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Abstract—In this paper, we explore low-complexity
transmission in physically-constrained massive multiple-input
multiple-output (MIMO) systems by means of channel state
information (CSI) relaxation. In particular, we propose a strategy
to take advantage of the correlation experienced by the channels
of neighbour antennas when deployed in tightly packed antenna
arrays. The proposed scheme is based on collecting CSI for only
a subset of antennas during the pilot training stage and, subse-
quently, using averages of the acquired CSI for the remaining
closely-spaced antennas. By doing this, the total number of radio
frequency (RF) chains, for both CSI acquisition and data trans-
mission, and the baseband signal processing are reduced, hence
simplifying the overall system operation. At the same time, this
impacts the quality of the channel estimation produced after the
CSI acquisition process. To characterize this tradeoff, we explore
the impact that the number of antennas with instantaneous CSI
has on the performance, signal processing complexity, and energy
efficiency of time-division duplex (TDD) systems. The analytical
and simulation results presented in this paper show that the
application of the proposed strategy in size-constrained antenna
arrays is able to significantly enhance the energy efficiency against
systems with full CSI availability, while approximately preserving
their average performance.

Index Terms—Massive MIMO, incomplete CSI, antenna corre-
lation, energy efficiency.

I. INTRODUCTION

T HE DESIGN of future wireless communication systems
centers upon rigorous spectral and energy efficiency

requirements [1]–[3]. Specifically, novel communication strate-
gies aim at meeting the exponentially increasing data rate
demands while simultaneously offering a reduced power con-
sumption [1]. A feasible solution to satisfy these requirements
has been provided by massive or large-scale MIMO systems,
which are based on incorporating a large number of antennas
at the base stations (BSs) [2], [3]. These systems are able to
significantly outperform their small-scale counterparts by using
conventional linear detection and precoding schemes, which
have been shown to offer a close-to-optimal performance for
a large but finite number of antennas [4], [5]. This is because
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the impact of harmful communication effects such as the envi-
ronmental noise or the imperfect CSI vanish as more antennas
are allocated at the BSs [2], [4], [5]. Nevertheless, the use of
these systems has also posed new challenges that need to be
solved before their practical implementation [2].

One of the main concerns is related to the deployment of a
large number of antennas in constrained physical spaces [2],
[6], [7]. This leads to an increased inter-antenna correlation due
to insufficient antenna separation, which may affect the system
capacity unless conveniently approached [2], [8]–[16]. Indeed,
both spatial correlation and mutual coupling effects have been
extensively studied in the MIMO literature [9]–[16]. In this
context, the excessive number of antennas deployed in mas-
sive MIMO makes the consideration of these effects critical.
The significant power consumption introduced by the additional
RF chains implemented in massive MIMO systems can also
have a negative impact on the energy efficiency [17]. Moreover,
the collection of accurate CSI complicates the application of
massive MIMO to frequency-division duplex (FDD) scenarios.
This is because the CSI acquisition time of the conventional
FDD approaches is proportional to the number of antennas allo-
cated at the BSs [2], [3]. As a consequence, a significant part
of the literature has focused on the operation of TDD systems
and the pilot contamination problem [3], [18]. Additionally,
even for TDD the large number of antennas entails a notable
increase in the number of signal processing operations per-
formed by channel estimation processes and linear precoding
and detection strategies [19], [20]. In fact, this constitutes one
of the bottlenecks in the practical implementation of these sys-
tems, since the complexity of linear precoding schemes such as
zero-forcing (ZF) is still considered burdensome [19].

The above-mentioned challenges have been explored in a
number of related works. For instance, the effects of fitting
a massive number of antennas in size-constrained structures
have been studied in [6]–[8], [21]. Specifically, [6] explores
the impact of physical space constraints on the sum rate per-
formance of massive MIMO systems whereas [8] demonstrates
that inter-user interference does not vanish in the large-scale
limit when the physical size of the antenna array is constrained.
While focused on massive MIMO setups, these works lean on
the results previously obtained in [9]–[16]. Indeed, these results
have also been leveraged in [12], [22]–[24] for reconfiguring
the physical location of the antenna elements with the pur-
pose of maximizing performance. The influence of the power
consumption of the RF circuitry on the energy efficiency and
strategies to reduce the number of electronic components have
been considered in [17], [25]–[28]. Additionally, several alter-
natives have been proposed to improve the acquisition of the
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CSI for both TDD and FDD systems (see, e.g., [18], [28]–[33]
and references therein). Some of these works exploit the appear-
ance of low-rank channel matrices due to the inter-antenna
correlation of massive antenna arrays or finite scattering to
enhance the channel estimation process. Particularly related to
this work is [34], where the large correlation between adjacent
antennas is exploited to optimize the design of the feedback
information during the CSI acquisition stage of FDD systems.
A number of solutions to reduce the computational complexity
involved in the channel estimation [20] and signal precoding
or detection [19], [35] have been also proposed. In line with
these contributions, here we study a solution particularly tai-
lored for size-constrained antenna arrays that addresses several
of the above-mentioned challenges.

Specifically, in this paper we propose a strategy to optimize
the trade-off between the quality of the acquired CSI and the
energy efficiency in tightly packed antenna arrays with a large
number of antennas. Here, we do not rely on reconfiguring the
antenna array in contrast with [12], [22]–[24], or on exploiting
channel sparsity due to having directional links with a lim-
ited number of scattering clusters as per the millimeter wave
designs of [36]–[40]. Instead, the proposed scheme is based on
exploiting inter-antenna correlation to relax CSI acquisition by
completely disposing with the CSI of a subset of antennas. This
is done by deactivating a number of antennas during the pilot
training stage, hence acquiring incomplete information of the
global communication channel. After this process, the CSI of
the antennas that were inactive during the CSI acquisition stage
is obtained by simply averaging the instantaneous CSI of the
neighbour antennas that collected this information. As a result,
the signal processing load and the power consumption of the
RF circuitry during the CSI acquisition process is reduced at
the cost of decreasing the accuracy of the channel estimation.
We later show that this benefit holds true for the data trans-
mission stage as well. This motivates us to study the effects
that the number of antennas without instantaneous CSI has on
the performance, computational load and energy efficiency of
size-constrained massive BSs.

In particular, although the collection and use of incomplete
CSI has notable implications in the implementation of both
TDD and FDD scenarios, in the following we concentrate on
TDD systems for both reasons of simplicity and for their prac-
tical importance in massive MIMO systems [2], [3], [41]. The
relevance of TDD systems for future massive MIMO deploy-
ments is justified by the independence of their CSI pilot training
length on the excessive number of antennas implemented at
the BS. The latter dependence arises in FDD systems operat-
ing in non-sparse channels [2], [3], [41]. In this setting, we
observe that the transmission performance of massive MIMO
BSs deployed in constrained physical spaces is highly tolerant
to the acquisition of incomplete CSI. This translates to signif-
icant gains in the energy efficiency due to the simultaneous
reduction in the number of RF chains and signal processing
load offered by the proposed scheme. Additionally, the acqui-
sition of incomplete CSI can be combined with other channel
estimation and pilot design techniques to further enhance per-
formance [29], [30]. For clarity, the contributions of this paper
can be summarized as follows:

1) We propose a low-complexity scheme based on the acqui-
sition of incomplete CSI to exploit the inter-antenna cor-
relation that arises in massive MIMO systems deployed
in constrained physical spaces.

2) We perform a mathematical analysis of the error intro-
duced by the proposed strategy in the channel estimation
process to characterize the impact of the incomplete CSI
acquisition.

3) We carry out a) complexity and b) energy efficiency
analyses and use these to examine the trade-off between
CSI relaxation and performance against systems with
complete CSI availability.

