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Distributed Joint Source-Channel Coding with
Copula-Function-Based Correlation Modeling for
Wireless Sensors Measuring Temperature

Nikos Deligiannis, Evangelos Zimos, Dragos Mihai Ofrim, Yiannis Andreopoulos, and Adrian Munteanu

Abstract—Wireless sensor networks (WSNs) deployed for tem- demands. In addition, as information is sent over error-prone
perature monitoring in indoor environments call for systems that  wireless channels, effective data protection mechanisms are
perform efficient compression and reliable transmission of the required to provide for reliable communications.

measurements. This is known to be a challenging problem in . . L . .
such deployments, as highly-efficient compression mechanisms In this setting, distributed source coding (DSC) is con-

impose a high computational cost at the encoder. In this paper, we Sidered a key technology for WSNs [2]. DSC is rooted in
propose a new distributed joint source-channel coding (DJSCC) the information-theoretic results by Slepian and Wolf [3]—
solution for this problem. Our design allows for efficient com- on lossless compression of correlated sources—and by Wyner
pression and error-resilient transmission, with low computational 54 ziv [4]—on lossy compression with side information at
complexity at the sensor. A new Slepian-Wolf code construction, he d der. Th it inal (MT ding th 5
based on non-systematic Raptor codes, is devised that achieve§ e decoder. The multiterminal ( _) source coding theory [S]
good performance at short code lengths, which are appropriate extended these results to an arbitrary number of correlated
for temperature monitoring applications. A key contribution of ~ sources [6]. DSC designs [2], [7], [8] exploit the correlation
the work is a novel Copula-function-based modeling approach amongst the sensors’ readings at the decoder, i.e., the base sta-
that accurately expresses the correlation amongst the temper- tinn or sink node. In this way, efficient compression is obtained
ature readings from co-located sensors. Experimental results by shifting the complexity to enerav-robust nodes and keepin
using a WSN deployment reveal that, for lossless compression, y g p_ y gy . _p 9
the proposed Copuia-function-based model leads to a notable the sensor computational and energy demands to a minimum.
encoding rate reduction (of up to 17.56%) compared to the state- In addition, energy expensive data exchange between sensors
of-the-art model in the literature. Using the proposed model, our js avoided. Moreover, as Slepian-Wolf coding is realized by
DJSCC system achieves significant rate savings (up to 41.81%)hannel codes (e.g., Turbo [9], low-density parity-check [10]

against a baseline system that performs arithmetic entropy o . .
encoding of the measurements. Moreover, under channel Iosses,Or Raptor [11] codes), distributed joint source-channel coding

the transmission rate reduction against the state-of-the-art model (DISCC) [12] designs offer re_sil_ience agginst communication

reaches 19.64%, which leads to energy savings between 18.68%channel errors [12]. Hence, it is recognized [2], [13], [14]

to 24.36% with respect to the baseline system. that, in correlated data gathering by energy-constrained WSNs,
Index Terms—Wireless sensor networks (WSNs), Distributed DSC schemes have distinct advantages over predictive coding

joint source-channel coding (DJSCC), Correlation Modeling, systems that apply complex adaptive prediction and entropy
Copula function, Temperature monitoring. coding at the encoder.

. INTRODUCTION A. Related Work

IRELESS sensor networks (WSNs) operate under aus-Several works have studied DSC for wireless sensors moni-

tere constraints in terms of energy resources, comp@¥ing temperature. Towards practical schemes, a construction
tational capabilities and available bandwidth [1]. Many WSKealizing Slepian-Wolf (SW) coding for two sensors measuring
applications (e.g., temperature or humidity monitoring, wirdhe temperature in a room was devised in [16]. In the latter, SW
less visual sensors) involve a high density of sensors within @@ding was realized by means of a simple coset construction.
environment, thereby sensors’ readings are highly correlatéd. order to exploit the spatial correlations in time-varying
In order to minimize the amount of information transmitted bgnvironments, rate adaptation was enabled based on an entropy
the sensors, this redundancy needs to be removed by effici&aeking algorithm. The construction of [16] was extended to
data compression mechanisms that have low computatiofdiross-layer design by modeling the interaction between DSC
and the medium access control (MAC) layer [17].
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ized by a multivariate Gaussian distribution [16], [18], [19]. Gl
This assumption is also typically encountered in information- O -
theoretic studies [13], code designs [20] and correlation esti- @ Ctuster Head (CH) Base | - ©
mation works [21]. Alternatively, the authors of [22] studied () Peripheral node Station .%*O%Q
MT source coding under physical models of heat diffusion. R
In particular, they focused on heat conduction in solid bodies / Cluster 2
(rail temperature monitoring applications) and derived upper O—@ ) Q
and lower bounds on the rate-distortion performance. - ‘ \O ‘ \ :

: : Cluster 1 O O
B. Contributions B S Y S

This paper proposes a novel DIJSCC design for WSNg 1. The considered cluster-based network architecture.
measuring temperature. Our specific contributions are:

« We propose a novel modeling approach for the spatial _ ) _
the multivariate Gaussian model, typically considered iroposed Copula-function-based correlation model in compar-
state-of-the-art works [13], [18], [19], [21], the proposeéﬁon to the conventional multivariate Gaussian model. Details
approach models the marginal distributions of the da@fl the derivation of the model parameters and encoding
using density kernel estimation and expresses the corfat€s are given in Section V. Finally, experimental results are
lation using a Copula function [23], [24]. In this Way,presented in Section VI, while Section VIl concludes the work.
the proposed approach offers a higher modeling accu-
racy than the conventional multivariate Gaussian model, [I. NETWORK MODEL AND BACKGROUND
leading to significant coding improvements. A. Network Model

