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Abstract. Quantitative photoacoustic tomography is an emerging imaging technique aimed at estimating the
distribution of optical parameters inside tissues from photoacoustic images, which are formed by
combining optical information and ultrasonic propagation. This optical parameter estimation prob-
lem is ill-posed and needs to be approached within the framework of inverse problems. Photoacoustic
images are three-dimensional and high-resolution. Furthermore, high-resolution reconstructions of
the optical parameters are targeted. Therefore, in order to provide a practical method for quanti-
tative photoacoustic tomography, the inversion algorithm needs to be able to perform successfully
with problems of prominent size. In this work, an efficient approach for the inverse problem of quan-
titative photoacoustic tomography is proposed, assuming an edge-preferring prior for the optical
parameters. The method is based on iteratively combining priorconditioned LSQR with a lagged
diffusivity step and a linearization of the measurement model, with the needed multiplications by
Jacobians performed in a matrix-free manner. The algorithm is tested with three-dimensional nu-
merical simulations. The results show that the approach can be used to produce accurate and high
quality estimates of absorption and diffusion in complex three-dimensional geometries with moderate
computation time and cost.
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1. Introduction. In photoacoustic tomography (PAT), high-contrast, high-resolution im-
ages of biological tissue are produced by utilizing the photoacoustic effect caused by an ex-
ternally introduced light pulse. Absorption of the light pulse in a target generates an initial
acoustic pressure distribution that is proportional to the absorbed energy density of the light.
Due to the elastic nature of tissue, the initial pressure distribution propagates as an ultra-
sonic wave and can be measured on the surface of the tissue. These measurements are then
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used to reconstruct the initial pressure and form images of the target. Photoacoustic imaging
combines the benefits of optical contrast and ultrasound propagation. The optical meth-
ods provide information about the distribution of chromophores which are light absorbing
molecules within the tissue. The chromophores of interest are, e.g., haemoglobin, melanin,
and various contrast agents. The ultrasonic waves carry this optical information directly to
the surface with minimal scattering, thus retaining accurate spatial information as well. PAT
has successfully been applied to the visualization of different structures in biological tissues
such as human blood vessels, microvasculature of tumors, and cerebral cortex in small animals.
For more information about PAT, see, e.g., [51, 29, 50, 6] and the references therein.

Quantitative photoacoustic tomography (QPAT) is a technique aimed at estimating the
concentrations of the chromophores [12]. The inverse problem associated with QPAT is two-
fold. First, the initial acoustic pressure distribution is estimated from the measured acoustic
waves. This is an inverse initial value problem of acoustics and it has been studied exten-
sively; see, e.g., [51, 27, 50] and the references therein. The second stage of QPAT consists
of the optical inverse problem of determining the concentrations of chromophores. These
concentrations can be reconstructed either by directly estimating them from photoacoustic
images obtained at various wavelengths [13, 28, 5, 36] or by first recovering the absorption
coefficients at different wavelengths and then calculating the concentrations based on the ab-
sorption spectra [39, 13, 5]. In order to obtain accurate estimates, scattering effects need to be
taken into account [4, 12, 47, 38]. As an alternative to the two-step approach, the estimation
of the optical parameters directly from photoacoustic time-series has also been considered
[45, 46, 21, 17, 15, 35].

In this work, the optical inverse problem of QPAT is studied assuming the corresponding
acoustic inverse problem has already been solved. The estimation of absorption and diffusion
at a single wavelength of light is considered, but the extension to multiple wavelengths is
straightforward. Furthermore, it is assumed that the photoacoustic efficiency, which connects
the acoustic pressure with the absorbed optical energy density and can be identified with the
Grüneisen parameter for an absorbing fluid, is known. For discussions about the estimation of
the Grüneisen parameter simultaneously with the optical parameters, see, e.g., [44, 5, 31, 36, 1].
In the optical inverse problem of QPAT, two models of light propagation have been used: the
radiative transfer equation (RTE) [47, 43, 30, 37, 21] and its diffusion approximation (DA)
[19, 4, 44, 52, 47, 48, 31, 38, 40]. The forward model used here is based on the DA, although
our approach could also be implemented with the RTE.

The optical inverse problem of QPAT is nonlinear and ill-posed. In order to overcome
the ill-posedness, regularization or Bayesian methods need to be used [26]. In this work, a
Bayesian approach with a Gaussian model for the measurement noise and an edge-preferring
prior for the to-be-estimated optical parameters are employed. To be more precise, we consider
total variation [41] type priors (particularly Perona–Malik [34]), which are edge-preserving and
support piecewise constant images which consist of a few homogeneous levels. Total variation
priors/regularization have previously been utilized in QPAT in, e.g., [18, 19, 4, 47] and a
Mumford–Shah type approach in [7].

PAT images are three-dimensional (3D) and high-resolution, and hence they contain a
significant amount of data. Furthermore, QPAT aims at high-resolution 3D reconstructions of
the optical parameters. In consequence, a practical inversion method for QPAT must be able toD
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successfully tackle problems with tens, or even hundreds of thousands of data and unknowns.
In this work, we propose an efficient algorithm for the optical inverse problem of QPAT,
capable of handling edge-preferring, total variation type priors for the optical parameters.
The approach is based on iteratively combining a lagged diffusivity step and a linearization of
the measurement model of QPAT with priorconditioned LSQR. The algorithm is a modified
version of the one introduced for inverse elliptic boundary value problems in [22, 24]; see
also [2] for the original ideas behind the technique. In particular, to facilitate the treatment
of far greater amounts of data compared to [22, 24], we implement a matrix-free technique
for multiplying vectors by the Jacobian of the measurement map, rendering it possible to
painlessly handle (full) Jacobians with, say, 105 rows and columns. This is one of the few
studies where QPAT is investigated in 3D; for previous works, see [42, 31, 35]. In particular,
[18, 19] studied a gradient-based (bound-constrained) split Bregman method for handling TV
regularization in 3D QPAT.

