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Abstract: 

1. The relationship between large herbivore numbers and landscape cover over time is 

poorly understood. There are two schools of thought: one views large herbivores as 

relatively passive elements upon the landscape and the other as ecosystem engineers 

driving vegetation succession. The latter relationship has been used as an argument to 

support reintroductions of large herbivores onto many landscapes in order to increase 

vegetation heterogeneity and biodiversity through local-scale disturbance regimes. 

Most of the research examining the relationship between large herbivores and their 

impact on landscapes has used extant studies. An alternative approach is to estimate 

the impact of variations in herbivore populations through time using fossil dung fungal 

spores and pollen in sedimentary sequences. However, to date there has been little 

quantification of fossil dung fungal spore records and their relationship to herbivore 

numbers, leaving this method open to varied interpretations.  

2. In this study we developed further the dung fungal spore method and determined the 

relationship between spore abundance in sediments (number cm-2 year-1) and 

herbivore biomass densities (kg ha-1). To establish this relationship, we used the 

following: i) the abundance of Sporormiella spp., Sordaria spp. and Podospora spp. 

spores in modern sediments from ponds ii) weekly counts of contemporary wildlife 

over a period of five years from the rewilded site, Oostvaardersplassen, in the 

Netherlands. 
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3. Results from this study demonstrate that there is a highly significant relationship 

between spore abundance and local biomass densities of herbivores that can be used 

in the calibration of fossil records. Mammal biomass density (comprising Konik horses, 

Heck cattle and red deer) predicts in a highly significant way the abundance of all dung 

fungal spores amalgamated together. This relationship is apparent at a very local scale 

(<10m), when the characteristics of the sampled ponds are taken into account (surface 

area of pond, length of shoreline). In addition, we identify that dung fungal spores are 

principally transported into ponds by surface run-off from the shores.  

4. These results indicate that this method provides a robust quantitative measure of 

herbivore population size over time.  

 

Key Words: Ecosystem function, ecosystem engineers, grazing ecology, herbivory, land 

management, large mammals, Oostvaardersplassen, palaeoecology, rewilding, Sporormiella 

 

Introduction 

Large herbivores and other vertebrates that live at high trophic levels play an important role in 

shaping vegetation cover and community composition across most landscapes (Nuttle et al. 

2011; Estes et al. 2011; Ripple & Beschta 2012; Tanentzap & Coomes 2012; Ritchie et al. 2012; 

Peh & Lewis 2012; Cromsigt & te Beest 2014). However, what is still widely debated is when 

and where top-down processes (by which large herbivore populations modify ecosystems) 

override bottom-up processes (by which climate and soil productivity determine ecosystem 

structures and composition, including herbivore population size). These processes and their 

interaction with population dynamics are highly relevant to over 25% of land on earth that is 

intentionally managed as grazing systems for food production (Asner et al. 2004; Steinfeld, 

Gerber & Wassenaar 2006; Ellis et al. 2010) and to over 50% of land, covering semi-natural 
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and wild ecosystems (Ellis et al. 2010), where large grazers and browsers are present in 

abundance. Therefore, quantifying the effects of wild and domesticated large herbivore 

pressure on ecosystems is extremely important if we are to gain understanding of future land 

cover changes and their impact on biodiversity and ecosystem services (Carpenter et al. 2009). 

Increasingly conservation policy is looking to introduce large herbivores as ecosystem 

engineers where they are absent (Seddon et al. 2014; Ceausu et al. 2015; Naundrup & 

Svenning 2015). This policy is based on the premise that before the late Quaternary 

extinctions of megafauna (Koch & Barnosky 2006; Stuart 2015) large herbivores were 

important drivers of ecosystem disturbance, function and biodiversity (Donlan et al. 2005; 

Vera 2000; Sandom et al. 2014; Corlett, 2013). However, this pre-human baseline scenario is 

not without its critics, with an alternative view that large herbivores were ‘passive’ on early 

landscapes and not ecosystem engineers (Bradshaw, Hannon & Lister, 2003; Birks, 2005).  