« Existing coding schemes for temperature data collected ) i ) . i
by sensors, e.g., [15], [18], [19], [25]-[27], focus only on The WSN is organized into groups of neighboring sensor

data compression. On the contrary, the proposed pjs@edes calledclusters Each cluster comprises of an elected
designjointly addresses compression and error-resiliefpordinator callectluster headCH) and theperipheral nodes
transmission of data. In this way, channel impairments af€€ Fig. 1). Peripheral nodes measure temperature data, apply
mitigated without requiring packet retransmissions at tHfgPmPression and error protection mechanisms and transmit
MAC layer, thereby leading to significant energy saving@e resulting data packets to the base station via their corre-
for each sensor. sponding CH. The latter are group coordinators that organize
« We devise a novel scheme using asymmetric SW codiH&ta transfer, sleeping periods and data aggregation within
realized by Raptor codes [28], the newest class of ratel&Ch group, as well as convey the encoded data to the base
channel codes—implementations of which have alrea§§f3t'°”' In addition, each CH measures and transmits its own
been proposed for embedded systems [29]. Our coffgnperature data. _ _
design is specifically tailored to the requirements of Each peripheral node has the processing capacity needed
temperature monitoring by WSNs: Conversely to existin) Pécome a CH. To prevent CH battery depletion, the CH
designs that focus on video coding [12] or considéihang‘?s periodically based on energy criteria [30], [31]. When
generic binary sources [11], our SW code construction the residual energy of the CH turns low, another CH is elected

based on non-systematic Raptor codes that achieve g@5gend the peripheral nodes. In this way, energy consumption
performance for short code lengths. is balanced within the cluster and the network lifetime in-

« Experimental results using real data from a proprieta§féases [30], [31]. The cluster formation abides by well-known
WSN deployment show that the proposed system igluster-tree solutions for IEEE 802.15.4-based MAC protocols

troduces significant compression gains (up to 41.818 WSNSs, e.g., the IEEE 802.15.4 GTS [32].

in rate reduction) with respect to the baseline scheme

that performs arithmetic entropy coding of the data. Background on Slepian-Wolf Coding

In addition, the proposed Copula-function-based model Let (X1, X,) be two correlatedii.d. (independent and

'Sh ShOV\Im tg_ lead ;EO a significantly Z'?h?; sotur[ce f?faentically distributed) temperature data sources obtained by
¢ tannelzt_ coc 'rt'g ger ormance zorlnpare 0 the state-of-thez, sensor nodes in a cluster. According to traditional source
art muftivaniate aussian modet. coding theory, in the lossless compression scenario, each

« Finally, via our WSN deployment, we show that th ensor can encode its data independently at a rate greater or

proposed system results in systematic and notable ene%%% al to the entropy. |
) py, i.eRx, > H(X,) andRyx, > H(X5).
0,
savings at the sensor nodes, between 18.68% to 24.3 ¢ommunication between the sensors is enabled, then the

with respect to the baseline system. lowest total achievable encoding rate corresponds to the joint
) entropy, that is,Rx, + Rx, > H(Xi,X5). This can be
C. Outline achieved, for example, by encoding one source,$ayto its
Section Il describes the considered WSN model and givesamtropyH (X ), and the other source to its conditional entropy
introduction to SW coding. The proposed DJSCC architectuf&(X»|X;)—by applying prediction and entropy coding. The
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Fig. 2. The proposed system architecture.

Slepian-Wolf (SW) theorem [3] states that,Xf, and X, are In the proposed system, we follow a SW rather than an
separately encoded and jointly decoded, the achievable rst€ code design for the following reason: As mentioned in
region is still given byRx, > H(X:|Xs), Rx, > H(X2|X1), Section II-A, the sensors in each cluster periodically elect a
and Rx, + Rx, > H(X1,X2). In the asymmetricSW different CH so as to even out the energy consumption in the
coding scenario, one source is entropy encoded (at a rakester. Under this requirement, MT source coding becomes
Rx, > H(X,)) and used at the decoder as side informatiadifficult to deploy because, if one node does not send data, the
to decode the other source. The latter is SW encoded atlecoding of the other nodes fails and the base station needs
rate Rx, > H(X1|X2). In non-asymmetriSW coding, both to reconfigure the entire encoding design. On the contrary,
sources (rather than one) are SW encoded and jointly decodeging a SW code design (in which the CH provides the side
In [6], Cover extended the SW theorem to the case of losslésformation), the encoding of the other nodes is not affected
MT coding of an arbitrary number of correlated, discrete, i.i.df a peripheral node fails (e.g., runs out of energy resources).
sourcesXq, Xo, ..., Xn.