The structure of this paper is as follows. The optical measurement model of QPAT is
described in section 2. The Bayesian framework is introduced in section 3 and the algorithm
itself in section 4. Section 5 tests the approach with 3D numerical simulations. The conclusions
are drawn in section 6.

2. Measurement model. We assume the measurements are static in time and model the
examined physical body as a bounded domain Ω ⊂ R3 with a connected complement and a
Lipschitz boundary. The domain Ω is assumed to be isotropic and the associated diffusion
and absorption coefficients are denoted by κ, µ ∈ L∞+ (Ω), respectively, with the definition

L∞+ (Ω) = {v ∈ L∞(Ω) | ess inf v > 0}

that takes into account the positivity of these physical quantities. In this work the DA of the
RTE is used as the model for light transport. Compared to the full RTE, the DA generally
allows faster reconstruction methods due to its simplicity. According to the DA, the photon
fluence ϕ ∈ H1(Ω) corresponding to the photon flux Φ ∈ L2(∂Ω) through ∂Ω satisfies the
elliptic Robin boundary value problem

(2.1)


−∇ · (κ∇ϕ) + µϕ = 0 in Ω,

1

4
ϕ+

1

2
ν · κ∇ϕ = Φ on ∂Ω,

where ν : ∂Ω → R3 is the exterior unit normal of ∂Ω (cf. [20]). We assume the available
photoacoustic measurements are noisy samples of the absorbed energy density H ∈ L2(Ω)
defined via

(2.2) H = µϕ ,

which obviously depends on the optical parameters κ and µ.

Lemma 2.1. The Fréchet derivative of the measurement map[
L∞+ (Ω)

]2 3 (κ, µ) 7→ H ∈ L2(Ω)D
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at (κ, µ) ∈ [L∞+ (Ω)]2 is given by the linear mapping

[L∞(Ω)]2 3 (ϑ, θ) 7→ µϕ′ + θ ϕ ∈ L2(Ω)

where ϕ = ϕ(κ, µ) ∈ H1(Ω) is the unique solution of (2.1) and ϕ′ = (ϕ′(κ, µ))(ϑ, θ) ∈ H1(Ω)
that of the variational problem∫

Ω

(
κ∇ϕ′ · ∇v + µϕ′v

)
dx+

1

2

∫
∂Ω
ϕ′v dS

= −
∫

Ω
ϑ∇ϕ · ∇v dx−

∫
Ω
θϕv dx(2.3)

for all v ∈ H1(Ω).

Proof. It is well known that the map[
L∞+ (Ω)

]2 3 (κ, µ) 7→ ϕ ∈ H1(Ω)

is Fréchet differentiable in [L∞+ (Ω)]2 and that the corresponding derivative is given by (cf.,
e.g., [14])

[L∞(Ω)]2 3 (ϑ, θ) 7→ ϕ′ ∈ H1(Ω).

Since the bilinear map

L∞(Ω)×H1(Ω) 3 (λ, ψ) 7→ λψ ∈ L2(Ω)

is obviously continuous, the claim follows from the product and the chain rules for Banach
spaces.

3. Bayesian framework and the choice of prior. Let us next consider the discretized
version of (2.1)–(2.2). To begin with, we express the diffusion κ and the absorption µ as
exponential quantities,

(3.1) κ(κ̃) = κ0 exp(κ̃) and µ(µ̃) = µ0 exp(µ̃),

where

(3.2) κ̃ =
N∑
n=1

κ̃nφn and µ̃ =
N∑
n=1

µ̃nφn

are representations of κ̃ and µ̃ with respect to (w.r.t.) a piecewise linear finite element (FE)
basis {φn}Nn=1 ⊂ H1(Ω) corresponding to a chosen (tetrahedral) partition of Ω. If there is no
possibility of confusion, we denote by κ̃ and µ̃ both the corresponding vectors of coefficients,
κ̃, µ̃ ∈ RN , and the functions defined in (3.2). The positive real numbers κ0, µ0 > 0 in (3.1)
are the constant diffusion and absorption levels that produce an energy density that is the
most compatible with the available measurements (cf. Algorithm 1 in section 4). Notice that
we have chosen the logarithms of the diffusion and absorption as the free variables since this
automatically guarantees the positivity of the coefficient functions in (2.1).D
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We assume the available measurement is

(3.3) χ = h(κ̃, µ̃) + η ∈ RN ,

where h : RN × RN → RN are the coefficients in an approximation of H(κ̃, µ̃) = µ(µ̃)ϕ
(
κ(κ̃),

µ(µ̃)
)

w.r.t. the FE basis {φn}Nn=1,1

(3.4) H ≈
N∑
n=1

hnφn.