One of the main obstacles in this debate has been a limited understanding of past population 

dynamics of large herbivores (Bradshaw, Hannon & Lister 2003; de Bryun et al. 2011). A 

number of previous studies have demonstrated the presence of large herbivores on past 

landscapes and their impact on ecosystems using fossil spores from coprophilous ascomycetes 

fungi (hereafter dung fungal spores) (Burney, Robinson & Burney 2003; Gill et al. 2009; Rule et 

al. 2012; Baker, Bhagwat &Willis 2013; Froyd et al. 2014). These dung fungal spores are 

unintentionally ingested by large herbivores while feeding on vegetation, and germinate after 

digestion when deposited with dung. Mycelium growth and fructifications have species-

specific responses to different moisture levels, temperatures, microclimates, microhabitats 

and types of dung and, when successful, the sticky spores are released explosively onto 

surrounding vegetation, ready to be ingested (Dix & Webster 1995; Krug, Benny & Keller 2004; 

Bell 2005). Without wind, dung fungal spores are typically ejected up to 30 cm away from the 

fruiting body (e.g. Yafetto et al. 2008). With wind, the majority of spores are deposited within 

meters (Jackson & Lyford 1999); however, occasionally spores can travel further away (e.g. 
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Gonianakis et al. 2005, Hernández Trejo et al. 2011). Because dung fungi are strictly reliant on 

large herbivores’ digestive tracts to complete their life cycle, the presence of these spores in 

sediments when recovered during palaeoecological investigations are interpreted as a 

compelling evidence for the presence of large herbivores (van Geel et al. 2003; Davis & Shafer 

2006; Baker, Bhagwat &Willis 2013; Johnson et al. 2015).  

Despite the increasing use of dung fungi to study past populations of large herbivores, it 

remains as yet unclear whether and how the abundance of those spores in sediments can 

indicate herbivore densities within a landscape (Raper & Bush 2009; Feranec et al. 2011; Wood 

& Wilmshurst 2011; Parker & Williams 2011; Baker, Bhagwat &Willis 2013, Etienne et al. 

2013). A number of factors can potentially obscure the relationship between spore abundance 

and herbivore abundance. They include the differential spore production of dung fungal 

species and their reliance on specific herbivore species, as well as other taphonomic processes 

such as average distance travelled by spores and spatial patterns of deposition within waters. 

These factors are under-researched and evidence can be contradictory. For instance, within 

water bodies, higher dung fungal spore abundances are reported to be positively related to 

inflow proximity (Etienne et al. 2013), shore proximity (Raper & Bush 2009) and shore distance 

(Parker & Williams 2011).  

The aim of this study was therefore to determine whether the spores can be used as a 

quantitative proxy of herbivore density over time. We addressed this question by calibrating 

dung fungal spore abundance in relation to contemporary herbivore presence, i.e. by 

examining the density of dung spores in modern sediments in relation to known herbivore 

biomass densities (biomass per surface area, kg ha-1). 
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The objectives of the study were as follows: 

(i) To determine the way dung fungal spores travel into sediments i.e. long distance 

transportation by wind, short distance transportation by wind, transportation with 

surface run-off, or a combination of these transportation mechanisms. 

(ii) To understand the relationship between different spore types and different herbivore 

species. 

(iii)  To ascertain whether changes in fossil spore abundances through time in a single 

sequence can be used to infer changes in herbivore density on the surrounding 

landscape. 

 

Methods 

Study site and sample collection 

The Oostvaardersplassen nature reserve, The Netherlands, was established on polder land 

reclaimed from Lake IJsselmeer in 1968. Re-wilding was initiated at this site from 1983 with 

the introduction of free-ranging Heck cattle (Bos taurus Linnaeus) in 1983, Konik horses (Equus 

ferus caballus Linnaeus) in 1984 and red deer (Cervus elaphus Linnaeus) in 1992. These 

herbivores have access to the whole nature reserve but mainly use about 2000 ha of 

grasslands (e.g. Lolium perenne L., Poa trivialis L., Trifolium repens L.), tall herbs (e.g. Cirsium 

spp, Urtica dioica L.), reed (Phragmites australis (Cav.) Trin. ex Steud.), Sambucus nigra L. 

scrub and Salix spp. shrubs (Figure 1) of high net primary productivity (Cornelissen &Vulink 

2015). The grasslands are visited by large numbers of geese (thousands to tens of thousands of 

greylag goose Anser anser Linnaeus; Barnacle goose Branta leucopsis Bechstein; white-fronted 

goose Anser albifrons Scopoli). The site is managed with a policy of minimal intervention, i.e. 

the population size of freely roaming large herbivores is not controlled by culling, no 

supplementary feeding is given during winter and no management intervention is 

implemented to maintain vegetation. 