B. Practical Code Design
[1l. PROPOSEDDISTRIBUTED JOINT SOURCE-CHANNEL . _
CODING ARCHITECTURE 1) Source-Channel Coding of CH InformatioBach sensor

acquires discrete temperature samples through an analog-to-
) o digital converter withb bit-depth accuracy. Under the memory

In the proposed architectuteshown in Fig. 2, the cor- capapilities of the sensom samples are aggregated together
relation between the data collected from the sensors withgy encoding. Binarization is performed by means of gray
each cluster is exploited by means of SW coding. I_Da_rticgﬁcoding [33], resulting in an array & = m x b bits to
larly, let N' be the total number of sensor nodes within 8¢ encoded. Using gray encoding, the binary representations
cluster, with theN-th node denoting the CH. According 0t two consecutive values differ in one bit position. This
the proposed coding scheme, the CH encodes its collectgghoach improves the performance of SW decoding, where
information, denoted bXy, at a rateRx, > H(Xy). Each {he decoded CH information is used as side information. The
of the N' — 1 peripheral nodes within the cluster encodes thgnarized data is compressed using arithmetic entropy coding,
gathered data (denoted &, ..., X1, respectively) using achieving a source coding rate &y, > H(Xy) bits. The
asymmetric SW coding. That is, the corresponding encodiggmpressed bit-stream is then channel encoded resulting in
rates areRy, > H(Xn|Xy),¥n = 1,2,...N — 1. Since ha total transmitted information oftyy > % bits,
the information is transmitted over wireless links, chann@lnere & denotes the channel capacity]?, Channel encoding is
encoding is required. Transmission is performed over the 1&;i;ed using a Raptor code that adheres to the systematic
channels of the IEEE 802.15.4 PHY and inter-sensor intgfasign described in the Raptor RFC5053 standard [34]. At the

ference is mitigated via the utilized MAC layer cluster-trégacoder, the encoding operations are reversed resulting in the
coordination [32]. Conventional error protection, by means @f.-oded signal.

channel encoding, is performed for the encoded data of the Cl—b) Distributed Joint Source-Channel Code Desighet
(see Fig. 2), while the proposed DJSCC is performed at the _ [z1 (1) L), ...,a™(1),...,27(b) bek = mxb

. : L n n e Ty
peripheral nodes. Assuming a statistical model for the clustgttormation bits, resulting after binarization and gray encoding
level temperature data correlation, the base station deco@ﬁﬁh b bits) of m digital samples from sourceX,, (i.e.

the information from the peripheral nodes using the decodgqh gata source of a peripheral node= 1,2,...,N — 1).
temperature data collected from the CH as side informati®fisiriputed joint source-channel encoding is appliedxtg
(see Fig. 2). realized by a SW Raptor encoder. Raptor codes are formed

1without loss of generality, in the rest of the paper, our practical exampl@S @ concatenation of a conventional pr?COd'ng step efnd a
and illustrations consider a WSN where each cluster is formed bydes.  Luby Transform (LT) [35] step. The precoding step comprises

A. Overview



DRAFT SUBMITTED TO IEEE SENSORS JOURNAL 4

an LDPC code that is used {9 relax the condition on the
number of edges of the LT angi) recover from decoding
errors after the LT decoding stage. The LT codes provide the
variable rate property and help to recover a constant fraction of
the source symbols. Our SW design is also based on the Raptor
RFC5053 standard [34], which defines a code distribution
Q(x), leading to stable and efficient code constructions. More-
over, the standard provides a fixed distribution, such that each
output symbol corresponds to only one combination of input
symbols. Thus, it is sufficient to know the output symbol index
to determine the distribution of the input, thereby eliminating
the need to send extra information to the decoder [28], [34].
Based on the Raptor RFC5053 standard [34], which defines
a systematic code, we design a non-systerh&w code con-
struction that abides by the parity-based SW coding approach
[2]. In order to maintain a simple SW encoder with reduced
processing cost, our design does not include the Hamming

m,,:o\

precode step [34]. [oh(k+5)]
The Tanner graph of the designed non-systematic SW A 'LDPC e
Raptor code in depicted in Fig. 3. At the encoder, the LDPC symbols symbols check todes

codeword is first formed ag” = Gippcwxi x X', wWhere

— n is th nerator matrix of th Fig. 3 Tanner graph of our non-systematic SW _Raptor code. For simplicity,
w k + s and Giopcuwxk IS the generato at of t ethe index £ has been dropped from the notation for the LLR of each

LDPC precod& Then, the Raptpr codeword is give_n BYnformation symbol. The information symbol LLR is now denoted4s,, (<)]
¢’ = Grrpxw X YT, Where Grpx., is the generator matrix of with i = 1,2, ..., k, wherek = m x b.

the LT code. TheRx, = p bits from the output of the non-
systematic Raptor encoder are transmitted. When noiseless
transmission is considered then, for decoding with low err(i_ﬁ' the variance of the Gaussian noise. For transmission over
probability, we need thaRy, = p > kH(X,|Xy) bits. The & channel experiencing Rayleigh fading—assuming that the
conditional entropyH(Xn|XN) depends on the Corre|ationChanne| state information (CS') is known at the decoder—the
between the sources and its calculation is described in SectidfRs are given by [38]
V. For transmission over a noisy channel, the transmission

. . . 2
rate needs to be increased according to the channel capacity Llzy,(3)] = —yn(i) x 7, 2
as Ry, = p > HXalXn) Tn

At the decoder, the information is obtained by applying soffyherer is the fading gain. These channel models are known to
decoding by means of belief propagation [36] on the Raptgparacterize the behavior of narrow-band transmission within
Tanner graph (see Fig. 3). To initiate decoding, the decoqgfsonal area networks [39]. The LLR for each information
is given the following soft-information in the form of 10g- hinary symbol, 2% (i) in x,, wherei = 1,2,....b iterates
likelihood ratios (LLRs): In the noiseless transmission casgyer the bits of the binary representation of the sanpte
the LLRs L[z} (7)], ¢ = 1,2,...p, which correspond to the 1,2,...,m, is initialized as
parity symbols for the encoded sourég,, are set to a very
large positive or negative value (depending of the value of ¢,
the received symbol). When transmission is performed over L, ()] = log
a binary additive white Gaussian noise (AWGN) channel and