II. SYSTEM MODEL

A. TDD System Model and CSI Acquisition

A generic multi-user TDD system comprised of K single-
antenna users and a large-scale BS with N � K antennas is
considered in this paper. The communication channel follows
a block-fading propagation model, hence remaining constant
throughout a number of ηcoh symbols in which a frame is con-
veyed, and varying independently between frames [4]. Initially,
the CSI is acquired at the BS via the predefined orthogonal
training signals transmitted from the mobile stations (MSs) dur-
ing the first ηtr ≥ K symbol slots [42]–[45]. Specifically, let
H ∈ C

N×K denote the uplink communication channel matrix.
The signal received by the BS during the training stage is given
by [42], [46]

P = √ρul ·H�+ N, (1)

where � ∈ C
K×ηtr represents the orthogonal training sig-

nals transmitted by the users, ρul is the signal-to-noise ratio
(SNR) of the reverse channel, and N ∈ C

N×ηtr is an additive
white Gaussian noise matrix with independent and identically
distributed (i.i.d.) entries ni, j ∼ CN(0, 1). Here, ∼ can be
read as “distributed as”, and CN(μ, σ 2) represents a circu-
larly symmetric complex Gaussian random variable with mean
μ and variance σ 2. The training signal matrix is given by
� = [φ1, . . . ,φK ]T , where φk ∈ C

ηtr×1 denotes the orthogo-
nal training signal assigned to the k-th user and (·)T repre-
sents the transpose of a matrix or vector. The correlation of
the received signals during the training stage with the pilot
sequences yields the decision metric [5], [42], [46]

P̂ = (√ρtr ·H�+ N
)
�H = √ρtr ·H+W, (2)

where ρtr represents the effective training SNR [5], (·)H

denotes the Hermitian transpose and W = N�H is comprised
of i.i.d. entries given by wi, j ∼ CN(0, 1). The estimated uplink
channel can be directly obtained from (2) by applying estima-
tion strategies such as those based on minimizing the mean
square error (MMSE) [20], [46]. Moreover, provided that chan-
nel reciprocity holds, the downlink channel can be straight-
forwardly obtained as the conjugate transpose of the uplink
estimate [5].

Once the pilot transmission stage is completed, the remaining
symbol slots ηcoh − ηtr of the channel coherence time are used
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for downlink and uplink data transmission [42]–[45], [47]. In
particular, the signal received by the k-th MS during a downlink
symbol slot can be expressed as

yk = √ρfhH
k x+ zk, (3)

where x ∈ C
N×1 denotes the symbols transmitted by the BS,

hH
k ∈ C

1×N represents the downlink communication channel
from the BS to the k-th user, ρf denotes the SNR of the forward
link, and zk ∼ CN(0, 1) is the standard additive white Gaussian
noise. In this massive MIMO setting, linear precoding strategies
approach the performance of the more computationally com-
plex non-linear schemes, hence making their use convenient
[2], [5]. For this reason, we decompose the transmit signal as

x = ν · Fs = Fs√
E
{
Tr
[
FH F

]} , (4)

where F ∈ C
N×K represents an arbitrary linear precoding

matrix, s ∈ C
K×1 denotes the user constellation symbols to

be conveyed, and ν = 1/E
{√

Tr
[
FH F

]}
[5]. Here, Tr (·) is

the trace of a matrix and the normalization constant ν guar-
antees that the average transmission power is constrained to
Pt = E

{
xH x

} = 1. In the previous expressions, E {·} stands for
the expectation operator. To maintain the focus of the paper on
the proposed concept, in the following we concentrate on zero-
forcing (ZF) precoding, although it is clear that the benefits of
the proposed strategy also apply to other precoding schemes.
The signal transmitted by the ZF precoder is given by

x = ν ·
(

H̃H
)†

s = H̃
(
H̃H H̃

)−1
s√

E

{
Tr
[(

H̃H H̃
)−1

]} , (5)

where H̃H represents the estimate of the downlink channel
available at the BS and (·)† denotes the matrix pseudoinverse.

B. Physically-Constrained Channel Model for 2D Antenna
Arrays

In this section we describe the physical channel model that
will be used in the following to characterize the particular
properties of size-constrained massive MIMO BSs [6], [8],
[30], [46], [48]. It is anticipated that future massive MIMO
transceivers will be deployed within the limited spaces of
today’s BSs. Accordingly, the MIMO arrays will experience
transmit correlation and mutual coupling that will be dependent
on the increasing number of antenna elements. In particular,
since large-scale BSs are expected to be implemented in 2D
and 3D antenna structures that allow packing more elements in
a fixed physical space, we concentrate on describing the physi-
cal channel model of a planar antenna array [2]. In this study we
neglect the effects of mutual coupling since they can be com-
pensated by impedance matching techniques [49]. Therefore,
the propagation channel from the k-th user to the BS can be
expressed as [46], [48]

hk = AH
k gk, (6)

where gk ∼ CN(0, IDk ), Dk corresponds to the number of
directions in which the angular domain is divided, and Ak ∈
C

Dk×N is the steering matrix containing the Dk transmit steer-
ing vectors of the antenna array. The transmit steering matrix of
the k-th user is given by [6], [48]

Ak = 1√
Dk

[
aT (φk,1, θk,1), . . . , aT (φk,Dk , θk,Dk )

]T
. (7)

Here, the directions of departure (DoD) of the k-th user are
characterized by φk,n ∈ [φmin

k , φmax
k ] and θk,n ∈ [θmin

k , θmax
k ],

which specify the azimuth and elevation angles of depar-
ture respectively. The transmit steering vectors of an arbitrary
rectangular array can be expressed as [50]

a(φk,n, θk,n) =
[
1, e j2π[dh sin(θk,n) sin(φk,n)], . . . , (8)

e j2π[(Mh−1)dh sin(θk,n) sin(φk,n)+(Mv−1)dv sin(θk,n) cos(φk,n)]
]
.

Here, dh and dv denote the inter-antenna spacing in the hori-
zontal and vertical axes normalized by the carrier wavelength
λ, and Mh and Mv represent the number of antennas allo-
cated in the horizontal and vertical axes respectively. Clearly,
dh = dv for the particular case of uniform rectangular arrays
(URAs). The total number of antennas is therefore given by
N = Mh × Mv. Moreover, to provide a fair comparison, in this
work we consider that the horizontal and vertical inter-antenna
distances at the BS are given by

d{h,v} = L{h,v}(
M{h,v} − 1

) , (9)

where L{h,v} denotes the fixed horizontal and vertical lengths
of the antenna array. The total surface in which the antennas
are deployed is denoted as L = Lh × Lv. Note that the above
model assumes that there is no spatial correlation between
users, a reasonable consideration since the inter-user distance
is usually larger than λ [6].

Remark 1: Since the physical space dimensions of the
antenna array are predetermined, the above entails that the
inter-antenna correlation depends on the total number of anten-
nas installed. This model allows us to accurately capture the
inter-antenna correlation that arises due to insufficient antenna
separation, which constitutes our focus in the following.

Remark 2: Linear antenna arrays can be regarded as a partic-
ular case of the described rectangular array by letting Mv = 1
and setting θk,n = π/2 ∀k ∈ [1, K ], n ∈ [1, Dk] [6].

III. RELAXING THE CSI ACQUISITION: INCOMPLETE CSI

The dense deployment of antenna arrays leads to an increased
correlation between the antenna elements, which also translates
to a larger similarity between the communication channels of
closely spaced antennas [2], [6]. This circumstance motivates us
to consider the practicability of collecting the CSI for a subset
of antennas during the CSI acquisition stage and analyzing its
effects in the operation of the communication system. Formally,
let the set that indexes all the antenna elements allocated at the
BS be defined as

N = {1, . . . , N } . (10)



GARCIA-RODRIGUEZ AND MASOUROS: EXPLOITING THE INCREASING CORRELATION OF SPACE CONSTRAINED MASSIVE MIMO 1575

Fig. 1. (a) Example of CSI distribution for Mh = 4, Mv = 3 and Nc = 7.
(b), (c) Basic CSI distribution patterns. Black and white elements represent
antennas with and without acquired CSI respectively.

Each entry of the set indexes the n-th antenna of the planar array
An as shown in Fig. 1(a). Furthermore, let us define the sets
B ⊂ N and C ⊂ N as two subsets of N satisfying

B ∩ C = ∅,B ∪ C = N. (11)

In the previous expressions, ⊂, ∪ and ∩ denote the subset,
union and intersection of sets respectively. Specifically, the sub-
set B indexes the antennas whose CSI has been acquired during
the pilot training stage, and C determines the antennas with-
out instantaneous CSI availability. Subsequently, |B| = Nc ≤
N and |C| = N − Nc determine the number of antennas with
and without instantaneous CSI knowledge respectively. Here
| · | denotes the cardinality of a set.

