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Realistic noise-tolerant randomness amplification
using finite number of devices
Fernando G.S.L. Brandão1,2, Ravishankar Ramanathan3, Andrzej Grudka4, Karol Horodecki5,

Michał Horodecki3, Paweł Horodecki6, Tomasz Szarek7 & Hanna Wojewódka8

Randomness is a fundamental concept, with implications from security of modern data

systems, to fundamental laws of nature and even the philosophy of science. Randomness is

called certified if it describes events that cannot be pre-determined by an external adversary.

It is known that weak certified randomness can be amplified to nearly ideal randomness

using quantum-mechanical systems. However, so far, it was unclear whether randomness

amplification is a realistic task, as the existing proposals either do not tolerate noise or require

an unbounded number of different devices. Here we provide an error-tolerant protocol using a

finite number of devices for amplifying arbitrary weak randomness into nearly perfect random

bits, which are secure against a no-signalling adversary. The correctness of the protocol is

assessed by violating a Bell inequality, with the degree of violation determining the noise

tolerance threshold. An experimental realization of the protocol is within reach of current

technology.

DOI: 10.1038/ncomms11345 OPEN

1 Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052, USA. 2 Department of Computer Science, University
College London, WC1E 6BT London, UK. 3 Faculty of Mathematics, Physics and Informatics, Institute of Theoretical Physics and Astrophysics and National
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T
he simplest cryptographic resource is a random bit,
unknown to any adversary. It is a basic brick of virtually
any cryptographic protocol. However, traditional random

number generators (RNGs) are based on classical physics,
which is deterministic. Therefore, the output randomness
cannot be trusted without further assumptions. For instance, a
pseudo-random number generator based on a deterministic
algorithm might rely on a small set of initial values (the seed)
being unknown to any adversary or on certain mathematical
hardness assumptions. Hardware RNGs based on physical
phenomena such as thermal or atmospheric noise, radioactive
decay or unstable dynamical systems are susceptible to attacks by
an adversary feeding known signals into the supposedly random
source. Indeed, it is not possible to create randomness out of
nothing, and random numbers generated by any sort of software
are in principle vulnerable to hacking.

In view of such pervasiveness of determinism, computer
scientists have considered the weaker task of amplifying imperfect
randomness. The goal here is to extract nearly perfect random
bits given many samples of somewhat random, but potentially
almost deterministic bits. Unfortunately, even this weaker
task was proven to be impossible by Santha and Vazirani in
1984 (ref. 1). They introduced a model of the sources of
weak randomness (described in detail later) and showed that
randomness amplification from a single such source through any
deterministic method is impossible. Classical information
processing only allows for randomness amplification when one
has access to at least two independent weak sources of
randomness.

However, for almost a century, we have been aware that Nature
is not ruled by deterministic classical laws. It is described by
quantum theory, which is intrinsically non-deterministic, because
of the famous rule postulated by Max Born in 1927, stating
that the quantum-mechanical wave-function only describes
probabilities of events. This peculiar feature of Nature has
generated conflict among generations of scientists, but was shown
to be an indispensable part of quantum theory by John Bell2.

In recent decades, the information revolution has influenced
almost every aspect of present-day life and stimulated a huge
effort towards establishing cryptographic security. Quantum
indeterminism has now been promoted from a weird
peculiarity of quantum theory to a potentially important resource.
New RNGs, based on quantum principles, have been built and
are now commercially available (for example, the ones offered
by IdQuantique3). However, to trust the randomness
produced by such devices, one has to either trust that the
device works as per its specification or verify its internal
construction by direct inspection. As a typical user would
not be able to make such a verification, a basic question arises:
can we build a device to produce certified randomness, in a
device-independent way?

In view of the requirement of using untrusted devices, we still
face the same limitation as in traditional cryptography: random-
ness cannot be created out of nothing. Fortunately, recently it
turned out that randomness amplification, while inaccessible
classically, can be accomplished in a device-independent
manner by exploiting quantum-mechanical systems4. Earlier
work has also shown that the similar task of randomness
expansion (in which a small fully random seed is stretched into a
longer random string) is possible using quantum-mechanical
correlations5. The central role in both these processes is played by
the so-called Bell inequalities2. The test of violation of Bell
inequalities, which certifies true randomness, is performed solely
on the statistics, and therein lies its device-independent potential.
This idea first appeared in a seminal paper by Ekert6, followed by
Barrett et al.7, as well as others.