Prlzy, (1) = 0[]
Priat (i) = 12}
fsz(i):O f(xn‘XN = .’Iff\,)dl‘n

binary phase-shift keying (BPSK) modulation is considéred = log ; ) (3)
the LLR of each parity symbol is initialized as [37] St y=1 f(@nl Xy = 2y )dan,
. 2 .
Lz, ()] = ﬁyn(l), (1) where 2%, denotes thef-th sample from the CH datan-
" tuple, which acts as side information. The numerator of (3)

whereys, (i) is the value received wher, (i) is sent, andr; s the integral of the conditional pdf of the correlation model

2Apart from the non-systematic version of the code, we have also desig Séae Sgctlon _lV) On, the intervals Wheﬁ (2) :, 0, and the
and tested a systematic Raptor SW code following the construction in [L}€nNominator is the integral of the pdf on the intervals where

We observed that the non-systematic code achieves better compression peﬁ@zr(—z) =1 (see Section V)_

mance in short codelengths (smaller than 1000 bits), while the systematic co N1 .
performs better for large codelengths. Since the monitored physical paramete he LLRSL[x"(Z)]’ =kt 1. kts, Wh'?h. F:orrespond
(temperature) results in small codelengths we adhere to the non-systeni@idhe parity symbols of the LDPC code, are initialized to zero

Raptor code construction. as these symbols are not knowrpriori at the decoder.

3 k i v hi i ) g
4The LDPC code has a ratg—, Whergs is the number of p.arlty' bits. Finally, after Raptor decoding is completed, the soft-
The IEEE 802.15.4 standard considers BPSK modulation in the 868

and 915 MHz bands, and offset quadrature phase-shift keying (OQP§R‘formati0n is C(_)nve_rted to binary Symb_ols via thresholding,
modulation in the 2.4 GHz band. and gray decoding is performed to obtain the decoded data.
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IV. CORRELATION MODELING
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We now focus on the modeling of the correlation betwe
the temperature data sources captured by the sensor node
first review the typical approach followed in the literature &
then present the proposed copula-function-based model.

o

=}

©
T

o
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=
T

A. Multivariate Gaussian Correlation Model

A representative model for describing the correlation e
information sources collected by WSN nodes is the mt Temperature value: T (°C)
variate Gaussian (MG) distribution [13], [18], [19], [21]. In
the N-dimensional space consisting of tié nodes of the
cluster, the joint probability density (pdf) function of thé
random variables can be expressed by a multivariate normal

o

o

[N]
T

Marginal statistics: fi(z1)
=
(o2}

Fig. 4. Example of the marginal statistics of a peripheral node measuring
temperature.

distribution Let X = (X1, Xo,...,Xn) be the vector of the correlated
1 random variables and lef} (X;), F»(X3),..., Fn(Xn) be
fla1, w2, 2n) :m their continuous marginal cumulative density functions (cdfs).
1 Using the probability integral transform [41] on ea&h, n =
X exp (—(x —pw)TE N (x - p,)) , 1,2,...N, a vector of random variabled/;, Uz, ...,Uy) =
2 @ (Fl(Xl),FQ(XQ),..._, FN(XN)) i_s created, where the com-
ponentsU,, are uniformly distributed. Therefore, regardless
where X = (X1, Xs,...,Xy) is an N-dimensional vec- of the initial distribution of each random variabl¥,,, the
tor consisting of the correlated random variablgs, = transformed variabld/,, always follows a uniform distribu-

(E[X1], E[X2], ..., E[XN]) is the N-dimensional vector con- tion. According to the Sklar's theorem [40Q], if" is the

taining the mean values of the random variables 3nid the N-dimensional joint cdf ofX, there exists a uniqueV-

covariance matrix of siz&V x N. dimensional copula functiod' : [0,1]Y — [0,1] such that
The statistical dependencies of the measured data from faeall x € RY,

N nodes within a cluster are incorporated in the covariance

matrix. The elements outside the main diagonal can be ex-%" 1,22, ..., 2N) = C(F1(21), F2(22), ... Fn(2n)). (6)

pressed using the Pearson correlation coefficient Since a CF is a multivariate distribution function of uni-

® _ Cov(X;, X;) 5) form randor_n variables, the following properties are va(iyl:
Pij \/(Var(Xl)Var(Xj))7 C(u) =0, if at least one element af = (ul,u2,...,uN"),
u € [0,1]V, is zero groundedproperty of a copula){ii)
where the terms V&X,) and ValX;) represent the variancesc(u) = w,, if all elements ofu are 1 exceptu,, and (i)
of the random variables; and X, respectively, withl,j € (s N-increasing.
{1,2,...N}. Differentiating (6) with respect tay, = Fi(z1),us =
Despite being typically used in the literature [13], [18]F2(x2),...,uN = Fy(zy), yields the joint pdf
[19], [21], the MG model of (4) considers that the marginal
distributions of the sensors are also Gaussian. This assumptioft(z;, z,, ...,xx) = ¢ (Fy (1), F2(23), ..., Fx(zn))
is not always valid. For instance, the marginal statistics of
temperature data gathered by a sensor from our deployment are < fil@n) x fae) x o Inlew), (D)
depicted in Fig. 4. The figure shows that the marginal statistiaghere c (F (x1), Fa(x2), ..., Fx(xy)) is the copula density
cannot be accurately modeled with a Gaussian distribution. Beguation (7) shows how the copula density controls the
yond this aspect, it is worth noting that the Pearson correlatitgvel of dependence between the random variabligsn =
coefficient in (5) captures linear dependencies between rando, ..., N. For example, if:(uy, us, ...,uy) = 1, the joint pdf
variables under the assumption of a Gaussian distributionisfthe product of the marginal pdfs, that i;, X5, ..., X are
the data. independent. Importantly, the CF model applies no restriction
on the underlying marginal statistics, which may follow any