The proposed scheme aims at limiting the collection
of instantaneous CSI to a number of antennas Nc ≤ N .
Subsequently, the large inter-antenna correlation that arises in
tightly packed antenna arrays is exploited to determine the
CSI for the rest of antennas. In other words, only the anten-
nas indexed by the subset B will be active during pilot signal
reception, and the averages of the information acquired will be
subsequently used as CSI for the remaining antennas for the
purposes of precoding and detection. This brings the following
critical benefits that will be studied in the following:
• The signal processing load of the channel estimation

and signal transmission processes can be dramatically
reduced. This can be attained by limiting the number of
antennas simultaneously active during pilot reception and
by performing an insightful design of the transmit signals.
• The number of receive RF chains activated through-

out the pilot training and downlink transmission stages
is constrained to Nc, hence reducing the circuit power
consumption of the related circuitry.

At this point we remark that the incomplete acquisition pro-
cess affects the decision metric obtained after pilot correlation
in (2), which for ηtr = K can be expressed as

P̂
∣∣
[B,K] =

√
ρtr ·H

∣∣∣[B,K] +W
∣∣∣
[B,K]

, (12)

where C
∣∣∣[T1,T2] represents the sub-matrix obtained by select-

ing the rows given by T1 and the columns specified by T2.
In this notation, the sets K = {1, . . . , K } and N = {1, . . . , N }
are commonly employed to select all the columns or rows

depending on the context. Similarly, we use c
∣∣∣[T] to denote

the sub-vector obtained by selecting the entries determined by
T. In the following we also let ck,n denote the n-th entry of the
vector ck for ease of notation.

After the incomplete channel estimation process, the channel
of the k-th user can be expressed as

h̃k

∣∣∣[B] = ĥk, (13)

h̃k

∣∣∣[C] = f
(̃

hk

∣∣∣[B]
)

, (14)

where ĥk ∈ C
Nc×1 denotes the uplink channel of the k-th user

for the antennas with CSI acquired during the training stage
(subject to CSI acquisition errors), and f (·) : CNc → C

(N−Nc)

is a linear function whose definition will be considered in the
following.

A. Distribution of the CSI on the Antenna Array

The definition of B,C and f (·) impacts the performance and
complexity of the proposed scheme. Ideally, an optimization
problem could be formulated for determining the antennas that
collect instantaneous CSI during the pilot training stage. The
objective of this problem would be minimizing the effect of
the incomplete CSI acquisition on the accuracy of the resulting
channel estimate. This however entails significant complexity
and is therefore out of the scope of our study, which focuses
on a low-complexity CSI distribution and averaging approach.
For this reason, in this paper we propose a CSI distribution
strategy that leverages on the use of predefined CSI distri-
bution patterns. The considered scheme aims at obtaining a
low-complexity solution by exploiting the following intuition:
the larger the correlation between the channels without instan-
taneous CSI and the channels employed to derive their CSI,
the smaller the CSI error introduced. In other words, for any
antenna deactivated during the training stage, there must be
others with their instantaneous CSI available in its proximity.
Specifically, the proposed CSI distribution procedure is based
on the combination of the two basic CSI distribution patterns
shown in Fig. 1(b) and (c) with colored subsets. In these figures,
the black and white antennas represent the antennas with and
without instantaneous CSI acquired during the training stage
respectively. These patterns allow us to efficiently distribute the
CSI for the cases in which (Nc/N ) ≥ (1/3) that are explored in
the following1.

The pseudocode of the proposed CSI distribution procedure
is shown in Algorithm 1, where ∅ represents the empty set, (·)C

denotes the complementary of a set, and ·� and �·� denote the
floor and ceiling functions, respectively. An illustrative exam-
ple of the application of this strategy is shown in Fig. 1(a) for
the case of Mh = 4, Mv = 3 and Nc = 7. The application of
Algorithm 1 generalizes the CSI distribution process to more
complicated cases. Overall, this representative example shows
that the proposed CSI distribution aims at maximizing the num-
ber of adjacent antennas with acquired CSI for each antenna

1Note that this is adequate since it will be shown that (Nc/N ) ≥ (1/3)

is required to obtain a satisfactory performance in realistic massive MIMO
systems. This is because the double polarized antennas to be employed in
future deployments occupy a physical space that might impede placing them
arbitrarily close.
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Algorithm 1. Pseudocode of the CSI distribution algorithm

Inputs: N , Nc, Mh, Mv
1: Outputs: B,C

2: B,C← ∅ {Initialization}
{3 – 4: Maximum and minimum number of antennas with
instantaneous CSI per row}

3: Nmax ← �Nc/Mv�
4:Nmin ← Nc/Mv�

{5 – 6: Number of rows with the maximum and minimum
number of antennas with CSI per row}

5: Mmax ← (Nc − Mv Nmin)

6: Mmin ← Mv − Mmax
7: {Bmin,Bmax ← Create reference CSI distribution patterns

per row with Nmin (Bmin) and Nmax (Bmax) antennas with
CSI by combining the basic patterns shown in Fig. 1(b) and
(c) and adding additional antennas with CSI where required}

8: for j = 0→ (Mv − 1) do
9: if j < Mmin then
10: B← B ∪Bmin
11: else
12: B← B ∪Bmax
13: end if
14: Bmin ← {Circular shift of Bmin to determine the anten-

nas with CSI in the j-th row for j < Mmin}
15: Bmax ← {Circular shift of Bmax to determine the

antennas with CSI in the j-th row for j ≥ Mmin }
16: end for
17: C← BC

without this information to efficiently exploit the inter-antenna
correlation.

The operation of the proposed CSI distribution algorithm can
be described as follows: Initially, the number of antennas per
row with instantaneous CSI is determined by assigning a sim-
ilar number of antennas with CSI per row to evenly distribute
the CSI. For instance, Fig. 1(a) shows that the first Mmin = 2
rows of antennas have Nmin = 2 antennas with CSI, whereas
the last one has Nmax = 3 antennas with CSI. After this, the
antennas with CSI are distributed for each row by combining
the antenna patterns depicted in Fig. 1(b) and (c), and adding
antennas with CSI to these to ensure that the total number of
antennas with CSI per dimension is the one previously speci-
fied. For instance, Fig. 1(a) shows that the CSI in the first row
of antennas is distributed by consecutively combining two of
the antenna patterns described in Fig. 1(b), whereas for the CSI
distribution in the third row an additional antenna with CSI has
been added. We note that the additional antennas with CSI are
solely required for the cases (Nc/N ) > 1/2, and that their spe-
cific positions have shown to have a negligible performance
impact. Subsequently, we shift circularly the patterns to deter-
mine the distribution of the CSI in the following rows. This is
illustrated in Fig. 1(a), where it can be seen that the CSI distri-
bution of the second row is obtained by shifting the distribution
of the previous one. This procedure ensures that the CSI of the
antennas is evenly distributed, thus reducing the distance of the
antennas with and without instantaneous CSI.

Remark 3: The employment of the basic CSI distribution
patterns does not restrict the proposed scheme to a solution
with fixed Nc. Instead, they allow us to analyze the complexity-
performance trade-off that arises for varying Nc, since different
system requirements might motivate the employment of distinct
solutions as studied in the following.

