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Abstract 

In molecular ecology and conservation genetics studies, the important parameter of effective 

population size (Ne) is increasingly estimated from a single sample of individuals taken at 

random from a population and genotyped at a number of marker loci. Several estimators are 

developed, based on the information of linkage disequilibrium (LD), heterozygote excess 

(HE), molecular coancestry (MC), and sibship frequency (SF) in marker data. The most 

popular is the LD estimator, because it is more accurate than HE and MC estimators, and is 

simpler to calculate than SF estimator. However, little is known about the accuracy of LD 

estimator relative to that of SF, and about the robustness of all single-sample estimators when 

some simplifying assumptions (e.g. random mating, no linkage, no genotyping errors) are 

violated. This study fills the gaps, and uses extensive simulations to compare the biases and 

accuracies of the 4 estimators for different population properties (e.g. bottlenecks, non-

random mating, haplodiploid), marker properties (e.g. linkage, polymorphisms) and sample 

properties (e.g. numbers of individuals and markers), and to compare the robustness of the 4 

estimators when marker data are imperfect (with allelic dropouts). Extensive simulations 

show that SF estimator is more accurate, has a much wider application scope (e.g. suitable to 

non-random mating such as selfing, haplodiploid species, dominant markers) and is more 

robust (e.g. to the presence of linkage and genotyping errors of markers) than the other 

estimators. An empirical dataset from a Yellowstone grizzly bear population was analysed to 

demonstrate the use of the SF estimator in practice. 
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Introductions 

In the past few decades, genetic marker based methods have been developed and increasingly 

applied to estimating the effective sizes (Ne) of natural populations in widely different spatial 

and time scales (Schwartz et al. 1999; Wang 2005; Luikart et al. 2010; Wang et al. 2015). 

For the contemporary Ne of a local population, which is the most relevant for conservation 

(Luikart et al. 2010), the most widely applied has been the so-called temporal methods which 

use genetic data in two or more temporally spaced samples taken from the same population 

(Nei & Tajima 1981; Waples 1989; Wang 2001; Anderson 2005; Palstra & Ruzzante 2008). 

These methods exploit the temporal changes in allele frequencies (or differentiation between 

temporal samples) as information to estimate the average Ne of a population during the 

sampling interval. They are in general more accurate and robust (to non-random mating and 

genetic structure, for example) than other genetic methods (Wang 2005; Luikart et al. 2010), 

but their reliance on temporally spaced samples incurs two shortcomings. First, it is 

expensive to collect temporal data separated by at least one generation (Nei & Tajima 1981; 

Waples 1989). For long-lived species which have large generation intervals and are usually 

more of conservation concern, one generation could mean many years. Furthermore, such 

species usually have overlapping generations, and a sampling interval much larger than one 

generation is necessary to yield accurate Ne estimates (e.g. Nei & Tajima 1981). Second, it is 

of limited value in genetic monitoring (Schwartz et al. 2007), because the signal of temporal 

changes in allele frequency for a population with a drastic change of Ne in one generation will 

become weaker over a longer sampling interval of multiple generations, and also because of 

the time lag in obtaining data and Ne estimates for managements. If a population fluctuates in 

Ne and the sampling interval is longer than the fluctuation cycle, the temporal method may 

not be able to detect the fluctuations at all. 

 In contrast, single-sample methods exploit information of linkage disequilibrium (Hill 

1981), heterozygosity excess (Pudovkin et al. 1996), sibship frequency (Wang 2009), or 

coancestry (Nomura 2008) extracted from the genotype data of a single sample of individuals 

taken from a population at a single time point to estimate the Ne of the population at or near 

that time point. They largely overcome the two shortcomings of the temporal methods, and as 

a result, have become popular in the past few years (Waples 2006; Waples & Do 2008, 2010; 

Tallmon et al. 2008; Wang 2009). The linkage disequilibrium (LD) based Ne estimator has 

become especially popular due to the work of Waples and coworkers (Waples 2006; Waples 

& Do 2008, 2010). They showed that the original estimator by Hill (1981) is biased (see also 

England et al. 2006), and proposed an empirical correction factor to reduce or remove the 
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bias (Waples 2006). They implemented the improved estimator in two software packages 

(Waples & Do 2008; Do et al. 2014), and investigated its performance for isolated 

populations with discrete (Waples 2006) and with overlapping (Waples et al. 2014) 

generations, and for subdivided populations with immigration (Waples & England 2011). 

Waples and Do (2010) concluded, from analysing simulated microsatellite data, that the LD 

estimator is more precise than the temporal estimator, unless the latter is applied to samples 

separated by many generations. 

 Other single-sample methods are much less popular than LD estimator. The estimator 

based on heterozygosity excess (HE) is known to be imprecise, yielding frequently infinitely 

large Ne estimates for populations known to have small effective sizes (Pudovkin et al. 1996; 

Luikart & Cornuet 1999). The estimator based on molecular coancestry (MC) has similar 

accuracy to HE estimator (Nomura 2008). The estimator using multiple types of information 

from a single sample, implemented in the software OneSamp (Tallman et al. 2008), has not 

been evaluated for accuracy against other estimators by any simulation studies. Its accuracy, 

robustness and other properties relative to those of the other single-sample estimators are still 

mysterious. The estimator based on sibship frequencies (SF) estimated from a single sample 

of multilocus genotypes (Wang 2009) is flexible (allowing for non-random mating, 

immigration, diploid as well as haplodiploid species, for example) and robust (e.g. to 

genotyping errors). Its accuracy, as checked by simulations, is much higher than the HE 

estimator, and is similar to that of the temporal methods when sampling interval is not long. 

The estimator is, however, much more computationally intensive than other estimators. Its 

accuracy in comparison with that of the LD estimator is still unknown. 

 In this study, I use simulations to compare the accuracies of different single-sample 

estimators of Ne, and to examine the effects of sampling intensities (of individuals and 

markers), marker information contents (marker numbers, polymorphisms and linkage), 

population properties (true Ne, inbreeding, and population size fluctuation) and imperfect data 

(e.g. allelic dropouts) on the relative accuracies of these estimators. For the first time, I 

explored the prospect of using many linked SNPs in Ne estimation, and the possibility of 

estimating Ne when it is extremely large, when the species is haplodiploid, and when the 

species is monoecious with a substantial selfing rate. The sensitivity of the SF estimator to 

prior Ne assumptions is also investigated by simulations when marker information is scarce 

and ample. A published empirical dataset is comparatively analysed by different single-

sample Ne estimators. The results of simulation and empirical data analyses are discussed in 
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the context of the practical applications of Ne estimation in conservation genetics and 

molecular ecology. 

 

Methods 

In this section, I briefly describe the concepts of effective population size, the single-sample 

methods for estimating Ne, the procedures and parameter combinations used in simulations, 

the accuracy assessment methods, and one published empirical dataset. 

1. Effective population size 

In the absence of all systematic forces (i.e. mutation, migration and selection) of evolution, an 

infinitely large population will attain and stay in an evolutionary equilibrium in which both 

allele frequencies and genotype frequencies remain constant over generations. A finite 

population, in contrast, does not attain the equilibrium. Its allele and genotype frequencies 

fluctuate randomly over generations as a result of sampling a finite number of gametes to 

form the population at each generation. A finite population size has, among others, two 

genetic consequences. One is the random change of allele frequencies, called genetic drift, 

and the other is the increase in homozygosity and the decrease in heterozygosity at each 

locus, called inbreeding. In the long run, drift leads to the fixation of one allele in and the loss 

of all the other alleles at a locus from the population, and inbreeding leads to the loss of all 

heterozygotes. Drift and inbreeding are two facets of the same stochastic process in a finite 

population. The strength (rate) of drift and inbreeding is measured by Wright’s (1931) 

effective population size, Ne. The Ne of a population is defined as the size of a Wright-Fisher 

idealised population (Fisher 1930; Wright 1931) that would lose genetic variation or become 

inbred at the same rate as the actual population. As a reference, a Wright-Fisher idealised 

population is defined with a long list of simplifying assumptions, such as a constant size of 

monoecious diploid individuals, discrete generations, random mating (including selfing in 

random amount), an equal chance of contributing offspring per parent, and the absence of all 

systematic evolutionary forces. Many factors affecting the drift and inbreeding processes in 

an actual population, such as non-random mating, unequal sex ratio, haploid or polyploid 

inheritance, fluctuation in population size, overlapping generations, spatial structure, and 

unequal individual reproductive potential, are conveniently summarized into a single 

parameter, Ne, and thus become irrelevant in describing the inbreeding and genetic drift of the 

study population.     

  In some simple cases, the rate of random drift in allele frequencies and the rate of 

decrease in homozygosity (inbreeding) are the same, and a single effective size can be used to 
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describe both. In some complex cases, however, the two rates can be different either 

temporally or permanently, and a variance effective size (NeV) and an inbreeding effective 

size (NeI) were distinguished (Crow 1954; Crow & Morton 1955) to describe the drift and 

inbreeding processes, respectively. NeV and NeI depend on the offspring and parent 

generations, respectively, and the former is always larger (smaller) than the latter for an 

expanding (shrinking) population. For an isolated or incompletely subdivided population of 

constant size, NeV and NeI are identical to each other, and to other concepts such as eigenvalue 

and mutational effective sizes (Whitlock & Barton 1997). Most of the simulations of this 

study consider an isolated population of constant size, and there is no need to distinguish NeV 

and NeI. For simulations of populations changing in size, different estimators might be 

estimating different quantities, and these are clarified below. 