B. Proposed Copula-Function-Based Correlation Model pr%habilit%/hdistribu?ior:_ e of th | .
en the marginal pdfs of the random variables, an ap-
We propose the use of a Copula function (CF) [40] fo V ginal p vari p

. d ‘ deli ¢ data d d ropriate copula that best captures the dependencies among
a more generic and accurate modeling ot data dependen data should be selected. Several copula families have been
between the cluster nodes. As opposed to the MG model, w

. i . posed [23], [40], [42], with the elliptical form being the
using a CF-based model, the correlation modeling approac Sst common due to the ease in estimation for> 2. The
based on the actual marginal statistics of the random Variabl??nplest elliptical CF is the Gaussian, which has the following
In this way, the statistical properties of the temperature reacJ- ’

Ings of each Sen_sor are rep_resented more "_iccurately and, $Rhis means that the CF volume of ay-dimensional interval is non-
turn, a more precise correlation model is derived. negative.
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form [24], [40]: where M is the number of samples. The Gaussian kernel
_1 _1 1 K(v) = = exp (—31v?) for curve estimation was used due

Ca(u) = Or(®7 (ur), @7 (ua), ., @ (un)),  (8) to(it)s sir\rglricity gné ggnod fitting accuracy. In addition, an

whereu,, = F,(z,),n = 1,2,..., N, & denotes the standardappropriate smoothing parametgr was selected for each pdf

multivariate normal cdf with linear correlation matri®, ® f,(x,) corresponding to each sensok= 1,2, ..., N.

denotes the standard univariate normal cdf, @d denotes  The correlation matri@ has non-diagonal elements equal

the inverse (quantile) function 6b. Then, using Eq. (7) the to the estimated Spearman’s rho values and diagonal elements

multivariate distribution is expressed in terms of the Gaussiaqual to 1. The Spearman coefficient is empirically estimated

copula density function [43] as using training data collected from the sensors in each clus-
N ter. Specifically, starting from the original training data set
f(z1, 20, TN) = %exp —lv (T — |)VT:| H Folan), {Xl(z),X?(:z)}, z = 1,2,...,Z—yvhereZ denotes the size
T2 2 oot of the training data set—we estimate the §&%(z),U;(2)}

9) as Uj(z) = LrankX;(z)] and U;(z) = LrankKX;(z)],
where v = [071(Fy(21)), 2~ (Fa(22))..., 2 "(Fn(zn))]  where rankX;(z)] denotes the rank off;(z). Hence, the
andl is the N x N identity matrix. To capture the dependencestimated values{f]l(z),ﬁj(z)} are the standardized ranks,
between the sensors’ readings, a proper measure shouldybgh are good approximations for the pafig (z), Uj(2)} =

considered. When applying the CF-based model, the Peafﬂ{QI?(Xl(z)),Fj(Xj(z))}. The Spearman coefficient can then
coefficient is not an appropriate measure, since the correlatigs calculated using (10).

among uniformly distributed random variables needs to be
expressed. For that reason, we use the Spearman correlation

coefficient, which is given by C. Encoding Rates
(s) Cov(U;,Uj) In the architecture of Fig. 2, in order to derive the LLRs and
Pii- = (10) the encoding rate for each peripheral node, we need to estimate

v/ (Var(U)var(U;)) the conditional statisticg(z,,|x ) and the conditional entropy
The Spearman coefficient is calculated empirically by estimat(x,,| X y). To this end, based on the multivariate models de-
ing the empirical Pearson coefficient between the ranks of thiged by (4) and (9), we first derive the univariate distribution,
data gathered by the sensors, as explained in Section V-B.fx(zy), for the marginal statistics of the CH node, and the
bivariate distributionf(z,,xn),¥n € {1,2,..., N — 1}. That
V. DETERMINATION OF THE MODEL PARAMETERS AND is,
ENCODING RATES

In this section, we describe the derivation of the parameters/~ (Zn) = / / f(@1, . an)dey.den—y, (12)
and encoding rates for the conventional MG and the proposed KXo XN

