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Abstract 

Spatial navigation can serve as a model system in cognitive neuroscience, in which specific 

neural representations, learning rules and control strategies can be inferred from the vast 

experimental literature that exists across many species, including humans.  

Here, we review this literature, focusing on the contributions of hippocampal and striatal systems, 

and attempt to outline a minimal cognitive architecture that is consistent with the experimental 

literature and which synthesizes previous related computational modeling. The resulting 

architecture includes striatal reinforcement learning based on egocentric representations of 

sensory states and actions, incidental Hebbian association of sensory information with allocentric 

state representations in the hippocampus, and arbitration of the outputs of both systems based on 

confidence/uncertainty in medial prefrontal cortex. We discuss the relationship between this 

architecture and learning in model-free and model-based systems, episodic memory, imagery and 

planning, including some open questions and directions for further experiments.  

 

 

1 Introduction 
Goal-directed spatial navigation is a good model for general issues in cognitive neuroscience. 

Like many daily tasks, goal-directed navigation is a complex task that involves a variety of 

sensory and proprioceptive stimuli, storage and recall of information, and the elaboration of 

plans. Moreover, there is now an unparalleled literature concerning the neural representations 

involved (as reflected in the 2014 Nobel Prize, see e.g., Burgess, 2014) and a vast array of 

experimental data relating behavior to environmental or neurophysiological manipulations. 

 

There are many ways to find a goal location, and the relevant cognitive functions have been 

categorized in various ways. Here, we follow the nomenclature coming from behavioral and 
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lesion experiments in animals, following from the suggestion that the hippocampus provides a 

‘cognitive map’ (O’Keefe and Nadel, 1978), see below. Thus, one might navigate by following a 

sensory cue that directly indicates the goal location (‘piloting’), by following a well-learned 

sequence of actions, each depending on the previous action or a sensory cue (‘response learning’ 

using ‘route’ or ‘taxon’ strategies), or by following a flexible internal representation of spatial 

layout (‘place learning’, using ‘cognitive map’ or ‘locale’ strategies). The emphasis on the 

‘flexibility’ of a cognitive map refers to the ability to use it from a new starting location (which 

would undermine the use of a route) or in the absence of subsets of specific sensory cues (which 

could undermine the use of piloting or route strategies). This hypothesis that the hippocampus 

supports a flexible representation of the spatial relationships present in the environment has been 

extended to include non-spatial information in the relational theory of memory function (Cohen 

and Eichenbaum, 1993). 

 

Here we examine the cognitive architecture of spatial navigation, with a focus on hippocampal 

and striatal systems and their interaction. We aim to outline the general principles that can be 

derived from experimental data and how they constrain the development of formal models of 

spatial cognition. 

 

2. Brain regions associated with spatial navigation  
Like any complex task, spatial navigation involves much of the brain, not least sensory and motor 

areas. Here we review some of the systems associated with specific roles in navigation. The 

hippocampus has long been known to be important for episodic memory (Scoville and Milner, 

1957), and the discovery of place cells drew attention to its role in spatial memory (O’Keefe and 

Nadel, 1978), see below. Subsequent experiments using the Morris water maze (Morris et al., 

1982), T maze alternation (e.g. Cohen et al., 1971) and the 8 arm maze (e.g. Olton et al., 1977) 

demonstrated certain aspects of navigation to be particularly sensitive to hippocampal damage. 

These include navigation to an unmarked location from variable start locations and navigation 

that requires memory (and potentially avoidance) of previously visited locations. Equally 

importantly, control conditions in these tasks showed insensitivity to hippocampal damage when 

piloting or response learning was possible, and emphasized the importance of distal cues in 

orienting the animal within its environment. 

 

By contrast with the hippocampal formation, cortico-basal ganglia circuits (loops) are thought to 

store stimulus-response associations and procedural memories (which may underlie route 

learning or piloting). These loops connect specific neocortical areas unidirectionally to striatal 

subregions, which project to downstream structures such as the pallidum and the substantia nigra 
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(SN). These areas connect to the thalamic nuclei that in turn project back to the same neocortical 

sites of origin. Within this picture, the striatum has been subdivided into several functional 

regions: the dorsolateral striatum (DLS) associated with stimulus–response learning and habit 

formation, the dorsomedial striatum (DMS) associated with action–outcome learning, and ventral 

striatum (VS) associated with motivational and affective processing (Corbit and Balleine, 2003; 

Packard and McGaugh, 1992; Voorn et al., 2004; Yin and Knowlton, 2006). 

 

An important aspect of theorizing about the function of the striatum concerns its dopaminergic 

input. In a series of influential experiments Schultz and colleagues recorded the firing of 

dopamine neurons in the SN/VTA of monkeys performing conditioning experiments. The firing 

of these neurons was found to be consistent with dopaminergic signaling of the reward prediction 

error (Schultz et al., 1997) used in theoretical models of reinforcement learning (RL). The strong 

dopaminergic projections to the striatum strengthen its association with RL, with suggestions that 

an actor/critic- type functional architecture may exist in dorsal and ventral striatum respectively 

(e.g. O’Doherty et al., 2004; Bornstein and Daw, 2011; Pennartz et al., 2011), see Box 1 and 

Figure 1.  