2. Single-sample Ne estimators 

The estimator based on heterozygosity excess, HE, is the simplest in concepts and 

computations. When Ne is small, random genetic drift is expected to lead to a difference in 

allele frequency between male and female parents, which in turn results in an excess of 

heterozygotes in the offspring compared with Hardy-Weinberg equilibrium (Robertson 

1965). The extent of heterozygote excess is expected to be inversely proportional to the 

actual Ne of the parental population, and thus can be calculated from marker data to estimate 

Ne. The estimator was derived by Pudovkin et al. (1996), implemented in several computer 

programs (e.g. Zhdanova & Pudovkin, 2008; Jones & Wang 2010; Do et al. 2014), and 

evaluated in several studies (e.g. Luikart & Cornuet 1999; Wang 2009).  

 The estimator based on molecular coancestry, MC, was proposed by Nomura (2008).  

The average coancestry of an isolated population is expected to increase at a rate inversely 

proportional to the Ne of the population. Nomura proposed a method to quantify this rate 

from a single sample of multilocus genotypes, and the estimated rate was converted to an 

estimate of Ne. Briefly, he proposed to select putative nonsib pairs from all of the possible 

pairs in a sample of individuals based on their molecular coancestry. The selected nonsib 

pairs are then used as reference to calculate the average parent-based coancestry, 𝑓1. The 

inbreeding effective size is then estimated by 𝑁̂𝑒 = 1/(2𝑓1). 

 The estimator based on linkage disequilibrium, LD, was derived by Hill (1981). In the 

absence of all systematic forces, the frequency of an allele in a finite population changes 

(drifts) randomly over time and also becomes correlated randomly with that of another allele 

at a different locus. This correlation is called linkage disequilibrium, and has a simple 
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functional relationship with the recombination rate, c, between loci and the effective 

population size (Hill 1981). When LD is calculated from a sample of multilocus genotypes, it 

can then be used to estimate Ne if c is known. In the case of unlinked markers (c=0), Hill’s 

method was much improved by Waples and coworkers (Waples 2006; Waples & Do 2008 

2010) to reduce biases caused by small sample sizes. The improved estimator, which assumes 

c=0, was studied by simulations for accuracy (e.g. Waples & Do 2009) and for robustness to 

population subdivision (Waples & England 2011) and overlapping generations (Waples et al. 

2014). The present study compares this improved estimator, which assumes unlinked 

markers, with other single-sample estimators. 

 The estimator based on sibship frequency, SF, was derived by Wang (2009) using 

both the inbreeding and genetic drift approaches. In essence, the SF method for estimating Ne 

is the analogue to the mark-capture-recapture method for estimating population census size 

(Luikart et al. 2010). The capture unit is a pair of individuals, and the recapture rate is the 

frequency of a sibling dyad. Populations of a small (large) Ne will have a high (low) 

frequency of sibling dyads. Implemented in the software package Colony (Jones & Wang 

2010), the SF estimator has several advantages, such as its ability to account for inbreeding, 

its flexibility for use in diploid as well as haplodiploid species, its wide application scope of 

codominant as well as dominant markers with or without linkage and with or without 

genotyping errors, and its robustness to population subdivision (Wang 2009). However, it is 

computationally demanding, especially for a large sample under the polygamous mating 

system, because a simulated annealing algorithm is employed to assign the sampled 

individuals into full sibships nested within half sibships from the multilocus genotype data 

(Wang & Santure 2009).  

The SF estimator requires ample marker information to obtain unbiased and precise 

Ne estimates (Wang 2009). When marker information is scarce (say, less than 10 

microsatellites) and the actual Ne is large (such that the actual siblings are rare in a sample), it 

tends to underestimate Ne because of the over-assignment of sibship (Wang 2009). This 

problem becomes severe when both males and females are polygamous such that half siblings 

rather than full siblings are dominant in determining Ne but are unfortunately difficult to 

estimate. An approach to reducing the problem is to introduce a prior sibship distribution, 

based on prior knowledge of the study population, to penalize sibship assignment and 

encourage non-sibship assignment, as detailed below. 

3. A prior for SF estimator 
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The accuracy of the SF based Ne estimator depends critically on the qualities of sibship 

assignments. Sibship over- and under-assignments lead to a higher and a lower sibship 

frequency and thus an under- and over-estimate of Ne respectively. Both type I (false sibship 

assignments) and II (false non-sibship assignments) errors are expected to diminish with an 

increasing amount of marker information, as verified by simulations (Wang & Santure 2009). 

However, when marker information is scarce and sample size is large, both types of 

assignment errors could occur. In a sample taken at random from a large population, a sibship 

assignment analysis usually makes much more type I errors than type II errors. In such a 

sample, most individuals are unrelated or only remotely related (such as cousins) when the 

current sample (population) is used as reference (Wang 2014). However, they may happen to 

display similar genotypes compatible with the sib relationship when marker information is 

insufficient, and may thus be erroneously assigned to be sibs. To reduce these errors which 

lead to an underestimated Ne, I use Ewen’s (1972) sampling formula  

𝑃𝑟𝑏[𝒂𝑛] =
𝑛!

𝜃(𝑛)
∏ (

𝜃

𝑗
)

𝑎𝑗 1

𝑎𝑗!

𝑛
𝑗=1 ,         (1) 

as a prior to model the distribution of offspring among male (or female) parents contributing 

to the sample. In (1), θ is the sole parameter of the distribution, n is sample size (number of 

sampled offspring), aj (j=1, 2, …, n) in an=(a1, a2, …, an) is the number of parents of a given 

sex who each has exactly j offspring (thus ∑ 𝑗𝑎𝑗 ≡ 𝑛𝑛
𝑗=1 ) in the sample, and 𝜃(𝑛) =

∏ (𝜃 + 𝑖)𝑛−1
𝑖=0 .  

In (1), the number of parents contributing to the sampled n offspring is expected to be 

𝐾𝑛 = ∏ 𝑎𝑗
𝑛
𝑗=1 . Obviously, 1 ≤ 𝐾𝑛 ≤ 𝑛, and the average number of offspring per contributing 

parent is n/𝐾𝑛. For a given sample of n offspring, θ determines the offspring distribution 

among parents, (1), entirely. When θ = 0, we have 𝐾𝑛 = 1, and all of the n sampled offspring 

come from a single parent with probability 1. When θ → ∞, we have 𝐾𝑛 = 𝑛, and the n 

offspring come from n distinct parents (i.e. no siblings) with probability 1. When θ = 1, 

distribution (1) is precisely that of the integer partition induced by a uniformly 

distributed random permutation.  

 For a sample of offspring taken at random from a population, 𝐾𝑛 is intuitively 

expected to increase with increasing values of n and 𝑁𝑒. After extensive experimentation, I 

arrived at the empirical function  
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𝐾̂𝑛  = 𝑛 − 70(1 − 𝑒−1/𝑁𝑒) + 0.2(1 − 𝑒−0.01/𝑟)                   (2) 

to determine 𝐾̂𝑛 from n and 𝑁𝑒, where 𝑁𝑒 is the prior effective size and 𝑟 = 𝑛/𝑁𝑒 is the ratio 

of sample size to prior effective size. When both n and 𝑁𝑒 are very small, 𝐾̂𝑛  as calculated 

above can be smaller than 1. In such a rare case, it is reset to the minimum value 1. Given 𝐾̂𝑛, 

the maximum likelihood estimate of θ is obtained by solving the equation ∏ 𝜃/(𝜃 + 𝑖)𝑛−1
𝑖=0 =

𝐾̂𝑛, which can then be used in calculating prior (1). 

I attach a weight, W, to prior (1) for controlling its importance relative to data in a 

sibship analysis. The idea is to reduce the reliance on the prior with an increase in sample size 

relative to 𝑁𝑒, r=n/𝑁𝑒. The rationale is that, with an increase in r, the frequency of type I 

errors relative to type II errors decreases, and the prior intended to reduce type I errors 

becomes less important. After some experimentation, I arrived at the empirical weight 

function, 

𝑊 = 0.5 − 0.15𝐿𝑛(𝑟) + 0.2𝑒−10𝑟 − 10𝑒−5/𝑟 + 0.01(1 − 𝑒−𝑟)𝐿𝑛(𝑅),    (3) 

where R is the sex ratio (defined as the ratio of the numbers of breeders of the minority sex 

and majority sex, 𝑅 ≤ 1). W decreases fast with an increasing r, but very slowly with an 

increasing R (Figure 1). When n is not much larger than prior Ne, W>0, and a prior of 

(𝑃𝑟𝑏[𝒂𝑛])𝑊 is used in sibship assignment analysis. Otherwise, W≤0, and no prior is used in 

sibship analysis. 

 When prior information about Ne and R is unavailable, default priors are also provided 

in the Colony program to reduce type I errors. These priors (Wang & Santure 2009) use the 

same formula (1), with parameter θ being calculated from the assumption of 𝐾𝑛=n (or 

alternatively, the average sibship size is 1 individual) or a user provided estimate of average 

sibship size. 