After defining the sets B and C, the remaining step consists
on determining the CSI of the antennas that were inactive dur-
ing the training stage. Let Tn denote the n-th entry of a set.
Then, the CSI of the antennas without instantaneous CSI is
obtained by averaging the CSI of the closest antennas with this
information. Subsequently, the Cn-th entry of the channel vector
of the k-th user can be expressed as

h̃k,Cn =
1

MCn

MCn∑
i=1

ĥ
k,B

Cn
i

. (15)

Here, MCn denotes the number of neighbour antennas with
indexes BCn ⊂ B used to average the CSI for the Cn-th antenna.
In other words, the CSI of a given antenna without instanta-
neous CSI knowledge is obtained by averaging the CSI of the
antennas belonging to BCn . The global estimated communica-
tion channel with incomplete CSI after the averaging operations
can be therefore expressed as

H̃ = RH Ĥ, (16)

where Ĥ ∈ C
N×K is the estimated channel matrix formed by

the entries that correspond to the antennas active during the
training stage, which are given by ĥk

∣∣[B] , and zeros elsewhere.
Moreover, R ∈ R

N×N describes how the available CSI is com-
bined to obtain the CSI for the rest of the antennas. This matrix
is referred to as the CSI averaging matrix and its n-th column is
given by

R
∣∣∣[N,n] =

{
I
∣∣[N,n] , ∀n ∈ B,
1

Mn
rBn , ∀n ∈ C,

(17)

where I
∣∣[N,n] ∈ Z

N×1 denotes the n-th column of an N × N
identity matrix, and rBn ∈ Z

N×1 is a vector with all its entries
set to zero except for those found in the positions given by
the set Bn . Similarly to (15), Mn corresponds to the number
|Bn| of antennas employed for interpolating the CSI of the n-th
antenna. Note that R = IN when complete CSI is acquired.

Remark 4: Although more intricate strategies can be imple-
mented, in this paper we focus on the simple averaging oper-
ation for reasons of illustration and for not detracting the
attention from the basic principle introduced in this work.
Moreover, this operation is especially practical due to both
the hardware and the signal processing advantages detailed
hereafter. Future work will analyze the consequences of using
different strategies on the resulting performance.

B. Implications of the Acquisition of Incomplete CSI

The averaging of the CSI has several implications on a range
of communication aspects such as the signal processing load or
the hardware complexity that are considered in this section. In
particular, we concentrate on the training and downlink stages,
which constitute the main focus of this paper.
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Fig. 2. Block diagram of the proposed transmission scheme. Black and white antennas represent elements with and without acquired CSI respectively.

1) Dimensionality Reduction of the Received Training
Signals: Inherently, the dimensions of the received training
signals are reduced when incomplete CSI is acquired. An
immediate consequence of this is that only Nc ≤ N RF chains
remain active during the pilot training stage, which allows us
to reduce the total power consumption of standard channel
estimation approaches [42]. Simultaneously, the computational
complexity of the CSI estimation process is reduced due to the
smaller dimensions of the acquired pilot signals. Particularly,
apart from a decrease in the complexity of the conventional
pilot correlation process shown in (2), the dimensionality
reduction can be particularly beneficial when complex chan-
nel estimation strategies are employed due to the polynomial
dependence of their complexity on Nc [20], [30]. This comes at
the cost of introducing an error in the channel estimate, which
clearly depends on the inter-antenna distance, the quality of the
acquired CSI, and the number of antennas with instantaneous
CSI as studied in Sec. IV.

2) Data Transmission Stage: The differences in the esti-
mated channel with full and incomplete CSI have a direct effect
on the achievable rates of the system that will be explored
in Sec. VII. However, the incomplete acquisition of CSI also
allows us to derive an interesting relationship between the sig-
nals transmitted from the different antennas, which can be
re-expressed as

x = ν · Fs⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x
∣∣∣[B] =

F
∣∣∣[B,K] · s

E

{√
Tr
[
FH F

]} ,

x
∣∣∣[C] =

(
R
∣∣∣[B,C]

)H · x
∣∣∣[B].

(18)

for the conventional matched filter (MF), ZF and regularized ZF
precoding schemes. The above expression entails that the sig-
nals of the antennas that were deactivated during the training
stage can be obtained by combining the signals generated for
the antennas whose CSI was acquired. This has a direct conse-
quence on the signal processing load per transmitted symbol
since we can exploit that, similarly to (15), the signal gen-
eration for the set C can be done in the analog domain by
signal splitting and combining to avoid the computation of

x
∣∣∣[C] in the baseband processing stage. This dispenses with

the need of N − Nc RF chains as shown in Fig. 2 w.r.t. conven-
tional designs, hence dramatically reducing the circuit power
consumption accordingly.

IV. CSI ERROR UNDER INCOMPLETE CSI

First, let us clarify that in the following we refer to imper-
fect CSI when solely describing CSI acquisition errors, whereas
the term incomplete CSI is reserved for the cases in which the
CSI of a subset of antennas is not acquired. The acquisition
of incomplete and imperfect CSI impacts on the quality of the
channel estimated and the resulting performance of precoding
and detection schemes. For this reason, in this section we con-
centrate on characterizing the error introduced by the proposed
strategy in the channel estimation process. The channel estimate
generated after incomplete CSI acquisition for the k-th user (16)
can be re-expressed as [5]

h̃k = hk − hk, (19)

where hk ∈ C
N×1 represents the error introduced by the acqui-

sition of incomplete and imperfect CSI. The imperfect estimate
of the communication channel for the antennas with CSI can be
characterized as [4], [48]

ĥk

∣∣∣∣[B] =
(

AH
k

(√
1− τ 2

k gk + τkqk

))∣∣∣∣
[B]

, (20)

where qk ∼ CN(0, IDk ) is uncorrelated with gk [4], [48] and
τk is a variable that models the quality of the acquired CSI.
The stochastic imperfect CSI model employed in (20) facili-
tates the derivation of intuitive expressions for characterizing
the behaviour of the proposed scheme. In particular, τk = 0
indicates that perfect CSI is collected, whereas τk = 1 corre-
sponds to the case where only statistical information is available
at the transmitter. Moreover, the error of the channel after
the averaging operation for a relevant antenna without CSI is
clearly conditioned by its position on the antenna array, the
inter-element spacing, and the number of antennas selected for
averaging. In the following we model the impact of the incom-
plete and imperfect CSI acquisition on the accuracy of the
channel estimation by using the channel error factor [51]

�k =
E

{∥∥∥hk

∥∥∥2

2

}
E
{‖hk‖22

} = E

{∥∥hk − h̃k
∥∥2

2

}
E
{‖hk‖22

} . (21)

Specifically, since the focus of this paper is placed on
physically-constrained systems, the following theorem details
the behaviour of the above metric for the channel model
introduced in Sec. II-B.
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Theorem 1: Let the communication channel be described
as hk = AH

k gk with gk ∼ CN(0, IDk ) for a given Ak . Also let

ĥk

∣∣∣[B] ∈ C
Nc×1 be the noisy channel estimate of the chan-

nel modeled by following (20). Moreover, consider the channel
of the antennas without CSI to be computed by averaging the
imperfect CSI from the nearby antennas as described in Sec. III.
Then, the channel error factor is given by

�k = 1

N

∑
n∈B

τ 2
k �k

∣∣[n,n] + 1

N

∑
n∈C

⎡⎣�k
∣∣[n,n]

+ 1

(Mn)2

∑
i∈Bn

�k
∣∣[i,i] − 2

√
1− τ 2

k

Mn
Re

(∑
i∈Bn

�k
∣∣[n,i]

)

+ 2

(Mn)
2

Re

⎛⎝ ∑
i, j∈Bn ,i> j

�k

∣∣∣[ j,i]

⎞⎠⎤⎦ , (22)

where �k is the correlation matrix of the channel of the k-
th user given by �k = E

{
hkhH

k

} = AH
k Ak . Moreover, Bn and

Mn represent the indices and total number of antennas used for
computing the CSI of the n-th antenna as defined in Sec. III
respectively.

Proof: The proof of Theorem 1 is given in
Appendix A. �

The above theorem allows us to determine the impact of
applying the proposed strategy based on the entries of the
channel correlation matrix of the true channel, the number of
antennas with and without instantaneous CSI, the number of
antennas employed for the averaging operation, and the qual-
ity of the acquired CSI. In the following we provide a set of
relevant corollaries based on the results of Theorem 1.

Corollary 1: Dependence of �k on τk . The channel error
factor �k is an increasing function of the imperfect CSI param-
eter τk for transmitters in which the channels of the neighbour
antennas are strongly correlated, i.e., those channels satisfying
Re
(∑

i∈Bn �k
∣∣[n,i]

)
> 0.

