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Process Systems Engineering has tackled a wide range of problems including manufacturing, the environment, and
advanced materials design. Here we discuss how tools can be deployed to tackle medical problems which involve com-
plex chemical transformations and spatial phenomena looking in particular at the liver system, the body’s chemical fac-
tory. We show how an existing model has been developed to model distributed behavior necessary to predict the
behavior of drugs for treating liver disease. The model has been used to predict the effects of suppression of de novo
lipogenesis, stimulation of b-oxidation and a combination of the two. A reduced model has also been used to explore
the prediction of behavior of hormones in the blood stream controlling glucose levels to ensure that levels are kept
within safe bounds using interval methods. The predictions are made resulting from uncertainty in two key parameters
with oscillating input resulting from regular feeding. VC 2016 The Authors AIChE Journal published by Wiley Periodi-

cals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 62: 3285–3297, 2016
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The liver, its regulation, and its diseases

Why systems engineering of the liver?

Systems Engineering is the discipline of the management of

complex engineering systems over their whole life cycle. Pro-

cess Systems Engineering is the study of complex process

engineering systems involving chemical and physical change.

Prof Roger Sargent was a pioneer from the 1950s in seeing the

potential that computers could have to revolutionize the way

that we tackled these problems.1 He also saw the way Chemi-

cal Engineering was broadening its base into molecular and

biological systems to improve manufacturing.1,2

The liver is one part of a very complex processing system

which ensures that all parts of the body receive the energy and

nutrients that they need, that waste products are removed effi-

ciently from the various streams, and that short and long term

well being are maintained. It is the body’s central chemical

processing organ. Considering the liver system as one which

controls chemical and physical change within the body, partic-

ularly of nutrition, makes it a legitimate area of study for Pro-

cess Systems Engineers. A number of Chemical Engineers

have also contributed to the use for Process Systems Engineer-

ing to a range of medical applications. Bogle3 reviews recent
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contributions in the area and Refs. 4–8 give some further
examples and perspectives from the Process Systems Engi-
neering community. Many others have contributed to the area
often known more broadly as Systems Biology, and Systems
Medicine when clinical objectives are to the forefront.

The liver functions as part of a system involving many

organs of the body but with particularly strong interactions

with the pancreas, the blood stream, and the body fat known
as adipose tissue.9 The liver system performs a number of

functions: regulating the level of glucose and cholesterol in

the blood, removing toxins (such as alcohol) from the body,

releasing bile among others. Fluid flow principles govern the
blood flow behavior providing nutrients to the liver cells

which receive entities through the cell membrane which in

turn affect the cell metabolism and its signaling pathways.
This can be considered in the way that complex chemical

manufacturing systems are treated. Each organ can be treated as

a “unit operation.” The processes are more complex, particu-
larly the biochemistry. Many in the life sciences also recognize

the role that modeling can play in the future of medicine (see

for example Refs. 10–12). The elements of the system lifecycle

of engineering projects have similar phases in medicine. Model-

ing of systems is often undertaken to clarify our understanding
of the elements that drive a complex system be it chemical or

medical. Analysis of a system can best be seen as making a

prognosis, design as devising a therapy, and operations as man-

aging a process designed to maintain well-being of a patient or

managing a disease condition.4 The modeling task develops
increasing understanding of the systems involved and new

model requirements for new functionality. Here, the need for

modeling variation in liver cell function across the microstruc-

ture of the liver is reported using distributed systems modeling.
There is considerable uncertainty in both parameter values

and causation and Chemical Engineers have developed and
used Process Systems Engineering techniques to handle uncer-

tainty (see review of optimization under uncertainty13). In this

article we show how one particular technique, interval meth-

ods, can be used to tackle uncertainty in complex medical sys-

tems problems. To control normal body function the liver is a
key organ in the regulation of the level of glucose in the blood

stream, a process known as glucose homeostasis. The body

needs the concentration of glucose in the blood to be between

limits. Above the upper limit is a condition known as hyper-
glycaemia while below the lower limit, hypoglycaemia a defi-

ciency of glucose in the bloodstream.
Glucose homeostasis is mediated by the production of hor-

mones in the pancreas which stimulate the storage of glucose

as glycogen if there is excess glucose and the breakdown of

glycogen when the blood glucose level drops. Figure 1 shows
a very simplified “flowsheet” for glucose storage in liver.

Diseases of the liver system

As the liver system is so central to the chemical functioning

of the body it has a key role in disease and detoxification.

There is a huge amount of data on liver function and much has
been assembled in in a comprehensive database called Liver-

base.14 Liver diseases can arise due to a wide range of causes

including toxins such as alcohol or paracetamol, viral infec-

tion, and metabolic dysregulation. In particular, here we dis-

cuss the liver damage resulting from the build-up of fats in the
liver (steatosis) known as non-alcoholic fatty liver disease

(NAFLD), which can result in inflammation (hepatitis), scar

tissue formation (fibrosis), and irreversible cell death (cirrho-

sis). Excess liver fat is additionally strongly associated with
the development of type 2 diabetes mellitus.15,16 This is a con-
dition where the liver cells become insulin resistant and no
longer store glucose as glycogen, distinguished from type 1
diabetes in which the pancreas fails to produce insulin.

The majority of liver diseases affect cells more severely in
different parts of the liver microstructure more than others,
including viral infections such as viral hepatitis, alcohol
related disease, paracetamol poisoning, and NAFLD.17 The
damage resulting from paracetamol and alcohol tends to affect
cells in the low oxygen venous parts of the liver microstruc-
ture where detoxification enzymes are upregulated. As dis-
cussed below, NAFLD also tends to damage these cells most
severely. Meanwhile, the more oxygenated arterial regions of
the liver microstructure are most susceptible to viral hepatitis.

Models for type 1 diabetes require the prediction of behav-
ior of insulin production in the pancreas. For type 2 diabetes
any model will need to involve parts of the metabolism which
are catalyzed by insulin and ways of changing the kinetics of
those reactions to reflect increasing resistance. In this article
we discuss a model which also includes aspect of liver lipid
metabolism, allowing us to investigate the build-up of fats
across the liver microstructure and its relationship with insulin
resistance.

