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Abstract

Photoacoustic tomography is a hybrid imaging method which combines optical contrast
and ultrasound resolution. The goal of photoacoustic tomography is to resolve an initial
pressure distribution from detected ultrasound waves generated within an object due to an
illumination of a short light pulse. In this work, a Bayesian approach to photoacoustic
tomography is described. The solution of the inverse problem is derived and computation of
the point estimates for image reconstruction and uncertainty quantification is described. The
approach is investigated with simulations in different detector geometries including limited
view setup and with different detector properties such as ideal point-like detectors, finite
size detectors, and detectors with a finite bandwidth. The results show that the Bayesian
approach can be used to provide accurate estimates of the initial pressure distribution as
well as information about the uncertainty of the estimates.
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I. INTRODUCTION

Photoacoustic tomography (PAT), also known as optoacoustic tomography, is a hybrid imag-
ing modality which combines optical contrast and high spatial resolution of ultrasound tech-
niques. In PAT, a short (nanosecond scale) pulse of visible or near-infrared light is used
to illuminate the region of tissue of interest. As light propagates within the tissue, it is
absorbed by chromophores which are light absorbing molecules. The light absorption gene-
rates localized increases in pressure. The resulting pressure wave propagates through the
tissue and is detected by ultrasound detectors on the surface of the object. In the inverse
problem of PAT, the initial pressure distribution is reconstructed from the time-varying ul-
trasound measurements. PAT can provide structural, functional, and molecular information,
and therefore it has a variety of biomedical applications. For reviews of physical principles
of PAT, PAT image reconstruction, and its applications in biomedicine, see e.g. Refs. 1–5.

Several reconstruction algorithms have been utilized in the estimation of the initial pres-
sure distribution. They can generally be categorized into eigenfunction expansion6,7, back-
projection8–11, time reversal12–14, and model-based image reconstruction algorithms15–20. In
the eigenfunction expansion approach, the initial pressure is obtained as a series solution
where the terms of the series are determined from the measured pressure signals. The back-
projection algorithms are based on analytical inversion formulas, and they can be regarded
as analogous with an (inverse) Radon transform e.g. in computed tomography (CT). The
eigenfunction expansion and backprojection algorithms can provide exact reconstructions
for certain geometries such as spherical, cylindrical and planar acoustic detection surfaces.
However, the eigenfunction expansion and backprojection algorithms can not be utilized in
arbitrary detector geometries. The time reversal algorithms are based on reciprocity princi-
ples in acoustics. In the approach, the initial pressure distribution is estimated by simulating
ultrasound wave propagation backwards in time. The time reversal approach enables the
image reconstructions in more general imaging scenarios than eigenfunction and backpro-
jection approaches. However, the method has limitations in the case of open detector sets.
The model-based image reconstruction algorithms are based on a discrete presentation of
the acoustic model describing the propagation of sound. In the approach, the image recon-
struction is performed by numerically minimizing the error between the measured acoustic
signals and those computed using the acoustic model. Typically, the minimization problem is
ill-posed, and therefore regularization such as Tikhonov regularization is utilized to stabilize
the numerical inversion.

Generally, the above described methods and the reconstructed photoacoustic images are
qualitative in the sense that they do not provide quantitative information on the parameters
of interest. Furthermore, the uncertainties of the photoacoustic images are not typically
assessed either.

In this paper, a Bayesian approach to PAT image reconstruction is proposed. In the
Bayesian approach, all parameters are modeled as random variables21–23. A model describes
how these parameters depend on each other, and information about the parameters is ex-
pressed by probability distributions. In the inverse problem, the idea is to obtain information
about the parameters of primary interest based on the measurements, the model, and the
prior information about the parameters. In principle, the distributions of the unknown pa-
rameters could be analyzed using Markov chain Monte Carlo (MCMC) methods. These
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FIG. 1. Two examples of limited view imaging scenarios with detectors on an arc (left
image) and on a line (right image). The region enclosed by the detectors (gray shaded area),
the inclusion boundaries that are reconstructed accurately (solid line) and the inclusion
boundaries that are blurred (dashed line). Image adapted from Refs. 3,29

methods, however, can be computationally prohibitively too expensive in large dimensional
tomographic inverse problems. Therefore, point estimates, such as maximum a posteriori
(MAP) estimate, are computed (image reconstruction). Furthermore, the reliability of the
reconstructed images can be assessed by computing the credibilities of the estimates (uncer-
tainty quantification).