There is, however, a caveat to this concept. Namely, there is no
way to guarantee the random nature of the world, because of the
possibility of super-determinism, that is, all events, including
the choices of the measurement settings in any experiment,
may be predetermined (no free-will). Indeed, a test of violation of
Bell inequalities allows to uncover true randomness only if we
can choose the measurement settings at random. We thus face a
sort of vicious circle.

Recently, Colbeck and Renner, building on a breakthrough
results in refs 5–7, showed that one can amplify randomness:
even though the inputs are only weakly random, the outputs
provide almost ideal randomness. Subsequent protocols have
further developed this original result8,9.

The existing protocols that implement the task of amplifying
randomness, while ingenious and conceptually important, have
some drawbacks that make them impossible to implement in
reality. Namely, after each single round of measurement, the
device has to be discarded and new devices have to be used
(equivalently, a large number of devices may be used in parallel).
To imagine how limited such a protocol would be in practice,
consider a typical implementation in which we need to create a
kilo-byte of secure randomness. Then, even if we used a single
photon per output random bit, 8,000 devices, shielded from each
other, would be required.

Only one protocol proposed so far does not have this
unfeasible requirement of many devices—the original Colbeck
and Renner’s protocol4. However, it also suffers from many
disadvantages—namely, the protocol does not tolerate noise,
besides using a large number of settings, being therefore
impractical. Thus, the existing protocols are trapped between
Scylla of many devices and Charybdis of fragility to noise. There
have been other proposals to solve this problem in refs 10,11 for
an adversary obeying quantum-mechanical laws. However, full
proofs of security of these protocols are still missing.

In contrast, good protocols have been developed for the task of
randomness expansion12. Therefore, it has been a pressing open
question in the field whether randomness amplification can
realistically be implemented.

In this paper, we provide protocols that escape this dual
restrictive alternative, being therefore directly implementable in
practice. We propose protocols that use a small constant number
of devices and produce randomness out of an arbitrarily weak
SV-source while being able to tolerate a constant noise rate.
Moreover, in the protocols the security can be tested without
referring to quantum mechanics.

Results
Santha–Vazirani e-SV sources. As an illustration of the
SV-source model, assume that an adversary has two different
coins, one biased towards heads (for example, probability of heads
is 2/3) and the other biased towards tails (probability of heads is
1/3, say). The adversary, in each time step, chooses one of the two
coins and tosses it; the choice of coin may depend (probabilisti-
cally) on the outcomes of the prior tosses. The sequence of random
outcomes of these coin tosses then gives an SV-source.

In general, Santha and Vazirani1 considered an e-SV source,
where eA[0,0.5] is a parameter, which indicates how much the
source bits deviate from fully random (in the above example,
e¼ 1/6). In the most general case, an e-SV source is given by a
probability distribution p(j0,y,jn) over bit strings such that

0:5� e � Pðj0Þ � 0:5þ e;

0:5� e � Pðji j j0; . . . ;ji� 1Þ � 0:5þ e for 1 � i � n:

ð1Þ
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Note that, when e¼ 0, the bits are fully random, whereas for
e¼ 0.5, they are fully deterministic.

The Santha–Vazirani no-go result holds for any ea0 and says
that any bit extracted by a deterministic procedure from a single
e-SV source will always have an e bias.

Bell inequalities. In the Nature, there exist correlations that
cannot be described by any deterministic theory, that is, the
correlations cannot be explained by any model where all the
randomness is due to lack of knowledge. Such correlations are
manifested operationally through the violation of Bell inequal-
ities. This immediately brings to mind applications in security:
were the probabilistic description simply due to lack of one’s
knowledge, an eavesdropper could potentially have this knowl-
edge. Thus, the security would be compromised and there would
be no randomness whatsoever. On the contrary, violation of Bell
inequalities makes room for the possibility for true randomness.

Main results. We propose here two protocols, which are both
discussed in detail, as well as compared with similar protocols for
randomness amplification, in Supplementary Note 1. The Bell
inequality and randomness extractors used in the protocols are
presented in Supplementary Note 2. Assumptions are summar-
ized in Supplementary Note 3, while the main mathematical tools,
essential to establish the security of the protocols, are summarized
in Supplementary Note 4.