Modeling and Analysis of Basic Liver System
Function

Since diabetes is an important disease there have been a
number of modeling efforts directed at specific aspects.
Balakrishnan et al.18 reviewed blood glucose models for type
1 diabetes, Li and Chan19 for liver toxicity and Subramanian
et al.20 for drug-induced liver injury. Galvanin et al.21 have
devised an approach to determine an optimal set of clinical
tests to identify diabetes models. Many engineers have
explored the use of real time control for managing diabetes:
Finan et al.22 explored the effect of exciting a range of inputs
on empirical dynamic models for type 1 diabetes to explore
the sensitivity and safety of use, Zavitsanou et al.23 modeled
the insulin delivery system, Semizer et al.24 compared control
algorithms for virtual patients with an artificial pancreas and
Percival et al.25 developed a practical control approach in an
artificial pancreatic beta cell. Liu et al.26,27 modelled the
dynamics of the insulin signaling pathway while Cardenas and
Goldbeter28 explored a specific switch in the metabolism,
between glucose phosphorylase and glycogen synthase. Life
scientists have developed great expertize in understanding and
modeling metabolic signaling behavior. Klingmuller et al.29

Figure 1. A simple version of the liver system.
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report on comprehensive in vitro experiments for cultured
hepatocytes as a precursor for modeling of signal transduction
pathways while Wu et al.30 used discrete models for a
dynamic analysis.

Kim et al.31 developed a mathematical model of the whole
body metabolism to predict homeostasis using hormonal con-
trol. Their model simulations were validated using data from
human exercise studies and was able to predict dynamic
changes in glycogenolysis and gluconeogenesis, two key hor-
monal processes.

Bringing together many aspects of this complex system ben-
efits from assembling models from a wide range of sources.
Hetherington et al. developed a composite model to predict
glucose homeostasis. The model consists of seven models
drawn from different sources incorporated into a model man-
agement system which allows data and models to be updated
as improved information becomes available.32–34 The model
was able to predict the naturally occurring oscillations, known
as ultradian oscillations. Previously these were thought to be
produced by the pancreas alone but the model demonstrated
that this is in fact a systems phenomenon resulting from inter-
actions between the pancreas and the liver. The model was

used as a tool to aid understanding but also for analysis using
a detailed sensitivity analysis to explore what are the key con-
trolling parameters in the model.35

All of these chemical pathways are linked together and also
to many other metabolic functions within the body. No model is
able to deal with all conditions or circumstances. Hangos and
Cameron36 discuss about the need for being clear about the pur-
pose of any model in preparation for model development. In
this article we expand the functionality of the Hetherington
et al. model to embrace new purposes all of which are related to
the chemical functioning of the liver system. Hetherington
et al.32 used the “middle out” approach recommended by
Noble10 for physiological modeling. While stand-alone models
for aspects of liver system function may be possible, because of
the complex interconnectivity of much of the chemical path-
ways involved in the modulation of glucose we have taken the
approach of building new elements into the model as new
objectives are set. The variation of hepatocyte function across
the liver plate is known to affect toxicology and drug behavior
(e.g., Jungermann et al.37) which requires distributed modeling.

Process Systems techniques could be used in a number of
ways but this article focuses on just two aspects. The first is a

Figure 2. (a) Treating the 1D porto-central axis of the sinusoid as the repeating unit of the liver. (b) The processes
and metabolites included in each hepatic compartment.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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development of the model to incorporate distributed behavior

by relaxing the assumption that hepatocyte cells are homoge-

neous. This is known as zonation and is discussed in the fol-

lowing section. There is considerable uncertainty in data and

behavior which it will be important to be able to incorporate if

we are to be able to determine actions while guaranteeing that

the glucose level will definitely remain within safe bounds.

We have been using interval techniques to obtain bounded

behavior and the subsequent section outlines an approach to

explore the behavior of the system subject to uncertainties in

the parameters.

Modeling and Design for Distributed Behavior

Zonated effects

Zonation is the name given to the heterogeneity between

liver cells depending on their position along the capillaries

supplying them with blood. On the microscale, liver cells are

organized into tessellating columns with hexagonal cross-

sections known as lobules (Figure 2a). The portal vein sup-

plies nutrient-filled blood from the digestive system while the

hepatic artery supplies oxygenated blood from the lungs. The

portal vein and hepatic artery split into branches which pass

along the outer corners of each lobule along with the bile ducts

(collectively known as the portal triad). Blood leaves the

lobules through the hepatic central veins which pass through

the centre of each lobule. Capillaries, called sinusoids, pass

between each portal triad and central vein supplying the sur-

rounding cells with blood (Figure 2a). As blood passes through

the liver sinusoids, the concentrations of hormones, oxygen

and nutrients fall while the concentration of liver products

increase (Figure 2b). To compensate, liver cells (hepatocytes)

show marked variation in enzyme expression and function

depending on their position along the sinusoid, known as

zonation. Zonation is seen in the enzymes mediating almost

all liver processes.
When considering glucose and lipid metabolisms, the major

motivation for zonated enzyme expression is to allow suffi-

cient production of adenosine triphosphate (ATP) in cells near

the central vein (pericentral/perivenous), where the blood oxy-

gen concentration is markedly reduced. ATP effectively acts

as the molecular unit of energy utilized by enzymes to drive

forward reactions. Energy is released when ATP is reacted

with water and split (hydrolysed) to give adenosine diphos-

phate (ADP) and a free (inorganic) phosphate (Pi). However,

since relatively little cellular ATP exists at any point in time

(about 0.2 mol in the whole body), constant synthesis is

required. ATP is predominantly produced by the enzyme

ATPsynthase using recycled ADP and Pi as substrates. The

process requires oxygen to produce water (H2O) from the

release of potentially damaging protons (H1). The reduced

supply of oxygen in pericentral cells forces them to downregu-

late this oxidative ATP synthesis through ATP synthase to

avoid damage resulting from free protons. To compensate for

this, the most ATP intensive processes are restricted to oxygen

rich cells near the portal triad (periportal). Meanwhile, peri-

central cells specialize in the conversion of glucose to pyru-

vate (glycolysis), which produces a small amount of additional

ATP without the requirement for oxygen. This pyruvate is

either released into the blood as lactate or converted to fatty

acids (lipogenesis). Due to their oxygen rich environment,

periportal cells specialize in the conversion of lactate back to

glucose (gluconeogenesis), which consumes ATP. They also

generate a higher proportion of their energy through oxidation

of fatty acids, where pericentral cells use a higher proportion

of glucose via glycolysis.
Due to the marked differences across the sinusoid, particu-

