function may be to
represent experience (e.g., what is encounteredewha navigation) so that it is available to
future planning in which new goals may be specifiedthis case currently unrewarding stimuli
may become important in future and so also nedxteemembered. Nonetheless, encoding may
be biased towards stimuli that are novel, for edficy in encoding, or towards stimuli that
precede a rewarding event (see e.g. Tse et al7)200

Another family of models (e.g., Blum and Abbott 969 Dollé et al., 2010; Martinet et al., 2011,
Muller et al.,, 1996) utilize the hippocampus to lBuigraph-like representations of the
environment for use in path planning using actiityppagation methods. The connectivity
between place cells can in principal support midtigraph-like representations (Samsonovich
and McNaughton, 1997), and propagating activitpbserved in place cells (e.g. Johnson and
Redish, 2007; Pfeiffer and Foster, 2013). Howewrg issue faced by these models concerns the
use of experience-dependent graph learning, whichldvbias behavior towards well-learned
routes: an outcome more associated with the stniatu

Taking inspiration from these previous works, beloe outline a minimal cognitive architecture
that satisfies the functional and biological coaistis reviewed above. For simplicity, we
consider four main components: sensory cortexhippocampus, the striatum and the prefrontal
cortex, see Figure 4.
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Figure 4. Schematic representation of a minimal circuit farotof the main mechanisms that guide spatial
navigation: the hippocampus, providing the “cogmitimap” with information about locations for goaledted
decision making, and the striatum that learns dtisitesponse associations. Note that the same ryeimgut is
used in different ways by the two systems.

We assume that sensory cortex supports a représentd the quality and distance to objects

within the view field relative to the position addection of the head (i.e. in an egocentric frame
of reference). This sensory information, or “segssmapshot,” reaches both hippocampal and
striatal systems. Below we describe the differeaysvin which the two systems would process
this information in the tasks described above (FE@).

As noted above, the dorsal striatum is thought @oirbvolved in reinforcement learning of
stimulus-response associations learning. That isyaly learn sensory motor associations using
the mismatch (‘prediction-error’) between the outeoexpected by a ventral striatal ‘critic’ and
the actual outcome in order to produce (statistitaiorrect associations, see Box 1. Thus, the
dorsal and ventral striatum respective may fornfaator-critic” architecture for reinforcement
learning (e.g., O’'Doherty et al., 2004, Bornstemnd &aw, 2011; Pennartz et al., 2011), in which
the prediction error signal is encoded by variatodopamine (Schultz et al., 1997).

Given the egocentric nature of the sensory inputwhich distal orientation cues are not
specifically salient, the striatum will learn tosasiate egocentric sensory representations with

egocentric actions that lead to reward. The mdstrdgreward-predictive) feature of the Pearce
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et al. (1998) version of the water maze will beititea-maze landmark due to its proximity to the

submerged platform. Thus striatal control of bebawill direct the animal to search near to the

landmark. Equally, at the choice point of the phigze used by Packard and McGaugh (1996),
the egocentric sensory input will be similar frowthbtraining and probe directions. Thus, under
striatal control of behavior, the sensory inputbassted with a specific action (body turn) during

learning will also be driven by the sensory inputh& choice point during probe trials.

By contrast, we suppose that the hippocampal systemves head direction information as well
as sensory snapshots, so that boundary-vectaresgibnses can be formed to drive an allocentric
place cell representation. Thus, the hippocamppsesents states in a way that is relatively
insensitive to body-orientation and to discreteranhaze landmarks compared to extended
environmental features. On encountering an objeatterest (e.g. a food reward or submerged
platform, or a neutral object), its location can diered by unsupervised Hebbian learning of
connections from place cells to “goal cells” codfngthat type of object, which might be located
in subiculum, ventral striatum or prefrontal cor{exg. Hok et al., 2005). The firing of these cells
will then provide a value function for navigatiamthat object — increasing with proximity to it as
more of the place cells with potentiated synapszoime active (Burgess and O’Keefe, 1996),
see Figure 5.

Figure 5. Schematic of how firing fields of different placells can be combined to obtain a global value fonct
that can be used to reach rewarding locations. I&tiepanel shows an example with few neurons: wthenrat

reaches the rewarding site (marked with and x) Hedibian learning takes place between place deiisare active
in that location (represented by black dots surdednby their blue receptive field) and a “goal celbwnstream

(e.g. in subiculum, ventral striatum or prefrontaktex). In this location the activity of the gaadll is maximal.