The Bayesian approach has previously been utilized in image reconstruction in other
light and/or ultrasound utilizing tomographic techniques in Refs. 24–28. However, to our
knowledge, this is the first study in which the Bayesian approach to PAT is described.
Furthermore, this is one of the few studies in which the uncertainties of the MAP estimates
are evaluated in tomography.

In the case of ’an ideal’ full view tomography, the object is fully surrounded by detec-
tors on a closed surface. This, however, can not always be implemented in an experimental
setting. The detector geometries which do not enclose the object are called limited view
scenarios. It has been shown that, in limited view situations, the regions which are enclosed
by the detection surface can be reconstructed accurately29. Those regions within the ob-
ject, that are not enclosed by the detection surface, suffer from blurring apart from those
inclusion boundaries whose normals intersect the detection surface29. The above conditions
are illustrated in Fig. 1 where the area enclosed by the detectors is shaded with gray. The
figure shows two inclusions inside the object. Those parts of the boundaries of the inclu-
sions that can be estimated accurately are drawn with a solid line, and those parts which
suffer from blurring are drawn with a dotted line. The limited view artifacts have been
reduced as follows. In the backprojection approach, the image quality has been improved
by adding a weighting factor from a smoothing function to the backprojection signals30. In
the model-based reconstructions, different regularization terms have been used to reduce the
artifacts resulting from the limited view scenario31,32. Furthermore, it has been shown that
utilizing prior structural information can improve the quality of the reconstructed images
significantly33,34. The Bayesian approach taken in this study offers a natural way to incor-
porate prior information into the image reconstruction procedure. Therefore, the approach
can be utilized in imaging situations with a limited view.

In many image reconstruction algorithms it is assumed that ultrasound detectors are ideal
point-like detectors with an infinite bandwidth. The real ultrasound detectors, however, are
characterized by finite apertures and finite bandwidths. Both the finite apertures and the
finite bandwidths of the detectors can cause blurring of the reconstructed images35,36. How-
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ever, if the properties of the detectors are taken into account in the model-based inversion,
the blurring may be significantly reduced leading to an enhanced image quality37–39. In this
work, the finite sizes and bandwidths of the acoustic detectors are modeled and included
into the solution of the inverse problem.

The rest of the paper is organized as follows. PAT and the Bayesian approach to image
reconstruction are described in Sec. II. Then, implementation and results of the numerical
simulations are shown in Sec. III. Finally, the results are discussed and conclusions are given
in Sec. IV.

II. PHOTOACOUSTIC TOMOGRAPHY

A. Forward problem

In photoacoustic tomography measurement situation, an object is irradiated by a short light
pulse. As light propagates within the object, it is absorbed. The energy of the absorbed
light causes thermoelastic expansion of the object which in turn leads to localized increases
in acoustic pressure. This results in generation of acoustic pressure waves which propagate
through the medium and can be measured with detectors on the surface of the object.

Assuming that the object possesses homogeneous acoustic properties and that the dura-
tion of the irradiating optical pulse is negligible, the acoustic pressure wavefield satisfies the
following homogeneous wave equation(

∂2

∂t2
− c2∇2

)
p(r, t) = 0 (1)

with initial conditions
p(r, t = 0) = p0(r) (2)

∂

∂t
p(r, t = 0) = 0, (3)

where p is the pressure, r is the spatial position, t is the time, c is the speed of sound and
p0 is the initial pressure distribution, see e.g. Ref. 1 and the references therein.

Since the solution p of (1)-(3) is linear with respect to p0, it can be written as a matrix-
vector multiplication in a discrete case. The discrete observation model for PAT in the
presence of additive noise is

pt = Kp0 + e, (4)

where pt ∈ Rm is a vector of measured acoustic pressure waves at the detector locations
and temporal samples, p0 ∈ Rn is a discrete initial pressure distribution within the object,
K ∈ Rm×n is the discrete forward model for the pressure propagation which maps the
initial pressure distribution to the measurable data, and e ∈ Rm denotes the noise. In this
work, the matrix K is computed using the k-Wave toolbox40 using MATLAB (R2011a, The
MathWorks Inc., Natick, MA). In practice, the matrix K is assembled by looping over each
pixel describing p0, setting the pixel value to one while keeping the other pixels at zero,
computing the acoustic output using k-Wave, and proceeding to the next pixel. The outputs
of the k-Wave then form the columns of the matrix K. This corresponds to computing the
impulse response of the discrete system approximating (1)-(3).
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B. Inverse problem

In photoacoustic tomography, the initial pressure distribution p0 is reconstructed when the
detected pressure signals pt are given. This is the inverse problem of PAT. In this work, the
inverse problem is approached in the framework of the Bayesian inversion21–23.