  

 
Figure 1. Simplified schematic of the cortical and subcortical connections of the hippocampus and the striatum. 
Most of the hippocampus's neocortical inputs come from the perirhinal and parahippocampal cortices (not shown), 
via the Entorhinal cortex. The striatum is part of the basal ganglia (including SNr, GP, SNc, VTA), which we have 
here represented in a compact form for the sake of clarity. The ‘dorsal striatum’ usually includes the caudate and 
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putamen with the nucleus accumbens in the ‘ventral striatum’. Abbreviations: SNr/SNc: substantia nigra pars 
reticulata/compacta, GP: globus pallidus, STN: sub thalamic nucleus, VTA: ventral tegmental area. 
 
In humans the hippocampus has been specifically implicated in accurate spatial navigation, both 

in terms of the effects of lesions and metabolic activity during virtual navigation, although 

showing a greater (right) lateralization of function than in rodents (see Burgess et al., 2002 for a 

review). Indeed, virtual reality analogues of behavioral tests in rodents show similar associations 

of hippocampal and striatal activity with place and response learning respectively (Doeller et al., 

2008; Hartley et al., 2003; Iaria et al., 2003).  

  

Finally, we note the importance of the parietal cortex in spatial processing. Damage to the 

posterior parietal cortex often results in optic ataxia – impaired visuospatial coordination of 

reaching and grasping, consistent with the presence there of neurons tuned to encode the location 

of visual attention and aspects of reaching and grasping (e.g. Hwang et al., 2014). A common 

consequence of unilateral damage to the parietal cortex (most often on the right side) is a clinical 

syndrome known as unilateral neglect: an impairment in noticing or paying attention to objects 

and events in the contralateral hemifield, or the contralateral side of objects. Patients suffering 

from unilateral neglect can experience representational neglect, affecting their spatial imagery 

and memory performance, as distinct from the more common perceptual neglect (Bisiach and 

Luzzati, 1978), with neglect in imagery (rather than perception) being more strongly linked to 

deficits in navigation (Guariglia et al., 2005). 

 

3. Neuronal codes  

Single neuron recordings from the hippocampus of freely moving rats showed the existence of 

‘place cells’ in regions CA1 and CA3: cells that fire only when the animal is within a limited 

region of the environment (the 'place field'; O’Keefe and Dostrovsky, 1971; Figure 2A). Place 

cell firing patterns are established very rapidly when an animal enters an environment for the first 

time and are stable over the course of several days (Thompson and Best, 1990). These firing 

patterns ‘remap’ between different environments (Muller and Kubie, 1987), but are robust to 

smaller changes such as eliminating a subset of environmental cues (O’Keefe and Conway, 1978; 

Quirk and Muller, 1990), a capacity for “pattern completion” associated with synaptic plasticity 

in CA3 (Marr, 1971; Nakazawa et al., 2002). Non-visual cues, like olfactory traces or auditory 

signals, can also contribute to self-location and are sufficient to guide behavior if visual cues are 

not accessible (Maaswinkel and Whishaw, 1999; Wallace et al., 2002). Place cells have 

subsequently been identified in a wide range of mammals including bats and humans (Ekstrom et 

al., 2003; Ulanovsky and Moss, 2007). 
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A complementary representation is provided by “head direction cells”. These neurons signal the 

orientation of the animal’s head in the horizontal plane, and are tuned to a narrow range of head 

directions centered on a preferred firing direction (Taube et al., 1990; Figure 2C). These cells 

were first reported in the dorsal presubiculum (Ranck, 1985; Taube et al., 1990) and later in a 

network of structures along the classic Papez circuit, including the thalamic nuclei (Mizumori 

and Williams, 1993; Taube, 1995), mammillary bodies (Stackman and Taube, 1998), and 

entorhinal cortex (Sargolini and al., 2006). Interestingly, if two cells share a preferred firing 

direction in one environment, they will continue to respond in the same way in a second 

environment even if the absolute firing direction of both cells may have changed (i.e. they remain 

“in register”). 

 

A third type of spatial cell, “grid cells”, are found in the medial entorhinal cortex (mEC; Hafting 

et al., 2005) and subicular complex (Boccara et al., 2010). They share some similarities with 

place cells, but have multiple firing fields arranged on an equilateral triangular grid that covers 

the environment (Figure 2B). Grid cells appear to be grouped into functional clusters within mEC 

that share similar characteristics: neighboring cells possess the same grid orientation and scale, 

having only a different translational offset, while the grid scale increases ventrally along the mEC 

in discrete steps (Barry et al., 2007; Stensola et al., 2012). Moreover, similarly to head direction 

cells, their relative position is maintained even after environmental manipulations that change or 

disrupt the fields of individual cells (Stensola et al., 2012; Yoon et al., 2013).  

 

The sources of information that dictate these spatial responses can be divided into self-motion 

and environmental sensory inputs. The strong intrinsic organization of the firing patterns of head 

direction and grid cells, irrespective of the sensory environment, suggests a significant influence 

of self-motion on their firing patterns. Accordingly, models of head direction and grid cells often 

rely on continuous attractor dynamics via symmetrical recurrent connectivity (Fuhs and 

Touretzky, 2006; McNaughton et al., 2006; Zhang, 1996). In these models, the spatial 

representation is updated by self-motion (a process also known as ‘path integration’) via 

asymmetric interactions (Zhang, 1996), which can be achieved in an accurate manner by cells 

with a conjunctive representations of space and movement, such as head direction firing 

modulated by angular velocity (e.g. Stackman and Taube, 1998) or grid cells modulated by 

movement velocity (Sargolini and al., 2006), see (Burak and Fiete, 2009; Conklin and Eliasmith, 

2005; Skaggs et al., 1994) for computational models.  