Protocol I is the more basic one and employs just four devices,
however, it needs an extractor that so far is only known to exist
implicitly in the full range 0oeo1/2 (alternatively, there is an
explicit extractor that can be employed in the protocol, but then it
can produce just one bit of randomness). This is overcome in our
Protocol II, which is an extended version of Protocol I. It requires
eight devices, but works with a fully explicit extractor for the
whole range of e, that is, even for arbitrarily weak sources.
Protocol I is depicted in Fig. 1, whereas Protocol II is illustrated in
Fig. 2. More precisely, our results can be formulated as the
following two (informal) theorems, whose formal versions are
given in the Supplementary Notes 5 and 6 (see Supplementary
Theorems 20 and 27 for details).

Theorem 1 [informal]: For every eo 1
2, there is a protocol using

an e-SV source and four no-signalling devices with the following
properties:

� Using the devices (n, log(1/d)) times, the protocol either aborts or
produces n bits, which are d-close to uniform and independent of
any side information (for example, held by an adversary).

� Local measurements on many copies of a four-partite entangled
state, with (1� 2e) error rate, give rise to devices that do not
abort the protocol with probability larger than 1� 2�O(n).

The protocol is non-explicit and runs in (n, log(1/d)) time.
Alternatively, it can use an explicit extractor to produce a
single bit of randomness that is d-close to uniform in (log(1/d))
time.

Theorem 2 [informal]: For every eo 1
2, there is a protocol using

an e-SV source and eight no-signalling devices with the following
properties:

� Using the devices 2poly(n, log(1/d)) times, the protocol either
aborts or produces n bits, which are d-close to uniform and
independent of any side information (for example, held by an
adversary).

� Local measurements on many copies of a four-partite entangled
state, with (1� 2e) error rate, give rise to devices that do not
abort the protocol with probability larger than 1� 2�O(n).

The protocol is fully explicit and runs in 2poly(n, log(1/d)) time.

General setup. Let us first outline our general setup. We divide
the bits from the SV-source into two parts. One part of the weakly
random bits is fed into the devices, either as inputs or to choose
some particular runs. Then, a test is performed on the inputs and
outputs of the device. If the test is passed (denoted by an ‘ACC’),
then the outputs and the other part of bits from the SV-source are
fed into a randomness extractor—a deterministic function, whose
output constitutes the almost ideal randomness. If the test is
failed, the protocol is aborted.

The devices work as follows. A source produces four particle
entangled states (of photons, atoms and so on). Each device
performs a measurement on one of the four particles produced in
each run. One of two measurements can be performed, which is
decided by a binary input to each device. When the input is zero,
one type of measurement is performed, whereas the other type is
performed when the input is one. The measurements have binary
outputs.

Description of the protocols. Protocol I works as follows. A
portion of bits from the SV-source is used as an input to the
devices. A test is then performed, which amounts to checking
whether a particular Bell inequality is violated to a certain specified
level. The test consists of computing the following quantity

Best ¼
1
n

Xn

k¼1

Bðxk; ukÞ ð2Þ

from n 4-tuples of inputs and outputs obtained in n runs (every xk

and uk is of the form (x1,yx4) and (u1,yu4), respectively), and
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Figure 1 | Protocol I—designed for randomness amplification with four

devices. Devices are shielded one from another and used in a sequence of n

runs. u1,yu4 denote binary inputs in each run and they determine which

measurement is made in the given run, whereas x1,y,x4 are binary outputs

of the measurements. If the test, performed on the inputs and outputs of

the device, is passed (denoted by ACC—Yes), then the outputs and another

set of bits from the SV-source (denoted by t) are introduced into an

extractor in order to obtain final output bits S. Black arrows mark the

directions of bits from the SV-source; orange ones indicate where output

bits are introduced and blue arrows show possible alternatives: accepting

the protocol and obtaining (supposedly random) bits or aborting the

protocol.
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the explicit expression for B(xk, uk) is given in equation (7) of the
Supplementary Note 2. The test is passed if Bestrd. The parameter
dZ0 can be interpreted as the noise level, that is, in the absence of
noise we would observe Best¼ 0. For the explicit form of the
quantum state and measurements that achieve Best¼ 0, see
equations (8) and (9) of the Supplementary Note 2. If the test is
failed, the protocol is aborted. If it is passed, the outputs of the
devices and a second part of bits from SV-source are fed into an
extractor, designed to extract randomness from two independent
sources.