Let us assume that pt and p0 are random variables in the finite dimensional spaces Rm

and Rn, respectively. The solution of the inverse problem is the posterior probability density
π(p0|pt) which according to Bayes’ theorem is

π(p0|pt) =
π(p0)π(pt|p0)

π(pt)
, (5)

where π(p0) is the prior probability density and π(pt|p0) is the likelihood density. The prior
density represents the prior information of the unknown parameters of interest, whereas the
likelihood expresses the likelihood of measurement outcomes with given parameter values.
Since π(pt) is constant for a given (fixed) measurement pt, Eq. (5) can be written in the
non-normalized form

π(p0|pt) ∝ π(p0)π(pt|p0). (6)

If noise e and parameters p0 are assumed to be mutually independent, the observation
model (4) leads to a likelihood density

π(pt|p0) = πe(pt −Kp0), (7)

where πe is the probability distribution of the noise e.
Let the initial pressure distribution p0 and the measurement noise e be modeled as Gaus-

sian distributions, i.e. p0 ∼ N (ηp0 ,Γp0) and e ∼ N (ηe,Γe) where ηp0 ∈ Rn and Γp0 ∈ Rn×n

are the mean and covariance of the prior and ηe ∈ Rm and Γe ∈ Rm×m are the mean and the
covariance of the noise. In this case, the posterior density (6) can be written as

π(p0|pt) ∝ exp

{
−1

2
‖Le(pt −Kp0 − ηe)‖2

−1

2
‖Lp0(p0 − ηp0)‖

2

}
, (8)

where Le and Lp0 are the Cholesky decompositions of the inverse covariance matrices of the
noise and prior, respectively, i.e. LT

e Le = Γ−1
e and LT

p0
Lp0 = Γ−1

p0
. In the case of a linear

observation model (4) and Gaussian distributed noise and prior, the posterior density is also
a Gaussian distribution

p0|pt ∼ N (ηp0|pt ,Γp0|pt), (9)

where

ηp0|pt = A−1b, (10)

Γp0|pt = A−1, (11)

are the mean and covariance, respectively, where

A = KTΓ−1
e K + Γ−1

p0

b = KTΓ−1
e (pt − ηe) + Γ−1

p0
ηp0 .
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The practical solution for the inverse problem is obtained by calculating point estimates
of the posterior density. In this work, we consider the MAP estimate with its credible
intervals. The MAP estimate of (8) is obtained by minimizing the negative of the exponent
term, that is

p0,MAP = argmin
p0

‖Le(pt −Kp0 − ηe)‖2

+ ‖Lp0(p0 − ηp0)‖
2 . (12)

In the purely Gaussian case considered here, the MAP estimate is the mean of the posterior
distribution p0,MAP = ηp0|pt given in Eq. (10). As it can be seen, the MAP estimate resembles
the solution of a minimization problem of a generalized Tikhonov regularization. In fact, the
Tikhonov regularization can be derived using a Bayesian approach by making some specific
assumptions of the distribution of the noise and prior.

The credible interval of the estimated parameter p0 is determined by considering the
marginal density of the posterior distribution. The marginal density of the kth element of
p0 is defined as

p0,k|pt ∼ N (ηp0|pt,k,Γp0|pt,kk), (13)

where ηp0|pt,k is the kth element of ηp0|pt and Γp0|pt,kk is the kth diagonal element of Γp0|pt .
Now, for example, a 99.7 % credible interval of the p0,k is[

ηp0|pt,k − 3
√
Γp0|pt,kk , ηp0|pt,k + 3

√
Γp0|pt,kk

]
. (14)

1. Prior model

The prior density expresses what is known about the unknown parameter of interest prior to
the experiment. In this work, two prior models, a white noise prior and a Matérn prior41, are
utilized. Both of them are Gaussian priors, that is, they can be described by their means ηp0
and covariance matrices Γp0 . The mean and variance of the prior are chosen based on prior
knowledge on the unknown parameters of interest. In many practical applications, the range
of the unknown parameter values is roughly known and this information is then utilized.

In the case of the white noise prior, the covariance matrix is a diagonal matrix with the
values of variance σ2

w on the diagonal

Γp0 = diag(σ2
w). (15)

The white noise prior is well suited for the estimation of parameters which are independent
of each other or which have no spatial correlation. In tomography, this relates to a non-
smooth spatial distribution of the estimated parameters. Although the white noise prior can
not be regarded as the most suitable prior model for PAT, where some spatial correlation
in parameter values between the pixels can be expected, it is commonly used in Tikhonov
regularization, and therefore it is also chosen for consideration in this work.