 

However, all allocentric (i.e. world-centred) spatial signals relying on self-motion (or ‘path 

integration’) need resetting relative to the environment to avoid accumulating error. 
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Correspondingly, spatial firing patterns are strongly influenced by the environment. Distant 

visual cues, where available, have a controlling influence on head direction and the orientation of 

other spatial responses (e.g. Taube et al., 1990). The boundaries of an environment also appear to 

play an important role in determining the firing locations of place cells. Place cell firing patterns 

across manipulations of environmental shape reflect conjunctions of distances and allocentric 

directions to environmental boundaries (Hartley et al., 2000; O’Keefe and Burgess, 1996), 

whereas discrete intra-maze landmarks have relatively little influence (e.g. Cressant et al., 1997). 

The predicted ‘boundary vector cells’ mediating this information were subsequently found in 

subiculum (Barry et al., 2006; Lever et al., 2009) and mEC (Solstad et al., 2008; Figure 2D). 

Environmental boundaries also affect the firing pattern (Barry et al., 2007) and orientation 

(Krupic et al., 2015; Stensola et al., 2015) of grid cells, consistent with a role in reducing 

cumulative error (Hardcastle et al., 2015). 

 

   
Figure 2. Examples of spatial cells associated with navigation, recorded in freely moving rats, showing firing rate as 
a function of location or head direction (peak firing rate shown in Hz). (A) Place cells, found in areas CA3 and CA1 
of the hippocampus proper, typically fire in a restricted portion of the environment. (B) Grid cells, found in medial 
entorhinal cortex and pre- and parasubiculum, typically fire in a regular triangular array of locations. Directional grid 
cells or ‘‘conjunctive’’ cells, whose grid-like spatial firing is also modulated by head direction, are also found in 
these regions. (C) Head-direction cells, found in the presubiculum and deep layers of medial entorhinal cortex, 
typically fire for a narrow range of allocentric heading directions. (D) Boundary cells, found in subiculum and 
entorhinal cortex, typically fire at a specific distance from an environmental boundary along a specific allocentric 
direction. (E) A trajectory neuron from parietal cortex, shown for outbound (upper plots) and inbound (lower plots) 
traversals of a path (dashed yellow lines). A-C Adapted from (Hartley et al., 2014), E adapted from (Nitz, 2006), 
with permission. 
 
In contrast to the explicit representation of spatial information in the hippocampal formation, 

neuronal activity in the striatum is more strongly influenced by task stage (Barnes et al., 2005), 

being modulated by choice points, reward delivery and stereotyped egocentric responses 

(Schmitzer-Torbert and Redish, 2004; Berke et al., 2009). However, these responses do not 
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specifically encode route-trajectory information. Evidence for this type of information is found in 

the posterior parietal cortex (PPC) of navigating rats (McNaughton et al., 1994; Nitz, 2006; 

Figure 2E). Interestingly, in a very structured environment, grid cell firing patterns become more 

trajectory dependent (Derdikman et al., 2009) suggesting an influence from parietal cortex 

combined with a strong contextual modulation (Whitlock et al., 2012). More generally, parietal 

neurons tend to code all phases of the action sequences used to solve or plan a task (Fogassi et 

al., 2005; Harvey et al., 2012).  

 

Posterior parietal neurons in monkeys can exhibit conjunctive ‘gain field’ responses tuned to 

visual (retinotopic) receptive fields but modulated by eye, head, or body position (Andersen, 

1995; Snyder et al., 1998). These responses may allow determination of the location of visual 

objects relative to the body or in a world-referenced frame (Pouget and Sejnowski, 1997). In 

particular, area 7a, which contains neurons with world-referenced gain fields (Snyder et al., 1998) 

projects to the parahippocampal gyrus and presubiculum, and so may allow translation between 

egocentric parietal representations and allocentric medial temporal representations (Burgess et 

al., 2001; Byrne et al., 2007). 

 

 

4. Systems neuroscience of spatial learning 
The dependence of place cell firing on environmental boundaries rather than intra-maze 

landmarks is also reflected in hippocampal-dependent navigation. Pearce et al. (1998) adapted the 

water maze by adding a local cue at a fixed bearing from the submerged escape platform (Figure 

3A). Rats learn relatively direct paths to the goal over the course of a few trials. After four trials 

(one session), the escape platform and the landmark are moved together to a new location. Rats 

with and without hippocampal lesions both are able to reach the hidden platform but present 

distinct performance curves. Hippocampal lesion animals quickly locate the platform on the first 

trial of a new session, using the intramaze landmark as a cue (i.e. following a ‘piloting’ strategy), 

whereas the control animals are slower, continuing to search at the previous location in the maze 