4. The SF estimator for monoecious species with selfing 

No single-sample Ne estimators are available for monoecious species with selfing occurring 

at a substantial rate. Following the approach of Wang (2009), however, an equation of Ne in 

terms of full and half sibship frequencies can be derived for monoecious species with selfing, 

𝑁𝑒 =
4

(1+𝛼)(𝑄1+𝑄2+2𝑄3)
,          (4) 
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where α is the parameter for the deviation from Hardy-Weinberg equilibrium in genotype 

frequencies (equivalent to Wright’s (1969) FIS statistic) due to selfing, and Q1, Q2 and Q3 are 

the frequencies of paternal half-sib, maternal half-sib and full-sib dyad frequencies. Note the 

relevant quantity is the total frequency of two individuals sharing the same parent, 𝑄1 + 𝑄2 +

2𝑄3, not the separate values of Q1, Q2 and Q3. Therefore, it is unnecessary to distinguish 

maternal and paternal relationships in estimating Ne. In fact, it is difficult to differentiate 

paternal from maternal half sibs using autosomal marker data only. The likelihood method for 

sibship analysis (Wang & Santure 2009) assigns sibship, leading to an estimate of 𝑄1 + 𝑄2 +

2𝑄3. It also infers the selfing/outbreeding status of each individual and thus yields a direct 

estimate of selfing rate, 𝑠̂ (Wang et al. 2012). Given 𝑠̂, α is estimated as 𝛼̂ = 𝑠̂/(2 − 𝑠̂) 

(Haldane 1924; Caballero 1994). In the special case of no selfing (s=0), α =0 and (4) reduces 

to the formula for a dioecious species with equal numbers of males and females (eqn 10 in 

Wang 2009, see also Waples & Waples 2011). 

 Estimator (4) performs well, providing nearly unbiased and accurate estimates of Ne, 

when selfing rate s is not high. When s is high, however, it underestimates Ne substantially. 

This is understood by considering the chance that non-sibs have identical multilocus 

genotypes and are thus falsely assigned sibship. This chance increases rapidly with an 

increasing selfing rate s. Given s, the probability that an offspring comes from a lineage that 

has undergone g consecutive generations (counting backward in time) of self-reproduction 

before an outcrossing event is 𝑠𝑔(1 − 𝑠). For a high selfing rate, s=0.95 for example, the 

probability that g≥10 is 0.6, and the inbreeding coefficient of the grand parent is at least 1 −

0.58=0.996. This means the grand parent is highly likely to be homozygous across all marker 

loci. When s=0.95, therefore, any two offspring coming from different parents by self-

reproduction (thus non-sibs) but from the same grandparent display an identical multilocus 

genotype and thus are mis-assigned full sibship with a probability of ≥0.6. This numerical 

example provides an underestimate of type I errors, because two non-sibs with non-identical 

multilocus genotypes, if similar enough due to selfing, can still be mis-assigned as full or half 

sibs.  

 To correct for the over-occurrence of type I errors and the underestimation of Ne when 

s is high, I took an empirical approach by deriving a correction factor C, which is multiplied 

by the original Ne estimate (4) (assuming α=0) to give the final estimate. I generated 

simulated data for a monoecious population under different s values in the range [0, 0.995], 
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obtained 𝑠̂ and 𝑁̂𝑒 from (4) (assuming α=0) by sibship analysis of simulated data, and fitted 

the theoretical Ne calculated by eqn (7) below to 𝑁̂𝑒 as a function of 𝑠̂. This analysis (data not 

shown) yielded that 𝐶 = 1/(1 + 𝛼̂), 𝐶 = 1/(1.05 − 2𝑏 + 6𝑏2 − 5𝑏3 − 15𝑏4) where b=𝑠̂ −

0.5, and 𝐶 = 1/(0.5 − 𝑏 − 35𝑏2 + 300𝑏3 − 200𝑏4) where b=𝑠̂ − 0.9, when 𝑠̂ = [0,0.5), 

𝑠̂ = [0.5, 0.9), and 𝑠̂ = [0.9,1), respectively. Ne is first estimated by (4) using estimated 

sibship frequencies and assuming α=0, and then the estimate is multiplied by the correction 

factor chosen according to 𝑠̂ to give the final Ne estimate. 

5. Simulation procedures 

Three species models, dioecious diploid (DD), dioecious haplodiploid (DH), and monoecious 

diploid (MD), were considered in simulations. For DH model, females and males were 

assumed to be diploid and haploid respectively. For MD model, self-reproduction and 

outbreeding occurred at frequencies s and 1-s respectively. The population was composed of 

N1(t) males and N2(t) females for dioecious species and of N(t) individuals for monoecious 

species at a discrete generation t. Population size and sex ratio (for dioecious only) were 

assumed constant in most simulated scenarios, but a bottleneck in the parental population was 

also considered (below). Individuals in the founder generation (t=0) were assumed to be 

unrelated and non-inbred, and the genotype of each individual was generated for L loci. Each 

locus l (l=1~L) was assume to have A codominant alleles with frequencies in a uniform 

Dirichlet distribution. For microsatellites, I assumed L was small, A was large, and the loci 

were unlinked. For SNPs, I assumed L was large, A=2, and the loci were equally spaced in a 

genome of genetic map length M Morgans. Assuming Hardy-Weinberg and linkage 

equilibrium, the multilocus genotype of each founder individual was generated by drawing a 

paternal and a maternal gene at each locus independently from the given allele frequency 

distributions. 

 Starting from the founder generation, a number of g=10 (or g=1000 in the case of 

linked SNPs) generations were simulated before a sample of offspring was taken at random 

from the population at generation g+1 for genotype analysis and Ne estimation. More 

generations (larger g values) before sampling are not necessary, and do not change the results 

essentially because none of the 4 estimators requires an equilibrium between drift and 

mutation. For the simulated unlinked and linked markers, g=10 and g=1000 are sufficient to 

attain stable values of LD. At each generation t (=1~g), each of the Ni(t) individuals for the 

dioecious case (i=1,2 for males and females) or the N(t) individuals for the monoecious case 

was generated independently. To generate an offspring in the dioecious case, the father and 
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mother were drawn at random from the N1(t-1) males and N2(t-1) females respectively. The 

pedigree of the offspring was recorded to calculate coancestry and simulated Ne (below), and 

the multilocus genotype of the offspring was generated from those of its father and mother 

following Mendelian segregation law. For linked SNPs, the number of crossovers in 

generating a gamete was drawn from a Poisson distribution by assuming Haldane's (1919) 

map function, with the mean number of crossovers being M. The locations where crossovers 

occurred were randomly chosen along the chromosome. In the monoecious case, an offspring 

was determined to come from self-reproduction and outbreeding at frequencies s and 1-s 

respectively. In the former case, a single parent was drawn at random from the N(t-1) 

individuals to produce both a male and a female gametes which united to produce the 

offspring. In the latter case, the same procedure as in the dioecious case was followed, except 

both male and female parents were drawn at random without replacement (i.e. selfing 

excluded) from the same N(t-1) individuals. At generation g+1, a number of n diploid 

individuals were generated and their multilocus genotypes were used by various Ne 

estimators to calculate Ne.  

 The simulation program was checked in several ways to ensure it worked properly. 

First, the average coancestry at generation t in the DD model was calculated from simulated 

pedigrees by 𝐺̅𝑡 =
1

4
∑

1

𝑁𝑥(𝑡)
∑

1

𝑁𝑦(𝑡)
∑ ∑ 𝐺𝑖𝑥,𝑗𝑦(𝑡)

𝑁𝑦(𝑡)

𝑗=1

𝑁𝑥(𝑡)
𝑖=1

2
𝑦=1

2
𝑥=1 , where 𝐺𝑖𝑥,𝑗𝑦(𝑡) is the 

coancestry between individuals i of sex x and j of sex y (x,y=1,2 for males and females). The 

effective size of generation t is calculated by 𝑁𝑒(𝑡) = 0.5(1 − 𝐺̅𝑡)/(𝐺̅𝑡+1 − 𝐺̅𝑡). For constant 

population size, this calculated Ne is expected to be constant, equal to the theoretical value 

(below). For DH and MD models and for the bottleneck model, the coancestry based Ne was 

calculated similarly. Second, the FST between generations 0 and t is expected to be 1 −

(1 − 1/(2𝑁𝑒))𝑡 for an isolated population with effective size Ne. This prediction was 

checked against the value calculated from the multilocus genotype data. Third, Ne was also 

calculated from the known (simulated) sibship frequencies and compared with the theoretical 

value (below). These checks verified that the simulation program behaved normally as 

expected. 

 

6. Simulation parameter combinations 

Many factors could potentially affect the performance of a Ne estimator. These include 

population properties (e.g. true Ne, mating system, sex ratio, distribution of family sizes, 

inbreeding, genetic structure), sample properties (e.g. numbers of sampled markers and 
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individuals), marker properties (e.g. polymorphisms and linkage), genotyping problems (e.g. 

allelic dropouts and missing data), as well as parameter settings of each Ne estimators (e.g. 