Proof: The proof follows from the analysis of the terms in
(22) influenced by the factor τk

t1 = 1

N

∑
n∈B

τ 2
k �k

∣∣[n,n] , n ∈ B, (23)

and

t2 = −
2
√

1− τ 2
k

Mn
Re

(∑
i∈Bn

�k
∣∣[n,i]

)
, n ∈ C. (24)

Clearly, both terms are increasing functions of τk provided that
Re
(∑

i∈Bn �k
∣∣[n,i]

)
> 0, which holds true when the channels

of the adjacent antennas are severely correlated. �
Note that the above corollary corroborates the intuition that

the collection of imperfect CSI during the training stage influ-
ences the quality of the channel approximation generated for
the antennas deactivated throughout this process. This can be
explained by the dependence of t2 on τk .

Additionally, it is also intuitive that the channel error factor
�k is an increasing function of the inter-antenna distance d for

Fig. 3. �k vs. inter-antenna spacing for azimuth sector angles of π , π/4 and
π/8 radians (URA) and π/4 (ULA). N = 144, Nc = N/2 and K = 16.

Fig. 4. �k vs. ratio of antennas with CSI (Nc/N ) for different inter-antenna
spacings d. N = 144 and K = 16.

the ranges typically considered, since the inter-antenna corre-
lation depends on this parameter. However, explicitly showing
this for the physical channel model described in Sec. II-B and
a general case is infeasible due to the complexity of the expres-
sions involved. For this reason, the following corollary explores
the particular case of a uniform linear array (ULA) with reduced
angle spreads, which can arise naturally as manifested by the
one-ring correlation model [52].

Corollary 2: Dependence of �k on d. Let the antennas at
the BS be placed in a ULA configuration. Moreover, consider
that perfect CSI is acquired for the active antennas during
the training stage, N/Nc ≥ 2 and small angle spreads such
that sin(φ) ≈ φ and cos(φ) ≈ (1− φ2/2

)
. Then, the channel

error factor �k is a monotonically increasing function of the
inter-antenna spacing d.

Proof: The proof is given in Appendix B. �
The above observation can be explicitly seen in Fig. 3, which

represents the variation of the theoretical and empirical metric
�k in (21) for increasing values of inter-antenna spacing when
the channel model of Sec. II-B is employed. The theoretical
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results in Figs. 3 and 4 have been obtained by direct applica-
tion of (22). We have considered a transmitter with either Mh =
Mv = 12 (URA) or Mv = 1 and Mh = 144 (ULA) antennas,
Nc = N/2, and K = 16 users. The number of angular direc-
tions is set to Dk = 50 in (7) [46], and the elevation angles of
departure are equidistributed within sector angles of π/3 radi-
ans. We note that, while other arbitrary choices for Dk could be
adopted, the modification of this parameter does not modify the
trends and conclusions derived in the following. The different
azimuth angle spreads, π , π/4 and π/8 radians, characterize
the effects of having a limited angle spread on the proposed
scheme. In this figure and throughout this paper the number of
antennas whose CSI is averaged are selected depending on the
number of antennas with CSI as follows. For simplicity, we also
consider τk = τ, ∀k ∈ [1, K ]. On the one hand, for the cases in
which (Nc/N ) ≥ (1/2), only the CSI of the vertically and hor-
izontally adjacent antennas with CSI is averaged. On the other
hand, when the number of antennas with CSI is further reduced
so that (Nc/N ) < (1/2), the CSI of the diagonally adjacent
antennas is used to guarantee that the CSI of a sufficient num-
ber of antennas is averaged. Overall, it can be seen that the
error of the channel generated after the averaging operation
decreases as the antenna inter-spacing is reduced. This can be
explained by the larger correlation experienced between neigh-
bour antennas, which also increases when the angle spread is
constrained.

The evolution of �k for a varying number of antennas with
CSI is shown in Fig. 4 for the same setup of Fig. 3. We consider
an azimuth angle spread of π radians for the URA BS and π/4
for the ULA BS, and different inter-antenna spacings d. From
the results of this figure it can be concluded that small vari-
ations in the number of antennas with CSI strongly influence
the error for Nc/N < (1/2), whereas this impact is reduced
for Nc/N ≥ (1/2). Intuitively, the reason for this behaviour is
related to the number of antennas whose CSI is averaged for
a given antenna without CSI, and it is especially pronounced
for the ULA BS. Furthermore, it can be seen that the the-
oretical derivation closely resembles the empirical results in
both Fig. 3 and Fig. 4 with perfect (τk = 0) and imperfect CSI
(τk = 0.2).

V. COMPLEXITY ANALYSIS

In this section we study the improvements offered by
the proposed strategy regarding the signal processing load.
Specifically, we show that the smaller number of anten-
nas simultaneously active during the CSI acquisition pro-
cedure reduces the number of required signal processing
operations for channel estimation and precoding. In this
section we follow the analysis of [47] for reasons of
reference.

The signal processing operations performed in a TDD com-
munication system can be divided into three different stages,
namely CSI acquisition stage, downlink signal transmission,
and uplink signal reception [43]–[45], [47]. These stages cor-
respond to the communication phases in which the channel
coherence time is divided and their respective lengths determine
the global complexity as shown in the following.

A. CSI Acquisition Stage

Throughout this stage, the BS receives the pilot signals
transmitted by the MSs and uses these to estimate the
communication channel [42]–[45], [47]. For simplicity, we
consider that the coherence time of the long-term statistics
is significantly larger than the channel coherence time. The
above entails that a significant portion of the operations to
perform the channel estimation after the pilot correlation pro-
cess remain valid for a large number of coherence blocks. This
makes the pilot correlation process dominate the complexity per
coherence block [20]. The total number of real floating-point
operations (flops) of this procedure as performed in (2), C tr,
depends on the training length in number of symbols ηtr and is
given by [47], [53], [54]

C tr = 8Nc Kηtr
(a)= 8Nc K 2, (25)

where (a) holds because it is considered that orthogonality
between the pilot training signals of the system users is pre-
served by letting ηtr = K [47]. In this expression and through-
out this paper, the common assumption that real multiplications
(divisions) have the same complexity of real additions (subtrac-
tions) has been followed [54]. Moreover, we also consider that
complex additions and multiplications involve two and six real
floating-point {operations respectively [53], [54].

B. Data Transmission (Downlink) Stage

The complexity of the downlink stage is determined by the
operations required to generate the precoding matrix at the
beginning of each coherence period, and the operations to gen-
erate the transmitted signal in every channel use [47]. For the
sake of brevity, in the following we consider that the ZF pre-
coding matrix is computed via the conventional singular value
decomposition (SVD) approach. Other strategies such as the
Cholesky decomposition have been shown to offer similar com-
plexity results for the scenarios considered in this paper [51]. In
particular, let H̃H = U�VH be the SVD of the estimated down-
link channel matrix. Here, U ∈ C

K×K and V ∈ C
N×N are uni-

tary matrices comprised of the left and right singular vectors of
H̃H respectively, and � ∈ C

K×N is a diagonal matrix contain-
ing the ordered singular values of H̃H . The pseudo-inverse pre-
coding matrix can be subsequently obtained from the SVD as(
H̃H

)† = V�−1UH . The complexity of this process is given by

Cd
inv = Cd

SVD + Cd
div + Cd

mult =
(

24K 3 + 16K 2 N
)

+ K +
(

2K N + 8K 2 N
)

, (26)

where Cd
SVD characterizes the complexity of performing a

complex SVD, Cd
div refers to the complexity of dividing the

K real diagonal elements of �, and Cd
mult accounts for the

operations required to multiply a complex full matrix with a
real diagonal matrix and two full complex matrices [54]. Note
that this computationally intensive operation only has to be
performed at the beginning of each channel coherence period,
since the result stays valid as long as the channel remains
approximately constant.
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In conventional MIMO systems, the pseudo-inverse matrix
must be multiplied with the symbols to be transmitted to gen-
erate the final precoded signal x ∈ C

N×1 [47]. However, the
proposed strategy obtains the signal output of N − Nc antennas
by splitting and combining the signal components of x

∣∣[B] ∈
C

Nc×1 in the analog domain, hence reducing the dimensions of
the required matrix-vector multiplication2. Based on this obser-
vation, the complexity of computing the precoding signal can
be expressed as

Cd
d = 8Nc Kηdl, (27)

Here, ηdl denotes the number of symbol periods assigned to
downlink transmission. The complexity benefits offered by the
proposed in the precoding stage can be clearly observed in (27),
since the resulting signal processing load is a linear function of
the number of antennas with acquired CSI, Nc. Combining (26)
and (27), the global complexity of the precoding process during
a channel coherence period can be expressed as

Cd = Cd
inv + Cd

d ≈ 24K 3 + 24K 2 N + 8Nc Kηdl. (28)

C. Data Reception (Uplink) Stage

The operations to be performed during the data reception
stage mirror the ones to be performed during data transmis-
sion. In the case of TDD systems, the detection matrix is readily
obtained from the precoding one by exploiting channel reci-

procity and the relationship
(
H̃H

)† = (H̃†
)H

. Therefore, the
complexity of the uplink stage can be computed as

Cu = 8N Kηul, (29)

where ηul stands for the number of symbol periods assigned to
the uplink stage.