The Matérn prior, on the other hand, supports correlation between pixels. It promotes
distributions which can be locally close to homogeneous with sharp changes between different
areas. An example of such distribution could be blood vessels in photoacoustic imaging. In

7



−5 0 5

5

0

−5

y(
m

m
)

x(mm)

 

 

−4 0 4 8 12

FIG. 2. (Color online) A graph of the simulation domain (left) and the true initial pressure
distribution (right). The asterisks indicate the locations where the marginal densities are
plotted and the dashed line indicates the location where the credible interval is plotted.

the case of the Matérn prior, the covariance matrix is defined by the Matérn covariance
function41

Γp0,ij =σ2
m

21−ν

G(ν)

(√
2ν‖ri − rj‖

l

)ν

·Kν

(√
2ν‖ri − rj‖

l

)
, (16)

where i and j are the element indices, ri and rj are the corresponding pixel locations, σ2
m

is the variance, ν > 0 is the smoothness parameter, l is the characteristic length scale, G
is the gamma-function, and Kν is the modified Bessel function of the second kind of order
ν. The smoothness parameter ν controls the smoothness of the random field, while the
characteristic length scale l controls the spatial range of correlation. In practice, some prior
information about the structures and their size inside the target medium are known, and
thus the correlation range can be chosen based on that knowledge.

III. NUMERICAL SIMULATIONS

The Bayesian approach to the PAT inverse problem was tested with simulations. Three
problems were considered. First, the effect of the detector geometry and the prior model
on image reconstruction was investigated. In that study, idealized point-like detectors were
used. In the second problem, the detectors were considered to have a finite aperture and in
the third study, detectors with limited bandwidth were investigated.

In all simulations, a two dimensional square domain of size 10mm×10mm was considered.
A graph of the simulation domain and the initial pressure distribution are shown in Fig. 2.
The domain contained four different inclusions: two different size circles and two different
size rectangles. The domain was assumed to be a homogeneous with the speed of sound
c = 1500m/s. Acoustic attenuation was not considered.

Four types of detector geometries were considered: a four sided (4-side), a two-sided
L-shaped (L-shape), a one-sided (1-side), and a one-sided plus three detectors (1-side+3).

8



In the 4-side detector geometry, the detectors were evenly positioned on the boundary sur-
rounding the whole domain. In the L-shape detector geometry, the detectors were located
on two adjacent sides of the domain. The detectors were located on sides y = 5mm and
x = −5mm. In the 1-side detector geometry, the detectors were positioned only on one
side (y = 5mm) of the domain. The 1-side+3 detector geometry was similar to the 1-side
detector geometry but it also included additional detectors at the center of the other edges.
The detector geometries are shown in Fig. 3.

A. Data simulation

Data was simulated using an initial pressure distribution shown on the right image of Fig.
2 with the k -space time-domain method implemented with the k-Wave MATLAB toolbox.
For data simulation, the 10mm× 10mm target domain was discretized into 300× 300 pixels
(pixel width ∆h = 33.33µm). For the numerical implementation with the k-Wave, this
discretization was increased on the boundary of the domain with a layer of thickness 2.5mm
(75 pixels). This layer was used to place the acoustic detectors outside the target. The
discretization was further extended with a perfectly matched layer (PML) with thickness
of 2mm (60 pixels) to avoid boundary reflections (numerical artifacts). Thus, the size of
the complete discretized simulation domain of k-Wave was 570× 570 pixels with pixel width
∆h = 33.33µm. The pressure signals were recorded at detector locations using 283 temporal
samples from 0µs to 14.1µs with 50 ns time step (sampling frequency 20MHz). This corre-
sponds to an acoustic propagation distance of 21.15mm. Uncorrelated Gaussian distributed
noise with a zero mean ηe = 0 and a standard deviation σe proportional to the peak ampli-
tude of the simulated pressure signal was added to the signal. The noise levels investigated
were 1% and 5% of the peak positive amplitude. In the case of the detectors with a limited
bandwidth, the simulated signal was bandpass filtered first and then noise was added to the
filtered data.

B. Inverse problem

In the inverse problem, the 10mm × 10mm target domain was discretized using 120 × 120
pixels (∆h = 83.33µm). For the numerical implementation, the discretization was extended
with a layer of thickness 2.5mm (30 pixels) containing the acoustic detectors and a PML
of thickness 2mm (24 pixels). The matrix K was formed as described in Sec. II A by
computing the model output for the pixels located inside the target domain.