lar regions of the sinusoid have been shown to be more sus-

ceptible to damage in numerous liver diseases including drug

and alcohol abuse, viral infection and metabolic disorders. In

the case of NAFLD, fat build-up (steatosis) and the resulting

damage have been shown to occur most severely toward the

pericentral end of the sinusoid.38–41 Although this is exten-

sively referred to in the literature, few investigators attempt to

understand the metabolic differences leading to pericentral-

centered steatosis or the implications of differences across the

sinusoid in pharmacological treatment. This is largely because

experiments investigating changes in individual regions of the

sinusoid are time consuming and complex compared with

assessing bulk changes in tissue homogenate. However to fully

understand the development of the disease and to optimize

pharmacological interventions, we must develop an under-

standing of the zone-specific changes.
In our studies, a computational model of metabolism across

the liver sinusoid was built, integrating existing knowledge of

differences in enzyme expression across the sinusoid. This

was firstly used to simulate high fat intake and insulin resist-

ance to study the build-up of liver fat in NAFLD.42 Secondly

it was used to identify key processes of inter-individual varia-

tion in susceptibility to NAFLD and its pattern of develop-

ment.42 Finally, in ongoing work, in combination with cell

culture studies, the model is being used to test the effects of

various potential pharmacological interventions. It is hoped

that these predictions will aid understanding and allow for

more targeted future experimentation. Here we review the

structure of the model and its use in simulating the build-up of

liver fats in NAFLD, before using the model to test the perti-

nence of two key drug targets for clearing liver steatosis to

demonstrate its use in assessment of pharmacological targets.

Zonated model of glucose and lipid metabolism

Model Structure. Conventional two compartment models

of hepatic metabolism treat the liver as a single mass of hepa-

tocytes interacting with a compartment representing blood.

For many applications this is sufficient for representing the

bulk effects of liver on the blood. However, a model of this

form cannot be used to study the heterogeneity in hepatic

enzyme expression and blood supply. Instead, following the

structure suggested by Ohno et al.43 the one dimensional axis

from the portal triad to the central vein of the hepatic sinusoid

(porto-central axis) was used as the repeating unit of the liver

rather than the individual hepatocyte (Figure 2a). Hepatocytes,

and the nearby blood, were split into compartments according

to their position along the porto-central axis, with blood flow

from the portal trial to the central vein. Minimal representa-

tions of essential processes in blood glucose and lipid regula-

tion which occur outside the liver act on an additional large

compartment representing blood in the rest of the body. These

include gut triglyceride synthesis, adipose triglyceride break-

down (lipolysis), adipose lipogenesis, pancreatic hormone

release, and oxygen input from the lung.42 Dietary intake of

glucose and lipid is introduced to this compartment. Alterna-

tively, the recirculation can be removed and the model can be

used to study the input of plasma with constant metabolite,

hormone and oxygen concentrations into the sinusoid.

3288 DOI 10.1002/aic Published on behalf of the AIChE September 2016 Vol. 62, No. 9 AIChE Journal



Splitting hepatocytes into compartments in this way allows
the inclusion of zonated enzyme expression and changes in
blood supply across the sinusoid. When building the model,
the effects of altering the number of compartments into which
the sinusoid was split was tested: from 3 compartments to 48.
For the published simulations, eight compartments were used
to match the largest number of compartments used experimen-
tally. No undersampling effects were noted using eight com-
partments in comparison with 48.

Conversions in the Model. The rates of processes in the
model are calculated by multiplying a hormone- and
compartment-dependent rate constant by a Hill function
dependent on the substrates and allosteric activators and inhib-
itors. For example, for a process with two substrates, S1 and
S2, which was allosterically inhibited by molecule i, the rate
would be calculated as:

v5
vx hð Þ S2½ �nS1

KS1nS1

M 1 S1½ �nS1
� S2½ �nS2

KS2nS2

M 1 S2½ �nS2
� 12/inh

i½ �ninh

Ki
ninh 1 i½ �ninh

� �

where vx hð Þ is the rate constant in compartment x, under the
influence of hormone concentrations h and KM, nS, Ki, and
ninh are the Michealis-Menten (half occupation) constant, Hill
coefficient, inhibition constant and inhibition coefficient,
respectively. /inh � 1 determines the maximum inhibition by
i. The values of constants were either taken directly from the
literature or, where this was not possible, fitted to data looking
at hepatic metabolism under different feeding conditions (see
Ashworth et al.42 for more details). In many cases, the proc-
esses represented in the model contain several intermediate
enzymes and the constants were based on the literature for the
rate limiting enzyme in the process. Previous models have rep-
resented each individual enzyme separately (e.g., Konig
et al.44). However, here we focus on key rate limiting
enzymes, and those which show variation in activity across
the sinusoid.

Hormonal regulation by insulin and glucagon is represented
through a hormone-dependent rate constant. Rather than mod-
eling downstream signaling (e.g., as in Hetherington et al.32)
the effects of the hormones are calculated based on the plasma
concentrations. As a result, the form of the equations and
parameter values were largely set by comparison with experi-
mental data for plasma concentrations of key metabolites and
for hepatic rates, rather than taken directly from the literature
as discussed in Ashworth et al.42.

Finally, the activities of key enzymes vary across the sinu-
soid. To represent this, the base-value vbð ) for each rate con-
stant was increased or reduced in each compartment according
to whether the enzymes mediating each process are known to
be upregulated or downregulated in that region of the sinusoid.
For the processes represented in this model, a gradient-like
change is seen in enzyme activity across the sinusoid. For
other processes, such as some of the enzymes involved in cho-
lesterol synthesis or drug detoxification, enzymes are more
strongly restricted to one particular region. The upregulation
or downregulation of each process in each compartment was
based on experimental data for the activities or expression of
key enzymes across the sinusoid.42