Pcrit for HE and LD estimators, priors for SF estimator). The number of combinations of these 

factors is combinatorically large to explore. Therefore, I chose to investigate the impact of 

only one or two factors in a set of simulations, keeping other factors constant. The parameter 

values used in different sets of simulations, detailed below, are summarised in Table 1. 

Simulation 1, number of loci: It was intended to compare the accuracy of different methods 

when different numbers (L) of microsatellite markers were used in Ne estimation. It was also 

used to investigate if a method was statistically consistent, being increasingly more accurate 

with an increasing amount of information. Other parameters in the simulation are typical of 

current Ne estimation practices (Table 1).  

Simulation 2, sample size: Together with L, sample size n determines the sampling intensity 

and effort, and is an important determinant of information content. This simulation compares 

the qualities of Ne estimates by different methods applied to samples of different numbers of 

individuals. It considered a relatively large population (Ne =500), and correspondingly used a 

set of highly informative markers (L=20, A=10, Table 1). 

Simulation 3, actual Ne: This simulation was used to investigate whether single-sample 

methods could be used to obtain reasonably good Ne estimates for populations of medium to 

large sizes. Sample size and number of loci were fixed at modest values of n=100 individuals 

and L=20, respectively, and other parameters (Table 1) were also fixed at values typical of 

practice. The actual Ne varied hugely in the range [10, 31250]. 

Simulation 4, prior Ne: The optimal prior for the SF estimator requires prior values of Ne and 

sex ratio R to calculate the prior probability (by (1-3)) of a sibship configuration. In reality, 

Ne and R are unknown, although estimable by methods such as LD. Fig 1 shows that the prior 

for sibship assignments is little affected by R (as was also checked by simulations, data not 

shown), but is strongly influenced by prior Ne. This set of simulations was used to investigate 

the sensitivity of SF estimator to prior Ne values. Simulated data generated with fixed 

parameters of Ne =50, L=10 and L=50 (other parameters are in Table 1) were analysed by SF 

method assuming different prior Ne values (5, 10, 20, 40, 80, 160). The data were also 

analysed by SF method, using Ne estimates from the LD method as priors and using the 

default priors. 

Simulation 5, population fluctuations: SF, MC and HE methods estimate the parental Ne, 

while LD method estimates an average Ne of the population in the past few generations 

(Wang 2005). The number of generations relevant for LD based Ne estimates depends on the 
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linkage of markers, and how much (i.e. weight) the genetic drift (Ne) of each generation 

contributes to the estimated average Ne is unclear. This set of simulations considered a 

change in the parental population size to investigate how different estimators respond to the 

change. A population was assumed to have constant and equal numbers of male and female 

breeders of N1=N2=50 (thus Ne=100), except in the parental generation in which Ni (i=1,2) 

and thus parental Ne were changed by G%. The other parameters are in Table 1. The 

theoretical Ne was calculated and presented for the parental population.  

Simulation 6, linked SNPs: This simulation considered the use of many SNPs, and the effect 

of linkage on the estimators. A fixed number of 1000 SNPs were assumed equally spaced in a 

genome of various map lengths, in the range [1, 64] Morgans. The other parameters are in 

Table 1. The population was simulated for a number of g=1000 generations before sampling, 

and a high mutation rate of u=0.01 was assumed at each generation to maintain the 

polymorphisms of SNP loci. 

Simulation 7, monoecious species with selfing: This simulation considered a monoecious 

species (MD model) with different selfing rates, in the range [0, 1]. The other parameters are 

in Table 1. The simulation was used to investigate the accuracies of different estimators in the 

face of non-random mating (selfing). 

Simulation 8, haplodiploid species: This simulation considered a species which had haploid 

males and diploid females (DH model). A sample of 50 diploid offspring were sampled and 

genotyped at a variable number of marker loci, L=[5,40], for Ne estimation, with the other 

parameters fixed at constant values (Table 1). 

Simulation 9, allelic dropouts: This simulation considered the robustness of different 

estimators to allelic dropouts, a common problem for microsatellites (Bonin et al. 2004), 

especially with noninvasive samples (e.g. faeces, hair). For each sampled individual at each 

locus, allelic dropouts were assumed to occur at a rate D (=0, 0.025, 0.05, 0.1, 0.2, 0.4) 

during PCR. Under the allelic dropout model, a heterozygous genotype, AB, was observed 

(genotyped) to display a phenotype AB, AA and BB at probabilities 1-2d, d and d (where 

d=D/(1+D)), respectively (Wang 2004), when double dropouts were ignored. Double 

dropouts (where both alleles at a single-locus genotype dropout) rarely occur and, if they do, 

can be easily detected and thus rectified by regenotyping in practice. A homozygous 

genotype, say AA, was not affected by allelic dropouts. This allelic dropout model was 

applied to the genotype at each locus of each individual independently. The other simulation 

parameters were fixed at constant values (Table 1). 
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7. Theoretical Ne values 

For the case of constant population size, the theoretical effective size is predicted to be 

(Caballero 1994) 

𝑁𝑒 =
4𝑁1𝑁2

𝑁1+𝑁2
           (5) 

𝑁𝑒 =
9𝑁1𝑁2

4𝑁1+2𝑁2
           (6) 

𝑁𝑒 =
𝑁

1+𝑠/(2−𝑠)
           (7) 

for the DD, DH and MD models considered in the simulations described above, where s is the 

simulated selfing rate. In the case of a bottleneck (population fluctuation), the inbreeding 

effective size of the parental generation can still be calculated by (5-7), where Ni (i=1,2) or N 

refers to the size of the parental population. 

 

8. Accuracy assessments 

The simulated data were analysed by HE, MC, LD and SF methods. The first 3 methods were 

implemented in the software package NeEstimator (Do et al. 2014), which was used in 

analysing the simulated and empirical data of the present study. To reduce bias and increase 

accuracy, LD and HE estimators were calculated by NeEstimator by using different default 

values of Pcrit (0.1, 0.05, 0.02, and 0.01) to screen out rare alleles. It is unclear which Pcrit 

value is the best. It is possible that the best Pcrit value varies, depending on sample sizes, 

number of loci and allele frequency distributions at each locus. In the present simulation 

study, the Pcrit value that yielded the most accurate (in terms of RMSE, below) estimates was 

adopted and the corresponding results were reported. Negative estimates from MC, LD and 

HE estimators were taken as infinitely large Ne values. For the SF method, the simulated Ne 

value was used in calculating prior (1) and its weight (3), except when explicitly stated. The 

software package Colony (Jones & Wang 2010) was used to analyse the simulated and 

empirical data for sibship assignments and Ne estimates. 

The quality of a Ne estimator can be measured by its bias, B, and variance, V, of 1/𝑁̂𝑒. 

The quality statistics are calculated from 1/𝑁̂𝑒 rather than 𝑁̂𝑒 because the latter can be 

infinitely large (and can be in a bimodal distribution) and, more importantly, because the 

former is more relevant in most applications (Wang & Whitlock 2003). B and V are 

calculated by 

𝐵 =
1

𝑁̂𝑒
𝐻 −

1

𝑁𝑒
, 
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𝑉 =
1

𝑚
∑ (

1

𝑁̂𝑒
𝐻 −

1

𝑁̂𝑒𝑖
)

2
𝑚
𝑖=1 , 

where 𝑁̂𝑒𝑖 is the estimated effective size in the ith (i=1~ m) replicate, 𝑁𝑒 is the theoretical 

(simulated) effective size calculated by (5-7), and 𝑁̂𝑒
𝐻 is the harmonic mean of 𝑁̂𝑒𝑖 calculated 

by 𝑁̂𝑒
𝐻 = (

1

𝑚
∑

1

𝑁̂𝑒𝑖

𝑚
𝑖=1 )

−1

. From hereafter “mean” 𝑁𝑒 estimate always refers to this harmonic 

mean estimate, 𝑁̂𝑒
𝐻.  

The overall accuracy of an estimator is measured by root mean squared error, 

RMSE = √ 1

𝑚
∑ (

1

𝑁̂𝑒𝑖
−

1

𝑁𝑒
)

2
𝑚
𝑖=1 . 

It includes both the bias and the variance, as RMSE=√𝐵2 + 𝑉, and measures how far the 

estimates 1/𝑁̂𝑒𝑖 differ from the true parameter value 1/𝑁𝑒. From hereafter the word 

“accuracy” signifies the level of measurement that yields true (no systematic errors, B=0) 

and consistent (no random errors, V=0) results, quantified by RMSE. In this study, 𝑁̂𝑒
𝐻 and 

RMSE are reported for each simulated parameter combination with m=100 replicates. 

 

9. Yellowstone grizzly bears 

Kamath et al. (2016) sampled and genotyped (at 20 microsatellite loci) 729 Yellowstone 

grizzly bears (Ursus arctos) born in the period 1962-2010 from an isolated and well-studied 

population in the Greater Yellowstone Ecosystem, and used the data to study the population 

demographic trajectories. Herein I analyse the genotype data of the sampled individuals born 

in the periods 1988-1990, 1998-2000, and 2008-2010. The 3 corresponding samples contain 

46, 92 and 59 individuals, respectively. Because the population has overlapping generations 

and each sampling period has only 3 years, the estimates are effective numbers of breeders, 

Nb, rather than Ne. For simplicity, however, I still call the estimates Ne hereafter. 