Moreover, η ∈ RN is a realization of a normally distributed random variable with zero mean
and a known, symmetric, and positive definite covariance matrix Γ ∈ RN×N . It easily follows
that the probability density of the measurements given the parameters is

p(χ | κ̃, µ̃) ∝ exp
(
− 1

2

(
χ− h(κ̃, µ̃)

)T
Γ−1

(
χ− h(κ̃, µ̃)

))
,

where the constant of proportionality is independent of κ̃ and µ̃.
The prior information that the optical properties of the examined body are approximately

homogeneous apart from clearly distinguishable inhomogeneities is taken into account by
equipping the logarithms of the diffusion and absorption with the prior densities

(3.5) p(κ̃) ∝ exp
(
− aR(κ̃)

)
and p(µ̃) ∝ exp

(
− bR(µ̃)

)
where a, b > 0 are free parameters and R is of the form

(3.6) R(u) =

∫
Ω
r
(
|∇u(x)|

)
dx,

with r : R+ → R+ being a suitable, continuously differentiable, monotonically increasing
function (cf., e.g., [2]). All numerical examples presented in this work are based on a Perona–
Malik prior, i.e.,

(3.7) r(t) =
1

2
T 2 log

(
1 + (t/T )2

)
,

where T > 0 is a small parameter controlling the size of detectable edges [34]. However,
exactly the same reconstruction algorithm could as well be employed in the context of, e.g.,
(smoothened) TV or TVq regularization by simply using another choice of r (cf. [2, 24]).

Under the assumption that κ̃ and µ̃ are independent, the Bayes’ formula yields

p(κ̃, µ̃ |χ) ∝ p(χ | κ̃, µ̃) p(κ̃)p(µ̃)

∝ exp
(
− 1

2

(
χ− h(κ̃, µ̃)

)T
Γ−1

(
χ− h(κ̃, µ̃)

)
− aR(κ̃)− bR(µ̃)

)
,

1In our numerical experiments, the actual measurement for given target optical coefficients—which are not
originally represented in the basis {φn}Nn=1—are simulated by approximating H in a piecewise linear FEM basis
on a denser simulation grid, interpolating the obtained node values onto the mesh corresponding to {φn}Nn=1,
and adding noise. In particular, the model (3.3) is clearly inexact as it does not account for the interpolation
step in the data simulation; this corresponds to avoiding an obvious inverse crime.D
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where the constants of proportionality do not depend on κ̃ and µ̃. The algorithm described
in the following section seeks an (approximate) maximum a posteriori (MAP) estimate, i.e.,
the maximizer of this posterior, or, equivalently, tries to approximate the minimizer for the
functional

(3.8) F (κ̃, µ̃) :=
1

2

(
χ− h(κ̃, µ̃)

)T
Γ−1

(
χ− h(κ̃, µ̃)

)
+ aR(κ̃) + bR(µ̃).

In the following, we denote β = [κ̃T, µ̃T]T ∈ R2N and write occasionally h(β) and F (β) to
shorten the notation.

Remark 3.1. It is arguably unrealistic to assume that κ̃ and µ̃ are independent because
both of them are prone to change at interfaces between different tissues. However, since
assuming a dependence between the two parameters would make the setting less general as
well as less ill-posed, we leave considerations on introducing a suitable joint prior for future
studies.

4. The algorithm. In this section we briefly introduce our method for minimizing (3.8);
for more information, see [2, 22, 24]. The algorithm is only described here for a single boundary
photon flux Φ, but it trivially generalizes to the case of multiple illuminations.

The basic version of the iterative algorithm starts at the initial guess β(0) = [κ̃T
init, µ̃

T
init]

T,
where κ̃init = 0 ∈ RN corresponds to the constant diffusion κ0 (cf. (3.1)) and µ̃init =
log(χ/(ϕ0µ0)), with ϕ0 = ϕ(κ0, µ0) being the fluence corresponding to the homogeneous
parameter values κ0 and µ0. Note that the choice of µ̃init is motivated by (2.2) and (3.1).
Linearizing h(β) around β(l) in (3.8) results in a new functional

(4.1) F (l)(β) :=
1

2

(
y(l) − J (l)β)TΓ−1

(
y(l) − J (l)β

)
+ aR(κ̃) + bR(µ̃),

where the matrix J (l) ∈ RN×2N is the Jacobian of the map β 7→ h(β) evaluated at β(l) and

y(l) = χ− h(β(l)) + J (l)β(l) ∈ RN .

For a given illumination Φ ∈ L2(Ω), the coefficients h(β(l)) in (3.4) are solved from (2.1)–(2.2)
with the optical parameters defined via (3.1) by the finite element method (FEM) employing
the aforementioned piecewise linear basis functions {φn}Nn=1. The approximation of the ele-
ments in J (l) is based on Lemma 2.1 and the chain rule; the details are given in Appendix A.
In particular, the Jacobians are not formed explicitly, but the needed matrix-vector multipli-
cations are performed row by row in a matrix-free manner. This enables painless handling of
(full) Jacobians with tens of thousands of rows and columns in our numerical experiments.
Details about the utilized FE meshes can be found in section 5.

Taking the gradient of (4.1), one obtains the necessary condition for a minimizer, that is,

(4.2) (J (l))TΓ−1J (l)β + a

[
(∇R)(κ̃)

0

]
+ b

[
0

(∇R)(µ̃)

]
= (J (l))TΓ−1y(l),

where 0 ∈ RN . The gradient ∇R : RN → RN can be given as [2]

(∇R)(u) = M(u)u,D
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where M ∈ RN×N is the FEM system matrix in the basis {φn}Nn=1 for the elliptic partial
differential operator

(4.3) −∇ · cu∇

with a natural boundary condition on ∂Ω and the positive-valued diffusion coefficient

cu : x 7→ r′(|∇u(x)|)
|∇u(x)|

, Ω→ R+.

It follows easily that M is positive semidefinite with the one-dimensional kernel Ker(M) =
span{[1, . . . , 1]T}.