(i.e. following a cognitive map strategy). On the other hand, control animals learn the new 

location within each session, and out-perform the lesioned animals by the fourth trial of the 

session. Thus, the hippocampus appears to support learning of the platform location relative to 

the maze, rather than the landmark, which can hinder performance when the platform location is 

moved. Moving the maze relative to the testing room confirms the rats are using the boundary of 

the maze in combination with distal cues for orientation (e.g. Hamilton et al., 2007).  
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Figure 3. A) Schematic of the water maze used by Pearce et al., (1998). A submerged platform (white circle) and 
intra-maze landmark (black circle) are placed in the maze at 8 different locations on different sessions, but always 
with a fixed offset from each other. C) The mean escape latency for the first (continuous line) and fourth (dashed 
line) trials in each of the 11 sessions for the control and hippocampal lesion rats. Adapted from Pearce et al. (1998). 
The hippocampal rats perform better at the start of each session, the control rats at the end of each session. B) 
Schematic of the plus maze used by Packard and McGaugh, (1996). Rats learn to find the food placed at the end of 
an arm from the start location. In unrewarded probe trials the rat’s starting position is moved to the opposite side of 
the maze. D) Number of rats in the probe trials on days 8 and 16, with either lidocaine or saline injections in the 
caudate nucleus or hippocampus. White bars indicate those showing a “place” strategy (i.e., going to the rewarded 
location in the room), while dark bars indicate those showing a “response” strategy (i.e. making the rewarded body-
turn). The place strategy is sensitive to hippocampal inactivation on day 8, the response strategy to caudate 
inactivation on day 16. Adapted from Packard and McGaugh (1996). 
 

The distinct styles of learning supported by hippocampal and striatal systems are further 

illustrated by experiments using a “plus” maze (Packard and McGaugh, 1996), after (Cohen et 

al., 1971). Rats were trained to approach a consistently baited arm in the plus maze, starting from 

the stem (Figure 3B). After several days a single probe trial was given, in which rats were placed 

A) B) 

C) D) 
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in a start arm opposite that used in training (see Figure 3). Control rats displayed “place learning” 

(i.e. going to the same allocentric location in the maze) on the Day 8 probe trial and “response 

learning” (i.e. making the same body turn) on the Day 16 probe trial, indicating that with 

extended training there is a shift in the systems controlling behavior. Supporting this 

interpretation, rats with inactivation of the striatum displayed place learning on both Day 8 and 

Day 16 probe trials, whereas rats with inactivation of the dorsal hippocampus showed no 

preference for place or response learning on the Day 8 probe trial, but displayed response 

learning on the Day 16 probe trial. Thus, it seems that response learning, i.e. association of 

reward with a body-turn, depends on the striatum while place learning, i.e. association of reward 

with an environmental location, depends on the hippocampus. 

 

4.1 Learning rules in spatial navigation. 

There is a long history of debate concerning the nature of spatial learning, spanning from the 

proponents of stimulus-response associative learning mechanisms driven by trial and error (Hull, 

1943; Mackintosh, 1983; Rescorla and Wagner, 1972) to the proponents of incidental learning of 

internal representations capable of supporting cognition (Tolman, 1948). These arguments are 

brought to current thinking on spatial navigation in terms of reinforcement learning (RL) based 

on prediction error (Sutton and Barto, 1981; Foster et al., 2000) and the proposal that the 

hippocampus is a “cognitive map” (O’Keefe and Nadel, 1978) or relational (Cohen and 

Eichenbaum, 1993) or episodic (Hirsh, 1974; Scoville and Milner, 1957) memory system. 

 

The chief characteristic of RL is that it relies on prediction error, i.e. the difference between 

actual reward and expectation based on experience, as opposed to a memory system that relies on 

incidental one-shot association. There are several consequences of relying on a single prediction 

error signal. One is that only the amount of future reward associated with a choice can be used to 

direct behavior, but not the type of reward. To include behavior that can be ‘goal-directed’ (i.e., 

aimed at a specific type of reward) requires a more elaborate model of the world, perhaps coming 

closer to the idea of a cognitive map. A second consequence is that learning outcomes based on 

multiple cues will show “blocking” and “overshadowing” (Kamin, 1969; Pavlov, 1927) between 

cues. Thus, if a first stimulus already fully predicts reward, learning about a second stimulus that 

might also predict reward will be “blocked” as there is no prediction error, and partial association 

of one stimulus to reward reduces the strength of association of a second concurrent cue to 

reward. 

  

A recent experiment used a virtual reality adaptation of the Pearce et al. (1998) rodent experiment 

to test whether different types of learning occur within hippocampal and striatal systems in 
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humans, following (Hirsh, 1974; O’Keefe and Nadel, 1978). Using fMRI, this experiment 

showed that learning object-locations relative to the environmental boundary correlated with 

hippocampal activity, whereas learning object-locations relative to an intra-maze landmark 

correlated with activity in striatum (and also parietal cortex; Doeller et al., 2008). Moreover, 

parallel behavioral experiments showed that learning relative to an intra-maze landmark is 

blocked and overshadowed by a second cue (whether a landmark or boundary), whereas learning 

relative to an environmental boundaries is not – occurring incidentally to other cues (Doeller and 

Burgess, 2008).  