 The analyses by LD, HE and MC estimators are straightforward. Estimation by SF 

requires, however, a prior Ne, which is unfortunately unknown. It is possible to use the LD 

estimate as the prior, as I did for some simulations. To demonstrate the usefulness of SF 

when no prior Ne is available or the LD estimate is deemed unreliable (e.g. negative or 

infinitely large Ne estimates for a population known to be small) as a prior, I analysed each of 

the 3 samples by assuming widely different prior Ne values. The plots of Ne estimates by SF 

estimator as a function of the prior values reveal the most likely Ne. I also analysed each of 

the 3 samples by using the default prior without the need of prior Ne values. 
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 The sample sizes are highly variable among the 3 periods. To investigate whether Ne 

estimates are affected by sample size, I generated 100 bootstrapping samples, each of 50 

individuals, from the original sample of 92 individuals for the period 1998-2000. The 

samples were analysed by SF estimator using different prior Ne values. For each prior, the 

harmonic mean of the 100 estimates was reported. Harmonic mean Ne estimates from the 

other three methods were also obtained and reported. 

 

Results 

Number of loci 

Both MC and HE underestimate Ne substantially, even when many (L=40) highly 

polymorphic (A=10) markers are used in the estimation (Fig 2). While HE becomes less 

biased slowly with an increasing L, MC always underestimates Ne by about 60% irrespective 

of L. In contrast, LD and SF overestimate Ne slightly when L=5, and become essentially 

unbiased when L≥10.  

MC and HE methods are also highly imprecise, yielding infinite Ne estimates 

frequently even when marker information is ample (L=40 and A=10). As a result of the low 

precision and high bias, MC and HE methods are much less accurate than LD and SF 

methods. Their RMSE values are an order higher than those of LD and SF methods (Fig 2). 

SF is more accurate than LD by several folds when L is small, but the difference decreases 

with an increasing L. The maximum advantage of SF over LD in accuracy occurs at L=10, 

probably due to the contribution of the prior in SF (see Fig 5 below).  

Both sample size n (relative to the actual Ne, see below) and number of loci L affect 

the bias of MC and HE methods. Further simulations showed that, at L=10 and other 

parameter values as in Fig. 2, the mean HE estimates are 88 and 97 and the mean MC 

estimates are 51 and 52 when n=200 and 1000, respectively. While HE becomes essentially 

unbiased, MC still underestimates Ne substantially, when a large sample relative to effective 

size (i.e. large n/Ne ratio) is used.   

Sample size 

LD overestimates and SF underestimates Ne when sample size n is much smaller than the 

actual Ne (Fig 3). The biases of both methods reduce quickly with an increasing n. Both MC 

and HE methods underestimate Ne greatly, and only the latter shows a bias decreasing with an 

increasing n. In the entire range of simulated sample sizes, SF and LD methods are more 

accurate than MC and HE methods by roughly one order (Fig. 3).  

Actual Ne 
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When n is not much smaller than Ne (i.e. n/Ne not much smaller than 1), LD, SF, and HE 

estimators are unbiased but MC estimator is downwardly biased. HE method and LD and SF 

methods start to severely underestimate Ne when n/Ne≤1 and n/Ne≤0.015 respectively (Fig 4). 

It seems impossible for HE to provide unbiased estimate of Ne when the sample size is equal 

to or smaller than the actual Ne. However, both LD and SF are nearly unbiased, except when 

the actual Ne is many times larger than n. In such a case, increasing marker information (L 

and A) helps to reduce bias. For LD which could yield negative estimates of Ne, the bias 

could also be reduced by not converting negative estimates to infinity. However, this 

treatment would inevitably decrease the precision, and thus the overall accuracy (RMSE) of 

the LD estimator.   

 SF estimator gives the most accurate estimates in the entire range of the actual Ne, 

[10, 31250]. It is always at least one order more accurate than the HE and MC methods. LD 

is only slightly more accurate than HE method when the actual Ne is very small. However, its 

accuracy advantage over HE increases rapidly with an increasing Ne.  

Prior Ne 

When markers are not highly informative (L=10), the SF estimator depends on the assumed 

prior Ne value (Fig 5A, B). It increases with an increasing prior Ne. It is smaller than the 

actual Ne =50 but larger than the prior Ne when the latter is much smaller than the former, and 

vice versa (Fig 5A). Over the large range of prior Ne values [5, 160], however, SF is still less 

biased than MC and HE, and provides more accurate estimates than MC and HE by roughly 

one order. Compared with LD, SF underestimates and overestimates Ne substantially when 

prior Ne is much smaller and larger than the actual Ne, respectively. In both cases, SF is less 

accurate than LD (Fig 5A, B). However, when the prior Ne is not much different from the 

actual Ne, or when LD estimates are used as the prior, or the default priors (which does not 

require prior Ne values) are used, SF estimator becomes more accurate than LD. 

 The default prior gives much better Ne estimates than the prior that uses LD estimates 

as prior Ne values. It leads to less accurate Ne estimates than the prior with assumed prior Ne 

values only when the assumed prior Ne values are close to the actual Ne values. 

When markers are highly informative (L=50), the SF estimator is almost unaffected 

by the priors (Fig 5C, D). The SF estimator is always unbiased and much more accurate than 

the other estimators, no matter it uses the default prior, the prior with assumed widely 

different Ne values, or the prior with LD estimates as prior Ne values. 

Simulations presented in Fig 5 were conducted with a small sample size of n=50. The 

SF estimator becomes increasingly independent on the prior with an increasing sample size 
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relative to the actual Ne (i.e. n/Ne ratio). This is understandable from Fig 1, which plots the 

weight of the prior used in likelihood sibship assignments as a function of n/Ne ratio. When 

n/Ne ≥1.59, the weight becomes zero and no prior is actually used in sibship assignments and 

thus SF estimator is completely independent of prior Ne values. 

Several other simulations using different values of n, Ne, L, and A yielded results 

similar to those shown in Fig 5.  

Population fluctuations 

When marker information is relatively ample (n=100, L=20, A=10), a drastic change in the 

parental population size, in the range [-40%, 40%], was undetectable by MC estimator, but 

was detected by the other three estimators (Fig. 6). Theoretically, SF and HE estimate the Ne 

in the parental generation, and thus the results are not surprising. LD is determined by a 

number of generations of drift occurred before sampling, and thus in theory it should estimate 

the (weighted) average Ne in the past few generations. Despite this, however, Fig. 6 shows 

that the LD method does not overestimate and underestimate parental Ne much when it is 

greatly decreased and increased (by 40%), respectively. This is perhaps because half of the 

LD detectable from a sample of individuals comes from the parental generation and the other 

half from previous generations. 

Linked SNPs  

With a decreasing genome size M and thus an increasing degree of linkage among the 1000 

SNPs, the LD estimator increasingly underestimates Ne and becomes inaccurate (Fig 7). The 

other three estimators do not use linkage disequilibrium as information and are thus much 

less affected by M, except when it is very small. The HE estimator is almost unbiased, 

irrespective of M, but has a low precision. As a result, its overall accuracy is higher than LD 

only when M<2 (Fig 7). MC estimator provides the worst estimates in the entire range of 

M=[1, 64]. With an increase in M (and thus a decrease in linkage), the quality of the LD 

estimator (which assumes unlinked markers) approaches that of SF. 

Monoecious species with selfing  

The LD, HE and MC estimators are not developed for application to monoecious or dioecious 

species with non-random mating, such as close relative mating (including selfing). When 

blindly applied, LD and MC underestimate and HE overestimates Ne increasingly with an 

increasing selfing rate, s (Fig 8). The HE estimates of Ne become infinite when s>0.1. As a 

result, these estimators have a rather low overall accuracy measured by RMSE. In contrast, 

the SF estimator applies to monoecious species with selfing, and applies to high selfing rate 

when the correction factor is used. For the entire range [0, 0.98] of s, the SF estimator only 
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slightly underestimates Ne and has an overall accuracy much higher than the other estimators 

(Fig 8). 

Haplodiploid species 

The current LD, HE and MC estimators assume a dioecious species with diploid males and 

females, or a monoecious species of diploid individuals with selfing occurring at random (i.e. 

at rate 1/N). When applied to haplodiploid species, these estimators underestimate Ne greatly, 

and as a result are highly inaccurate (Fig 9). In contrast, SF estimator allows for different 

species models, and gives Ne estimates that are only slightly smaller than the simulated (true) 

value and are highly accurate. 

Allelic dropouts 

Allelic dropouts at marker loci cause LD and HE estimators to severely overestimate Ne, but 

have much less effects on SF and MC estimators (Fig 10). Allelic dropouts induce an 

apparent deficiency of heterozygotes, and thus lead to dramatic overestimates of Ne by HE. 

The Ne estimates by HE become infinitely large when D≥0.05. Dropouts also result in 

overestimates of Ne by LD estimator. Among the 4 estimators, SF is the only one that has a 

built-in model to account for dropouts, and thus is robust to these genotyping errors. It yields 

slight overestimates of Ne only when the actual dropout rate is very high, much higher than 

the assumed dropout rate (0.05) used in sibship analysis. When the actual dropout rate was 

used, SF always gave an almost unbiased Ne estimate (data not shown). 