CF-based correlation model. and
A. MG Correlation Model f(@n, 2N) =/ / [z, )
. . . . Xi#{n,N} Xj#{n,N}
In the proposed system, described in Section Ill, we estimate % d da (13)
the parameters of the MG model in each cluster based on #{n, N} O£ {n, N

offline training. Specifically, during the training stage, Wevhere f(x1,zs,...,zx) is either the MG or the CF-based

collect measurements from the sensors in the cluster and depeg defined in (4) and (9), respectively. Given the joint and
the parameters of the covariance maftband the mean value marginal pdfs, the conditional pdf is derived as

vector u. These parameters are then used to calculate the
encoding rates and derive the soft-information for decoding flan|zy) = f(xme)_ (14)
based on belief propagation, as detailed in Section V-C. During fn(zn)

the operation of the proposed system, the base station, Whigle conditional pdf for each model is used in the calculation
collects the data, can periodically refine the estimation of thg the LLRs in (3). It is important to note that adhering to this
modeling parameters. modeling approach, namely, deriving the bivariate distribution
from the estimated multivariate distribution instead of directly
B. Proposed CF-based Correlation Model estimating the bivariate model, allows for arbitrary changing
To apply the proposed CF-based model, the marginal pd\'@ CH node (see the network model description in Section
fa(zy), n = 1,2,..,N, and the correlation matriT" of [I-A) without requiring to recompute the model paramet&rs
the Gaussian copula need to be estimated. During an offlied L.
training stage, samples from several sensors were collected0 derive the encoding rate per peripheral senso=
and the continuous marginal pdfs were estimated using the, -, N — 1, we proceed as follows: Since the A/D con-

kernel density estimatior(KDE) approach [44]: verter of each sensor provides a discrete version of a sensed
o continuous value, the continuous pdf is transformed into a
Fulan) = ZK <$_$i> (11) probability mass function (pmf). To this end, the range of
M x h, P hn, ’ each continuous random variahlg, is divided into intervals
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of length A, specified by the A/D resolution. As the A o
resolution is high, we can approximate the marginal pmf

(r1)a 27 +1)A *
p(x’ﬂ,(T)) - / fn(xn)dIn ~ fn <()) Aa B

2 10 . = 4
10° . -

wherep(z, ;) is the probability that the continuous param " Slepianwol Siepian-yol 5
takes value in the-th interval andn = 1,2, ..., N. Similarly, . / ’ !
for the joint pmf, we have 10 / ‘ —.X node data

Average BER

o
/" Slepian-Wolf
limit for X ; X2 node datg

(r+DA  pO+1D)A e
P(Zn(r), TN (0)) = / / f(@n, xN)dr,dey / X, node datg
Jea oA

_f (2T+1)A (29+1)A AQ (16) 1.6 1.65 1.7 1.75 l.V8 1.85 1.9 1.95 2 2.05 2.1
o 2 ’ 2 '

Compression Ratio
(@
Using the marginal and joint pmfs in (15) and (16), we o
culate the entropy (X ) and the joint entropy (X,,, Xn). . e
Then, the conditional entropy for each soutkg given X 10" s 4
is computed as /

H(X,|Xyn)=H(X,,Xy)— H(Xy),Vn e {1,..,N —1}.
17)
The conditional entropy in (17) is expressed in bits per terr
ature sample. To express the encoding rate per periphera
n=1,2,...,N —1 in bits per binary symbol, as required 10°
our analysis in Section Ill, we divide the conditional entr
H(X,|Xn) by the bit-depthb of the A/D converter. 107

i Slepian-Wolf e Slepian-Wolf 4
' limit for X, ol limit for X |

Average BER

' Slepian-Wolf
4 limitfor X, . . i

___Xl node dat
_X2 node dat
. _X3 node dat

L " L L L L L
2 2.1 2.2 2.3 2.4 25 2.6 2.7
Compression Ratio

V1. EXPERIMENTAL EVALUATION (b)

For the experimental evaluation of the proposed work, way. 5. Average BER of the decoded information vs. compression ratio,
deployed a WSN comprising 16 nodes gathering temperatuva for (a) the ‘Multivariate Gaussian, and (b) the proposed Copula-
data. Our deployment took place within an indoor officlincton-based correlation model.
environment, where sensors were mounted to walls with an
average distance of 6 metérand a temperature variation ofpjts s the bit-depth of the A/D converter within each sensor.
up t020°C was observed within a 24-hour cycle. The utilizédhe size of the encoded data-block strikes a balance amongst
hardware for the sensors and the base station (sink nodeyd®d compression performance (where a long codeword is
described in Table I. advantageous), low latency and memory requirements.

The network architecture was aligned with the description in pyring the training stage, data collected over a three-day
Section II-A. Within each cluster, the number of sensor nodggeration of the WSN were used to derive the parameters of
was N = 4 and they were chosen to be co-located; thr&fe MG and the proposed CF-based model. In particular, as
of them being peripheral nodes and the fourth being the Clscribed in Section V, we computed the covariance matrix
The sink node was connected to a desktop computer wWhefeang the mean-vectge for the MG model while, for the
data collection and decoding took place. To ensure collisioproposed CF model, we calculated the correlation mairix
free packet transmissions at the MAC layer, transmisSioggd we estimated the marginal pdfs(z,) using (11). The

802.15.4 PHY via the AT86RF230 transceiver. The IEEEg described in Section V.

802.15.4 GTS [32] was used for the intra-cluster superframet, eyaluate the compression performance and the error-

beaconing and the scheduling of packet transmissions. TRAgjjience capability of the proposed system we collected

payload packet size was set to 80 bytes. All residual trangqgitional data (different from the training data) over a thirty-
mission impairments incurred from external sources (e-Q}ay operation period of the system.

interference from co-located IEEE 802.15.4 or WiFi networks)

were mitigated via the default PHY layer protection or the
proposed DJSCC scheme. A. Compression Performance Evaluation

The sensors operated at a sampling rate of 2Hz. We aginitially, we assess the compression capacity of the proposed
gregatedm = 40 consecutive measurements to construct Raptor-based SW code design. In particular, we evaluate the
data-block of sizek = m x b = 640 bits, whereb = 16 pjt-error-rate (BER) of the decoded data from each peripheral