We rewrite (4.2) as

(4.4)

(
(J (l))TΓ−1J (l) +

[
aM(κ̃) 0

0 bM(µ̃)

])
β = (J (l))TΓ−1y(l),

and get rid of its nonlinearity w.r.t. β = [κ̃T, µ̃T]T by substituting M(κ̃(l)) and M(µ̃(l))
for M(κ̃) and M(µ̃), respectively. This corresponds to a single lagged diffusivity step [49].
Denoting a Cholesky factor of Γ−1 by Γ−1/2 and setting

(4.5) A = Γ−1/2J (l), M =

[
M(κ̃(l)) 0

0 b
aM(µ̃(l))

]
, ỹ = Γ−1/2y(l),

we finally arrive at the equation

(4.6)
(
ATA+ aM

)
β = ATỹ, a > 0,

from which β(l+1) is to be solved.
Solving (4.6) is equivalent to determining the MAP or conditional mean (CM) estimate

for the linear model

(4.7) Aβ = ỹ

assuming a suitable additive Gaussian measurement noise model and for β a zero-mean (im-
proper) Gaussian prior with a scaled version of M as the inverse covariance matrix. In our
setting, the leading idea of priorconditioning [8, 9, 10, 11]2 is to include the prior information
in M directly in the Krylov subspace structure produced by LSQR [32, 33]. As M is only pos-
itive semidefinite with a nontrivial kernel, we approximate it in (4.6) by the positive definite
matrix

(4.8) Mδ = M + δI

where δ > 0 is a small positive constant, that is, we consider

(4.9)
(
ATA+ aMδ

)
β = ATỹ, a > 0,

2Priorconditioning is related to transforming a Tikhonov functional into the standard form [16, 23, 25].D
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in place of (4.6). In terms of the MAP estimate for (4.7), this corresponds to assuming that
the inverse covariance matrix of the Gaussian prior is proportional to Mδ instead of M , making
the prior proper.

We formally introduce a (Cholesky) factorization Mδ = LTL, but emphasize that such
is not actually needed in the final algorithm because we resort to a version of LSQR that is
compatible with symmetric preconditioning [2]. Subsequently, (4.9) is multiplied from the left
by (L−1)T and a is chosen to be zero, which altogether leads to the ill-posed linear equation

(4.10) (L−1)TATAL−1β̃ = (L−1)TATỹ,

where β̃ = Lβ. We solve (4.10) by combining LSQR [2] with an early stopping rule; loosely
speaking, the regularization provided by a > 0 is replaced with the early stopping of a Krylov
subspace method. Each round of LSQR includes one multiplication with M−1

δ , which is not
overly expensive as Mδ results from a discretization of an elliptic partial differential equation
and is, in particular, sparse. If one starts the LSQR iteration from β̃ = 0, it is easy to see
that the approximate solution is in the range of M−1

δ regardless of the number of iterations;
see [2, 22] for more details. As M−1

δ is proportional to the (fictive) prior covariance matrix for
(4.9), this means that the prior information in Mδ—originating from the previous iterates κ̃(l)

and µ̃(l) of the outer loop (cf. (4.5) and (4.8))—is indeed directly included in the candidate
solutions for (4.10) produced by the LSQR sequence.

The LSQR iteration is terminated when the residual for (4.7) ceases to decrease substan-
tially: We monitor the relative reduction of the residual over a window of m0 LSQR steps,

(4.11) rm = 1− |Aβm − ỹ|
|Aβm−m0 − ỹ|

, m > m0,

where βm is the mth element in the LSQR sequence. Once rm ≤ τ , for some user specified
τ > 0 and m0 ∈ N, the latest iterate βm is named β(l+1) and one proceeds to the next
linearization of the measurement model (cf. (4.1)).

Including an overall stopping criterion based on tracking the decrease of the residual for the
original nonlinear measurement model, our reconstruction algorithm is altogether as follows:

Algorithm 1. Select T > 0, the ratio b/a for (3.5), the parameters m0 ∈ N and τ > 0 related
to (4.11), and δ > 0. Let 1 = [1, . . . , 1]T ∈ RN and determine (κ0, µ0) as the minimizing pair
for ∣∣Γ−1/2

(
χ− h(log(κ)1, log(µ)1)

)∣∣
over (κ, µ) ∈ R2

+. Solve ϕ0 = ϕ(κ01, µ01) and initialize κ̃init = 0 ∈ RN , µ̃init = log(χ/(ϕ0µ0)).
Set β(0) = [κ̃T

init, µ̃
T
init]

T and l = 0.

1. Let h = h(β(l)), J = J (l), and ỹ = Γ−1/2
(
χ−h+Jβ(l)

)
.(Recall that J is not built explic-

itly, but the corresponding matrix-vector multiplications are performed in a matrix-free
manner as explained in Appendix A.)

2. Build M(κ̃(l)) and M(µ̃(l)) as finite element discretizations of (4.3) and form Mδ =
LTL according to (4.5) and (4.8).
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3. Apply the LSQR algorithm of [2] to

(L−1)TJT(Γ−1/2)TΓ−1/2JL−1β̃ = (L−1)TJT(Γ−1/2)Tỹ, β = L−1β̃,

starting from β̃ = 0. Terminate the iteration when rm ≤ τ (cf. (4.11)) and denote the
corresponding solution β(l+1).

4. If the nonlinear residual corresponding to (3.3) has not decreased, i.e.,∣∣Γ−1/2
(
χ− h(β(l+1))

)∣∣ ≥ ∣∣Γ−1/2(χ− h)
∣∣,

substitute the previous parameter vector β(l) = [(κ̃(l))T, (µ̃(l))T]T in (3.1) and declare
the resulting κ and µ the reconstruction. Otherwise, set l← l+1 and return to step 1.