 The relative accuracies of the 4 estimators follow a pattern similar to relative biases 

(Fig 10). Overall, SF performs much better than other estimators in the presence of dropouts. 

LD estimator can tolerate allelic dropouts when they occur at a rate smaller than 0.05. HE 

estimator is highly vulnerable to dropouts. Although MC is insensitive to allelic dropouts, its 

performance is always very poor. 

Yellowstone grizzly bears  

The SF estimates of Ne are relatively insensitive to the assumed prior Ne values for each of 

the three sampling periods (Fig 11), because the 20 microsatellite markers are sufficiently 

informative. The estimates increase slowly with an increasing prior Ne; they are larger and 

smaller than prior Ne values when the latter are small and large, respectively. The best 

estimates are provided by the cross points where the estimates are equal to the priors (Fig 11). 

For periods 1988-1990, 1998-2000, and 2008-2010, the best estimates are 69, 90 and 100 

respectively. The corresponding LD estimates and SF estimates using the default prior are 

slightly smaller, which are 48, 60 and 77 respectively for LD and 44, 85 and 59 respectively 

for SF with default prior. In contrast, the MC estimates are always very small (from 11 to 21), 
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and the HE estimates are either very large or small, with values 1178, 35 and  for periods 

1988-1990, 1998-2000, and 2008-2010 respectively. 

 The sample size for period 1998-2000 is 92, much larger than those (46, 59) of the 

other two periods. The harmonic mean Ne estimate over 100 bootstrapping samples (each of 

size 50), plotted as a function of the prior Ne assumed in the estimation, shows that the best 

Ne estimate from SF remains the same, about 90. The harmonic mean Ne estimates from SF 

with default prior, LD, HE and MC are 88, 66, 36, 11, respectively, also very close to the 

estimates from the original sample of 92 individuals, which are 85, 60, 35, and 11, 

respectively. This shows that sample size does not affect the results for this dataset. 

 

Discussion 

In this study, I propose to use Ewen’s sampling formula as a prior to reduce type I errors in 

the likelihood based sibship assignments, and thus to reduce the overestimation of sibship 

frequencies and the underestimation of Ne in the difficult situation where a small sample of 

individuals is drawn from a large population and genotyped for a small number of loci. For 

the first time, the SF method was compared with LD and other single-sample methods by 

analysing data simulated in widely different scenarios, including a large actual Ne, many 

linked SNPs, genotyping errors, different species models, and the presence of bottlenecks and 

close inbreeding (selfing). These scenarios are realistic, but have not been studied in previous 

simulations of single sample estimators. The main findings of the simulation study are 

summarized in Table 2. An empirical dataset was analysed comparatively by different single-

sample estimators. In this section, I discuss the findings of this study and implications to 

estimating Ne from a single sample of individuals in practice. 

Prior Ne: In a small sample of n individuals taken at random from a large population of 

effective size Ne, the sibling frequencies are expected to be low and the frequencies of non-

sibs, including distant relatives such as cousins, are expected to be high. When this prior 

information is not used and marker information is insufficient (i.e. few loci, low 

polymorphism, and small n relative to Ne), a sibship analysis would make much more type I 

errors (false sibs) than type II errors (false non-sibs). With a small n/Ne ratio, non-sibs are 

frequent, but when characterized by just a few markers of low polymorphism, they could 

display similar or even identical multilocus genotypes and thus could be erroneously inferred 

as siblings. These type I errors become more frequent with a smaller n/Ne ratio and a smaller 

amount of marker information.  
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This study uses Ewen’s sampling formula as a prior to reduce type I errors, and thus 

to reduce the overestimation of sibship frequency and the underestimation of Ne.  Both the 

parameter θ (eqn 2) and the weight of the prior are designated to depend on n/Ne (eqn 3, Fig 

1), such that a smaller n/Ne ratio results in a higher θ value and a larger weight of the prior, 

both resulting in a larger penalty for sibship assignments. Like any priors in the Bayesian 

literature, my prior is informative and somewhat subjective, and I do not claim it is optimal. 

However, my simulations using many different parameter combinations (n, Ne, L, A, …) and 

species models verify that the prior works very well, making the SF estimator essentially 

unbiased and much more accurate than other single sample estimators when marker 

information is scarce. On the other hand, the SF estimator becomes increasingly independent 

of the prior with an increase in marker information (L, A) and sample size (n), as expected.  

 A difficulty in applying the SF estimator occurs when one has no prior information 

about the effective size of the population. Prior Ne becomes irrelevant when either n is large 

(relative to the unknown Ne, Fig 1) or marker information is ample (Fig 5). Otherwise, the Ne 

estimate from SF method increases with an increasing prior Ne (Fig 5). The method provides 

underestimates and overestimates when prior Ne is smaller and larger than the actual Ne, 

respectively. In the case where no prior Ne information is available, a number of different 

prior Ne values can be used in the SF estimator and the prior that results in the same estimate 

is the most likely effective size. This approach was applied to the grizzly bear data (Fig 11) 

and yielded sensible results. Alternative and computationally simpler approaches are to use 

the default sibship prior and LD estimate of Ne as prior, as shown in Fig 5.  

Accuracy of single sample estimators: Across many scenarios involving population (e.g. 

actual Ne, genome size), sample (e.g. numbers of loci and individuals) and marker (e.g. 

polymorphisms and allelic dropout rates) properties, the SF and LD estimators are less biased 

and more accurate than HE and MC estimators by roughly one order. Relatively, HE is better 

than MC. Both provide very poor estimates of Ne, especially when the actual population is 

not very small (Fig 3). MC always underestimates Ne substantially, except for very small 

populations (say, actual Ne <30). The bias of HE depends critically on the ratio n/Ne, and 

decreases with an increasing n/Ne (Fig 4). My simulation results confirm previous studies 

(Pudovkin et al. 1996; Luikart & Cornuet 1999) that HE has some value in applications to 

very small populations, or in the situation where sample size is larger than the actual Ne. It 

can also provide almost unbiased Ne estimates when many markers (Fig 7) are used. 

However, even in these situations, the precision of this estimator is low, much lower than that 
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of the LD and SF estimators. Furthermore, its high vulnerability to non-random mating and 

imperfect markers (e.g. allelic dropouts, null alleles) renders it impractical.  

Most previous simulation studies on Ne estimators considered small to medium sized 

populations with Ne ≤100 (e.g. Wang 2001; Tallman et al. 2004; England et al. 2006; Waples 

2006; Wang 2009; Waples & Do 2008, 2010; Waples & England 2011; Waples et al. 2014). 

This is understandable because current estimators rely on information on inbreeding and 

genetic drift, and such information is strong relative to sampling noises only when 

populations are small and sampling intensity is high (i.e. n and L are big). With the rapid 

developments in molecular techniques, many more markers can be genotyped for a large 

number of individuals at ease. As a result, we have now the capacity to study big populations, 

despite of their weak signals of inbreeding and genetic drift. The present simulation study is 

perhaps the first to explore the possibility of estimating the contemporary Ne of large 

populations from marker data. My simulation results are highly encouraging (Fig 3, 4), and 

the SF and LD estimators can provide reasonably good Ne estimates of very big populations 

(Ne ~30000) by nowadays typical sampling efforts (n=100, L=20) in genotyping 

microsatellites. With a higher sampling intensity in terms of sample sizes of individuals (n) 

and markers (L), the two estimators can be applied to even larger populations to obtain high-

quality estimates of Ne.  

 My simulations showed that, over many different parameter combinations, the SF 

estimator is always more precise and thus more accurate than the LD estimator. The 

performance advantage of the SF estimator remains, albeit reduced, when the LD estimates 

are used as the prior Ne values (Fig 5). In the case of no prior Ne information and the LD 

estimate is deemed unreliable, a good alternative is to use the default prior (Fig 5). When 

marker information (L, A) is sufficiently high (Fig 5), or sample size is large relative to the 

actual Ne (Fig 1), the prior has little effect on the quality of SF estimator. A survey of 89 

studies published in the journal Conservation Genetics in 2014 showed that, on average, 12 

microsatellites are used (Vilas et al. 2015). At this level of marker information, SF could rely 

on the prior to some extent (Fig 5), depending on the ratio n / Ne. 

 The extent of linkage disequilibrium observed in a population is determined by the 

drift occurred over a number of previous generations (Hill 1981). The LD estimate of Ne 

should, therefore, reflect the average effective size of the population at the parental and a 

number of earlier generations (Wang 2005), and should overestimate (underestimate) parental 

Ne if it is greatly decreased (increased). My simulations confirmed that the parental Ne is 

indeed overestimated and underestimated by the LD estimator when there is a sudden 
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decrease and increase in Ne at the parental generation, respectively (Fig 6). However, the bias 

of LD estimator is not substantial in both cases. However, with linked markers, LD estimator 

could reflect the effective size many generations before the sampling point, and thus could 

become more biased (improper) as an estimate of the parental Ne when the population has a 

fluctuating size and/or breeding system. On the other hand, the bias of LD as an estimator of 

parental Ne as observed in Fig 6 would be even smaller if the population demographic change 

occurs earlier than the parental generation.  