 

Taken together, these results suggest that the striatum uses RL to associate actions to specific 

stimuli or landmarks that predict reward (including good performance in the case of 

conscientious human participants). Whereas the hippocampus forms incidental associations 

between objects (which might include, but is not restricted to, rewarding objects) and the 

environmental locations in which they are encountered. The diverse functions and learning rules 

of these two systems beg the question of how they interact to support a common behavioral 

outcome. In this context, we note that a large body of research has highlighted the role of the 

prefrontal cortex in the control and organization of goal-directed behavior (Tremblay and 

Schultz, 1999; Watanabe, 1996), the monitoring of ongoing voluntary action sequences (Gehring 

and Knight, 2000), the planning and selection of appropriate actions based on anticipated reward 

(Petrides, 1995; Rowe et al., 2000), and the ability to learn the contingency between actions and 

specific outcomes (Balleine and Dickinson, 1998). 

  

The rodent medial prefrontal cortex (mPFC) comprises the ventral infralimbic cortex underneath 

the more dorsal prelimbic and anterior cingulate regions (Fisk and Wyss, 1999). The former 

region projects to a variety of limbic and autonomic regions, including the hypothalamus, the 

amygdala, and the shell region of the nucleus accumbens (Berendse et al., 1992; Hurley et al., 

1991; Sesack et al., 1989). In contrast, the more dorsal prelimbic region of PFC projects to core 

regions of the nucleus accumbens and to dorso-medial regions of the dorsal striatum (Berendse et 

al., 1992; Gorelova and Yang, 1997), and has  reciprocal indirect connections with premotor and 

motor cortices (Bates and Goldman-Rakic, 1993; Lu et al., 1994). Direct projections to the mPFC 

stem from the CA1/subiculum of the ventral part of the hippocampus (vHPC) (Jay and Witter, 

1991; van Strien et al., 2009). Cells in mPFC can exhibit location specific firing and lesion in 

vHPC disrupts they goal-related activity (Burton et al., 2009). Anatomical connectivity suggests 

that the mPFC could be capable of integrating information from brain regions mediating 

appetitive and emotional motivation, and goal-directed and habitual responses. Consistent with 

this idea, Doeller et al. (2008) found that, while activity in either hippocampus or striatum 
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indicated use of the corresponding strategy, increased mPFC activity was seen when both 

systems were similarly active – suggesting a role in mediating between them.  

 

5. Towards a computational account of spatial navigation 
In this section we first briefly review classical computational models of how the hippocampus 

and the striatum might support spatial navigation, and then describe recent developments that try 

to reproduce the experimental and neurophysiological data reviewed above. 

 

A number of earlier models of navigation combine the unsupervised learning of place 

representation with variants of RL (e.g. Brown and Sharp, 1995; Foster et al., 2000). However, 

this is somewhat at odds with the idea of a distinct rapid incidental learning system in the 

hippocampus in combination with a slower RL mechanism (see above and Lengyel and Dayan, 

2007; Sheynikhovich et al., 2009) and related proposals for complementary hippocampal and 

neocortical learning systems (Marr, 1971, 1970; McClelland et al., 1995). Viewed as a memory 

system, learning in the hippocampus need not be driven by reward – its function may be to 

represent experience (e.g., what is encountered where, for navigation) so that it is available to 

future planning in which new goals may be specified. In this case currently unrewarding stimuli 

may become important in future and so also need to be remembered. Nonetheless, encoding may 

be biased towards stimuli that are novel, for efficiency in encoding, or towards stimuli that 

precede a rewarding event (see e.g. Tse et al., 2007). 

 

Another family of models (e.g., Blum and Abbott, 1996; Dollé et al., 2010; Martinet et al., 2011; 

Muller et al., 1996) utilize the hippocampus to build graph-like representations of the 

environment for use in path planning using activity propagation methods. The connectivity 

between place cells can in principal support multiple graph-like representations (Samsonovich 

and McNaughton, 1997), and propagating activity is observed in place cells (e.g. Johnson and 

Redish, 2007; Pfeiffer and Foster, 2013). However, one issue faced by these models concerns the 

use of experience-dependent graph learning, which would bias behavior towards well-learned 

routes: an outcome more associated with the striatum. 

  

Taking inspiration from these previous works, below we outline a minimal cognitive architecture 

that satisfies the functional and biological constraints reviewed above. For simplicity, we 

consider four main components: sensory cortex, the hippocampus, the striatum and the prefrontal 

cortex, see Figure 4. 
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Figure 4. Schematic representation of a minimal circuit for two of the main mechanisms that guide spatial 
navigation: the hippocampus, providing the “cognitive map” with information about locations for goal-directed 
decision making, and the striatum that learns stimulus-response associations. Note that the same sensory input is 
used in different ways by the two systems. 

 

We assume that sensory cortex supports a representation of the quality and distance to objects 

within the view field relative to the position and direction of the head (i.e. in an egocentric frame 

of reference). This sensory information, or “sensory snapshot,” reaches both hippocampal and 

striatal systems. Below we describe the different ways in which the two systems would process 

this information in the tasks described above (Figure 3).  

 

As noted above, the dorsal striatum is thought to be involved in reinforcement learning of 

stimulus-response associations learning. That is, it may learn sensory motor associations using 

the mismatch (‘prediction-error’) between the outcome expected by a ventral striatal ‘critic’ and 

the actual outcome in order to produce (statistically) correct associations, see Box 1. Thus, the 

dorsal and ventral striatum respective may form an “actor-critic” architecture for reinforcement 

learning (e.g., O’Doherty et al., 2004; Bornstein and Daw, 2011; Pennartz et al., 2011), in which 

the prediction error signal is encoded by variation in dopamine (Schultz et al., 1997).  