Hepatic Metabolism.
ATP Production. The processes represented in each

hepatic compartment are shown in Figure 2b. As discussed,
cellular metabolism is centred around ensuring continuous
availability of ATP. ATPsynthase is reliant on energy gener-
ated from a proton gradient across the mitochondrial inner

membrane. To produce this proton gradient, continuous oxida-
tion of acetyl-CoA through the citrate cycle is required to fuel

a set of proton pumps in the electron transport chain. Acetyl-
CoA is derived from glucose originating from dietary carbohy-

drates and sugars, free fatty acids (FFAs) originating from die-

tary fat and some amino acids (protein components). In the
model, the citrate cycle, electron transport chain and synthesis

of ATP from ADP are represented as a single process with a
rate dependent on the cellular acetyl-CoA, ADP, P, and oxy-

gen concentrations.
Glucose Metabolism. Liver cells play a vital role in

ensuring blood glucose concentrations remain in a relatively

narrow healthy range. The model includes the key processes
involved in the hepatic regulation of blood glucose concentra-

tions and in the production of acetyl-CoA from glucose. These
include glucose uptake and release, glycogen synthesis and

breakdown, glycolysis (glucose ! lactate), gluconeogenesis

(lactate ! glucose), lactate uptake and release, and pyruvate
oxidation (acetyl-CoA production from pyruvate/lactate).

Additionally, the model includes glycerol uptake (predomi-
nantly produced through triglyceride breakdown in adipose

tissue) and the production of glycerol-3-phosphate from glyc-
erol, glucose or lactate which is required in triglyceride

synthesis.
Fatty Acid Metabolism. The model includes the key proc-

esses involved in the production of acetyl-CoA from fatty

acids, in fatty acid synthesis and the storage and in the release

of excess fatty acids as triglycerides (three fatty acids attached
to a glycerol backbone). These include fatty acid uptake, lipo-

genesis, b-oxidation (fatty acid breakdown to acetyl-CoA), tri-
glyceride synthesis from three fatty acids and a G3P molecule,

triglyceride release and lipolysis. In the model, all fatty acids
contain eight acetyl-CoA molecules corresponding to palmi-

tate, the most common fatty acid in humans and in dietary
intake. It is known that different fatty acids have varying

potencies in causing both insulin resistance and in promoting
the progression to non-alcoholic steatohepatitis (NASH).

Therefore, a project for future work may be to separate the dif-
ferent fatty acids in the model. This would allow us to simu-

late the possibility of pharmacologically promoting the

conversion of fats to less damaging forms, rather than aiming
to clear them completely. However, the current work focuses

on clearing the build-up of non-specific fats (in the form of tri-
glycerides) without causing problems elsewhere in

metabolism.

Inputs and representing NAFLD in the model

To represent daily dietary intake, the model was provided

with spiked dietary carbohydrate and fat inputs at 4 h intervals.
For moderate carbohydrate and fat intake, the total inputs for

each meal were set to match the averages provided per meal in

a study performed by Daly et al.45 (78.1 g of carbohydrates
and 22.2 g of lipid per meal) allowing comparison of the

model predictions with the measurements made in the study.
When simulating this diet an average hepatic fat content

toward the low end of the values measured in the US general
population by Szczepaniak et al. is predicted consistent with

simulating a healthy diet.46 The predicted plasma and hepatic
concentrations of the various metabolites were extensively

validated against numerous sources of experimental data.42

Patients suffering from NAFLD vary across a broad range
in their dietary intake and extent of metabolic dysregulation.

To account for this, various degrees of insulin resistance were
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simulated with varying fat and glucose intake. The various

contributing factors and the development of steatosis across

the sinusoid are discussed in detail in Ashworth et al.42. Here,

we consider two sets of conditions leading to excess liver fat

in the model, before considering potential drug targets to

remove these fats and restore normal function: first, steatosis

resulting from very high intake alone in an otherwise metabol-

ically healthy individual. Since lipid build-up is known to pro-

mote insulin resistance, this is likely to be an early stage in

NAFLD development. Second, we have considered steatosis

arising with only slightly raised fat intake in an individual

with severe insulin resistance (1.5% detection). In addition to

insulin resistance, the effects of an increase in the lipogenic

transcription factor sterol regulatory element-binding protein-

1c (SREBP-1c) seen in NAFLD patients in vivo were also

simulated.47,48

When simulating increased dietary fat intake in an other-

wise metabolically healthy individual, the increases in hepatic

triglyceride concentration (roughly equal to the total lipid con-

tent) were relatively moderate. A very high lipid intake diet

was used, such that the predicted plasma FFA and triglyceride

concentrations reached the high end of those measured experi-

mentally in obese individuals.49,50 Under these conditions, the

predicted hepatic lipid content increased to 7.2% (Figure 3a).

An increasing gradient in concentration was predicted across

the porto-central axis of the sinusoid consistent with the
increased pericentral susceptibility to steatosis seen in vivo.

When simulating a severely insulin resistant NAFLD

patient, increased dietary lipid intake was predicted to cause a

much larger increase in hepatic triglyceride concentrations
(Figure 3a). Even when simulating only slightly raised fat

intake (22.8 g/meal), the liver fat content increased to 8.9%,

compared with 2.5% if the same diet is simulated in a meta-
bolically healthy individual. As with high fat intake, the most

severe steatosis was predicted in perivenous cells, consistent

with experimental observations. Higher intake diets when sim-
ulating insulin resistance were predicted to increase the

hepatic lipid content up to the >20% values at the highest end
of those measured experimentally.46

In addition to the build-up of lipids in hepatocytes, insulin

resistance is associated with a reduction in hepatic glycogen

concentrations, leading to hyperglycaemia and type-2 diabetes
mellitus (T2DM). This fall in glycogen storage was predicted

to be most severe in pericentral cells, consistent with previous

experimental studies.51

ATP concentrations were predicted to fall when simulating
insulin resistance, particularly when combined with raised die-

tary lipid intake (Figure 3b), as is seen experimentally.52–56

This was notably more severe in perivenous, than periportal
cells. Disruptions to energy metabolism have been suggested

as possible mechanisms for the progression of NAFLD to

NASH.57,58 In vivo, as NAFLD and NASH develop, loss of
function in the oxidative phosphorylation enzymes results in

further drops in ATP concentrations.59 In addition to the prob-
lems associated with reduced ATP concentrations, the pre-

dicted overactivation of oxidative ATP synthesis may lead to

production of damaging reactive oxygen species (ROS), as
seen in NAFLD in vivo.59–63

To avoid hepatic damage and loss of function, any pharma-

cological intervention must not further reduce ATP concentra-

tions or exacerbate the overactivation of oxidative ATP
synthesis. The zone-specificities of many of the metabolic

changes highlight the requirement for studying the sinusoid as

a whole, rather than homogenized whole tissue alone.