 This study focused on the bias, precision and accuracy of different estimators, and did 

not compare their computational time. LD, HE and MC are (allele frequency) moment-based 

methods and are very simple to calculate, taking usually just a couple of seconds to finish an 

analysis. With an increase in the number of markers L, MC estimator becomes slower. Even 

when L =1000, however, an MC analysis takes just a few minutes. In contrast, SF method 

uses a likelihood based sibship assignment analysis to obtain sibship frequencies. The 

analysis is computationally intensive due to the complexity of computing the likelihood of a 

sibship configuration and the algorithm, simulated annealing, used to maximize the 

likelihood (Wang & Santure 2009). For the analysis of a typical dataset in this simulation 

study, the SF method takes about 20 minutes with the default parameter settings, except for 

the prior. The computational time increases quickly with sample size, and can take days or 

weeks to finish a run for a large dataset with many individuals and marker loci with 

genotyping errors. However, in the case of very large dataset, a likelihood score method 

(Wang 2012) can be used to quickly assign sibships with reasonable accuracy. 

 A single sample estimator based on multiple summary statistics (Tallman et al. 2004) 

is not used in my comparison study. The estimator has been implemented in a software 

package, OneSamp (Tallman et al. 2008). However, it is available only as a web-based 

program and thus is infeasible for a simulation study in which hundreds of thousands of 

datasets must be analysed. Conceptually, this estimator does not estimate the contemporary 

Ne because it uses some summary statistics (e.g. number of alleles per locus) that are 

determined by Ne over an evolutionary time scale (Wang et al. 2016). Therefore, this 

estimator may not be comparable with other single-sample estimators in practice, because no 

real populations have a stable size in such a long time of many generations. 

Robustness:  Each Ne estimator is based on a genetic model under a number of simplifying 

assumptions (briefed in Table 2), such as discrete generations, random mating, an isolated 

population with no immigration, no linkage among markers, and no genotyping error of 

markers. Violation of these assumptions may have a highly variable effect on different 
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estimators. Waples and coworkers (Waples & England 2011; Waples et al. 2014) investigated 

the robustness of LD estimator applied to populations with overlapping generations and to 

populations receiving immigrants. In their simulations with immigration, samples containing 

first-generation immigrants (i.e. both parents of an immigrant are from the source population) 

were used in LD estimator. They found that LD estimator is surprisingly robust to 

immigration, providing good estimates of local effective population size except when 

migration rate is greater than 5~10%  (Waples & England 2011). My simulations (Wang 

2009, and results not shown in this study) showed that the SF estimator is unaffected by 

immigration when it is applied to a sample of individuals containing no first-generation 

immigrants, irrespective of the migration rate. Immigrants in the parental and more remote 

generations do not affect the SF estimator, because they do not affect the rate of inbreeding or 

genetic drift of the local population. First-generation migrants do affect the sibship 

frequencies, but they can be avoided by careful experimental and sampling designs (e.g. 

sampling before the life stage in which migration occurs) or by the detection and elimination 

using the multilocus genotype data (Pritchard et al. 2000; Rannala & Mountain 1997). 

 When a single cohort is sampled from a population with overlapping generations and 

is analysed by the four estimators, a statistic called effective number of breeders (Pudovkin 

1996; Nomura 2008; Waples & Antao 2014; Waples et al. 2014), Nb, rather than effective 

size, Ne, is obtained. Conceptually, Nb is different from the effective population size per 

generation (Ne) or per year (Ny, or annual effective population size, Hill 1979). It summarises 

partially the effects of the sizes of age classes and the individual variation in reproductive 

contributions within and among age and sex classes on the stochastic processes of inbreeding 

and genetic drift in a population with overlapping generations. However, the effects of life 

span and other factors, which are also relevant in determining the stochastic process, are not 

reflected in Nb. The LD estimator is now almost routinely used to estimate Nb for populations 

with overlapping generations (e.g. Duong et al. 2013; Whiteley et al. 2014). Simulations have 

also been conducted to investigate what the LD estimates really are when calculated from a 

single cohort sample and mixed cohort samples (e.g. Robinson & Moyer 2013; Waples et al. 

2014) from a population with overlapping generations. For understanding the genetic 

stochasticity of a population with overlapping generations, estimators of Ne and generation 

interval dedicated for such populations, such as that based on parentage analysis (Wang et al. 

2010) should be applied. A recent study applying the estimator to a grizzly bear population 

monitored over more than 50 years (Kamath et al. 2016) showed that both generation interval 

and Ne have been increasing in this time period. 
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 An advantage of the SF estimator is that it can be applied to non-random mating 

populations. Unlike other single sample estimators which invariably assume random mating, 

SF allows for non-random mating by using the parameter α, equivalent to Wright’s FIS, in the 

estimation equations (e.g. eqn (4)). This parameter measures the departure of genotype 

frequencies from Hardy-Weinberg equilibrium caused by non-random mating, and can be 

estimated from the same multilocus genotype data as sibship frequencies (Wang 2009). In 

general, however, the effect of non-random mating on Ne is small in dioecious outbreeding 

species. For monoecious species, however, Ne can be much reduced by selfing when it occurs 

at a substantial rate. My simulations showed that the SF estimator, (4), can be applied to 

obtain accurate Ne estimates when selfing rate is not very high. Otherwise, sibship will be 

over-assigned and Ne underestimated. In such cases, a correction factor can be used to 

remove the bias (Fig. 8). 

 With the rapid development of sequencing technology, genome-wide SNPs are 

increasingly used in molecular ecology and conservation genetics studies. These markers are 

necessarily linked when numerous. However, their linkage relationships (genetic map 

distances) might be poorly known. This study is the first to investigate the performances of 

LD and other single sample estimators when they are applied to many linked SNPs under the 

assumption of no linkage. As is expected, SF, HE and MC are little affected by linkage, but 

LD estimator underestimates Ne severely when the linkage among SNPs is strong (Fig 7). 

More work is needed to evaluate the performance of Hill’s (1981) original LD estimator 

(which allows for linkage) when the genetic map distances among SNPs are known and are 

used in the estimator. 

 The SF estimator is also robust to imperfect data. My simulations confirm (Fig 10) 

that SF estimator is robust to allelic dropouts, and can yield fairly good estimates of Ne even 

when dropouts occur at a much higher rate than that assumed in the analysis. In contrast, LD 

and HE estimators are vulnerable to dropouts. Although MC is little affected by dropouts, it 

almost always underestimates Ne substantially and is much less accurate than other 

estimators, no matter allelic dropouts are present or not. I also simulated null alleles (data not 

shown), and obtained results and reached conclusions similar to those for allelic dropouts 

regarding the relative performances of different estimators. Sved et al. (2013) showed that 

LD estimator is sensitive to the presence of null alleles, which leads to an underestimation of 

Ne. They showed, however, that a permutation analysis could be used to correct for the 

inflated linkage disequilibrium due to null alleles, and thus to obtain essentially unbiased 

estimates of Ne. They did not however evaluate the accuracy of LD estimator as measured by 
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RMSE in the presence of null alleles with and without applying the permutation correction. I 

surmise the same permutation procedure could also be used to correct for the bias caused by 

allelic dropouts. Further work is needed in this area.  

 Sibship analysis (and thus SF estimator) requires prior information about the mating 

system. When a species is designated as polygamous (monogamous) for females, then 

maternal half sibship is assumed to be present (absent) among sampled individuals and such 

relationship will (not) be assigned in a sibship analysis. This is also true for male mating 

system and paternal half sibship. Therefore, mis-specifying polygamy as monogamy when 

there exist a lot of half siblings in the sample will lead to no half sibship assignments, an 

underestimation of sibship frequency, and thus an overestimation of Ne, no matter how many 

markers are used in the sibship analysis. In contrast, mis-specifying monogamy as polygamy 

when no half siblings exit in the sample only leads to a possible reduction in the power 

(accuracy) of a sibship analysis. With sufficient marker information (say, 20 microsatellites), 

however, full sibship should be accurately inferred and no half sibship should be assigned 

when monogamy is mis-specified as polygamy (Wang 2004). In the absence of any 

information, the mating system should be better designated as polygamous for both males and 

females. Note the LD method also needs mating system information to calculate the expected 

linkage disequilibrium correctly (Hill 1981).  

Application scopes: Compared with LD and other single sample estimators, the SF estimator 

has a much broader application scope and could handle different species models and markers. 