 

Given the egocentric nature of the sensory input, in which distal orientation cues are not 

specifically salient, the striatum will learn to associate egocentric sensory representations with 

egocentric actions that lead to reward. The most salient (reward-predictive) feature of the Pearce 
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et al. (1998) version of the water maze will be the intra-maze landmark due to its proximity to the 

submerged platform. Thus striatal control of behavior will direct the animal to search near to the 

landmark. Equally, at the choice point of the plus maze used by Packard and McGaugh (1996), 

the egocentric sensory input will be similar from both training and probe directions. Thus, under 

striatal control of behavior, the sensory input associated with a specific action (body turn) during 

learning will also be driven by the sensory input at the choice point during probe trials.  

 

By contrast, we suppose that the hippocampal system receives head direction information as well 

as sensory snapshots, so that boundary-vector cell responses can be formed to drive an allocentric 

place cell representation. Thus, the hippocampus represents states in a way that is relatively 

insensitive to body-orientation and to discrete intra-maze landmarks compared to extended 

environmental features. On encountering an object of interest (e.g. a food reward or submerged 

platform, or a neutral object), its location can be stored by unsupervised Hebbian learning of 

connections from place cells to “goal cells” coding for that type of object, which might be located 

in subiculum, ventral striatum or prefrontal cortex (e.g. Hok et al., 2005). The firing of these cells 

will then provide a value function for navigation to that object – increasing with proximity to it as 

more of the place cells with potentiated synapses become active (Burgess and O’Keefe, 1996), 

see Figure 5.  

 

 
Figure 5. Schematic of how firing fields of different place cells can be combined to obtain a global value function 
that can be used to reach rewarding locations. The left panel shows an example with few neurons: when the rat 
reaches the rewarding site (marked with and x) fast Hebbian learning takes place between place cells that are active 
in that location (represented by black dots surrounded by their blue receptive field) and a “goal cell” downstream 
(e.g. in subiculum, ventral striatum or prefrontal cortex). In this location the activity of the goal cell is maximal. 
When the rat moves away from this location, fewer of the place cells with potentiated synapses will be active and 
therefore the firing rate will be lower. The right panel shows an example with a great number of place cells: when the 
number of places cells projecting to the value neuron increases, the resulting value function becomes smother and 
more regular. 
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Although such goal cells would provide an indication of how close the animal is to the desired 

location, they would not indicate in which direction to move to reach it. However, the temporal 

characteristics of place cell firing (“theta phase precession,” O’Keefe and Recce, 1993) are such 

that within each cycle of the theta rhythm, the location represented by the currently active subset 

of place cells “sweeps forward” from behind to in front of the animal (Burgess et al., 1994; 

Johnson and Redish, 2007; Skaggs et al., 1996). This potentially allows ‘exploration’ of the 

suitability of the current direction of travel. Similar “forward sweeps” are observed during non-

locomotor behavior and sleeping (Diba and Buzsáki, 2007; Pfeiffer and Foster, 2013; Wilson and 

McNaughton, 1994), which may relate to consolidation and planning. Note that the proximity 

relationships between place cells, as read out by forward sweeps, implicitly encode a model of 

state-transitions that reflects spatial structure rather than relationships to reward. 

 

In order to produce a motor action or simply a decision, given the potentially different outputs 

from hippocampal and striatal systems, a mechanism is necessary to compare these outputs and 

decide which is the most appropriate for the task at hand. One ideal candidate for this function is 

medial prefrontal cortex. We suppose that this area selects between the possible actions indicated 

by either system based on the slopes of the associated value functions as a proxy for the 

confidence or uncertainty of the outputs of either system (Daw et al., 2005; Keramati et al., 

2011). Accordingly, the time course of learning in the Packard and McGaugh (1996) experiment 

indicates slower striatal learning and lower confidence early on, resulting in hippocampal control 

of behavior, but the striatal system eventually achieves greater confidence and eventually gains 

control of behaviour. Similarly, in the Pearce et al. (1998) experiment, the intact animals show 

hippocampal control during the first trial of a new session – responding relative to the boundary 

of the maze, oriented by distal cues, and so performing worse than hippocampal lesion animals 

due to the movement of the platform relative to the maze. On later trials within each session 

however, the lesioned animals have improved little, with the intact animals now out-performing 

them.  

 
 

6. Discussion 
Taking inspiration from behavioral, lesion/ inactivation, neuroimaging and electrophysiological 

studies together with existing computational models, we sought to outline a minimal cognitive 

architecture for spatial navigation. Principal functional components of this architecture include 

the basal ganglia / striatum and the hippocampal formation, the former using local, incremental, 

and statistically efficient reinforcement learning rules; and the latter using a one-shot incidental 
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learning rule. The striatum has previously been proposed to function as an “actor-critic” network 

supporting classical and instrumental conditioning (O’Doherty et al., 2004; Yin et al., 2005). In 

our case, it is applied to navigation, using sensory input to provide information about states. By 

itself, the actor-critic can efficiently learn to solve key experimental tasks, such as the water maze 

and the plus maze, but its learning is slow and behavior is characterized by the egocentric nature 

of the sensory state information and the coding of actions.  