When the rat moves away from this location, fewlethe place cells with potentiated synapses willabtve and
therefore the firing rate will be lower. The righdnel shows an example with a great number of gall®& when the
number of places cells projecting to the value oelincreases, the resulting value function becosmesther and
more regular.
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Although such goal cells would provide an indicatiaf how close the animal is to the desired
location, they would not indicate in which directito move to reach it. However, the temporal
characteristics of place cell firing (“theta phasecession,” O’Keefe and Recce, 1993) are such
that within each cycle of the theta rhythm, thealtan represented by the currently active subset
of place cells “sweeps forward” from behind to norft of the animal (Burgess et al., 1994,
Johnson and Redish, 2007; Skaggs et al., 1996% pdientially allows ‘exploration’ of the
suitability of the current direction of travel. Slar “forward sweeps” are observed during non-
locomotor behavior and sleeping (Diba and Buzs#&X)7; Pfeiffer and Foster, 2013; Wilson and
McNaughton, 1994), which may relate to consolidatamd planning. Note that the proximity
relationships between place cells, as read oubhyard sweeps, implicitly encode a model of
state-transitions that reflects spatial structatber than relationships to reward.

In order to produce a motor action or simply a sieci, given the potentially different outputs
from hippocampal and striatal systems, a mecharssmecessary to compare these outputs and
decide which is the most appropriate for the tadkaad. One ideal candidate for this function is
medial prefrontal cortex. We suppose that this aetacts between the possible actions indicated
by either system based on the slopes of the assdcialue functions as a proxy for the
confidence or uncertainty of the outputs of eitegstem (Daw et al., 2005; Keramati et al.,
2011). Accordingly, the time course of learninghe Packard and McGaugh (1996) experiment
indicates slower striatal learning and lower coarfide early on, resulting in hippocampal control
of behavior, but the striatal system eventuallyi@eds greater confidence and eventually gains
control of behaviour. Similarly, in the Pearce kbt(24998) experiment, the intact animals show
hippocampal control during the first trial of a neession — responding relative to the boundary
of the maze, oriented by distal cues, and so peif@ worse than hippocampal lesion animals
due to the movement of the platform relative to th@ze. On later trials within each session
however, the lesioned animals have improved littligh the intact animals now out-performing
them.

6. Discussion

Taking inspiration from behavioral, lesion/ inaetidon, neuroimaging and electrophysiological

studies together with existing computational modele sought to outline a minimal cognitive

architecture for spatial navigation. Principal ftiasal components of this architecture include
the basal ganglia / striatum and the hippocampahdtion, the former using local, incremental,

and statistically efficient reinforcement learningdes; and the latter using a one-shot incidental
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learning rule. The striatum has previously beerppsed to function as an “actor-critic” network
supporting classical and instrumental conditionj@jDoherty et al., 2004; Yin et al., 2005). In
our case, it is applied to navigation, using sensgput to provide information about states. By
itself, the actor-critic can efficiently learn tolge key experimental tasks, such as the water maze
and the plus maze, but its learning is slow andabien is characterized by the egocentric nature
of the sensory state information and the codingotibns.

By contrast, the hippocampus possesses a goalendept representation of space that is learned
rapidly, perhaps reflecting its role in episodicmumey. This is obtained by having place cells
initially driven in a fixed feed-forward manner ligeir proximity relations to environmental
boundaries (see e.g. Hartley et al., 2000), foltbveg slower adjustments as an environment
becomes familiar (see e.g. Barry and Burgess, 208Ver et al., 2002) and the potentially
related adjustment of grid cells (Barry et al., 201When an object or goal is encountered,
“goal” cells can be formed by rapid incidental Hetsblearning in connections from place cells,
so that their activity can provide gradients thett be used for goal-directed navigation (Burgess
and O’Keefe, 1996, see also Foster et al., 2008haBiour in this case is characterized by the
allocentric nature of the representations of curael goal locations.

These two systems appear to play complementary abldifferent stages of spatial learning. The
hippocampus provides an initial rapid associativemory for associations between a goal (or a
neutral object) and its context (environmental tmrain this case) that can guide goal-directed
navigation in response to an explicit desire fat tfpoal. However, the contextual association (in
this case place cells) provides a similarity gratithat might not be sufficient to support
navigation within complex environments. By contratite striatal reinforcement learning
mechanism is capable of learning the statisticsthef task over multiple trials, and thus
potentially learning state-action trajectories tleannot be directly inferred from contextual
similarity.