https://en.wikipedia.org/wiki/Johann_Matth%C3%A4us_Bechstein
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We sampled modern sediment from 16 ponds (mean surface area: 2573 m2, see Table 2) to 

obtain a good spatial spread across the reserve (see Figure 1) and a large amplitude of 

herbivore abundances. These ponds were created between 1985 and 2000 for avian 

biodiversity. The sediment samples were collected where water was the deepest within each 

pond and were made up of top sediments representing contemporary deposition. We used a 

simple tube sampler with sharpened edges. Sedimentary sequences were also collected using 

a simplified Livingstone corer in order to obtain a sedimentary record of the lifespan of three 

ponds since they were first created. To prevent further fungal growth, all samples were stored 

in sealed plastic bags at 40C until processed in laboratory.  

 

Response variable: spore abundance in sediments 

The spores were extracted from one 1 cm3 sub-samples per sediment sample collected from 

the 16 ponds. We followed a standard extraction method in pollen analysis to isolate spores, 

estimate their concentration using Lycopodium spore tablets (batch 938934, Lund University) 

and carry out identifications at a 400x magnification (Willis & Bennett 2001). Spore 

identification and spore association with obligate dung fungi were based on the literature 

reviewed in Baker, Bhagwat & Willis (2013). The abundance of spores in sediments was 

calculated as accumulation rates (spore cm-2 year-1) using the spore concentration (spore cm-3) 

and the sedimentation rate (cm year-1) (Maher 1981; Bennett 1994; Willis & Bennett 2001). 

Using our three cores, we estimated sedimentation rates on the basis of the age of the ponds 

and the depth of sediment deposited since creation as detailed in Appendix 1. We averaged 

these sedimentation rates and applied the average to all samples from our 16 ponds. Applying 

a constant sedimentation rate to all our samples means that the analysis undertaken returns 

exactly the same results whether we use spore concentration or spore accumulation rates. We 

opted for analysing and presenting realistic spore accumulation rates throughout this paper in 

order to facilitate comparison with similar studies in the future.  
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Explanatory variables: herbivore biomass densities and physical variables 

The distribution of herbivores (cattle, horses, deer and geese) was monitored by the reserve 

wardens on a weekly basis at the Oostvaardersplassen (see Figure 1 B). The data analysed in 

this paper span the period 2005-2009, for which we established the average number of 

individuals for every species in each small, medium and large nested plot (see Figure 1 C). 

Small plots were the basic unit for monitoring large herbivores. For ponds overlaying two small 

plots, data from the relevant small plots were aggregated. Medium plots included the relevant 

small plot(s) plus adjacent small plots freely accessible by large herbivores. Large plots 

represented uninterrupted grasslands delimited by ditches or abrupt vegetation changes 

known to be of relevance for large herbivore movement. Other animals including foxes and 

large birds represent a negligible herbivore biomass in comparison with those monitored and 

there are only incomplete associated data regarding their numbers. To account for the 

difference of dung production in goose species, red deer, Konik horse and Heck cattle, we 

used herbivore biomass as a proxy for the dung production. We transformed herbivore 

numbers into herbivore biomass density (i.e. biomass per surface area, kg ha-1) using an 

average biomass of individuals per species. The biomass of herbivore species was compiled 

from Dunning (2007) for geese, and from the long-term monitoring of large herbivore biomass 

by the RWS Water Service and the State Forestry Office, The Netherlands, for cattle, horses 

and deer (see Appendix 2).   

Physical variables of each pond (i.e. pond surface area, pond shore length) and surrounding 

habitat (i.e. total length of shores within small, medium and large nested plots, total surface 

area of grassland within small, medium and large nested plots) were calculated on the basis of 

0.5 x 0.5 m resolution georeferenced aerial photographs taken in 2010 (Ministry of 

Infrastructure and the Environment and the Ministry of Economic Affairs, The Netherlands). 
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Data analysis 

In order to determine the predominant mechanism of transport of dung fungal spores into the 

ponds, we used spore abundance as the response variable and compared it to three spore 

transportation mechanisms (surface run-off, wind-transportation from local shores and wind-

transportation from local grasslands) as three explanatory variables. The factors included in 

each of the transportation mechanisms are detailed in Table 1. They all account for herbivore 

biomass density around the ponds and for the surface area of the pond, in keeping with the 

well-studied transportation of pollen grains from vegetation into water bodies (Sugita 1993; 