For Protocol II, we add a second group of four devices,
operating in the same way as the original group. The runs (uses)
of the devices from this second group are divided into blocks and
a portion of bits from the SV-source is used to choose a block.
The same test as in Protocol I is performed twice: first on all runs
from the first group of devices, and then on the chosen block of
runs from the second group. If the tests are passed, an extractor
designed to extract randomness from three independent weak
sources is applied to the three groups of variables: one from the
SV-source, another formed by outputs from the first four devices
and a third formed by the outputs from the chosen block of runs
from the second group of four devices.

The merit of Protocol II is that it offers amplification of
arbitrarily weak sources under a constant noise rate and with just
a few devices. The probability of failure (failure occurs if the test
was passed, but the output of the protocol is not random) scales
as an inverse polynomial in the total number of runs. On the
contrary, Protocol I has probability of failure exponentially small
in the number of runs. Moreover, since for eo

ffiffi
2
p
� 1

2 there exist
explicit two source extractors13, Protocol I also gives exponential
security for this range of e. As a matter of fact, the field of

extractors is being constantly developed. For instance, in a very
recent development14 an extractor was found that, if used in our
Protocol I, allows to draw one bit of randomness for an arbitrarily
weak SV-source with exponential security.

Let us emphasize, that our protocols exhibit a strong security
criterion called composable security15,16. This means that the
obtained randomness can be securely used as an input to any
other protocol. It also means that if an adversary Eve would in
future learn part of the random bits output by the protocols
(for example, by some espionage), the remaining bits would still
be completely secure.

Last but not least, the security of our protocols relies on
quantum-mechanical predictions, but can be verified by a person
that either does not know or does not trust the quantum
mechanical theory. Indeed, the security of our protocols is based
on the very statistics of the outcomes of the device and the
quantum mechanics is needed only to produce the required
statistics. Moreover, Protocol I offers exponential security within
such a paradigm.

In the proof sketched in the Methods section, we combine
results from the classical theory of extractors obtained in
refs 14,17,18, the recently discovered information-theoretic
approach to the de Finetti theorem19 and the Azuma–
Hoeffding inequality20.

Additional remarks on assumptions. In the present work, we
have also uncovered all the assumptions that were not necessarily
explicit in the literature so far. Clearly, the minimal assumption
one has to make is that of shielding devices, which means that the
devices do not send signals to each other or to the external world
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Figure 2 | Protocol II—designed for randomness amplification from eight devices. The eight devices are shielded from each other and one block of n runs

is performed sequentially on the first four devices while N blocks of n runs are performed sequentially on the second four devices. One of these N blocks,

marked in blue, is selected using some portion of bits (denoted by j) from the SV-source. u1; . . . u4; v1
j ; . . . ; v4

j denote binary inputs in each run and they

determine which measurement is made in the given run, whereas x1; . . . ; x4; y1
j ; . . . ; y4

j are binary outputs of the measurements. Black arrows indicate

where bits from SV source are directed, whereas orange ones mark where output bits are introduced. The test is performed separately on inputs and

outputs of the first four devices and the chosen block from the second four devices. Blue arrows show possible alternatives: either the tests are passed

(ACC1—Yes, ACCj—Yes), which enables further action, or the protocol is aborted. If both tests are passed, then output bits together with further bits from

the SV-source (denoted by t) are introduced into an extractor to obtain final bits S.
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and vice-versa. Indeed, if an eavesdropper can monitor our device
instantaneously or if they can force it to behave in various ways,
then any output of the device will be insecure. In addition, the
device might have a transmitter inside that reports everything to
the adversary. The shielding assumption is thus mandatory.
Apart from this minimal assumption, we also make the constant
device assumption, which has been either implicitly or explicitly
used in almost all previous papers in this subject. This imposes
that the device’s behaviour is not correlated with the source of
weak randomness (see Supplementary Note 3 for details).
The only work that does not use this assumption is ref. 9, which,
however, requires the use of many devices, thus falling into the
above-described unpleasant alternative. Moreover, it also assumes
that the adversary is restricted by the laws of quantum theory
rather than just the shielding assumption.