Assessing potential drug targets

Numerous processes in the model provide potential drug

targets. Here, as key examples, we focus on hepatic production
of fatty acids from acetyl-CoA and oxidation of fatty acids. A

full study of the effects of pharmacologically targeting each

process will be presented in combination with additional cell
culture data testing of predictions in the near future. Pharma-

cologically stimulating or inhibiting a process was simulated

by increasing or reducing its rate constants.
Suppression of de novo lipogenesis. Suppression of de

novo lipogenesis (blocking the process completely) is pre-

dicted to reduce hepatic FFA concentrations across the range
of NAFLD stages simulated (Table 1). FFAs are thought to be

more potent in causing both hepatic damage leading to NASH

and in promoting insulin resistance than fats stored as triglyc-
eride. As a result, the reduction in FFA concentration is likely

to reduce lipotoxicity. Furthermore, by preventing cycling

between lipogenesis and b-oxidation, suppressing the process
increased ATP concentrations to near metabolically normal

levels (Figure 3b). It also reduced the overactivation of the

oxidative phosphorylation pathways to metabolically normal
levels. However, the total liver fat content was predicted to

only show a relatively small reduction when simulating either

Figure 3. The predicted (a) cellular lipid content (as
percentage of cell mass) and (b) ATP con-
centration across the sinusoid.
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form of NAFLD (Figure 3a). If a treatment fails to remove the
underlying cause of the disease progression, it will be unable
to restore normal function after treatment ceases.

Stimulation of b-Oxidation. Stimulation of b-oxidation
(doubling the rate constant), effectively cleared steatosis when
simulating both NAFLD caused by high fat intake alone and
severely insulin resistant NAFLD patients. In both cases, the
liver lipid content was reduced to less than the 5% criterion at
which NAFLD is diagnosed (Figure 3a). Furthermore,
improvements were predicted in plasma FFA and triglyceride
concentrations. However, when stimulating b-oxidation, addi-
tional reductions in ATP concentration were predicted, leading
to severely reduced values in pericentral cells (Figure 3b).
This is due to the allosteric inhibition of glycolysis by
increased b-oxidation, along with ATP consumption in
increased b-oxidation and lipogenesis. Furthermore, the over-
activation of the oxidative phosphorylation pathway was
increased, potentially increasing mitochondrial stress. There-
fore, despite effectively clearing the underlying cause of dis-
ease progression, stimulation of b-oxidation alone is not
predicted to provide a safe drug target, and may expedite
rather than prevent hepatic damage.

Combination Treatments. A third possibility would be to
both suppress the synthesis of fatty acids from acetyl-CoA
while stimulating b-oxidation. This is feasible clinically and
could be achieved, for example, by inhibiting both cytosolic
and mitochondrial forms of acetyl-CoA carboxylase which
play a role in lipogenesis and negative regulation of b-
oxidation, respectively. The treatment was predicted to effec-
tively clear hepatic triglyceride build-up and reduce the aver-
age hepatic FFA concentration, therefore reducing both short-
term lipotoxicity and the underlying long-term cause of dis-
ease progression (Figure 3a and Table 1). Furthermore ATP
concentrations were predicted to be increased to near metabol-
ically normal values and the overactivity of ATP synthesis

was prevented (Figure 3b). The only adverse effect to be pre-

dicted was an increase in plasma glucose concentration when

simulating an insulin resistant individual (Table 1). Therefore,

the treatment would need to restore insulin sensitivity rapidly

enough to allow the excess glucose to be stored as glycogen,

or would need to be accompanied by addition treatments pre-

venting hyperglycaemia.

Drug Screening Potential. The model can be used to

screen a range of potential targets and combinations of targets.

The two examples reviewed here demonstrate the use of the

model to assess the effectiveness of particular drug targets for

clearing steatosis in NAFLD and the ability of the model to

predict potential adverse effects elsewhere in metabolism.

Additionally, the pericentral-specific disruptions to energy

metabolism in NAFLD highlights the importance of studying

cells across the liver sinusoid. In ongoing work, the model pre-

dictions are being tested in cell culture models and it is hoped

that the research will help to minimize the future animal work

required in drug development.
The model could also be used to determine an optimal

choice of target and dose through discrete and continuous opti-

mization techniques so commonly used by Process Systems

Engineers today. However the validity of such an approach

depends very much on the accuracy of the model in terms of

both structure and parameter values. At this stage the use of

the model to support or test hypotheses for testing against data

is the state of the art as there is considerable uncertainty about

the fidelity of the model. In the next section we present the use

of a method for exploring the performance of a model to pre-

dict hormone levels under uncertainty of the certain key

parameters with varied inputs resulting from feeding. This will

help determine the limits of behavior of a model outputs under

some limited uncertainty conditions since precise model

parameter values are difficult if not impossible to obtain.

Table 1. Results for the Predicted Effect of Targeting Lipogenesis and b-Oxidation on Hepatic Triglyceride, FFA and ATP

Concentrations and Plasma Triglyceride, FFA, Glucose and Lactate Concentrations When Simulating NAFLD Resulting from

High Intake, and from Raised Intake in a Severely Insulin Resistant Individual

Average hepatic
FFA

concentration
(mM)

Average hepatic
ATP

concentration
(mM)

Average plasma
triglyceride

concentration
(mM)

Average plasma
FFA

concentration
(mM)

Average plasma
glucose

concentration
(mM)

Average plasma
lactate

concentration
(mM)

Average
hepatic

triglyceride
content (%)

Reference values: metabolically normal individual on moderate diet
Standard parameter

values
21.6 2.8 1.2 0.2 4.9 1.2 2.3

Metabolically healthy individual on a very high fat intake diet
Standard parameter

values (untreated)
39.0 2.7 4.1 0.9 5.0 1.2 7.2

Complete suppression
of lipogenesis

29.6 2.9 2.9 0.5 5.0 0.9 5.1

Stimulated b-oxidation 17.3 2.5 2.0 0.3 5.0 1.3 3.4
Stimulation of

b-oxidation
with suppression
of DNL

14.3 2.8 1.8 0.3 5.0 0.9 2.9

Severely insulin resistant individual on a raised intake diet
Standard parameter

values (untreated)
26.2 2.2 5.4 3.9 6.7 1.4 8.9

Complete suppression
of lipogenesis

12.3 2.6 5.1 0.6 8.5 1.0 7.0

Stimulated b-oxidation 8.9 1.9 3.5 0.5 8.2 1.5 4.8
Stimulation of

b-oxidation and
suppression of DNL

5.8 2.5 3.0 0.4 8.8 0.9 3.8
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Range Control Incorporating Uncertain Behavior