Giesecke & Fontana 2008). They differ as follows. ‘Surface run-off’ accounts for the pond 

perimeters, or shoreline lengths, to distinguish spores produced on the shore of the sampled 

ponds. ‘Wind-transportation from local shores’ accounts for the total length of shorelines 

around the pond, to distinguish spores produced from habitats with permanent moisture 

supply, an important factor for dung fungal growth (Dix & Webster 1995; Krug, Benny & Keller 

2004). ‘Wind-transportation from local grasslands’ accounts for the surface area of grassland 

around the ponds to distinguish spores produced from the overall density of dung around the 

ponds.  An additional transportation mechanism, background spore rain (i.e. constant 

deposition of spores across the reserve) was accounted for as the intercept of our models. We 

used generalized linear models (GLM) in R (R Core Team, 2012) to examine this relationship. 

Because over-dispersion of our count data was highlighted by our initial analyses using a link 

function for Poisson distribution, we used negative binomial regression throughout the 

analysis. This was chosen over the quasi-Poisson alternative, because more weight on 

sampling points with higher spore counts was not deemed appropriate in our case (Hoef & 

Boveng 2007; O’Hara & Kotze 2010). Models were fitted using all three explanatory variables 

without interaction and stepwise-simplified using the function stepAIC of the MASS package 

(Venables & Ripley 2002) in order to recover the minimal adequate model, aka optimum 

model (Crawley 2007). 
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In order to understand the relationship between the different spore types and different 

herbivore species, we analysed separately herbivore densities (kg ha-1) of geese, Konik horses, 

Heck cattle, red deer and the three mammalian large herbivores together (5 sets of 

explanatory variables) against each of the three main dung fungal spore types (Sporormiella, 

Sordaria and Podospora, see Baker, Bhagwat & Willis 2013) and their sum (therefore 4 

response variables), resulting in 20 distinct optimum models. Each of these 20 models had 

been initially selected, on the basis of AICs, out of the 27 optimum models representing all 

combinations of scales the transportation mechanisms were available (three transportation 

mechanisms measured each at three nested plot sizes). 

 

Results 

A total of 21 modern sediment samples was collected from 16 ponds of similar morphology 

(mean surface area: 2573 m2) across the reserve (Table 2). Throughout those samples, 17 

fungal spore types were identified but only those from Sporormiella spp., Sordaria spp. and 

Podospora spp. had regular occurrence and made up c. 70% of all 370 fungal spore identified. 

Dung fungal spore abundance varied between 161 and 2049 (spore cm-2 year-1) (mean=945 

sd=537 N=16) and herbivore biomass densities between 308 and 1863 (kg ha-1) (mean=728 

sd=448 N=16) around the ponds (small plot scale). The cores had an overall average 

sedimentation rate of 1.14 (cm year-1) and showed little variation within the 

Oostvaardersplassen (see Appendix 1). 

Our results demonstrate that there is a quantitative relationship between total dung fungal 

spore abundance and total biomass density of large herbivores (Table 3). In particular, shore 

run-off explained, in a highly significant way, total spore abundance. Plots of the significant 

relationships between the spore types and transportation by surface run-offs are shown in 

Figure 2. Local wind dispersal, whether from the grasslands or other nearby pond shorelines, 
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did not contribute to spore influx into the sediments.  

The background spore deposition is highly significantly different from zero and positive, 

implying a spatially constant atmospheric input of spores across the Oostvaardersplassen. The 

maximum likelihood estimation of the background spore deposition was 318.7 (dung fungal 

spore cm-2 year-1) (95% CI between 428.5 and 237.1) and was in the vicinity of this value for all 

models presented in Tables 3. The absence of spatial autocorrelation for the spore abundance 

in our sediment samples (Moran’s I test, observed =0.05787573, expected = -0.06666667, sd = 

0.1011752, p = 0.2183387), supports the very local origin of spore abundance in sediments. 

Total mammal biomass density of large herbivores related better to total spore abundance 

than any of the herbivore biomass densities taken individually. While biomass densities of 

Heck cattle or Konik horses both showed a good fit with the models, biomass densities of red 

deer were never significantly related to any of the spore types using the methodology 

adopted. Total biomass densities of geese only showed significant relationship with Sordaria 

abundance. 