The performance of Algorithm 1 is relatively insensitive to the choice of the free parameters
T, δ > 0, which are set to T = 5 · 10−3 and δ = 10−6 in our numerical experiments. Moreover,
we choose b/a = 1, which means that we assume as strong priors for κ̃ = log(κ/κ0) and
µ̃ = log(µ/µ0); cf. (3.5). The choice of m0 and τ is a more delicate issue: via trial and error,
we ended up setting m0 = 10 and τ = 10−2, that is, all LSQR iterations in our numerical
tests are terminated when the residual for (4.7) decreases less than one percent over ten steps.
These are certainly not optimal values for m0 and τ , but they seem rather generic and result
in adequate reconstructions.

With K illuminations Φ(1), . . . ,Φ(K) ∈ L2(∂Ω), the number of measurements increases
from N to KN , which in turn results in larger Jacobians and slower computations. Be that
as it may, Algorithm 1 trivially generalizes to such a setting: one just needs to stack the
individual measurements in a vector of length KN , form the corresponding covariance matrix
for the measurement noise as a block diagonal matrix of the original covariances, and build the
“total Jacobian” by piling the “sub-Jacobians” on top of each other (in a matrix-free manner).
The only essential change concerns the initialization of the absorption coefficient: we form

exp(µ̃
(k)
init), k = 1, . . . ,K, separately for each illumination as described in Algorithm 1 and

subsequently choose the exponential of the actual initial guess exp(µ̃init) to be their average.

Remark 4.1. The early stopping of LSQR in step 3 of Algorithm 1 has previously been
successfully implemented in the contexts of electrical impedance and optical tomography by
resorting to the Morozov discrepancy principle [24, 22]. In our setting, this would lead to
monitoring when the residual for (4.7) falls below the (whitened) noise level√

E
(
|Γ−1/2η|2

)
=
√
KN.

However, according to our experience, such an approach does not work, in general, for QPAT
based on simulated interior measurements without committing an inverse crime or using a
dubiously large “fudge factor” to scale the noise level: The discrepancy associated to the
interpolation of the target energy density H, which is computed on a denser simulation grid
(cf. (3.4)), onto the FEM mesh employed in Algorithm 1 is easily of the same order as the error
corresponding to the one percent of artificial noise that is added to the data in the numerical
experiments of section 5. This effect is particularly pronounced if the target absorption and
diffusion contain jumps that cause quick deviations in H and, therefore, also lead to larger
interpolation errors.D
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Figure 1. Test 1. Left: the target absorption. Right: the target diffusion. The values in the intervals
[µbg ± 0.001] and [κbg ± 0.01] indicated in the colorbars are transparent in the respective images.

5. Numerical experiments. To demonstrate the performance of our algorithm, we present
two numerical experiments. The first one considers a complicated target and several illumi-
nations. The second test studies how the number and directions of illuminations affect the
quality of reconstructions for a somewhat simpler phantom.

Test 1. We first examine the cylindrical body with constant background properties and
embedded inhomogeneities visualized in Figure 1. The shapes of the target inclusions are de-
scribed in Table 1 and the corresponding constant values of the optical parameters are listed
in Table 2. In particular, the target diffusion corresponds to a reduced scattering coefficient
that varies in the interval [0.5, 6.7] mm−1, which means that our values for the optical pa-
rameters could mimic, e.g., those in breast tissue [3]. We illuminate the object in turns with
K = 4 photon fluxes that penetrate the boundary through rectangular regions located sym-
metrically around the curved side of the cylinder. The illuminations are homogeneous along

the axis of the cylinder, their central polar angles are θ
(k)
0 = (k− 1)π/2, k = 1, . . . , 4, and the

angular width of each illumination is π/4. The amplitude of the input flux Φ(k) : ∂Ω → R,
k = 1, . . . , 4, is modeled as

Φ(k)(θ) =

{
cos
(
4(θ − θ(k)

0 )
)

if θ ∈
[
θ

(k)
0 − π

8 , θ
(k)
0 + π

8

]
,

0 otherwise,

where θ is the polar angle w.r.t. the axis of the cylindrical domain.
To simulate the data for the numerical experiments, we first solve for each illumination

Φ = Φ(k) the photon fluence ϕ(k) from (2.1) by using a fine FE mesh with Nf = 130091 nodes
and 690905 tetrahedrons, and then calculate the corresponding node values of the absorbed

energy density h
(k)
f ∈ RNf according to (2.2). Next, in order to avoid an obvious inverse

crime, we project the absorbed energy density onto a coarser FE mesh (N = 51794 nodes and
260216 tetrahedrons) which is also used in the reconstruction algorithm. In other words, theD
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Table 1
Test 1. Geometrical specification of the inclusions in the target absorption and diffusion illustrated in

Figure 1. The unit of length is mm.

Absorption Diffusion

rectangles: size 4× 6× 4 (1) cylinder: radius 1,
(1) center (0,−11, 0) center (0, y, 0), y ∈ [−20, 20]
(2) center (0, 0, 0)
(3) center (0, 11, 0) cubes: size 43,

center (ρ cos θ, y, ρ sin θ), ρ = 5.5
helical cylinders: radius 1, (2) θ = π/6, y = −15
center (ρ cos θ, y, ρ sin θ), (3) θ = 3π/6, y = −9
ρ = 5.5, y ∈ [−16, 16] (4) θ = 5π/6, y = −3
(4) θ ∈ [π/6, 11π/6] (5) θ = 7π/6, y = 3
(5) θ ∈ [7π/6, 17π/6] (6) θ = 9π/6, y = 9

(7) θ = 11π/6, y = 15

Figure 2. Test 1. Visualization of the measurement. Two slices of each h(k), k = 1, . . . , 4, are plotted: one
at the position y = 0, the other at z = 0 for k = 1, 3 (left) and x = 0 for k = 2, 4 (right) depending on the
direction of the illumination.