Since one of the key functions the liver performs is glucose
homeostasis it is important to find ways to make sure the glu-
cose in the blood is between limits to avoid the conditions of
hyperglycaemia and hypoglycaemia. It is crucial to remain
within safe bounds and not necessary to control glucose or
hormone levels to a setpoint. This section discusses an
approach based on verified simulation which aims to construct
guaranteed upper and lower bounds on the dynamic variables
of interest in the liver model. Enszer and Stadtherr64 have
used verified methods in the propagation of uncertainty in
physiological models for diabetes and long term starvation
exploring also how to account for probability distributions in
the uncertainty using p-boxes to bound the distribution. In this
article the pancreas-insulin and glucagon receptor models
described in Hetherington et al.32 are taken together for the
case study. Two particular model parameters were chosen as
uncertain parameters and the model subject to a cycling input
to reflect bodily response to feeding cycles. For this we used
just a pancreas-insulin and glucagon receptor model rather
than the full liver system model given the complexity of the
computations required. Interval predictions were obtained
using the model explained in the next section.

Interval model for hormone prediction

Pancreas-Insulin Model. The seven compartment model

of Hetherington et al.32 included models for the pancreas,

insulin production, and the activation of proteins by glucagon.

By coupling these three models we are able to predict the lev-

els of hormones in the system resulting from a glucose stimu-

lus and it is this part of the Hetherington et al. model that has

been used here to predict bounds.

Insulin Model. The insulin model describes the activation

of glycogen synthase kinase (GSK) in response to the concen-

tration of insulin in the blood (I).

_GSK5
1

sGSK
HnI

I � Iscale; tIð Þ2GSK½ �

sGSK51 min; tI50:5; nI58; Iscale50:25

Pancreas Model. This model describes the release of glu-

cagon (L) or insulin (I) into the blood by the pancreas in

response the blood glucose concentration. The model consid-

ers a fixed reference level (gref ) of blood glucose (gB) around

which homeostasis should be maintained.

_L5
1

sL
HnP

h 2xð Þ; tLg

� �
2

L

Lmax

� �

Figure 4. (a) Bounds and non-verified profiles of the
GSK state of the Pancreas-Insulin model
with uncertainty of [3.7,4.3] in Imax and
[2.7,3.3] in Lmax. (b) Bounds and non-verified
profiles of the I state of the Pancreas-Insulin
model.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 5. (a) Bounds and non-verified profiles of the
GSK state of the Pancreas-Insulin model
with larger uncertainty of [3.6,4.4]; in Imax

and [2.5,3.5] in Lmax. (b) Bounds and non-
verified profiles of the I state of the
Pancreas-Insulin model.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

3292 DOI 10.1002/aic Published on behalf of the AIChE September 2016 Vol. 62, No. 9 AIChE Journal

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


_I5
1

sI
HnP

h xð Þ; tIg

� �
2

I

Imax

� �

x5log
gBgscale

gref

� �

h xð Þ ¼
x if x � 0;

0 if x < 0

(

sL50:25; sI5
5

3
; tLg50:125; tIg50:25;

gref 52:5; Imax54; Lmax53; nP52;

gscale55:55555631024

Glucagon Receptor Model. The model describes the acti-
vation of G proteins by glucagon which regulates the activa-
tion of phospholipase C (PLC). Active PLC produces inositol
trisphosphate (IP3) which acts as a second messenger in the
mobilization of intracellular calcium. The glucagon receptor
model65 represents a hormone build up in the bloodstream,
and is modeled by

_Rr tð Þ5k21LRu2L tð Þk1Rr tð Þ2ksRr tð Þ1krRs tð Þ
_Rs tð Þ5kspLRp tð Þ1GK2sLRu1ks LRu1Rr tð Þð Þ2krRs tð Þ

_G tð Þ52G tð ÞK23LRu1G� kh1
Ca tð ÞkGdeg;Cal

KGdeg;Cal1G�
1

PLC� tð ÞkGdeg;PLC

KGdeg;PLC1G�

� �

_LRp tð Þ52kspLRp tð Þ1kp 11
A0

11B1G�
2n1

� �
LRu

LRu1B2

� �

_PLC� tð Þ5kPCG�2
PLC� tð ÞkPC;deg

KPC;deg1PLC� tð Þ
G�5G02Gi tð Þ

R05Rr tð Þ1Rs1LRu1LRp

where states G, Rr, Rs, and LRu and LRp are the G protein,
free receptor, sequestered receptor, ligand-bound receptor, and
phosphorylated ligand-bound receptor, respectively. The
parameters and initial conditions of the model are

Initial conditions: Rr(0)555000, Rs(0)571500, Gi(0)5
99999, LRp(0)50, and PLC*(0)50

Parameters: k21510, k15100, ks55.2*1023, ksp5ks,
K2s52.0*1028ks, kr54.0*1023, K2351*1027, kh52.0*1021,
kGdeg,Cal51.47*103, KGdeg,Cal53.54*101, kGdeg,PLC52.19*103,
KGdeg,PLC55.7, kp56.5*104, A053.0, B15100, n151,

B25106, R055.5*104, G05105, kPC56.06*1024, kPC,deg5

2.82*1021, and KPC,deg52.55*1021.

Overview of the verified method

To construct bounds on the dynamic variables of the

pancreas-insulin and glucagon receptor models a verified

method has been used (see, e.g., Lin and Stadtherr66). Verified

methods represent an option for managing uncertainty in a rig-

orous way in which the truncation and round off errors in the

numerical computations are accounted for. Verified methods

can suffer from overestimation which can cause the computed

bounds to blow up and tend to 61. However there are mecha-

nisms to control the generation of the overestimation using

methods such as verified integrations based on Taylor mod-

els,67 McCormick relaxations,68 ellipsoidal calculus,69 other

verified enclosures,70 and the use of interval contractors.71

The bounding method used in this article relies on an inter-

val Taylor series method72 with an interval contractor based

on the Newton and Gauss/Seidel methods73 for overestimation

reduction.