D. Total Complexity

The total complexity is given by

Ctot � Cu + Cd + C tr, (30)

where, in general, Cu � Cd since more time resources are
conventionally allocated to the downlink transmission, i.e.,
ηul � ηdl [56]. This entails that the operations performed dur-
ing the downlink stage dominate the global complexity, which
maximizes the benefits of the proposed due to the reduced
complexity required for precoding as summarized in Table I.
Clearly, the complexity with full CSI corresponds to Nc = N
in all expressions above.

VI. ACHIEVABLE RATES AND ENERGY EFFICIENCY

A. Downlink Achievable Rates With Incomplete CSI

In this section we concentrate on the effects that the use of
incomplete CSI has on the spectral and energy efficiency of the
communication system. With this purpose and following [4], let

2The computational load of the signal generation process can also be reduced
when each antenna has its dedicated RF chain [55].

TABLE I
COMPLEXITY IN NUMBER OF REAL FLOATING-POINT OPERATIONS

(FLOPS) OF A BASE STATION WITH INCOMPLETE CSI ACQUISITION

us define the ergodic downlink sum rates of the communication
system as

Rsum = ηdl

ηcoh
· E
{

K∑
k=1

Rk

}
, (31)

where ϕ = ηdl/ηcoh accounts for the loss in the time dedicated
to downlink transmission due to the required CSI acquisition
and uplink stages. Moreover, a set of ergodic achievable rates
E {Rk} can be expressed as [5]

E {Rk} = B log2 (1+ γk) = BSk, (32)

where B stands for the system bandwidth, Sk represents the
achievable spectral efficiency of the k-th user, and γk refers to
the associated SINR for the k-th user given by [5], [42]

γk = ν2|E {hH
k fk

} |2
1
ρf
+ ν2var

(
hH

k fk
)+ ν2

∑
i �=k E

{|hH
k fi |2

} , (33)

where fk ∈ C
N×1 corresponds to the k-th column of the precod-

ing matrix F. The availability of incomplete and imperfect CSI
impacts on the resultant SINR γk via the precoding vectors fk .
Specifically, for the case of ZF precoding and incomplete CSI,
fk can be expressed as

fk =
(

H̃H̃H
)−1

h̃k, (34)

where h̃k ∈ C
N×1 is the k-th column of the incomplete CSI

matrix given by H̃ = RH Ĥ as per (16). To constrain the focus
of the paper on the proposed CSI reduction solution for massive
MIMO systems, we designate the mathematical study of the
above sum rates as the focus of future work. Here, we employ
the above sum rate expression to study the improved energy
efficiency of our approach in the following.

B. Energy Efficiency Model

The optimization of the energy efficiency has attracted much
interest recently due to the need of controlling the power
consumption required by future wireless communication sys-
tems [1], [57]. Since the proposed technique presents reduced
hardware and signal processing complexities, in this section
we present an energy efficiency model to characterize these
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improvements. The energy efficiency in the downlink of a com-
munication system is measured in bits per Joule and it can be
expressed as [17], [25], [57]–[60]

ε = Rsum

Ptot
. (35)

Here, Rsum refers to the system achievable sum rates in bits
per second defined in (31) and Ptot denotes the total power
in Watts consumed during transmission, which can be further
decomposed as [17], [61]

Ptot = PPA + PRF + PBB

(1− σDC) (1− σMS) (1− σcool)
, (36)

where σDC and σMS characterize the losses of the DC-DC and
main power supplies whereas σcool refers to the active cool-
ing losses [60]. These losses scale linearly with the power
consumption of the electronic components and an accurate
characterization of their values has been provided in [60], [61]
for different BSs. Moreover, PPA denotes the average power
required by the power amplifiers (PAs) and it is given by

PPA = Pt

ς
, (37)

where ς corresponds to the PA efficiency and Pt refers to the
power required at the output of the power amplifiers. Here, we
remark that only Nc PAs are required to generate the output sig-
nals as shown in Fig. 2. Moreover, PRF denotes the active power
consumption of the electronic components in the RF chains
without accounting for that of the power amplifiers. Therefore,
PRF can be further expressed as

PRF = Nc (PDAC + Pmix + Pfilt)+ Psyn, (38)

where Psyn represents the power consumed by the frequency
synthesizer, and PDAC, Pmix and Pfilt denote the power con-
sumption of the digital-to-analog converters (DACs), signal
mixers and filters included in each RF chain respectively
[17], [62]. Additionally, PBB = pcC corresponds to the power
consumption of the digital signal processor (DSP). Here, pc
determines the power consumption per real flop and C refers
to the average number of real flops per second determined in
Sec. V. Since PRF depends on the transmission power, it should
be noted that the power consumption of the RF circuitry com-
ponents for the different BSs has been approximated by scaling
the data available in [62], which is considered to correspond to
a macro BS, by a proportionality factor that relates to the BSs
currently deployed [60], [61].

VII. SIMULATION RESULTS

To demonstrate the performance and complexity of the pro-
posed strategy, in this section we present numerical results
obtained via Monte Carlo simulations. The simulation setup
consists of a BS with a planar array comprised of N antennas,
a transmission channel following the physical channel model
described in Sec. II-B, and K single-antenna receivers. For a
fair comparison, all transmitters have the same physical size

Fig. 5. Spectral efficiency per user (Sk ) vs. SNR for L = 10.9λ2. N = 144 and
N = 72, K = 12 and Nc = N/2 for incomplete CSI acquisition.

independently of N . The channel model considers the practical
case of imperfect CSI acquisition unless otherwise stated, an
equal number of angular directions Dk = 50 in (7), and that the
angle spread of the azimuth and elevation angles of departure
is fixed to π and π/6 radians respectively [50]. The imper-
fect CSI scenario is modeled considering MMSE estimation for
the active antennas after the pilot training stage as per (12)–
(14) with ρtr = 15 dB [5]. The azimuth and elevation angles of
departure of each user are considered to be independent and to
follow a random uniform distribution within the relevant angle
spread [6], [48]. In the following, we also consider a standard
LTE frame with a duration of 10 milliseconds comprised of
10 subframes with 14 OFDM symbols each, which results in
a coherence block of ηcoh = 140 symbols [56]. Moreover, we
follow the uplink-downlink configuration 4 of LTE TDD, in
which a total of 7 subframes are used for downlink transmis-
sion [56]. This determines the time spent for CSI acquisition
and data transmission, which in turn influences the signal pro-
cessing complexity and the achievable sum rates as per (30) and
(31) respectively.