For example, SF estimator applies to dioecious diploid species with random or non-random 

mating, to haplodiploid species (Fig 9), and to monoecious species with mixed selfing and 

outbreeding (Fig 8). It can also be easily adapted to apply to polyploid species, because the 

current likelihood sibship assignment method can yield accurate sibship assignments for 

polyploid species (Wang & Scribner 2014). In terms of markers, SF method applies to 

microsatellites, many linked SNPs without knowing linkage relationships, and dominant 

markers. Considering the wider application scope, more robustness (e.g. to migration, non-

random mating and genotyping errors) and higher accuracy of the SF estimator, I recommend 

its wide use in practice.  
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Table 1 Parameter combinations in simulations 

Simulation Focal parameter (values) Fixed parameter values Result 

Fig. Species N1, N2 (N) Ne L A n 

1 L(5, 10, 15, 20, 25, 30, 35, 

40) 

DD 50, 50 100 - 10 50 2 

2 n(20, 40, 80, 160, 320) DD 250, 250 500 20 10 - 3 

3 Ne (10, 50, 250, 1250, 

6250, 31250) 

DD Ne/2, Ne/2 - 20 10 100 4 

4 Prior Ne (5, 10, 20, 40, 80, 

160, 320, LD estimate) 

DD 25, 25 50 10, 50 10 50 5 

5 G (-40, -20, 10, 0, 10, 20, 

40) 

DD 50, 50 100× 

(1+G) 

20 10 100 6 

6 M (1, 2, 4, 8, 16, 32, 64) DD 25, 25 50 1000 2 50 7 

7 s (0, 0.1, 0.2, 0.4, 0.8, 

0.98) 

MD (100) 100, 95, 

90, 80, 60 

10 10 50 8 

8 L (5, 10, 20, 40) DH 50, 50 75 - 10 50 9 

9 D (0, 0.025, 0.05, 0.1, 0.2, 

0.4) 

DD 25, 25 50 10 10 50 10 

The three species models are dioecious diploid (DD), dioecious haplodiploid (DH), and 

monoecious diploid (MD). The column headed by “N1, N2 (N)” gives the numbers of males 

and females in DD models and the number of individuals in MD models. Ne is the theoretical 

effective size. Except when explicitly explored, the simulated population is assumed isolated, 

constant in size (no bottleneck), and the markers are assumed unlinked (i.e. genetic map 

length of the genome M=). G is the percentage change in parental population size (so that 

Ni(1+G) is the number of breeders of sex i, while in other generations the number is Ni). D is 

the rate of allelic dropouts at each locus. L is the number of markers. A is the number of 

alleles per locus. n is sample size (number of individuals). s is selfing rate. 

  



35 
 

Table 2 Comparison of single-sample estimators of Ne 

Method Information 

used 

Key assumptions Strengths Weaknesses Software and 

reference 

HE Heterozygosity 

excess 

Random sampling; An isolated 

random mating population; Diploid; 

Codominant markers; No allelic 

dropouts; No null alleles 

Simple computation; 

Nearly unbiased with 

n/Ne>1; Robust to 

linkage 

Imprecise; Highly biased 

with n/Ne<1, non-random 

mating, allelic dropouts, 

or null alleles; Unsuitable  

for dominant markers, 

and for haplodiploid 

species 

NeEstimator, Do et 

al. 2014; Colony, 

Jones & Wang 2010; 

Nb_HetEx, 

Zhdanova & 

Pudovkin 2008 

MC Molecular 

coancestry 

Random sampling; An isolated 

random mating population; Diploid; 

Codominant markers 

Simple computation; 

Robust to allelic 

dropouts, null alleles, 

and linkage 

Highly biased and 

inaccurate 

NeEstimator, Do et 

al. 2014 

LD Linkage 

disequilibrium 

Random sampling; An isolated 

random mating population; Diploid; 

Codominant markers; No allelic 

dropouts; No null alleles; No linkage 

Simple computation; 

Accurate when 

assumptions are met 

Inaccurate with linkage, 

non-random mating, 

population structure, 

allelic dropouts, null 

alleles. Unsuitable for 

haplodiploid species; 

Limited ability for 

bottleneck detection  

NeEstimator, Do et 

al. 2014; LDNE, 

Waples & Do 2008 

SF Sibship 

frequency 

Random sampling; Diploid or 

haplodiploid species  

Accurate; Wide 

application scope (non-

random mating; 

subdivided population; 

diploid and 

haplodiploid species; 

dominant and 

codominant markers); 

Highly robust to allelic 

dropouts and null 

alleles, and to linkage 

Highly computational 

demanding; Sensitive to 

improper priors when 

marker information is 

scarce and n/Ne is small 

Colony, Jones & 

Wang 2010 

Note, the LD method refers to the improved estimator by Waples (2006) and Waples & Do 

(2008), which assumes unlinked codominant markers. n, number of individuals in a sample. 
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Fig. 1 Weight of the sibship assignment prior as a function of r (sample size n to prior Ne 

ratio) and prior sex ratio R.  
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Fig. 2 Mean and RMSE of Ne estimates as a function of the number of loci, L. An isolated 

population was simulated under a DD model for a variable number of L unlinked loci, and the 

other parameters being fixed at A=10, N1=N2=50, n=50. The simulated Ne is 100. Note both x 

and y axes are in log scale in the plot of RMSE.  
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Fig. 3 Mean and RMSE of Ne estimates as a function of sample size, n. An isolated 

population was simulated under a DD model for a variable sample size of n individuals, and 

the other parameters being fixed at A=10, N1=N2=250, L=20. The simulated Ne is 500. Note 

both x and y axes are in log scale in the plot of RMSE. 
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Fig. 4 Mean and RMSE of Ne estimates as a function of the actual effective population size, 

Ne. An isolated population was simulated under a DD model for a variable Ne (N1=N2= Ne / 

2), and the other parameters being fixed at A=10, n=100, L=20. Note both x and y axes are in 

log scale in both plots of mean Ne estimates and RMSE. 
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Fig. 5 Mean and RMSE of Ne estimates as a function of the prior Ne used in SF estimators. 

No priors were used in HE, MC and LD estimators and their estimates were invariable with 

prior Ne. The SF estimator used either a variable Ne value on x axes as priors (continuous 

black lines, labelled as SF), the LD estimate as priors (thick continuous grey lines, labelled as 

SF(LD prior)), or the default (unknown Ne) priors (thin continuous grey lines, labelled as 

SF(DT prior)). An isolated population was simulated under a DD model for a variable 

number of L= 10 or L=50 loci, and the other parameters being fixed at Ne =50 (N1=N2= 25), 

A=10, n=50. Note both x and y axes are in log scale in both plots of mean Ne estimates and 

RMSE, and the lines for SF, SF(LD prior) and SF(DT prior) are indistinguishable when 

L=50.  
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Fig. 6 Mean and RMSE of Ne estimates as a function of the actual (simulated) parental Ne. 

An isolated population was simulated under a DD model for a constant population size 

(N1=N2= Ne / 2=50) except in the parental generation in which the population size changes to 

those shown on the x axes. The other parameters were fixed at L=20, A=10, n=100. Note the y 

axis is in log scale in the plot of RMSE. The theoretical (simulated) parental Ne is shown in 

the thin dotted line in the plot of mean Ne. 
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Fig. 7 Mean and RMSE of Ne estimates as a function of the map length (M, in Morgan) of the 

genome. An isolated population was simulated under a DD model for a variable M (x axes), 

and the other parameters being fixed at L=1000, A=2, N1=N2= Ne / 2=25, n=50. Note the y 

axis is in log scale in the plot of RMSE, and the simulated value of Ne =50 is shown in thin 

dotted line in the plot of mean Ne. 
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Fig. 8 Mean and RMSE of Ne estimates as a function of the actual selfing rate (s). An isolated 

population was simulated under a MD model for a variable rate of selfing (x axes), and the 

other parameters being fixed at L=10, A=10, N=100, n=50. The theoretical (simulated) Ne is 

shown in the thin dotted line. Note the y axes are in log scale in both plots of mean Ne 

estimates and RMSE. 
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Fig. 9 Mean and RMSE of Ne estimates as a function of the number of loci (L). An isolated 

population was simulated under a dioecious haplodiploid (DH) model, and the other 

parameters being fixed at A=10, N1=N2=50, Ne=75, n=50. The theoretical (simulated) Ne =75 

is shown in the thin dotted line. Note the y axis is in log scale in the plot of RMSE. 
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Fig. 10 Mean and RMSE of Ne estimates as a function of the rate of allelic dropouts at each 

locus. An isolated population was simulated under a dioecious diploid (DD) model, and the 

other parameters were fixed at L=10, A=10, N1=N2=25, Ne=50, n=50. The theoretical 

(simulated) Ne =50 is shown in the thin dotted line. Note the y axis is in log scale in the plot 

of RMSE. 

 

 

 

  

0 0.1 0.2 0.3 0.40

70

120

170

220

50

20
0 0.1 0.2 0.3 0.40

0.012

0.022

0.032

0.042

0.002

M
ea

n
 N

e 

R
M

S
E

 

               SF 

               LD 

               HE 

               MC 

 

Dropout Rate Dropout Rate 



46 
 

 

 

 

 

Fig. 11 Estimates of Ne as a function of prior Ne values (on the x axes) for the grizzle bear 

data in the year periods 1988-1990, 1998-1990, and 2008-2010. The sample sizes for the 3 

periods are 46, 92, and 59, respectively. For each period, Ne was estimated by LD, HE, MC 

and SF methods. For SF, estimates (in scattered dots) were obtained by assuming different 

prior Ne values (plotted in the continuous thin lines). For the period 1998-1990, harmonic 

mean estimates obtained by SF over 100 bootstrapping samples of size 50 for each assumed 

prior Ne were also plotted (squares). Note the y axes are in log scale, and the HE estimate of 

Ne is infinitely large for the period 2008-2010 so it is not plotted. 
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