The outputs of these two systems must be coordinbie a third component, potentially
corresponding to medial prefrontal cortex, see @¥wersi and Pezzulo, 2012; Dollé et al., 2010;
Sheynikhovich et al., 2009). The most obvious maidm for selection is a comparison of the
“confidence” in movement directions signaled byheit system, possibly utilizing the local
gradient of the normalized value function expredsgeach system. This proposed architecture
relates to more general models of decision makgw( et al., 2005; Dayan, 2009) which
emphasize that goal-directed and habitual mechanafnchoice are linked to model-based and
model-free methods of reinforcement learning, respely.

15



However, the mapping of habitual and goal-diredi&sl in e.g. sensitive to devaluation of the
type of reward) mechanisms onto hippocampal andtstrlearning systems is not straight
forward. Both mechanisms may exist outside of tippdcampus, with some authors implicating
striatum in habitual learning and prefrontal cortexgoal-directed learning. In this context, the
hippocampal system can be seen as a “third wayhdyel and Dayan, 2007). It is not just
another model-based reinforcement learning sysetnappears to be best characterized by one-
shot incidental learning of specific examples, asststent with its well-recognized role in
episodic memory (Cohen and Eichenbaum, 1993; Hil€v4; O’'Keefe and Nadel, 1978;
Scoville and Milner, 1957).

Nonetheless, the hippocampal system can certalalytpe role of the ‘model’ in a model-based
learning system. Specifically, the relationshipai®n an explicit memory system and a means of
generating imagery for planning is now being reéogph Thus, the hippocampus can be seen as
the highest level in a generative model capableookolidating memory in neocortex (Kéali and
Dayan, 2004, 2000). It can also be seen as a systeenabling information from long term
memory to be rendered in parietal cortex as a evlteggocentric spatial scene consistent with a
single viewpoint (Burgess et al., 2001; Byrne et2007). In either case, the hippocampal system
can be used to generate information correspondingptoming states for use in planning, as
consistent with recent experiments relating the dwurhippocampus to the ability to perform
spatially coherent imagery (Hassabis and Magui®@,/2 Schacter and Addis, 2007). The medial
prefrontal and striatal areas appears to be indoingepresenting the reward value of elements
of imagined scenarios (Benoit et al., 2014; Lialet2015).

Within the view of the hippocampus as a generatioelel or means of imagining future states,
the imagined movement of the agent could be actidyeiterative interactions with parietal
cortex (Byrne et al., 2007; Chersi et al., 2018hythe generation of “forward sweeps” of place
cell representations either during theta statesg@ss et al., 1994; Johnson and Redish, 2007;
Skaggs et al., 1996) or off-line “replay” (Pfeiffand Foster, 2013; Wilson and McNaughton,
1993). These schemes can be seen as architeaburiésrétive decision making (e.g., Penny et
al., 2013), and may enable the striatum to acdessexpected value associated with specific
environmental locations (Lansink et al., 2008; dan Meer and Redish, 2009).

In conclusion, we hope to have shown that spat@igation can serve as a model system in
cognitive neuroscience, in which specific repreagonms, learning rules and control strategies
can be inferred from the vast experimental litamatinat exists across many species, including
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humans. In this brief review we have attempted wtliee a minimal cognitive architecture
consistent with the most obvious of these inferepnbeth to demonstrate its utility as a model
system and to encourage further theoretical andrexpntal elaboration.

Box 1: What we know (Main facts on the cognitive ar chitecture of spatial navigation)

1. Multiple spatial representations have been ifledtin neuronal firing, and in behavior.

2. There is a good mapping between representagiothdrain systems.

3. These systems appear to combine constructigedypport spatial memory, which implies that
they can be selected between in an appropriate enamng. according to a measure of
‘confidence’ in each system (e.g. slope of valugfion).

4. Different systems appear to use different lesymules, potentially reflecting optimization for
different aspects of the task (1-shot learninghippocampal episodic memory, prediction error
for striatal action learning)

Box 2: What we need to know (Open questions)

1) Although the hippocampus and the striatum lé&grmeans of two very different mechanisms,
what is the influence of the former on the lattarinlg learning? Does the information from the
hippocampus directly contribute to the calculatdnhe prediction error in the striatal system, or
is its influence only indirect via behavior (e.gopiding examples of successful routes early in
learning). A puzzle here is that if hippocampalomfiation is available to the ‘critic’, early
hippocampal learning would block subsequent leariiy the striatum, but if it is not, why does
the boundary block learning to the landmark in Devednd Burgess, (2008)?