Let us emphasize that in the classical world, the above
assumptions are not enough to amplify randomness, as classical
correlations are not strong enough to allow the verification
procedure outlined above. Thus, the functioning of our protocols
hinges on the intrinsic indeterminacy in the quantum description
of nature.

Discussion
We have presented realistic protocols for obtaining secure random
bits from an arbitrarily weak Santha–Vazirani source. Both
protocols use a finite number of devices, work even with
correlations attainable by noisy quantum-mechanical resources
and are composably secure against general no-signalling adver-
saries. The Protocol I uses four devices, and under the requirement
of explicit extractors, can be either applied for a restricted range of
epsilon to produce a non-zero rate of output randomness in
polynomial time or for the entire range of epsilon to produce one
bit of output randomness in polynomial time. The Protocol II uses
eight devices and works for the entire range of epsilon to produce a
non-zero rate of output randomness using an explicit extractor,
however, it has the drawback of an exponential runtime. Important
open questions for future research concern the relaxation of the
constant device assumption (of independence between source and
devices), and the development of protocols that can amplify
general min-entropy sources of randomness in a secure manner
against no-signalling adversaries. More open questions are raised
in Supplementary Note 7.

Methods
Min-entropy sources and extractors. Before we sketch the proof of our result, let
us describe one of the important ingredients of the proof—the min-entropy sources
and randomness extractors. For given probability distribution {pi}, its min-entropy
is defined as Hmin ¼ � logðmaxipiÞ, and a source which produces an n-bit
distribution with min-entropy k is called an (n,k) min-entropy source. An example
is the SV-source, whose min-entropy per bit is no smaller than logð12 þ eÞ.
Although the randomness of a single min-entropy source cannot be amplified, it is
known that one can classically amplify randomness from two or more independent
min-entropy sources. The (deterministic) functions that do the job are called
randomness extractors. We shall use the following results on extractors:

� There exists a (non-explicit) deterministic extractor that, given two independent
sources of min-entropy larger than h, outputs O(h) bits 2�O(h)-close to
uniform17.

� There exists an explicit extractor that, given three independent sources, one
having min-entropy larger than tn (for any t40) and the other two larger
than h � logcðnÞ (with c40 being an absolute constant), outputs O(h) bits
2� hOð1Þ

-close to uniform21. The extractor can be implemented in time (n,h).
� There exists an explicit extractor that, given two independent sources of

min-entropy at least logC(h) for large enough constant C outputs 1 bit with error
h�O(1) (ref. 14).

Security of Protocol I: proof sketch. Let us now sketch the security proof of
Protocol I (the full proof is provided in the Supplementary Note 5). The idea is the
following: we prove that with high probability either, when conditioned on the

inputs and upon acceptance (passing the test), the outputs of the devices form a
min-entropy source or else the probability of acceptance is small. Thus, up to a
small probability of failure (failure means that one accepts, but at the same time the
devices do not constitute a min-entropy source), we have at our disposal two
sources of weak randomness: the SV-source and the min-entropy source from the
outputs of the devices. Because of the constant device assumption, when condi-
tioned on the inputs, the two sources are independent, and we can apply a classical
randomness extractor. Thus, the crux of the proof is to show that the outputs of
devices constitute a min-entropy source. Here is where the Bell inequality comes
into play.

Before going into more detail, let us introduce some notation. Consider n uses
of each device, and let x, u be the outputs and inputs to the devices, respectively
(the u come from the SV-source). Note that we have x¼ (x1,y,xn), u¼ (u1,y,un),
where every xk and uk, for kA{1,y,n}, is of the form x¼ (x1,x2,x3,x4) and
u¼ (u1,u2,u3,u4), respectively. Let w and z be the input and output of the
eavesdropper’s device, respectively, and let e denote the side information possessed
by the eavesdropper. Finally, we denote further bits drawn from the SV-source
(apart from u) as t.