The performance of the communication systems considered
in this paper can be observed in Fig. 5, where a comparison of
the spectral efficiency per user in (32) is shown for increasing
levels of SNR. In this figure, the antennas are deployed in an
area of L = 10.9λ2 and we consider both systems with com-
plete and incomplete CSI. In the following, the number of users
is fixed to K = 12, and the performance for N = 144 (Mh =
Mv = 12) and N = 72 (Mh = 9, Mv = 8) antennas with full
CSI is depicted as a reference. This establishes an inter-antenna
distance d = 0.3λ in Fig. 5 for the cases of N = 144. Moreover,
it is considered that Nc/N = 1/2 for the case of incomplete
CSI acquisition. At this point we remark that, although related
to the considered scheme, antenna selection strategies are not
directly comparable. This is because they require a larger CSI
acquisition time due to the limitation of having a limited num-
ber of RF chains and the need of acquiring CSI for all the
antennas to perform the selection [63], [64]. Moreover, antenna
selection techniques might require solving complex optimiza-
tion problems prior to the application of precoding schemes
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Fig. 6. Spectral efficiency per user (Sk ) vs. ratio of antennas with CSI (Nc/N ).
N = 144, K = 12 and SNR = 10 dB.

in the correlated channels considered in this paper, hence not
complying with our objective of reducing the signal processing
complexity to a minimum [64].

Overall, the results of Fig. 5 show that the proposed strategy
outperforms a system with Nc antennas, full CSI and the same
number of RF chains for the low-to-intermediate SNR region.
We would like to note that the large number of antennas imple-
mented massive MIMO systems also motivate their operation
in this region due to their improved spectral efficiency and the
need of limiting the total power consumption [5], [17]. This
validates the benefits of using incomplete CSI in this range as
well as the employment of the proposed scheme based on the
basic CSI distribution patterns shown in Fig. 1. It can also be
observed that the performance of the incomplete CSI scheme is
limited by the errors introduced by the averaging procedure at
high SNRs when perfect CSI is considered. Moreover, it can
be seen that the consideration of imperfect CSI also bounds
the performance of conventional transmission strategies at high
SNRs, hence minimizing the differences between the schemes
with full and incomplete CSI.

The effect of Nc on the performance of the proposed strategy
can be observed in Fig. 6, where the spectral efficiency vs. the
percentage of antennas with CSI is shown for a fixed SNR of
10 dB. From the results of this figure it can be concluded that
a larger number of antennas with CSI is required as the inter-
antenna spacing increases to reach a given percentage of the
ultimate performance obtained when (Nc/N ) = 1. This result
is intuitive since the communication channels of the different
antennas exhibit a lower correlation for larger antenna separa-
tions, hence degrading the performance of the proposed scheme
due to the errors introduced by the averaging procedure. In spite
of this, it can be seen that activating half of the antennas dur-
ing the training stage for d = 0.3λ suffices to achieve 75 % of
the maximum system throughput with full CSI and d = 0.5λ,
where the occupied area is larger.

The impact of varying the inter-antenna distance on the spec-
tral efficiency per user can be clearly seen in Fig. 7, where an
identical setup to that of Fig. 6 has been considered. Fig. 7

Fig. 7. Spectral efficiency per user (Sk ) vs. inter-antenna distance (d/λ). N =
144, K = 12 and SNR = 10 dB.

Fig. 8. (a) Precoding-related complexity and (b) total complexity per frame for
increasing Nc. K = 12 users, ηcoh = 140, ηtr = K = 12 and ηdl = 7× 14.

characterizes the trade-off that arises by varying the inter-
antenna distances: while the proposed scheme reduces the CSI
approximation errors for small inter-element spacings, the loss
produced by a larger spatial correlation can harm the spectral
efficiency. In this line, the results of Fig. 7 allow determining
the optimal inter-antenna distance for a given ratio of antennas
with CSI (Nc/N ). Fig. 7 also indicates the possibility of inten-
tionally reducing the inter-antenna spacing in massive antenna
arrays due to the computational and energy efficiency benefits
offered by the proposed strategy as shown in the following.

The number of real flops during the precoding stage and the
global communication per frame are depicted in Fig. 8(a) and
(b) respectively for increasing levels of Nc. The results of this
figure show the notable complexity savings that can be experi-
enced when the proposed incomplete CSI scheme is employed.
Specifically, it can be seen that the number of precoding-related
operations of the proposed scheme can be dramatically reduced
w.r.t. a system with the same number of antennas but full CSI
acquisition. This translates to a significant reduction of the
global complexity as depicted in Fig. 8(b). The global complex-
ity reduction can be explained by noting that the complexity
of the precoding process accounts for a significant part of the
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Fig. 9. Energy efficiency vs. sum spectral efficiency for L = 10.9λ2. N = 144
and N = 72, K = 12.

TABLE II
POWER CONSUMPTION OF MICRO AND FEMTO BASE STATIONS

global signal processing load, hence maximizing the benefits of
the incomplete CSI scheme.

Fig. 9 depicts the energy efficiency metric (35) for increasing
levels of spectral efficiency and Lh = Lv = 3.3λ. The results
of this figure have been obtained by fixing the total noise
power Bσ 2 to 10 dBm for reference, by setting the total system
bandwidth to B = 20 MHz, and by computing the transmis-
sion power required to achieve a given spectral efficiency [56].
Moreover, since the circuit power consumption varies depend-
ing on the total transmission power [61], in this figure we
have performed a linear interpolation of the data shown in
Table II to estimate the approximate power consumed by the
RF chains. For simplicity, it has been considered that the analog
signal combining and splitting processes do not introduce any
additional losses, i.e., the considered schemes have the same
transmission power. We remark that, although dynamic power
losses appear in the power combining process [65], determining
the additional power consumption required by the transmission
chains is intricate due to the possibility of designing different
solutions for their compensation.

The results of Fig. 9 show that, under a moderate antenna
correlation, deactivating half of the antennas during the pilot
training stage constitutes the most energy-efficient alternative
for a wide range of spectral efficiencies. In particular, it can be
seen that using the proposed scheme is beneficial for low and
intermediate spectral efficiencies. Instead, conventional mas-
sive MIMO strategies become more energy-efficient for large

Fig. 10. Energy efficiency vs. ratio of antennas with CSI (Nc/N ) for a micro-
cell scenario and varying inter-antenna distance d. N = 144, K = 12 and SNR
= 10 dB.

Fig. 11. Energy efficiency vs. ratio of antennas with CSI (Nc/N ) for a femto-
cell scenario and varying inter-antenna distance d. N = 144, K = 12 and SNR
= 10 dB.

spectral efficiencies. This behaviour can be explained by not-
ing that the energy efficiency benefits of the proposed scheme
are especially noticeable when the circuit power consumption
strongly influences the total power consumption. We note that
this can potentially occur in massive BSs due to the significant
increase in the number of RF components required when com-
pared with traditional BSs [17], [60]. In these cases, reducing
the number of RF chains is beneficial for the global energy
efficiency as shown in Fig. 9. As higher spectral efficiencies
are required, the dominant factor in the total power consump-
tion is the power consumed by the power amplifiers following
(36), which is not affected by the reduced number of RF chains
offered by the proposed strategy. Nevertheless, it should be
noted that the incomplete CSI schemes are capable of offering
significant flexibility benefits as well as reductions of the signal
processing complexity, hence extending their range of applica-
tion to high spectral efficiencies where the computational load
is expected to be cumbersome [19].

The effect of the percentage of active antennas during the
training stage on the energy efficiency metric is shown in
Fig. 10 and Fig. 11 for microcell and femtocell BSs respec-
tively. The power consumption values from Table II have been
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employed for each of the scenarios. The results are shown for
SNR = 10 dB and a varying inter-antenna distance d. From
the results of these figures it can be concluded that reduc-
ing the number of active antennas during the training stage
and the inter-antenna spacing can be beneficial from an energy
efficiency perspective. Specifically, Fig. 10 shows that a large
percentage of the maximum energy efficiency attained for d =
0.5λ and Nc = N = 144 can be obtained by acquiring CSI for
half of the antennas and d = 0.3λ. We remark that in this sec-
ond case the size of the deployed massive antenna array is
reduced w.r.t. the case of d = 0.5λ. Moreover, Fig. 11 shows
that the energy efficiency is maximized for the femtocell sce-
nario when Nc = N/2 = 72 antennas are active during the
CSI acquisition process and the distance between antennas is
d = 0.4λ. Intuitively, this occurs because the small loss in the
achievable rates is compensated by the substantial reduction
experienced in the power consumption of the RF components
and the digital signal processor.