 

By contrast, the hippocampus possesses a goal-independent representation of space that is learned 

rapidly, perhaps reflecting its role in episodic memory. This is obtained by having place cells 

initially driven in a fixed feed-forward manner by their proximity relations to environmental 

boundaries (see e.g. Hartley et al., 2000), followed by slower adjustments as an environment 

becomes familiar (see e.g. Barry and Burgess, 2007; Lever et al., 2002) and the potentially 

related adjustment of grid cells (Barry et al., 2012). When an object or goal is encountered, 

“goal” cells can be formed by rapid incidental Hebbian learning in connections from place cells, 

so that their activity can provide gradients that can be used for goal-directed navigation (Burgess 

and O’Keefe, 1996, see also Foster et al., 2000). Behaviour in this case is characterized by the 

allocentric nature of the representations of current and goal locations. 

 

These two systems appear to play complementary roles at different stages of spatial learning. The 

hippocampus provides an initial rapid associative memory for associations between a goal (or a 

neutral object) and its context (environmental location in this case) that can guide goal-directed 

navigation in response to an explicit desire for that goal. However, the contextual association (in 

this case place cells) provides a similarity gradient that might not be sufficient to support 

navigation within complex environments. By contrast, the striatal reinforcement learning 

mechanism is capable of learning the statistics of the task over multiple trials, and thus 

potentially learning state-action trajectories that cannot be directly inferred from contextual 

similarity.  

 

The outputs of these two systems must be coordinated by a third component, potentially 

corresponding to medial prefrontal cortex, see also (Chersi and Pezzulo, 2012; Dollé et al., 2010; 

Sheynikhovich et al., 2009). The most obvious mechanism for selection is a comparison of  the 

“confidence” in movement directions signaled by either system, possibly utilizing the local 

gradient of the normalized value function expressed by each system. This proposed architecture 

relates to more general models of decision making (Daw et al., 2005; Dayan, 2009) which 

emphasize that goal-directed and habitual mechanisms of choice are linked to model-based and 

model-free methods of reinforcement learning, respectively.  
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However, the mapping of habitual and goal-directed (as in e.g. sensitive to devaluation of the 

type of reward) mechanisms onto hippocampal and striatal learning systems is not straight 

forward. Both mechanisms may exist outside of the hippocampus, with some authors implicating 

striatum in habitual learning and prefrontal cortex in goal-directed learning. In this context, the 

hippocampal system can be seen as a “third way” (Lengyel and Dayan, 2007). It is not just 

another model-based reinforcement learning system, but appears to be best characterized by one-

shot incidental learning of specific examples, as consistent with its well-recognized role in 

episodic memory (Cohen and Eichenbaum, 1993; Hirsh, 1974; O’Keefe and Nadel, 1978; 

Scoville and Milner, 1957).  

 

Nonetheless, the hippocampal system can certainly play the role of the ‘model’ in a model-based 

learning system. Specifically, the relationship between an explicit memory system and a means of 

generating imagery for planning is now being recognized. Thus, the hippocampus can be seen as 

the highest level in a generative model capable of consolidating memory in neocortex (Káli and 

Dayan, 2004, 2000). It can also be seen as a system for enabling information from long term 

memory to be rendered in parietal cortex as a coherent egocentric spatial scene consistent with a 

single viewpoint (Burgess et al., 2001; Byrne et al., 2007). In either case, the hippocampal system 

can be used to generate information corresponding to upcoming states for use in planning, as 

consistent with recent experiments relating the human hippocampus to the ability to perform 

spatially coherent imagery (Hassabis and Maguire, 2007; Schacter and Addis, 2007). The medial 

prefrontal and striatal areas appears to be involved in representing the reward value of elements 

of imagined scenarios (Benoit et al., 2014; Lin et al., 2015).  

 

Within the view of the hippocampus as a generative model or means of imagining future states, 

the imagined movement of the agent could be achieved by iterative interactions with parietal 

cortex (Byrne et al., 2007; Chersi et al., 2013), or by the generation of “forward sweeps” of place 

cell representations either during theta states (Burgess et al., 1994; Johnson and Redish, 2007; 

Skaggs et al., 1996) or off-line “replay” (Pfeiffer and Foster, 2013; Wilson and McNaughton, 

1993). These schemes can be seen as architectures for iterative decision making (e.g., Penny et 

al., 2013), and may enable the striatum to access the expected value associated with specific 

environmental locations (Lansink et al., 2008; van der Meer and Redish, 2009).  

 

In conclusion, we hope to have shown that spatial navigation can serve as a model system in 

cognitive neuroscience, in which specific representations, learning rules and control strategies 

can be inferred from the vast experimental literature that exists across many species, including 
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humans. In this brief review we have attempted to outline a minimal cognitive architecture 

consistent with the most obvious of these inferences, both to demonstrate its utility as a model 

system and to encourage further theoretical and experimental elaboration.  

 

Box 1: What we know (Main facts on the cognitive architecture of spatial navigation) 

1. Multiple spatial representations have been identified in neuronal firing, and in behavior. 

2. There is a good mapping between representations and brain systems.  

3. These systems appear to combine constructively to support spatial memory, which implies that 

they can be selected between in an appropriate manner, e.g. according to a measure of 

‘confidence’ in each system (e.g. slope of value function). 