Two prior densities described in Sec. II B 1 were used: the white noise prior and the
Matérn prior. For both priors, the mean was set as the expected mean value of the initial
pressure ηp0 = 5 and the variance was set as σw = σm = 2.5 which means that 99.7% of
initial pressure values were expected to be normally distributed within range [−2.5 , 12.5].
For the Matérn prior, the characteristic length scale of l = 1.25mm and the smoothness
parameter of ν = 0.5 were used. The measurement noise was considered to be uncorrelated
Gaussian distributed noise with zero mean and standard deviation σe, that is ηe = 0 and
Le = diag(1/σe). The standard deviation was set as 1% or 5% of the peak positive amplitude
of the noisy simulated data.
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Table I. The number of the detectors used in the simulations in the 4-side, L-shape, 1-side
and 1-side+3 detector geometries using ideal detectors (ideal), finite size detectors (finite),
and detectors with a limited bandwidth (BPF).

Ideal Finite BPF
4-side 164 20 164
L-shape 83 10 83
1-side 42 5 42
1-side+3 45 8 45

The MAP estimates of the initial pressure distribution p0,MAP were computed using Eq.
(10). The difference between the simulated and the estimated initial pressure distribution
was compared by computing the relative error

Ep0 = 100% · ‖p0 − p̂0‖
‖p0‖

, (17)

where p0 is the simulated initial pressure distribution and p̂0 is the estimated value inter-
polated to the simulation grid. The marginal densities were calculated in three locations
inside the domain using Eq. (13). These locations are indicated with asterisks in the left
image of Fig. 2. Furthermore, the 99.7 % credible intervals were computed on a diagonal
cross-section (dashed line in the left image of Fig. 2) using Eq. (14).

C. Detector geometry

First, the effect of the detector geometry and the prior model on the solution of the inverse
problem was investigated. The detectors were modeled as ideal point-like detectors with a
bandwidth only limited by the temporal sampling. The number of the detectors in each
measurement geometry is given in Table I and the locations of the detectors are indicated
with dots in Fig. 3. Two noise levels: 1% and 5% were considered.

The MAP estimates of the initial pressure distribution obtained using different detector
geometries are shown in Figs. 3 and 4 for 1% and 5% noise level, respectively. As it
can be seen, the estimates obtained using the 4-side and L-shape detector geometries look
qualitatively very similar to the true initial pressure distribution with both noise levels.
However, some stripe artifacts can be seen in the area which is not enclosed by the detectors
in the case of the L-shape detector geometry. These stripe artifacts are also visible in the
estimates obtained using the 1-side and 1-side+3 detector geometries. Similar stripe artifacts
were also observed in Ref. 31. Overall, the quality of the images obtained using the 1-side
detector geometry is significantly worse than in the case of the 4-side and L-shape detector
geometries. In the 1-side case, the larger circular inclusion is partially distorted and only
the top of the larger rectangular inclusion is visible. On the other hand, the quality of
the estimates can evidently be improved if one extra detector is added to each ’empty’ side
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Table II. The relative errors of the MAP estimates (in percentage) calculated in the 4-side,
L-shape, 1-side and 1-side+3 detector geometries using the ideal detectors (ideal), finite
size narrow (finite-N) and wide (finite-W) detectors, and detectors with limited bandwidths
(BPF-3 and BPF-6). In the case of the ideal detectors, both white noise and Matérn priors,
and noise levels 1% and 5% were used.

Ideal(white noise) Ideal(Matérn) Finite-W Finite-N BPF-3 BPF-6
1% 5% 1% 5%

4-side 13.2 18.2 12.6 15.1 24.3 23.0 12.6 14.0
L-shape 15.9 22.7 14.9 17.3 30.2 32.6 15.4 19.2
1-side 35.9 54.1 34.0 39.3 53.4 56.0 36.7 50.6
1-side+3 26.1 43.9 27.4 28.7 34.7 34.9 30.1 33.2

(the 1-side+3 detector geometry). This can be seen on the bottom row of Figs. 3 and 4.
The estimates obtained using the 4-side, L-shape, 1-side, and 1-side+3 detector geometries
correspond to the theory and the results described in Ref. 29. Differences between the
estimates obtained using the different prior models are almost indistinguishable in the case
of the 4-side and L-shape detector geometries. However, in the case of the 1-side and 1-side+3
detector geometries, the reconstructed images obtained using the Matérn prior have better
quality than the images obtained using the white noise prior. This is especially evident if
the noise level is higher. This indicates that, as the inverse problem becomes more ill-posed,
the relevance of a good prior information increases.