Interval Taylor Series Method with Newton/Gauss-Seidel
Contractor. The interval Taylor series with Newton/Gauss-

Seidel contractor method (ITS-N) used in this article consists

of two stages. The first stage is the validation of existence and

uniqueness of a solution in which also a suitable a priori enclo-

sure and a time step are obtained. The second stage involves

the computation of a tighter enclosure in which a high order

Taylor series is used to refine the solution obtained in the first

stage. When the contractor is not used the method is simply

called interval Taylor series (ITS).

First Stage. In the first stage a validation of existence and

uniqueness is carried out using the High Order Enclosure

(HOE) approach.74 An appropriate time step hj and an a priori

enclosure ~Y j need to be obtained and they satisfy:

~Y j5Yj1
Xk21

i51

0; hj

� �i
f i½ � Yj;H
� �

1 0; hj

� �k
f k½ � ~Y

0

j ;H
� 	

� ~Y
0

j

where k is the order of the Taylor expansion, f i½ � are the

Taylor, Yj is the vector of tight enclosures of the solutions

with ranges in ~Y
0

j and H is the vector of (possibly uncertain)

parameters.

Second Stage. The second stage involves the computation

of a tighter enclosure Yj11. The tight enclosure satisfies

Yj115 ŷj1
Xk21

i51

hi
jf

i½ � ŷj; ĥ
� 	zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{uj11

1 I1
Xk21

i51

hi
j

@f i½ �

@y
Yj;H
� �( )zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{S

y
j11

Yj2ŷj

� 	
1
Xk21

i50

hi
j

@f ½i�

@h
ðYj;HÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Sj11h

H2ĥ
� 	

1 hk
j f k½ � ~Y j;H

� �|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Zj11

where I is the identity matrix, and ŷj and ĥ are the midpoints

of Yj and H, respectively.
The interval matrix-vector product Sy

j11 Yj2ŷj

� 	
in the pre-

vious equation is known to be one of the main contributors of

the wrapping effect in interval arithmetic. Because of this, a

number of methods have been developed to try to avoid the

direct evaluations of this matrix-vector product.72 In this arti-

cle the QR factorization technique devised by Lohner75 is
used in the interval Taylor series method.

In this work the Newton with Gauss-Seidel nonlinear con-
tractor to reduce the overestimation has been used.71 For more
details about contractors see Jaulin.73 The algorithm for this
method has been written in C11 and the libraries
FADBAD1176 and Profil/Bias77 have been used for the auto-
matic differentiation and the interval type, respectively.
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Control under uncertainty using interval analysis
bounding glucose concentration

The response of the models under uncertainty using a veri-
fied method is studied in the following numerical experiments.
The verified method described in the previous subsection with
no contractor (ITS) and with contractor (ITS-N) are used in
the pancreas-insulin model. Then the method with contractor
and VSPODE,78 a state of the art solver, are used to compute
bounds in the glucagon receptor model with different uncer-
tain amounts.

Pancreas Insulin Model Numerical Experiments. Uncer-
tain amounts were introduced in the pancreas-insulin model to
evaluate the effectiveness of the ITS-N and ITS methods in
accounting for uncertainty to see if they are able to provide
reasonable estimates of bounds for the output variables. In the
model two uncertain amounts were used and simulations were
carried out varying the level of uncertainty. The parameters
Imax and Lmax were chosen as they define the maximum possi-
ble blood concentrations of glucagon and insulin safely per-
missible. In this way, if the model can manage uncertainty in
these parameters then it could be used in studies involving dif-
ferent patients requiring different (tuning) parameters for the
maximum levels of glucagon and insulin.

In a first set of numerical experiments an uncertainty of
Imax 5 [3.7,4.3], Lmax 5 [2.7,3.3] was introduced. The profiles
of the variables GSK and I (insulin) can be seen in Figures 4a,

b. To represent an approximation of the solution in which
uncertainty has been introduced, sample trajectories that span

the uncertain amount considered (solid grey lines) have been
included in Figures 4a, b. Two simulations were carried out

one with the ITS method (dot-dot-dashed line) and one with
the ITS-N (dashed black line), these are shown in the figures
as well. The solution provided by the ITS-N is very tight as

the bounds approach closely to the set of approximate solu-
tions (solid grey lines). The uncertainty of the bounds of the

three states at the final time (tf 5 1500 min) is
GSK tf

� �
5 [0.5546,0.8144], L tf

� �
5 [0.6345,0.8363] and

I tf

� �
5 [2.2865,2.6349]. Conversely, the solution provided by

the ITS method is more conservative as there is a significant
distance between the approximate solutions and the bounds.

The uncertainty at final time is GSK tf
� �

5 [21.4818,2.8508],
L tf
� �

5 [0.6258,0.8451], and I tf
� �

5 [2.2718,2.6496]. The

uncertainty is similar in the bounds except in GSK where the
wideness of the bounds (distance between the upper and lower

bound) grows from 0.2596 to 4.3325.
A second numerical experiment was carried out in a similar

fashion and the uncertainty in the parameters

Imax 5 [3.6,4.4]; Lmax 5 [2.5,3.5] was used (Figures 5a, b).
The uncertainty of the bounds at final time using the ITS-N
was GSK tf

� �
5 [0.3629,1.0061], L tf

� �
5 [0.5324,0.9385], and

I tf

� �
5 [2.2106,2.7108]. Using the ITS method the bounds

obtained at final time were GSK tf
� �

5 [28.3993,9.7684],

L tf
� �

5 [0.4951,0.9757], and I tf
� �

5 [2.1794,2.7420]. As in
the previous case there was significant difference in the wide-

ness between the bounds computed by the ITS (with wideness
of 18.1677) and the ITS-N (with wideness of 0.6431) methods
only in the GSK variable.