Sordaria and Sporormiella taken separately show very similar patterns. They are best 

explained by total biomass density of large herbivores. However, the significance levels are 

lower for Sporormiella. On the contrary, Podospora is better explained by biomass densities of 

Konik horse alone. In this case though, the results should be interpreted cautiously because 

two samples stood out as outliers on model checking plots, suggesting potential 

heteroscedasticity and potential non-normal errors.  

Discussion  

 In the introduction we highlighted the factors that can potentially obscure the relationship 

between herbivore biomass densities and dung fungal spores in sediments. These factors 

relate to spore production by different fungal species and whether they rely on specific 

herbivores, as well as to the taphonomic processes that the spores experience between their 
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release in the air and their deposition into sediments. Our results demonstrate a highly 

significant relationship between spore abundance and local biomass densities of large 

herbivores when these biological and taphonomic factors are taken into account. 

 

Fungal and herbivore species 

Total spore abundance, Sordaria abundance and Sporormiella abundances were each best 

explained by total biomass density of mammals (kg ha-1). This demonstrates that dung fungal 

spores as identified in this study, do not indicate any herbivore species in particular but 

instead indicate Heck cattle, Konik horse and red deer collectively. This finding differs from 

some other studies of dung fungal diversity (e.g. Richardson 1972, 2001); however, these 

earlier studies identify dung fungi to the species level using whole living organisms, i.e. with a 

greater taxonomic precision than is currently possible using spore morphology alone (Baker, 

Bhagwat &Willis 2013). Therefore, it would appear that the current limitations in the 

identification of dung fungal spores from sediments limits our ability to infer which specific 

large herbivore species they are associated with. However, our data on dung fugal spore 

abundance suggest that there is a direct link between spore production and the total biomass 

density of large herbivores. Podospora abundance was associated with Konik horse biomass 

density but the validity of the modelling method for this spore type should be interpreted with 

some caution. This limitation is probably due to the low number of individual Podospora 

spores recovered and does not concern Sporormiella and Sordaria types that were significantly 

more abundant. 

Similarly, although Sordaria spore explained goose abundance significantly, this herbivore is 

less likely than mammals to be the main source of fungal spore according the AIC selection 

method used. This result is congruent with bird dung being reported to be a substrate less 
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suitable for fungal growth (Richardson 2001; Doveri 2007). As a result, the important grazing 

pressure from goose and other birds of similar size (Jano, Jefferies &Rockwell 1998; Jefferies & 

Rockwell 2002) may not be well captured by the abundance of dung fungal spores. Application 

of our method away from arctic wetlands or other areas favoured by geese would therefore 

convey total grazing pressure with greater accuracy. However, there is clear evidence that the 

past presence of larger flightless herbivorous birds in New Zealand can be tracked using the 

spores of Sporormiella spp. (Wood et al. 2011). Therefore, more studies such as ours but in 

different environments and featuring other species of herbivore (e.g. Froyd et al. 2014) will be 

required to fully assess how our results can be applied to other situations. 

Using our model selection methodology, it was not possible to statistically determine whether 

it is preferable to aggregate all dung fungal spores into one indicator or to keep them 

separate. This was because there is no widely accepted method to calculate absolute 

goodness of fit, or R2, for GLM. Nevertheless, the confidence intervals plotted in Fig. 2 

highlight that aggregated dung fungal spores would have a higher predictive power for 

palaeoecological reconstructions than spore types taken individually. In fact, significant 

increases in aggregated spore abundance appear to be a systematic reflection of an increase in 

herbivore biomass densities. Subtle changes, and spore types taken individually, may be more 

difficult to interpret. In addition, studies of dung fungal diversity (e.g. Richardson 1972, 2001) 

highlight the preference of certain species for certain types of dung. Moreover, the large body 

of evidence reviewed by Dix & Webster (1995) and Krug, Benny & Keller (2004) shows that 

dung fungi have species-specific responses to different environmental conditions. The 

consequent assumption is that the greater the diversity of spore types, the more likely it is to 

capture all large herbivore activities. Dix & Webster (1995) also highlight the importance of 

competition between species as a driver for the composition of the dung fungal community. 

This suggests that dung fungal biomass, and thus ultimately spore production, is strongly 

limited by factors such as space, nutrient and moisture availability. The ecology of dung fungi 
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therefore suggests that the sum of individual dung spores, irrespective of the type 

encountered, provides the most appropriate measurement of herbivore biomass. 