The relative errors of the estimates are given in Table II. As it can be seen, the relative
errors of the estimates obtained using the 4-side detector geometry have the smallest values.
The errors increase as the number of detection edges decrease. With the 1% noise level,
the relative errors of the estimates obtained using the Matérn prior are slightly smaller
than relative errors of the estimates obtained using the white noise prior in all detector
geometries apart from the 1-side+3 detector geometry. On the other hand, with 5% noise
level, the relative errors of the estimates obtained using the white noise prior are significantly
larger than the relative errors of the estimates obtained using Matérn prior in all detector
geometries. This is especially evident in the 1-side and 1-side+3 detector geometries.

The marginal densities in the three locations of the domain indicated in Fig. 2 are shown
in Figs. 5 and 6 for the noise levels 1% and 5%, respectively. The marginal densities
are shown for the 4-sided, L-shaped, and 1-side detector geometries and for the both prior
distributions. As it can be seen, the marginal densities in the case of 4-side detector geometry
are narrower than in the cases of L-shape and 1-side detector geometries. It can also be seen
that, in the case of L-shape detector geometry, the marginal densities in the point located
outside the region enclosed by the detectors are significantly wider than in the points located
inside the region enclosed by the detectors. The results indicate that the uncertainties of the
estimates obtained using the 4-side detector geometry are smaller than the uncertainties of
the estimates obtained using the L-shape and 1-side geometries. This is valid also in those
locations of the L-shape geometry which are enclosed by the detectors. The figures also
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FIG. 3. (Color online) The MAP estimates obtained using the white noise prior (first
column) and the Matérn prior (second column) in the case of the ideal detectors. The noise
level was 1%. From top to bottom: 4-side (first row), L-shape (second row), 1-side (third
row) and 1-side+3 (fourth row) detector geometries. The dots indicate the locations of the
detectors.
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FIG. 4. (Color online) The MAP estimates obtained using the white noise prior (first
column) and the Matérn prior (second column) in the case of the ideal detectors. The noise
level was 5%. From top to bottom: 4-side (first row), L-shape (second row), 1-side (third
row) and 1-side+3 (fourth row) detector geometries. The dots indicate the locations of the
detectors.

13



show that the maximum of the marginal distribution is not necessarily at the location of
the true value. However, the true value is within the principal support of the distribution
in each case. This indicates that the error estimates are reliable. Comparing different prior
distributions and noise levels support the results that the Matérn prior and lower noise levels
produce more accurate estimates.

The MAP estimates together with 99.7% credible intervals on a diagonal cross-section
through the domain in the case of 1% noise level are shown in the Fig. 7. As it can be seen,
the credible intervals in the case of the 4-side detector geometry are narrow which indicates
the accuracy of the MAP estimate. In the case of the L-shape, 1-side, and 1-side+3 detector
geometries, the credible intervals are wide which can especially be seen in the areas which
are not enclosed by the detectors. It can also be seen that the credible intervals in the case of
the 1-side+3 detector geometry are narrower than in the case of the 1-side detector geometry
which indicates that the uncertainty of the estimates in the 1-side+3 case is smaller than in
the 1-side case. Furthermore, the credible intervals are narrower when the Matérn prior is
used.

Since better estimates were obtained using the Matérn prior than with the white noise
prior, the Matérn prior was chosen to be used in the following simulations. Furthermore,
only the noise level of 1 % was considered.

D. Finite size detectors

In the second study, the acoustic detectors were modeled as finite size, which is a more
realistic approach than the idealized detectors considered in the first study. Two different
widths of the detectors were considered: narrow detectors of the width 0.5mm and wide
detectors of the width 1.5mm. Both detector setups had the pitch (element center to element
center spacing) of 2mm. The number of the detectors in different detector geometries is given
in Table I. The locations of the detectors are indicated in Fig. 8 with lines.

The MAP estimates of the initial pressure distribution are shown in Fig. 8. The main
features in the reconstructed images obtained using the finite size detectors are similar to
the images obtained using the ideal detectors. However, the background and the rectangular
inclusions are not as uniform as in the case of the ideal detectors. The wider detectors cause
blurring of the estimates due to the narrower directivity pattern of the detecting element,
and therefore quality of the estimates is not as good as with the ideal detectors.