(noiseless) measurement, which is illustrated in Figure 2, consists of the nodal values

h(k) = Ph
(k)
f ∈ RN , k = 1, . . . , 4,

where the matrix P ∈ RN×Nf describes the linear interpolation from the fine FE mesh onto
the coarse one. Finally, we corrupt the measurement with 1% of Gaussian noise, that is, we
end up with the data χ = {χ(k)}k=1,...,4 ⊂ RN , where

χ
(k)
i = h

(k)
i + η

(k)
i

and η
(k)
i ∼ N (0, (0.01|h(k)

i |)2) for i = 1, . . . , N and k = 1, . . . ,K.
In the initialization phase of Algorithm 1, we choose the free parameters as described at

the end of section 4,

T = 5 · 10−3, b/a = 1, m0 = 10, τ = 10−2, δ = 10−6,

and obtain the approximate background values κ0 = 0.26 mm and µ0 = 0.0087 mm−1 for the
optical parameters. To construct the initial guess for the absorption shown in Figure 3, weD
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Figure 3. Test 1. The initial guess µinit for the absorption. Left: a 3D-visualization; the values in the
interval [µ0 ± 0.004] indicated in the colorbar are transparent. Right: slices at the positions y = −11, 0, 11 (top
row) and x = 0 (bottom row).

compute ϕ
(k)
0 = ϕ(k)(κ01, µ01) for k = 1, . . . , 4 and set µ̃init = log(µinit/µ0), with

µinit =
1

4

4∑
k=1

χ(k)

ϕ
(k)
0

.

According to Algorithm 1, the initial guess for the logarithm of the diffusion is κ̃init = 0 ∈ RN ,
which corresponds to the homogeneous κinit = κ01 ∈ RN estimate. However, starting from a
homogeneous κinit leads to somewhat slow convergence during the first rounds of Algorithm 1.
To avoid this, we employ the (already quite reasonable) initial guess µinit for the absorption
to run a single LSQR iteration only for the diffusion. To be more precise, we include a “zeroth
step” in Algorithm 1 in between the initialization and step 1:

0. Set h = h(κ̃init, µ̃init). Form the Jacobian J = Jκ̃(κ̃init, µ̃init) (w.r.t. κ̃ evaluated at
(κ̃init, µ̃init)), set ŷ = Γ−1/2(χ − h + Jκ̃init), and build the matrix Mδ(κ̃init) = LTL.
Apply the LSQR algorithm to solve

(L−1)TJT(Γ−1/2)TΓ−1/2JL−1κ̂ = (L−1)TJT(Γ−1/2)Tŷ, κ̃ = L−1κ̂

stating from κ̂ = 0 and terminating when rm ≤ τ . (Re)define the initial guess κ̃init to
be the corresponding solution. Reset β(0) = [κ̃T

init, µ̃
T
init]

Tand continue to step 1.
The resulting diffusion estimate κinit = κ0 exp(κ̃init) is illustrated in Figure 4. It is not as
accurate as the initial guess for the absorption, but inclusions have already started to form at
the correct positions.

The algorithm then proceeds in the standard way, i.e., with the simultaneous reconstruc-
tion of the absorption and the diffusion; see steps 1–4 in Algorithm 1. The residuals for
both the outer and the inner iteration are depicted in Figure 5. The algorithm terminates
after five linearizations (including step 0), meaning that the reconstruction, presented in Fig-
ure 6, is a result of four linearizations of the measurement model (cf. step 4 of Algorithm 1).
The reconstructions of both optical parameters are in accordance with the prior information:
there are well localized inclusions in an approximately constant background. Moreover, theD
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1144 A. HANNUKAINEN, N. HYVÖNEN, H. MAJANDER, AND T. TARVAINEN

Figure 4. Test 1. The (refined) initial guess κinit for the diffusion. Left: a 3D-visualization; the values in
the interval [κ0±0.075] indicated in the colorbar are transparent. Right: slices at the positions y = −15,−9,−3
(top row), y = 3, 9, 15 (middle row), and x = 0 (bottom row).

Figure 5. Test 1. The evolution of the residuals after each iteration step. During step 0, only the diffusion is
estimated. The dashed lines indicate the theoretical (whitened) noise level

√
KN . Left: The nonlinear residuals

|Γ−1/2(χ − h(β))| correspond to the outer iteration. Right: The LSQR residuals |Aβ − ỹ| correspond to the
inner iteration on a logarithmic scale.

inclusions lie at approximately correct positions. On the negative side, the reconstruction
of the diffusion exhibits some instability near the object boundary, which causes very high
jumps at a few isolated nodes: the highest and the lowest point values are max(κ) = 8.47
and min(κ) = 0.0086, respectively. However, discarding the nodes at the boundary, one gets
the reasonable extremal values max(κ|Ω\∂Ω) = 0.78 and min(κ|Ω\∂Ω) = 0.03 (which are usedD
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Figure 6. Test 1. The reconstructions of the absorption (above) and the diffusion (below). Left: 3D-
visualizations; the values in the intervals [µ0 ± 0.0025] and [κ0 ± 0.1] indicated in the colorbars are transparent
in the respective images. Right: slices of the reconstructed absorption at the positions y = −11, 0, 11 and x = 0
and of the reconstructed diffusion at the positions y = −15,−9,−3, 3, 9, 15 and x = 0.

as the limits for the diffusion plot in Figure 6). In addition, in spite of the aforementioned
outliers in the reconstructed diffusion, the mean values over the background and the inclu-
sions presented in Table 2 are approximately correct for both parameters. Even though the
reconstructed means are not exactly the same as the target values, they are very close to the
corresponding mean values of the interpolated parameters Pµtarget and Pκtarget (except for
the “most difficult” diffusive inclusion (1) lying along the axis of Ω), which is arguably the
best one can expect to achieve.