 

Taphonomic factors 

Our analysis demonstrates that surface run-off from the shoreline and surrounding slopes (as 

opposed to longer distances by wind) explains dung fungal spore abundances highly 

significantly. This is the first time evidence is gained regarding the source area of dung fungal 

spores from water bodies (Feranec et al. 2011; Baker, Bhagwat &Willis 2013). The main 

implication of this finding is that a time-series of spore abundance tracks herbivore abundance 

in the close proximity of the sampled water body (in our case less than 10 m away from pond 

shore). At the same time, drinking water from water features such as those sampled in this 

study directly determine the daily movements of wild and domesticated herbivores (e.g. 

Putfarken et al. 2008; Shannon et al. 2009). Thus, water features are a strategic location to 

sample and it can be postulated that the local herbivore abundance quantified with dung 

fungal spore actually represents herbivore abundance in a broader landscape. In our samples, 

there is in addition a significant influx of spores that is not related to the local distribution of 

herbivores within the reserve and that we identify as background spore deposition. The 

extremely high herbivore biomass density prevailing in the reserve (474.3 kg ha-1, see 

Appendix 2) in comparison to the surrounding land (mostly arable land, built-up areas and 

open water, where large herbivores are overall in low density) suggest that much of this 

background spore influx originates within the reserve. This indicates that the influx of wind-

dispersed spores in our case represents a signal from the overall abundance of large 

herbivores within the reserve that is not specific to the exact location of sampling. This 

contrasts with Gill et al.’s (2013) study in North America which demonstrated the importance 

of short-distance wind dispersal (<100 meters) to explain the significant relationship between 
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bison local distribution and abundance of dung fungal spores. Their study was conducted in 

terrestrial habitats away from water, so further research will be necessary to assess fully the 

relative importance of run-off and wind transportation in different deposition environments. 

We found that biomass density of large herbivores explains dung fungal spore abundance in a 

highly significant way when accounted in conjunction with the morphological characteristics of 

the sampled pond (i.e. pond surface area and pond shoreline length). Therefore, changes in 

spore abundance through time can be used to indicate large herbivore population size 

variation. However, this is with the caveat that the water body has stayed approximately the 

same size during the same interval in time. If drastic hydrological changes are suspected, there 

are several means to assess water level in palaeoecology, notably using macrofossils of aquatic 

plants (Hannon & Gaillard 1997; Dieffenbacher-Krall & Halteman 2000). 

 

Conclusion 

There is much debate regarding the long-term impact of large herbivores on their 

environment. As a consequence, there is great difficulty in predicting with certainty the impact 

that wild and domestic large herbivores might have, particularly in conjunction with the 

unpredictable effects of global change. Several factors can influence fluctuations in large 

herbivore population dynamics worldwide: for instance, agricultural abandonment in marginal 

areas, the growing need for food production and the adoption of novel conservation strategies 

such as rewilding. Our aim was to develop a method for the measurement of long time-series 

of large herbivore population sizes in relation to environmental factors affecting or impacted 

by those populations because this is a critical step towards improving our understanding of 

herbivore-dominated ecosystems. Based on an existing method in palaeoecology, we provide 

here the foundations for the quantitative reconstruction of long time-series of herbivore 

densities using fossil dung spores contained in sedimentary sequences.  
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Using modern surface sediments, we found that there is a significant relationship between 

biomass density of large herbivores and dung fungal spore abundance in sediments. To 

extrapolate this relationship into the past we ascertained that when the morphology of the 

water body sampled remains the same, accurate quantitative reconstructions are possible. 
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Table 1: Transportation mechanism used for the analysis. ‘distance A’ can be either 

small, medium or large nested plots for which we had herbivore densities, ‘pond i’ is 

any of the 16 ponds sampled. 

Transport agent Location of dung

HA, i : Herbivore biomass density within distance A of pond i (kg ha-1)

Pi : Perimeter of pond i (m)

Si 
-1: (Surface area of pond i)-1 (m-2)

HA, i : Herbivore biomass density within distance A of pond i (kg ha-1)

SLA, i : Shore length of other water bodies within distance A of pond i (m)

Si
-1

 : (Surface area of pond i)-1 (m-2)

Wind (land) Turbulent air Nearby grasslands HA, i : Herbivore biomass density within distance A of pond i (kg ha-1)

LA, i : Surface area of grassland within distance A of pond i (m2)

Si
-1

 : (Surface area of pond i)-1  (m-2)

Background Turbulent air Unspecified (Model intercept)

Factors included

Run-off Surface run-off, 

very short flight, 

erosion

Pond shoreline and 

slopes

Wind (shore) Turbulent air Shorelines and slopes 

from nearby water 

bodies
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Table 2: List of ponds, their characteristics and samples analysed. Note that five ponds were 

sampled twice and therefore have two sample years, two sample codes and two sample 

depths. 