For any given e, the eavesdropper chooses optimally her input, which finally
gives rise to a probability distribution q(x,u,z,e,t) satisfying certain conditions,
given by equations (80)–(83) in Supplementary Note 4. The conditions come from
our basic assumptions: shielding (equation (80) in Supplementary Note 5),
constant devices (equation (81) in Supplementary Note 5) and causality (time-
ordered no-signalling equation (82) in Supplementary Note 5). Let us denote by
ACC the event of acceptance. We are thus interested in the min-entropy of the
distribution q(x|u, z, e, t, ACC). We will actually prove that, with probability
greater than 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=qðACCÞ

p
, we have

max
x

qðxjz; u; e; t;ACCÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
qðACCÞ

r
; ð3Þ

where a¼ 2�Cn with C being a constant, depending only on the SV-source
parameter e and the noise level d (for details, see Proposition 19 in Supplementary
Note 5). To this end, note that passing the test assures that the estimated value of
the Bell quantity satisfies Bestrd. Using the Azuma–Hoeffding theorem, we prove
that, if the estimated Bell value is no greater than d, then with probability
1�Oðe� d2 nÞ, in a linear fraction of runs mn, with m ¼ 1�

ffiffiffiffiffi
2d
p

, the ‘true’ value of
the SV-Bell quantity (conditioned on the history) is also small, that is, it is bounded
by

ffiffiffiffiffi
2d
p

(see Lemma 9 in Supplementary Note 4 for details). The true value BSV
i in

the i-th run is here meant to be the average of B(x, u) over the probability
distribution in the run, conditioned on the history—the previous inputs and
outputs, as well as Eve’s variables e, z:

BSV
i ¼

X
xi ;ui

qðxi; uijuoi; xoi; z; e; tÞBðxi; uiÞ: ð4Þ

We then prove, using linear programming (see Lemma 10 and 11 in
Supplementary Note 4 for details), that for any arbitrary distribution p(x, u) of a
single run, we have

pðxjuÞ � 1
3

1þ 2
BSV

ð12 � eÞ4

 !
with BSV ¼

X
x;u

pðx; uÞBðx; uÞ; ð5Þ

where u comes from the SV-source, so that ð12 � eÞ4 � pðuÞ � ð12 þ eÞ4 . Applying
this general relation to our case and using the Bayes rule, we obtain that for
(x,u)AACC,

qðxju; z; e; tÞ � maxfgmn; EAzg ð6Þ

with g ¼ 1
3 1þ 2ð2dÞ1� c

ð12� eÞ4
� �

for some constant c40 (see Lemma 18 in Supplementary

Note 5). Here EAz denotes the (small) failure probability of the estimation of the
true SV-Bell value. For any given value of SV-source parameter e, we see that there
is a small enough value of the noise parameter d, which ensures that go1, so that
the probability q(x|u, z, e, t) in equation (6) is bounded by an exponentially (in n)
small parameter, which in turn ensures that in the numerator of the right-hand-
side of equation (3) there appears an exponentially decaying parameter a. The
denominator therein appears due to the fact that we are conditioning on the event
ACC in equation (3), unlike in equation (6). The technical details (some of them
along the lines of ref. 20) that finally lead to equation (6) are presented in the proof
of Theorem 20 in Supplementary Note 5 (ref. 22). This ends the sketch of the proof
that our quantum device gives rise to a min-entropy source.

Now, as stated before, the constant device assumption assures that the
min-entropy source obtained from the outputs of the device is independent of the
bits from the SV-source that were not used as inputs. The application of a
randomness extractor then gives the final output bits, although as noted earlier an
explicit extractor is not known for all values of e, except one that outputs a single
bit of randomness14.

Security of Protocol II: comment on the proof. In Protocol II, we manage to
create three independent min-entropy sources, for which explicit extractors are
known. To do this, we prove a version of the de Finetti theorem (see Lemma 13 in
Supplementary Note 4 for details), which ensures that the outputs from the first
4-tuple of devices and the outputs belonging to the selected block of runs from the
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second 4-tuple are independent. As in Protocol I, each of the two sets of outputs
constitutes a min-entropy source (conditioned on the two acceptances, as we
perform separate tests for both sets). These, together with an unused portion of
bits from the SV-source constitute three independent min-entropy sources, for
which explicit extractors exist. The full proof of security of this protocol is provided
in the Supplementary Note 6.
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