8In this work, A/D conversion was performed on 16 bits. Senslor’X"’ n =1,2,3, with respect to the compression ratio

"This test was carried out within the auspices of a commercial servim’_Wh?reXN d_enotes the data collected from the CH
development from InterNET SRL, OFRIM Group Member. (i.e., the side information). Average results over 200 trials are
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TABLE |
HARDWARE SPECIFICATION OF THEPERIPHERAL, CH AND SINK NODES ' -x-X; (MG)
X, (CF)
1.2F a1

[ Peripheral or CH Node
Microcontroller Atmel ATmega 1281
Transmitter AT86RF230
Dual-chip antana
Microchip MCP9700AT Temperature Transducer4( to +150°C)
TAOS Luminosity Intensity Transducer TSBAR
Li-Polymer Battery - 3.7V
Battery Charger with USB port
Dimensions: 60mm x 33mm
Base Station (Sink Nodg 0.8
Microcontroller Atmel ATmega 1281 0§
Transmitter AT86RF230
Dual-chip antena
USB-UART Bridge for connection to PC USB port
Dimensions: 48mm x 21mm

o
©

Information rate (bits/symbol)

TABLE Il
COMPARISON OFAVERAGE ENCODING RATES (IN BITS/DATA-BLOCK)
FORENTROPY CODING, AND SLEPIAN-WOLF CODING WITH THE
EXISTING MULTIVARIATE AND THE PROPOSED
COPULA-FUNCTION-BASED CORRELATION MODEL (X4 DENOTES THE
CH DATA THAT IS ALWAYS ENTROPY ENCODED).

[N

L
3~}

I
W g

=

I
N

| [ X [ X [ X [ %]

I
N

Information rate (bits/symbol)

Entropy Coding 452 496 512 | 471 .
Proposed withMG 319 356 358 —

Gain w.r.t. Entropy Coding%) | 29.8 | 28.3 | 30.8 | — 09

Proposed withCF 263 312 303 — 0.,
Gain w.r.t. Entropy Coding%) | 41.8 | 37.0 | 40.82 | —
Gain w.r.t. MG Model(%) 17% | 123 | 153 | —

Fig. 6. Information rate versus SNR for transmission of the readings from
presented. Per trial, a four-day period (out of the full thirtyZEaaR B0 B O ne 0 e e conventional MG ot the
day period) was selected at random and the correspondyaghosed CF-based correlation model.
temperature data was compressed. The average compression
performance obtained with the proposed CF-based correlation ) . . .
model is compared against the average performance achie@@geline system, which performs arithmetic entropy coding
with the conventional MG model, which is considered i9f each sensor’s readings. In both cases, lossless encoding
state-of-the-art works—see, for example, [13], [18], [19]. Th§ achieved, that is, the decoded temperature values of each
results, together with the theoretical SW limits, are presentB@de match the corresponding measured values. The average
in Fig. 5(a) and Fig. 5(b) for the MG and the proposeancodlng.rates (in bits per encoded data-block) achieved W|th_
CF-based correlation model, respectively. With respect to tH¢ baseline system and the proposed system are reported in
reconstruction quality of the decoded temperature data, BERPIE Il The results show that, when using the conventional
values belowl 0~ corresponded to near-lossless recovery. QG correlation model, the proposed system reduces the re-
the other end, values arount~2 lead to maximum root mean Auired rate for compression by up to 30.08% compared to the
squared-error of 128, which corresponds to a temperature effggeline system. When the proposed CF-based model is used,
of up to 0.38°C, which is below the A/D accuracy of the the obtained improvements in rate reduction over the bgsehne
utilized temperature transducer. system can reach up to 41.81%. We observe that using the

Contrasting the results in Figs. 5(a) and (b), we notice th&0P0osed CF-based model reduces the encoding rate by up
for the same average BER, the proposed system systematiciliyt 7-56% compared to using the conventional MG model.
achieves a higher compression ratio when the data correlatigieSe 9ains highlight the importance of properly leveraging
is expressed by the proposed CF-based correlation modf@g correlation between the data gathered by the sensors in the
Moreover, when using the proposed model, our practical coliSN.
design approximates the theoretical SW limit closer than
when emp]oying the conventional MG model. The resu|§. Joint Source-Channel Codlng Performance Evaluation
demonstrate that the proposed CF-based model expresses thge now evaluate the joint source-channel coding perfor-
correlation between the data captured by the different sensprance of the proposed system. Interference and packet losses
with a higher accuracy than the conventional MG model. cannot be controlled in our practical deployment, as such