Pond

Surface 

(m square)

Shore 

length (m)

Total shore length 

within medium plot (m) North East

Year(s) 

sampled Sample code(s)

Sample 

depth(s) (cm)

OO2 7081 414 1657 52.43050800 5.39363240 2009, 2010 Oost-2, Oost-213 20, 7

OO3 3092 487 4583 52.43812010 5.39735413 2009, 2010 Oost-3, Oost-222 20, 9

OO4 4403 525 6776 52.44220897 5.40135547 2009 Oost-4 20

OO5 4419 696 6776 52.44513021 5.39834122 2009 Oost-5 20

OO6 2687 322 2274 52.43912714 5.38580996 2009, 2010 Oost-6, Oost-3/1 20, 1.5

OO7 1521 204 4250 52.42868373 5.38800097 2009, 2010 Oost-7, Oost-217 20, 8

OO8 203 56 172 52.42444476 5.34973321 2009 Oost-8 20

OO9 1063 171 658 52.42969659 5.36165301 2009 Oost-9 20

OO10 5705 323 3209 52.43070174 5.31460139 2009 Oost-10 20

OO11 2011 169 5412 52.42800156 5.30843074 2009 Oost-11 20

OO12 1998 250 4250 52.42982508 5.39061816 2010 Oost-214 10

OO13 443 76 75 52.42389313 5.37887143 2010 Oost-216 10

OO14 2368 274 4338 52.42603232 5.38194373 2010 Oost-201 8

OO15 1206 178 2428 52.42438731 5.37715128 2010 Oost-202 7

OO16 1621 254 6776 52.44189417 5.40323788 2009, 2010 Oost-203, Oost-204 10, 5

OO17 1353 247 6209 52.43784175 5.39378056 2010 Oost-205 7  
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Table 3: Identification of transportation mechanisms. Each line summarises the 

optimum model with the lowest AIC out of a series of 27 optimum models (all 

combinations of 3 plot scales for 3 transportation mechanisms). Significance codes for 

p-values: ‘***’ <0.001; ‘**’ <0.01;  ‘*’ <0.05; ns otherwise. (-) indicates a negative 

relationship, and small, medium and large for the nested plots (see text and Figure 1 

C); x: mechanism excluded by model simplification. 

Response variables AIC

run-offs 

(shore)

wind 

(shores)

wind 

(land) Intercept

run-off 

(shore)

wind 

(shores)

wind 

(land)

Dung Fungal Spore Total mammal 240.9 *** (-) ns   *** small medium x

Dung Fungal Spore Total    Heck cattle 242.8 *** (-) *   *** small medium x

Dung Fungal Spore Total    Konik horse 241.7 *** (-) **   *** small large x

Dung Fungal Spore Total    red deer 246.4 (-) * ns *** x medium medium

Dung Fungal Spore Total goose 247.3 (-) ns * *** x large large

Sordaria -type mammal 224.6 **     *** small x x

Sordaria -type    Heck cattle 226.4 ** (-) *   *** small medium x

Sordaria -type    Konik horse 226.5 ** (-) ns   *** small large x

Sordaria -type    red deer 228.9     *** x x x

Sordaria -type goose 227.2 ** (-) ** * *** medium medium large

Sporormiella -type mammal 210.5 *     *** medium x x

Sporormiella -type    Heck cattle 211.7   ns *** x x large

Sporormiella -type    Konik horse 212.1   ns *** x x large

Sporormiella -type    red deer 211.8 ns   *** large x x

Sporormiella -type goose 212.7       *** x x x

Podospora -type mammal 199.0 ns     *** small x x

Podospora -type    Heck cattle 199.3     *** x x x

Podospora -type    Konik horse 197.5 ** (-) ns   *** small large x

Podospora -type    red deer 197.9 (-) *   *** x medium x

Podospora -type goose 199.3   *** x x x

Biomass density 

(kg ha-1) for:

Significance levels Optimum plot scales
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A

B

C

 

Figure 1: Maps of the Oostvaardersplassen, sample locations indicated with triangles. 