2) Are the representations in striatum and par@taas that could support landmark-related and
response learning the same, or are there multipth sepresentations, and if so what are they
like? The Packard and McGaugh (1996) study immiesital encoding of an egocentric body
turn, whereas the Pearce et al., (1998) study @sphat hippocampal lesion animals can navigate
to an allocentric vector from a landmark, howeveris possible that their sub-optimal
performance reflects a failure of allocentric reyemtation (e.g. having to circle the landmark).

3) How complex and detailed can place cell “forwaneeeps” be, and are they used in planning?
It has been shown that in open fields and in simpézes forward sweeps produce a small
number of simple paths, but what happens when @mwients are complex? Will it be possible
to observe branched sweeps? Or do these endfatltveing decision point?

4) How does the proposed one-shot learning in thpdesampus work? Encounters with non-
rewarding objects are encoded in the context oémany test, but not all coincidences of stimuli
can be encoded: what determines which are and wdwmehforgotten? Do they have to be
followed by a significant (e.g. rewarding) eventpes schema theory (Tse et al., 2007). Novelty
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must boost learning (e.g. one-shot learning isyrably restricted to the first experience), how
do the role of novelty in the hippocampus compareghiat of reward prediction-error in the
striatum, and do both involve dopamine (see e.ga@GtMasip et al., 2014)?

5) The use of hippocampal place cells for guidimyigation, e.g. via experience-dependent
associations between them, requires that distabhetseen places are inferred from moving
between them, and so will be distorted by the ®mta&en rather than reflecting distance per se.
A potential solution for large-scale vector navigatcould be to make use of the intrinsic
metrical regularity of grid cell firing patterns fofer the translation vector between locations
(Bush et al., Neuron, submitted).

6) The vast amount of experimental data, both hiehavand neurophysiological, acquired in
simple environments allows rather precise hypothesethe functioning of spatial navigation
mechanisms. On the contrary, information from camphazes is mostly missing, thus it is not
known how planning and decision making may workiese environments, and how this kind of
knowledge is represented in the brain. It may be&t tombinations of memory-based and
reinforcement-based learning is employed, sucHigibiéty traces or saliency based learning, or
that grid cells play a more important role as thee able to provide global metrical
representations of complex environments (Carpesital., 2015).
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Supplementary material: Reinfor cement learning

The core idea of reinforcement learning is to wethe value of sensory states with respect to
the current task and the optimal policy for makiegiions. When actual outcomes (primary
rewards or punishment) fail to match the predictibie difference (therediction erroj) is used

to modify the connections in order to improve pedidns. By providing an internal prediction of
value (orcritic), the animal can learn to improve performance evken actual outcomes occur
infrequently (solving the problem of temporal cteaisignment).

One of the most common RL algorithms is the temlpdifeerence (TD) learning rule which can
be formalized in the following way:

AN = g [+ yN(S) - V(S) ] 1)

18



where W?*™®" are the weights between the representation of skaspry) state and a critic
(perhaps neurons in ventral striatuMjg) is the value of stat8 at timet (i.e. expected summed
discounted future reward) represented by the &gtofithe critic neurons and direct function of
the weightdA\®®"®! g is the learning rate; is the actual reward at tintgusually 0, except at the
rewarding site), angris the discount factor (which indicates the fadigrwhich an immediate
reward is preferable to a delayed reward). The terrparentheses is the “prediction error”,
indicating the difference in value at time t comgghto that predicted at timel. In the simplest
form of an “actor-critic” architecture, the sameaneing rule can be used to change connection
weights between the neurons representing the atat@eurons representing the action taken (an
“actor,” which might be implemented in dorsal dtnia).

One way to handle the problem of sampling combimeity large spaces of states and actions is
to learn the value of all actions compatible widtle given state. This method is known as Q-
learning, with corresponding learning rule:

AWPEC'= g [T+ y Mae Q(S, &) — Q(S1, &1)] (2)

whereQ(S ,&) is the value of actiog; when in staté&s , the rest of the parameters being the same
as in equation 1. Here, the search for the maxirfutore Q-value as a function of all possible
actionsa is indicated by thenax, operation. Similarly as before, the Q-value isceled by the
activity of specific neurons (probably) in the darstriatum. As the number of learning trials
becomes very high, the decision mechanism tendgtimality (Watkins and Dayan, 1992). We
note that, in general, both “actor” and “critic” ynaeed to incorporate more complex ‘policies’
for generating actions, and that the representtioih states and actions may need to be
continuous, rather than the discrete representatifien used in analyses.
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