Finally, to take the method to the limit a third case of uncer-

tainties of 625% in Imax and 633% in Lmax

(Imax 5 [3.0,5.0]; Lmax 5 [2.0,4.0]) was considered (Figures

6a, b). Both of the methods computed conservative bounds in
the three state variables but particularly in GSK. In the case of

the ITS method the simulation had to be stopped (around
t 5 1200 min) due to excessive wideness whereas in the ITS-N

method the uncertainty of GSK at final time was
[28256,8256]. The other state variables could be enclosed by
both of the methods with ITS-N being tighter as shown in Fig-

ure 6b. The uncertainties of variable insulin I at intermediate
time ti 5 1200 min of the ITS and ITS-N methods are

[0.5682,2.4597] and [0.0500,2.9782], respectively.
The ITS method computed tight bounds only in the L and I

state variables but when it came to bound the GSK state vari-

able the ITS-N method was much tighter as observed in the
width of the GSK bounds. Comparing the bounds of the GSK
variable at final time using the ITS and ITS-N methods, the

first one turned out to be approximately 16 times wider than
the second one in the first set of experiments and 30 times in

the second set of experiments. Unlike the ITS-N method the
ITS method did not complete the simulations in the third set of

experiments.
Glucagon Receptor Model Numerical Experiments. The

numerical experiments in the glucagon receptor model address

the introduction of uncertainty in the higher dimensional sys-
tem using VSPODE. The ITS and ITS-N methods are only
able to address a small amount of uncertainty in one parameter

in this case study.
An uncertainty of B1 5 [98.8,101.2] was introduced in the

model and the ITS-N method and VSPODE were used to com-

pute bounds (Figure 7). A disturbance was also introduced in

Figure 6. (a) Bounds and non-verified profiles of the
GSK state of the Pancreas-Insulin model
with 25% in Imax and 33% in Lmax. (b) Bounds
and non-verified profiles of the I state of the
Pancreas-Insulin model.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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the form of a step change (at time t 5 550 s) in the input corre-

sponding to gB, the concentration of blood glucose. The

bounds at final time (800 s) using the ITS-N (dashed black

line) and VSPODE (dot-dot-dashed line) methods for the Rs

state were [72272.70,72279.80] and [72275.40,72277.06],

respectively. VSPODE computes tighter bounds with a width

at final time of 1.66 whereas ITS-N obtains a width of 7.1.
Bounds for systems biology models are more useful when

significant amounts of uncertainty can be accounted for and

tight bounds can be computed. Unfortunately the ITS-N

method is still not capable of addressing this problem. In the

next experiment a Taylor models based method (VSPODE) is

used to compute bounds for the Glucagon receptor model with

62% of uncertainty in three parameters (Figure 8). The

parameters are B1 5 [98,102], kh 5 [0.196,0.204], and

ks 5 [0.005096,0.005304]. These parameters represent key

rates of reaction of some of the receptors in the model. Fur-

thermore, a step change in the input of blood glucose has been

performed at time t 5 550 s to see the tightness of the bounds

when there is a disturbance in the system. As in the previous

cases Figure 8 presents sample non-verified solutions (NVS)

together with the computed bounds.
The use of verified methods in systems biology is a useful

tool to address uncertainty of a dynamic system in a guaran-

teed way. The ITS method computed very conservative

bounds in all experiments in the GSK variable, much greater

than those obtained with the ITS-N. The ITS-N method proved

to be able to provide bounds in an effective way in the first

two sets of experiments. In the third case when the uncertainty

grew larger than 625% in the parameters the bounds were

again highly conservative so clearly there is still a need for

improvement since the introduction of larger uncertain

amounts is still a difficult task. The results for the glucagon

receptor model using VSPODE and ITS-N show that the

Taylor model method is still one of the best for computing

bounds for higher dimensional models as they resulted tighter

bounds than with ITS-N. In a second set of experiments

VSPODE handled 62% of uncertainty in the three parameters

plus a disturbance in the form of a step change input. These

results could be extended to use the probabilistic approach

proposed by Enszer and Stadtherr.64 However, the variables

where uncertainties were chosen to explore the sensitivity of

the enclosure ranges cannot been directly measured. A more

suitable approach to explore probabilistic behavior would be
to use ranges of distributions of key clinical variables such as
glucose and insulin and to determine possible ranges of key
insulin resistance variables in the whole composite model.32

Conclusions

We have aimed to demonstrate a role that Process Systems
Engineers can have in medical problems using two particular
approaches. This work has focussed on the body’s “chemical
factory,” the liver system, which plays a central role in regu-
lating the level of glucose in the blood stream. Distributed sys-
tem modeling is a new development in modeling liver
behavior but necessary to be able to predict and eventually
optimize drug behavior. Regulation of glucose between strict
bounds is vital for the health of patients but requires that we
are able to make reasonable predictions with uncertainty in the
parameters and this continues to be a challenge.

In this domain systems are very complex and data can be
either very comprehensive based on in vitro experiments or
sparse and inaccurate from in vivo studies of patients. Model-
lers from the Process Systems community (Hangos and
Cameron36) and the Systems Biology/Medicine community
(Batzel et al.78) agree that models should be designed for a
specific purpose and care taken when used beyond this original
objective. With a clear objective in mind it becomes tractable
to include the phenomena and metabolic processes which are
known to be directly relevant to the purpose. Heldt et al.79 dis-
cuss in some detail the choice of model structure, methods for
identification and parameter estimation, and model order
reduction to achieve the best possible model fidelity. Our
experience has led us to developing models from key phenom-
ena able to predict known results and building on known veri-
fied models, identified at each stage with best available data
from experiments and patients (recognising that data is often
not of high quality), and gradually extended to involve new
phenomena as needed. This is in line with Noble’s10 middle-
out approach starting from well understood phenomena and
building out. This results in predicting trends accurately and
often, although by no means always, reasonably accurate pre-
dictions of output variables. However, this is a complex topic
that requires a more extended discussion.

For the Process Systems role to grow in the medical domain
requires us to introduce our students to this area and to forge

Figure 7. Bounds for the Rs state of the Glucagon
receptor model with uncertainty of [98.8,
101.2] in B1.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 8. Bounds for the Rs state of the Glucagon
receptor model with uncertainty in three
parameters: B1, kh, and ks.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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collaborations with medical researchers and clinicians.
Sargent1 commented on the difficulty of covering a wide range

of topics while ensuring competence in our tools and methods.
Through collaboration with domain experts our community

can help solve some of the challenging problems in Systems
Medicine and contribute in this way to human wellbeing.
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