As mentioned after Algorithm 1, the reconstructions seem insensitive to the choice of the
threshold parameter T > 0. Considering significantly higher noise levels (say, 10%) clearly
deteriorates the quality of the reconstructions, with the diffusion coefficient exhibiting a higherD
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Table 2
Test 1. The mean values of the absorption and the diffusion in the target illustrated in Figure 1, in the

target interpolated onto the sparser grid, and in the reconstruction shown in Figure 6. The mean values are
taken over the correct supports of the inclusions listed in Table 1.

Absorption Mean values (mm−1) Diffusion Mean values (mm)
µtarget Pµtarget µrec κtarget Pκtarget κrec

bg 0.01 0.0101 0.00996 bg 0.3 0.300 0.304
(1) 0.05 0.0459 0.0456 (1) 0.05 0.0874 0.0708
(2) 0.02 0.0189 0.0188 (2) 0.05 0.0668 0.0628
(3) 0.002 0.00266 0.00263 (3) 0.15 0.163 0.165
(4) 0.05 0.0432 0.0425 (4) 0.6 0.579 0.595
(5) 0.002 0.00338 0.00335 (5) 0.05 0.0792 0.0764

(6) 0.15 0.169 0.174
(7) 0.6 0.573 0.576

level of instability. However, e.g., doubling the noise level does not considerably alter the
performance of the algorithm. Moderate changes in the density of the reconstruction mesh
mainly affect the reconstruction process via the computation time.

The running time of Algorithm 1 for this experiment was approximately 12 minutes with a
MATLAB (2014a) implementation on a laptop with 16 GB RAM and an Intel Core i7-4600U
CPU having clock speed 2.10 GHz.

Test 2. In practical applications it is not always possible to illuminate the target from sev-
eral different directions. We next study the effect of the number and position of illuminations
on the cubical target of size 113 mm3 visualized in Figure 7a. The absorption is composed of
a homogeneous background µbg = 0.015 mm−1 with two embedded inhomogeneities: a cross-
shaped inclusion lying along the plane z = x with absorption 0.01 mm−1 and an origin-centered
spherical shell with outer radius 5 mm, inner radius 4 mm and the absorption level 0.02 mm−1

(except at the intersection with the cross). The background diffusion level is κbg = 0.3 mm
and there are also two diffusive inhomogeneities: a cross-shaped inclusion lying along the
plane z = −x with diffusion 0.4 mm and a ball centered at the origin with radius 3 mm and
diffusion 0.2 mm (except at the intersection with the cross).

To begin with, we illuminate the object through its bottom face with only one photon flux
Φ = Φbtm : ∂Ω→ R that is modeled as the characteristic function

Φbtm(x) =

{
1 if x ∈ ∂Ωbtm,

0 otherwise,

where ∂Ωbtm = {(x, y, z) ∈ R3 : |x| ≤ 5.5, |y| ≤ 5.5, z = −5.5}. The simulation of the data
follows the same steps as in the previous example; in particular, the level of additive noise
is still one percent. (In this case, the fine FE mesh has Nf = 133649 nodes and 752914
tetrahedrons whereas the coarse one has N = 54721 nodes and 295176 tetrahedrons.)
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(a) The target absorption (left) and dif-
fusion (right).

(b) The reconstruction corresponding to
the illumination Φbtm.

(c) The reconstruction corresponding to
the illuminations Φbtm and Φrgt.

(d) The reconstruction corresponding to
the illuminations Φbtm and Φtop.

(e) The reconstruction corresponding to
the illuminations Φbtm, Φrgt, and Φbck.

(f) The reconstruction corresponding to
the illuminations Φbtm, Φtop, and Φbck.

Figure 7. Test 2. In the 3D-visualizations the values in the intervals indicated in the colorbars are trans-
parent in the respective images. The slices are taken for both parameters along the planes z = x (left) and
z = −x (right).
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1148 A. HANNUKAINEN, N. HYVÖNEN, H. MAJANDER, AND T. TARVAINEN

Using the same free parameters and forming the initial guesses κ̃init and µ̃init as in the first
example, we get the approximate background levels κ0 = 0.29 and µ0 = 0.015 as well as the
final reconstruction presented in Figure 7b. The reconstruction of the absorption is reasonable,
although it includes shadows of the diffusive inclusions. On the other hand, the diffusion
produced by Algorithm 1 is almost constant, making it practically useless. This reconstruction,
resulting in a (nonlinear) residual clearly under the noise level

√
N , was obtained after only

two steps of LSQR already in step 0 of the algorithm. The reconstructions one gets by starting
with κ̃init = 0, i.e., without step 0, or even by setting µ̃init = 0 are essentially the same. In
addition, changing the direction of the illumination does not seem to affect the results. We
conclude that when using only one illumination, the absorption can explain the measurement
(almost) completely, and hence one cannot simultaneously reconstruct the diffusion. This is
not very surprising as it is well known that the optical inverse problem of QPAT is nonunique
for one illumination; see [4, 13, 31, 37, 44]. However, to add an extra twist, [7] recently
presented a uniqueness result for piecewise constant absorption and diffusion with only one
illumination.