VIII. CONCLUSION

In this paper, a low-complexity scheme to exploit the inter-
antenna correlation that arises in space-constrained massive
MIMO BSs has been presented. The proposed strategy reduces
the required number of RF chains by deactivating a number of
antennas during the CSI acquisition stage. Subsequently, the
CSI for the remaining neighbour antennas is obtained by aver-
aging the information acquired. This is also extended to the
transmission stage, where a reduced RF chain approach is illus-
trated. Overall, the results presented in this paper confirm that
the proposed scheme is able to approximately preserve the per-
formance of tightly-packed BSs, while simultaneously reducing
the computational complexity and enhancing the energy effi-
ciency. The study of the implications of the use of incomplete
CSI in FDD massive MIMO systems constitutes the subject
of subsequent work. The consideration of alternative channel
models is also of interest [66]. Moreover, more intricate strate-
gies for determining the antennas with instantaneous CSI and
for interpolating this information will also be explored in the
future.

APPENDIX A
PROOF OF THEOREM 1

The proof of Theorem 1 relies on determining the error factor
for the antennas with imperfect CSI and the antennas whose
CSI is derived following the CSI averaging procedure described
in Sec. III. First, note that �k in (21) can be further decomposed
as

�k = E
{∑

n∈B |hk,n|2 +∑n∈C |hk,n|2
}

E

{∑N
n=1 |hk,n|2

}
(a)=
∑

n∈B E
{|hk,n|2

}+∑n∈C var
(
hk,n

)
N

, (39)

where hk,n denotes the error of the channel from the n-th
antenna of the BS to the k-th user and var (·) denotes the

variance of a random variable. In the above expression,
(a)=

holds because it is considered that the channel for the n-th
antenna without CSI is generated by following the averag-
ing operation (15) and E

{̂
hk
} = E {hk} = 0, which entails that

var
(
hk,n

) = E
{|hk,n|2

}
. Moreover, the channel coefficients of

the physically-constrained model defined in (6) clearly satisfy
E
{|hk,n|2

} = 1.
Now we concentrate on the two terms found in the numera-

tor of (39). In particular, it can be seen that the first term only
involves the antennas with instantaneous CSI availability and
accounts for the errors due to imperfect channel estimation. The
factors of this term can be expressed as

E

{
|hk,n|2

}
= τ 2

k E

{(
Ak

∣∣∣[D,n]
)H

qkqH
k Ak

∣∣∣[D,n]

}
= τ 2

k �k
∣∣[n,n] , n ∈ B, (40)

where {Ak}[D,n] denotes the n-th column of the transmit steer-
ing matrix Ak defined in (7). Instead, the second term of
the numerator in (39) characterizes the combination of the
errors introduced by having an inaccurate channel estimate
and the averaging operation for the antennas without CSI. By
combining (15) and (19) this factor can be re-expressed as

var
(
hk,n

) = var

(
hk,n − 1

Mn

Mn∑
i=1

ĥk,Bn
i

)
, n ∈ C, (41)

which corresponds to the variance of a subtraction of com-
plex correlated random variables due to the compactness of
the antenna array. This expression can be rewritten by iterative
application of the statistical identities [67]

var (X ± Y ) = var (X)+ var (Y )± 2Re (cov (X, Y )) ,

cov (X ± Y, Z) = cov (X, Z)± cov (Y, X) , (42)

where cov (·, ·) denotes the covariance between two random
variables and Re (·) represents the real part of the argument.
As a result, we obtain

var

(
hk,n − 1

Mn

Mn∑
i=1

ĥk,Bn
i

)
= var

(
hk,n

)
+ 1

(Mn)2

∑
i∈Bn

var
(̂
hk,i

)− 2

Mn
Re

(∑
i∈Bn

cov
(
hk,n, ĥk,i

))

+ 2

(Mn)2
Re

⎛⎝ ∑
i, j∈Bn ,i> j

cov
(̂
hk, j , ĥk,i

)⎞⎠ , n ∈ C. (43)

The terms involved in the above formulation can be further
decomposed and given as a function of the true channel cor-
relation matrix �k . With this purpose, cov

(
hk,n, ĥk,i

)
can be

obtained as

cov
(
hk,n, ĥk,i

) = cov

(
hk,n,

(√
1− τ 2

k hk,i + τkhk,i

))
=
√

1− τ 2
k �k

∣∣[n,i] , (44)
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where it has been considered that qk is uncorrelated with gk

in (20) [4]. The rest of the terms involved in (43) can be
obtained similarly, and are omitted here for brevity. Finally,
(22) is obtained by substituting (40) and (43) into (39), which
completes the proof.

APPENDIX B
PROOF OF COROLLARY 2

The objective of the proof is to show that the channel error
factor �k is a monotonically increasing function of d for the
physical channel model described in Sec. II-B, i.e.,

∂�k

∂d
= ∂

∂d

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑
n∈C

⎡⎢⎢⎢⎢⎢⎣−
2

Mn
Re

(∑
i∈Bn

�k
∣∣[n,i]

)
︸ ︷︷ ︸

S1

+ 2

(Mn)
2

Re

⎛⎝ ∑
i, j∈Bn ,i> j

�k

∣∣∣[ j,i]

⎞⎠
︸ ︷︷ ︸

S2

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
> 0. (45)

Here, we have removed the terms independent of d and the

factor
√

1− τ 2
k from (22), since τk = 0 when perfect CSI is

considered as per (20). In the following we also drop the user
index k for notational convenience. The i, j-th entry of the
channel correlation matrix � for a ULA following the physical
channel model described in Sec. II-B can be expressed as

�
∣∣[i, j] = 1

D

D∑
m=1

e j2πd( j−i) sin(φm ), (46)

where D denote the total number of angles of arrival (AoA) and
φm is the m-th azimuth AoA. In the following we focus on
showing that

Qn = ∂S1

∂d
+ ∂S2

∂d
> 0,∀n ∈ C, (47)

which in turn ensures that (45) holds. Here, since the real part
of a function is not analytic, it is convenient to express S1 and
S2 in (45) as

S1 = − 1

Mn

(∑
i∈Bn

�
∣∣[n,i] +�

∣∣[i,n]

)
, (48)

and

S2 = 1

(Mn)2

⎛⎝ ∑
i, j∈Bn ,i> j

�

∣∣∣[ j,i] +�

∣∣∣[i, j]

⎞⎠ . (49)

Let us concentrate on S1. For the case of ULAs and N/Nc ≥ 2,
the CSI for each of the |C| antennas without CSI is obtained
by averaging the CSI of the Mn = 2 adjacent antennas. Note
that this is a consequence of the application of the basic CSI

distribution pattern shown in Fig. 1(b). Therefore, S1 can be
re-expressed as

S1 = −
(
�
∣∣[n,i] +�

∣∣[i,n]
)
. (50)

Substituting (46) into (50) and differentiating w.r.t. d results in

∂S1

∂d
= 4π

D

D∑
m=1

sin(φm) sin(2πd sin(φm)), (51)

where we have considered that (n − i) = 1 because the
CSI of the adjacent antennas is averaged, and sin(φ) =(
e jφ − e− jφ

)
/2 j . Following a similar process while noting

that the distance between the antennas with CSI used for
averaging satisfies (i − j) = 2 in (49), we can express ∂S2

∂d as

∂S2

∂d
= 2π

D

D∑
m=1

sin(φm) sin(4πd sin(φm)) (52)

(a)= 4π

D

D∑
m=1

sin(φm) sin(2πd sin(φm)) cos(2πd sin(φm)),

where the trigonometric identity sin(2φ) = 2 sin(φ) cos(φ) has

been employed in
(a)= . Subsequently, substituting (51) and (52)

into (47) we can write Qn as

Qn= 4π

D

D∑
m=1

sin(φm)sin(2πd sin(φm)) (1−cos(2πd sin(φm))).

(53)

To conclude, we incorporate the small-angle approximations
sin(φ) ≈ φ and cos(φ) ≈ (1− φ2/2

)
into (53), which yields

Qn = 4π(2πd)

D

D∑
m=1

φ2
m

(
(2πdφm)2

2

)
> 0, (54)

and completes the proof.
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