The relative errors of the estimates are given in Table II. The relative errors obtained
using the finite size detectors are larger than in the case of the ideal detectors. Furthermore,
the relative errors obtained using the wide and narrow detectors are approximately the
same. That is, although the wider detectors cover almost the entire surface area, they do
not produce better estimates than the same number of narrow detectors.

The MAP estimates together with the 99.7% credible intervals on a diagonal cross-
section through the domain obtained using the finite size detectors in the different detector
geometries are shown in Fig. 9. As it can be seen, the credible intervals are narrower in
the case of 4-side detector geometry than in the case of other detector geometries. Also, the
L-shape detector geometry gives narrower distribution than the 1-side geometry. Compared
with the results of the ideal point-like detectors, the finite size detectors give wider credible
intervals in the regions which are enclosed by detectors. This is due to the fact that there
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FIG. 5. The marginal densities in three different locations of the domain obtained using the
white noise prior (first column) and the Matérn prior (second column) in different detector
geometries in the case of the ideal detectors. The noise level was 1%. The locations where
the marginal densities are plotted are indicated in Fig. 2 with asterisks and are positioned
from top to bottom order respectively.
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FIG. 6. The marginal densities in three different locations of the domain obtained using the
white noise prior (first column) and the Matérn prior (second column) in different detector
geometries in the case of the ideal detectors. The noise level was 5%. The locations where
the marginal densities are plotted are indicated in Fig. 2 with asterisks and are positioned
from top to bottom order respectively.
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FIG. 7. The true initial pressure distribution (solid line) and the MAP estimate (dashed
line) with the 99.7 % credible interval (gray area) on a diagonal cross-section through the
domain obtained using the white noise prior (first column) and the Matérn prior (second
column) in the case of the ideal detectors. The noise level was 1%. From top to bottom: 4-
side (first row), L-shape (second row), 1-side (third row) and 1-side+3 (fourth row) detector
geometries.
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are less detectors and due to the averaging effect of the finite size detectors.

E. Finite bandwidth

In the third study, the detectors were modeled as point-like detectors with a finite bandwidth.
The frequency response of the band-limited detectors was modeled as a bandpass filter with -
6 dB bandwidth of roughly 8 MHz. Two different central frequencies were considered: 3MHz
(BPF-3) and 6MHz (BPF-6). The bandpass filter was generated using MATLAB’s butter
function. The number of the detectors in different detector geometries was the same as in
the case of the ideal detectors and it is given in Table I. The locations of the detectors are
shown in Fig. 10 with dots.

The MAP estimates of the initial pressure distribution are shown in Fig. 10. As it
can be seen, the estimates obtained using the lower bandwidth (BPF-3) are similar to the
estimates obtained using the ideal detectors. In the case of the upper bandwidth (BPF-
6), the estimates resemble the estimates obtained using the BPF-3 and the ideal detectors,
however, some of the artifacts are more visible.

The relative errors of the estimates are given in Table II. As it can be seen, the relative
errors of the estimates obtained using the lower bandwidth (BPF-3) are approximately of
the same magnitude as the relative errors of estimates obtained using the ideal detectors
in the cases of 4-side and L-shape measurement geometries. However, when the number of
detecting sides decreases, the errors of the estimates obtained using lower bandwidth (BPF-
3) increase. It can also be seen that the relative errors obtained using the upper bandwidth
(BPF-6) are larger than the relative errors obtained using BPF-3 and ideal detectors.

The MAP estimates together with the 99.7% credible intervals on a diagonal cross-
section through the domain obtained using the band-limited detectors in different detector
geometries are shown in Fig. 11. The credible intervals obtained using the lower bandwidth
(BPF-3) are narrower or approximately the same as the credible intervals obtained using the
upper bandwidth (BPF-6). Compared to the ideal detectors, the credible intervals are wider
or approximately the same for the both band-limited detectors.

The better reconstructions obtained with the lower central frequency filter BPF-3 are due
to the fact that the simulated data (corresponding to p0 in Fig 2) contains more information
in the frequency range of the BPF-3 than in the range of BPF-6. This can be verified for
example by computing the norm of the difference between the ideal and filtered data and
comparing the results between them. Thus, in the case of p0 considered in the simulations,
higher central frequency bandpass filter results in lower quality data which leads into lower
quality estimates.