4. Different systems appear to use different learning rules, potentially reflecting optimization for 

different aspects of the task (1-shot learning for hippocampal episodic memory, prediction error 

for striatal action learning) 

 

Box 2: What we need to know (Open questions) 

1) Although the hippocampus and the striatum learn by means of two very different mechanisms, 

what is the influence of the former on the latter during learning? Does the information from the 

hippocampus directly contribute to the calculation of the prediction error in the striatal system, or 

is its influence only indirect via behavior (e.g. providing examples of successful routes early in 

learning). A puzzle here is that if hippocampal information is available to the ‘critic’, early 

hippocampal learning would block subsequent learning by the striatum, but if it is not, why does 

the boundary block learning to the landmark in Doeller and Burgess, (2008)? 

2) Are the representations in striatum and parietal areas that could support landmark-related and 

response learning the same, or are there multiple such representations, and if so what are they 

like? The Packard and McGaugh (1996) study implies striatal encoding of an egocentric body 

turn, whereas the Pearce et al., (1998) study implies that hippocampal lesion animals can navigate 

to an allocentric vector from a landmark, however it is possible that their sub-optimal 

performance reflects a failure of allocentric representation (e.g. having to circle the landmark).  

3) How complex and detailed can place cell “forward sweeps” be, and are they used in planning? 

It has been shown that in open fields and in simple mazes forward sweeps produce a small 

number of simple paths, but what happens when environments are complex? Will it be possible 

to observe branched sweeps? Or do these end at the following decision point? 

4) How does the proposed one-shot learning in the hippocampus work? Encounters with non-

rewarding objects are encoded in the context of a memory test, but not all coincidences of stimuli 

can be encoded: what determines which are and which are forgotten? Do they have to be 

followed by a significant (e.g. rewarding) event as per schema theory (Tse et al., 2007). Novelty 
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must boost learning (e.g. one-shot learning is presumably restricted to the first experience), how 

do the role of novelty in the hippocampus compare to that of reward prediction-error in the 

striatum, and do both involve dopamine (see e.g. Guitart-Masip et al., 2014)?  

5) The use of hippocampal place cells for guiding navigation, e.g. via experience-dependent 

associations between them, requires that distances between places are inferred from moving 

between them, and so will be distorted by the routes taken rather than reflecting distance per se. 

A potential solution for large-scale vector navigation could be to make use of the intrinsic 

metrical regularity of grid cell firing patterns to infer the translation vector between locations 

(Bush et al., Neuron, submitted). 

6) The vast amount of experimental data, both behavioral and neurophysiological, acquired in 

simple environments allows rather precise hypotheses on the functioning of spatial navigation 

mechanisms. On the contrary, information from complex mazes is mostly missing, thus it is not 

known how planning and decision making may work in these environments, and how this kind of 

knowledge is represented in the brain. It may be that combinations of memory-based and 

reinforcement-based learning is employed, such as eligibility traces or saliency based learning, or 

that grid cells play a more important role as they are able to provide global metrical 

representations of complex environments (Carpenter et al., 2015). 
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Supplementary material: Reinforcement learning 

The core idea of reinforcement learning is to predict the value of sensory states with respect to 

the current task and the optimal policy for making actions. When actual outcomes (primary 

rewards or punishment) fail to match the prediction, the difference (the prediction error) is used 

to modify the connections in order to improve predictions. By providing an internal prediction of 

value (or critic), the animal can learn to improve performance even when actual outcomes occur 

infrequently (solving the problem of temporal credit assignment).  

One of the most common RL algorithms is the temporal difference (TD) learning rule which can 

be formalized in the following way: 

 

 ∆WSens-Cr = α [ r t + γ⋅V(St) – V(St-1) ]     (1) 
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where WSens-Cr are the weights between the representation of the (sensory) state and a critic 

(perhaps neurons in ventral striatum), V(St) is the value of state S at time t (i.e. expected summed 

discounted future reward) represented by the activity of the critic neurons and direct function of 

the weights WSens-Cr, α is the learning rate, rt is the actual reward at time t (usually 0, except at the 

rewarding site), and γ is the discount factor (which indicates the factor by which an immediate 

reward is preferable to a delayed reward). The term in parentheses is the “prediction error”, 

indicating the difference in value at time t compared to that predicted at time t-1. In the simplest 

form of an “actor-critic” architecture, the same learning rule can be used to change connection 

weights between the neurons representing the state and neurons representing the action taken (an 

“actor,” which might be implemented in dorsal striatum).  

One way to handle the problem of sampling combinatorially large spaces of states and actions is 

to learn the value of all actions compatible with each given state. This method is known as Q-

learning, with corresponding learning rule: 

 

∆WSens-Cr = α ⋅ [ r t + γ ⋅ maxa Q(St, at) – Q(St-1, at-1) ]   (2) 

 

where Q(St ,at) is the value of action at when in state St , the rest of the parameters being the same 

as in equation 1. Here, the search for the maximum future Q-value as a function of all possible 

actions a is indicated by the maxa operation. Similarly as before, the Q-value is encoded by the 

activity of specific neurons (probably) in the dorsal striatum. As the number of learning trials 

becomes very high, the decision mechanism tends to optimality (Watkins and Dayan, 1992). We 

note that, in general, both “actor” and “critic” may need to incorporate more complex ‘policies’ 

for generating actions, and that the representations of states and actions may need to be 

continuous, rather than the discrete representations often used in analyses. 
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