Next, we compare the compression performance of tlenditions vary during the operational lifetime of our system
proposed system against the performance obtained with thee to various external factors. For this reason, we have carried
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out our evaluation using the AWGN and Rayleigh fac ‘ ‘ ‘ ‘ ‘ ‘ _ _
channel models under varying signal-to-noise-ratio (S = Copuia Function Model |
values. These models are well-known to provide for a ¢
characterization of the behavior of narrow-band transmis
within personal area networks [39]. Moreover, by using tl
we enable a reproducible experiment for both correle
models, and enable their comparison under the same co
nication channel conditions. We note that no retransmissi
erroneous packets is required when using the proposed D
system, as channel impairments are mitigated with the R
code present in the proposed design (see Section III-B2] 12)
To carry out our evaluation, we derive the required in
mation rate to achieve a decoding BER close to zero (BER
10~9) for different channel SNRs. The DJSCC performal ‘ ‘ ‘ ‘ ‘ ‘
of the system using the proposed CF-based correlation n = Copuia Funcion Medel |
is compared against the performance obtained with the 1
ventional MG model. The results for temperature sensors
and X,, and for both communication channel models
depicted in Fig. 6. As expected, the required information r:
for near-error-free decoding decrease with the SNR ve
Moreover, for the same SNR, Rayleigh fading noise reqt
more rate to cope with than AWGN. Importantly, the resi
demonstrate the superior performance of our system whe
proposed CF-based correlation model is used to expres 14
correlation amongst the data gathered by the sensors. ...
significant improvements (up to 19.64% in information rate
reduction) offered by the proposed correlation model over tig. 7. Energy savings percentage vs SNR for the proposed DISCC coding
conventional MG model are systematic over the different SN&Rheme using the MG or the proposed CF-based correlation model. Trans-
conditions, sourcesX; and X») and channel models. mission is done over (a) AWGN channel, and (b) Rayleigh Fading channel.

N}
i

Energy savings (%)
= = N N
O © S N

[N
N

0

= IN) N N
© o N B, o

Energy savings (%)

[
o

C. Energy Savings When transmission faces AWGN, energy consumption sav-
ings between 18.68% to 22.56% are reported while, in the
ase of Rayleigh fading savings between 21.35% to 24.36%
observed. These savings are attributed to the following
sons: First, the proposed DJSCC scheme eliminates packet

Under the channel conditions described in Section VI-
we evaluate the energy consumption of a sensor runni
the proposed versus the baseline system. Specifically, eac

sensor in our WSN deployment runs executable progra Sransmissions due to the inherent error correcting capability

implementing the propose_d DJSCC scheme using the the code design. On the contrary, retransmissions are used
and the CF-based correlation model, as well as the baselhr;e

: . deal with channel impairments when the baseline system is
system. The information rates for our system and the packet P y

I - . {eed. Second, as shown in Section VI-A, the proposed system
retransmission limit for the baseline system are preset v%
|

. . %hieves higher compression rates than the baseline system as
the channel-model-based measurements described in Sec g P y

on, ., . ; ;

xploits the correlation amongst the readings from different
VI-B. Full packets (80 bytes payload and 12 bytes headesrgn s%rs 9 g
are trans_mitted by aggregating er_lcoded information fromWe notice that, under both channel models, using the
consecgtlve codewords when requwled. The Atmel_ ATme ?oposed CF-based correlation model systematically results in
1281 microcontroller of each sensor is set to report its batt gher energy consumption reductions than using the conven-
level once per minute during the execution. By gathering th%nal MG model. This is because. as shown in Section VI-B
battery level measurements from all sensors at the end of th‘?ng the proposed CF-based model our system achieves lower
experiment and converting them to available energy leve

: 4 . ) [Rformation rates for the same SNR conditions than using the
we determine the percentile energy consumption d'ﬁerenggnventional MG model
It '

between the proposed DJSCC and the baseline system.

is worth noticing that this energy consumption difference

includes both the computational and transmission parts of VII. CONCLUSION

the system. Average results over multiple executions and allA novel DJSCC design for wireless sensors measuring

sensors within a cluster are reported in Fig. 7. Results for badmperature data has been presented. Our scheme is based

channel models and different SNR conditions are providedon a new non-systematic SW Raptor code, which, unlike
We observe that the proposed DJSCC system with C&xisting schemes (e.g., [11], [12]), achieves good performance

based correlation modeling yields a significant reduction for the short code lengths required by the application. A key

energy consumption with respect to the baseline systeoontribution has been a novel Copula-function-based model
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to express the inter-sensor data correlation. Experimentatjo8] S. Cheng, “Multiterminal source coding for many sensors with entropy
using a WSN deployment shows that the proposed model
significantly improves the compression performance of OWlg)
system, by up to 17.56% in compression rate reduction, com-
pared to the conventional multivariate Gaussian (MG) modizlb]
used in state-of-the-art works, e.g. [13], [19]. Moreover, undér

the same channel conditions, the proposed CF-based model is sensor networksEEE Sensors Journabol. 12, no. 9, pp. 2799-2806,

shown to yield a vast reduction (up to 19.64%) of the required
transmission rate for error-free decoding compared to the M

]

coding and Gaussian process regressionPrioc. IEEE Data Compres-
sion Conference IEEE, 2013, pp. 480-480.

Y. Yang, V. Stankovic, Z. Xiong, and W. Zhao, “On multiterminal source
code design,IEEE Transactions on Information Thegmpol. 54, no. 5,

pp. 2278-2302, 2008.

J. E. Barcéd-Lladd, A. M. Pérez, and G. Seco-Granados, “Enhanced
correlation estimators for distributed source coding in large wireless

2012.
B. Beferull-Lozano and R. L. Konsbruck, “On source coding for
distributed temperature sensing with shift-invariant geometrié<E

model. By exploiting the inter-sensor data correlation at the Transactions on Communicatigneol. 59, no. 4, pp. 1053-1065, 2011.

decoder, the proposed DJSCC system achieves compres&éh
rate savings of up to 41.81% compared to the baseline systg

that performs arithmetic entropy encoding of the data. The

high compression performance of our system in conjunctizn
with its inherent error-resilience, which mitigates packet r

transmissions, yield significant energy savings at the sensor

(by up to 24.36%) with respect to the baseline system.
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