IV. DISCUSSION AND CONCLUSIONS

In this work, the Bayesian approach to PAT image reconstruction with uncertainty quan-
tification was described. In the Bayesian approach, all parameters are treated as random
variables and the solution of the inverse problem, the posterior density, is obtained based on
the knowledge of the measurements, the model, and the prior information. Different point
estimates can be calculated from the posterior density. In this work, the MAP estimate with
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FIG. 9. The true initial pressure distribution (solid line) and the MAP estimate (dashed
line) with the 99.7 % credible interval (gray area) on a diagonal cross-section through the
domain obtained using the wide (first column) and the narrow (second column) finite size
detectors. From top to bottom: 4-side (first row), L-shape (second row), 1-side (third row)
and 1-side+3 (fourth row) detector geometries. The Matérn prior was used. The noise level
was 1%.
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FIG. 10. (Color online) The MAP estimates obtained using the BPF-3 (first column) and
the BPF-6 (second column) band-limited detectors in different detector geometries. From
top to bottom: 4-side (first row), L-shape (second row), 1-side (third row) and 1-side+3
(fourth row) detector geometries. The Matérn prior was used. The noise level was 1%. The
dots indicate the locations of the detectors.
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FIG. 11. The true initial pressure distribution (solid line) and the MAP estimate (dashed
line) with the 99.7 % credible interval (gray area) on a diagonal cross-section through the
domain obtained using the BPF-3 (first column) and the BPF-6 (second column) band-
limited detectors. From top to bottom: 4-side (first row), L-shape (second row), 1-side
(third row) and 1-side+3 (fourth row) detector geometries. The Matérn prior was used. The
noise level was 1%.
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credible intervals was considered. The credible intervals give information of the uncertainty
of the reconstructed image. Such information can be useful in interpretation how reliable
the reconstructed images are. Furthermore, it could be an aid, for example, in the design of
the PAT measurement setup.

The Bayesian approach was investigated using simulated PAT data. MAP estimates were
computed from simulated data in various imaging situations. The relative errors between
the simulated and the estimated initial pressure distributions were computed to compare
the estimates quantitatively. In addition, the marginal density distributions and the 99.7%
credible intervals were determined.

The Bayesian approach enables a natural way to include prior information of the esti-
mated parameters into the reconstruction. In this work, the white noise and the Matérn
priors were used. It was observed that the Matérn prior produced better estimates. This is
due to the fact that the Matérn prior supports estimates with a spatial correlation whereas
white noise prior assumes all the estimated parameters to be uncorrelated. In the future,
utilizing other prior distributions will be investigated. For example, the total variation prior
and including structural prior information have been found to provide good photoacoustic
images32,33. Furthermore, other prior models such as anatomical, and sample based pri-
ors, that are determined by the tissue optical properties coupled with the model for light
propagation and absorption, could be developed.

In this work, both full view and different limited view detector geometries were investi-
gated. It was shown that the Bayesian approach can be used to provide photoacoustic images
also in limited view imaging situations. The estimates obtained using a full view scenario
were accurate and the uncertainties of these estimates were small. However, in the limited
view reconstructions, artifacts were visible and the uncertainties of the estimates were larger.
Different type of detectors were investigated. The finite size of detectors provided poorer
quality MAP estimates with larger uncertainties when compared to the results obtained us-
ing the ideal point-like detectors. Also the band-limited frequency response decreased the
quality of the estimates when compared to the ideal detectors. In all cases, the uncertainty
estimates given by the approach were reliable, which indicates that the Bayesian approach
can provide reliable error limits.

In this work, the proposed approach was tested in a simple two dimensional geometry.
In the future, three dimensional situation and more realistic tissue-like structures will be
considered. Furthermore, in this work, the whole system matrix was formed by simulating
the system response of each pixel. Although, the approach can be implemented in two
dimensions, it would be a computationally too expensive approach in three dimensions.
Therefore, an alternative approach to the solution of the inverse problem will be developed
when the method will be extended to three dimensions.

A common assumption in the PAT reconstruction algorithms, also assumed in this work,
is the non-attenuating and homogeneous medium with a constant speed of sound. However,
several tissue types have acoustic impedance variations, and thus the reconstructed images
can contain significant distortions and artifacts if the inhomogeneous acoustic properties of
the object are not taken into account in the reconstruction algorithm. Therefore, several PAT
algorithms which aim to improve the image quality by taking into account the inhomogeneous
acoustic properties of object have been developed e.g. in Refs. 14,42–46. In the future, the
Bayesian approach could be utilized in compensating the errors caused by the uncertainties
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in the acoustic parameters.
Estimation of the initial pressure distribution in PAT does not differ significantly from the

estimation of the initial pressure distribution in thermoacoustic tomography (TAT), where
the excitation is performed using microwave radiation. For this reason, the findings of this
study are applicable to TAT as well and the Bayesian approach presented can be applied
with relatively small modifications.
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