A. Vegetation map highlighting the grasslands where the herbivores spend most of 

their time. B. Monitoring method, the number of herbivores is recorded weekly for 

each of the small plots following established routes, in red. C. The nested plots utilised 

in this study (aggregation of the small plots shown in B). 
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Figure 2: Optimum relationships between spore abundances and herbivore biomass 

densities. On the x axis is the run-off transportation mechanism, i.e. the product of 

local herbivore biomass density (only Konik horses for Podospora), pond shore length 

and pond surface area. Dots in red are the observed data, in black the best model 

prediction as in Table 3 (dashed, 0.95 confidence interval).\ 

Appendix 1 

Estimation of sedimentation rates in the ponds of the Oosvaardersplassen 
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Introduction 

The aim of this appendix is to calculate the sedimentation rate (cm year-1) in the ponds of the 

Oostvaardersplassen. These sedimentation rates are used to calculate spore accumulation 

rates (spore cm-2 year-1) from spore concentrations (spore cm-3) (Bennett 1994). All ponds 

sampled were dug the same year, in the same bedrock material and, today, they all have 

similar shape, water depth and vegetation in and around water. As a consequence we 

expected to have similar sedimentation rates across the ponds of the Oostvaardersplassen. 

Methods  

Three short cores were extracted from three different ponds in July 2010 (OO6, OO14, OO15, 

see Table 2 main text), using a simplified Livingstone corer. This corer was made with a 

transparent coring tube, with sharpened edges. Once the core was extracted from the deepest 

part of the pond, it was slowly extruded in the field from top to bottom, in slices of 1.5 cm. 

Special care was taken not to disturb the very runny top sediments. The three ponds that we 

cored were initially dug in 1995 (month unknown), resulting in between 14.5 and 15.5 years of 

ponds existence represented in the cores.  

We determined the transition between pre-reclamation sediments and pond sediments using 

the coincidence of sedimentary changes. For the sedimentary changes we used Loss-on-

Ignition (LOI) at 550 and 925 deg C (Heiri et al. 2001), colorimetry (Munsell’s charts), and visual 

assessment of the texture and consistency of the sediments.  

Using these data, we calculated four extreme age models per core, corresponding to the 

minimum and maximum age of the pond (14.5 and 15.5 year) and the maximum and minimum 

depth of the sedimentary transition zone (between pre-reclamation and post-pond inception). 

The best estimate of the sedimentation rate was calculated as the average between the 

minimum and the maximum sedimentation rates. 
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Results 

Appendix 1 Figure 1 shows the sedimentary data and the minimum, maximum and average 

age-depth models for the three cores. 
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Appendix 1 Figure 1. Sedimentary characteristics of the cores and age models. The horizontal 
plain lines represent discrete texture and consistency transition, the horizontal dashed lines, 
gradual colour transition.  
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Appendix 1 Table 1 summarises the sedimentation rates (cm year-1) in the 

Oostvaardersplassen 

Appendix 1Table 1. Calculated sedimentation rates. 

Core 1 Core 2 Core 3 Whole site

Minimum -0.88 -0.88 -0.81 -0.81

-0.94 -0.94 -0.86

-1.61 -1.21 -1.21

Maximum -1.72 -1.29 -1.29 -1.72

Average -1.29 -1.08 -1.04 -1.14  
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Appendix 2 

Body mass of large herbivores in the Oostvaardersplassen  

The body mass of cattle, horse and deer (Appendix 2 Table 1) was compiled from two sources.  

 Regular measurements in the reserve by the State Forestry Service for the period 

2008-2012 (Unpublished data).  

 Measurement of all Konik horses and Highland cattle from the wetland nature reserve 

Zoutkamperplaat, The Netherland, by the RWS Water Service for the period 1991-

1994 (Unpublished data). Heck cattle has similar body weight than Highland cattle. 
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Appendix 2 Table 1: Body weight of cattle, horse and deer in the Oostvaarderplassen 

Body Weight in Kg

Heck cattle 1 year 2 year 3 year 4 year 5 years and older

female 250 350 400 450 500

male 300 450 550 650 750 465

Konik horses 1 year 2 year 3 year 4 years and older

female 250 350 400 450

male 275 375 425 475 375

Red deer 1 year 2 year 3 year 4 years and older

female 50 80 100 125 119

male 60 110 175 250

Average 

Population

 

Because the exact male/female ratio and the age structure of the Oostvaardersplassen 

populations are unknown, we made the assumption that the all genders and age class were 

equally represented. 

 