Let us then complement the measurement corresponding to the flux Φbtm with a second
one. To evaluate the effect of the chosen illumination directions, we consider two cases:
illuminations through adjacent faces and through opposite sides. To study the first case, we
combine Φbtm with Φrgt, i.e., a homogeneous flux through the right-hand face of the cube.
In the second case, Φbtm is accompanied by Φtop, i.e., a homogeneous flux through the top
facet. Both Φrgt and Φtop : ∂Ω → R are modeled by the appropriate characteristic functions
on ∂Ω. The reconstruction algorithm is run for the two cases with the same free parameters
as previously. As a result, we get the same approximate background values as with one
illumination, but the final reconstructions, presented in Figures 7c–7d, are significantly better:
two illuminations result in decent reconstructions of both optical parameters. It has to be
noted, however, that the directions of the two employed photon fluxes play a significant role:
for the illuminations through adjacent faces, the reconstructed diffusion is inaccurate close to
the opposite edge, whereas the opposite illuminations lead to good quality reconstructions of
both parameters in the whole domain.

Finally, we add a third measurement to the two-illumination settings considered above.
The additional measurement is induced by a homogeneous photon flux through the back of the
cube, with its amplitude Φbck : ∂Ω→ R modeled once again by the appropriate characteristic
function. The triplet Φbtm, Φrgt, and Φbck corresponds to illuminations around one corner
of the cube, while the facetwise fluxes Φbtm, Φtop, and Φbck for the other three-illumination
test cover the boundary of the cube as evenly as possible. The resulting reconstructions
are presented in Figures 7e–7f. Compared to the two-illumination cases, the reconstructions
of the diffusion are now somewhat sharper. However, as with two adjacent illuminations,
when the three photon fluxes are supported around one corner, the reconstruction of the
diffusion close to the opposite corner is far from satisfactory. For three illuminations, there
should be no problem with the (theoretical) uniqueness, so it seems that the physics of the
measurement setting limits the reconstruction quality: the light does not penetrate deep
enough into the object in order to provide reliable information about the diffusion near the
opposite corner, where the reconstruction mainly reflects the prior information. On the other
hand, complementing the opposite illuminations with a third measurement leads to slightlyD
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more detailed reconstructions, but the difference between the two- and three-illumination
cases is not substantial (cf. Figures 7d and 7f).

The reconstructions corresponding to two illuminations shown in Figures 7c–7d resulted
from three linearizations of the measurement model in Algorithm 1 (including step 0), while
it took four linearizations to produce the three-illumination reconstructions in Figures 7e–7f.
The corresponding computation times were about five and ten minutes, respectively, with the
same hardware as in Test 1.

6. Concluding remarks. In this work, the inverse problem of QPAT was investigated.
The aim of QPAT is to produce high-resolution reconstructions of the optical parameters of
interest from given 3D high-resolution PAT images. A computationally efficient algorithm
for the inverse problem of QPAT was introduced by combining priorconditioned LSQR, a
lagged diffusivity step, and linearizations of the measurement model in two nested iterations.
To facilitate handling a high number of measurements and unknowns, all multiplications by
Jacobians in the algorithm were implemented in a matrix-free manner. The numerical studies
exclusively employed a Perona–Malik prior, although other types of edge-preserving priors
can as easily be utilized in the described approach. The proposed reconstruction algorithm
was tested with 3D numerical simulations. The results demonstrate that the approach is
capable of producing accurate and good quality estimates of the absorption and diffusion in
complex 3D geometries in a reasonable computation time, even when the tests are run on a
standard laptop. This suggests that QPAT can be developed into a practical method without
compromising the accuracy of the estimates or the good resolution the method can potentially
provide.

Appendix A. Matrix-free approximation of the Jacobians. The aim of this appendix is
to explain how to efficiently approximate multiplications by the Jacobian Jhκ̃,µ̃ of the map

R2N 3 (κ̃, µ̃) 7→ h
(
κ(κ̃), µ(µ̃)

)
∈ RN ,

where h is the discretization of the measurement H(κ(κ̃), µ(µ̃)) = µ(µ̃)ϕ
(
κ(κ̃), µ(µ̃)

)
(cf. (3.4))

and

κ(κ̃) = κ0 exp(κ̃) and µ(µ̃) = µ0 exp(µ̃)

are the elementwise transformations of the parameters introduced in (3.1). As in sections 3
and 4, we only consider here the case of one illumination, which corresponds to the photon
flux Φ; cf. (2.1). In the case of multiple illuminations, more bookkeeping of the indices is
required, but otherwise the described methodology works as for a single flux of photons.

First of all, since κn = κ(κ̃n) and µn = µ(µ̃n) for all n = 1, . . . , N , we get the Jacobian
Jhκ̃,µ̃ = [Jhκ̃ , J

h
µ̃ ] ∈ RN×2N by the chain rule

Jhκ̃ =

[
∂hi
∂κ̃j

]N
i,j=1

=

[
∂hi
∂κj

dκj
dκ̃j

]N
i,j=1

=

[
∂hi
∂κj

κj

]N
i,j=1

= Jhκ diag(κ),

Jhµ̃ =

[
∂hi
∂µ̃j

]N
i,j=1

=

[
∂hi
∂µj

dµj
dµ̃j

]N
i,j=1

=

[
∂hi
∂µj

µj

]N
i,j=1

= Jhµ diag(µ).
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In particular, operating with Jhκ̃,µ̃ boils, in essence, down to multiplying with Jhκ,µ = [Jhκ , J
h
µ ].

According to Lemma 2.1, the Fréchet derivative of H is(
H ′(κ, µ)

)
(ϑ, θ) = µϕ′ + θϕ,

where ϕ(κ, µ) is the solution of (2.1) and (ϕ′(κ, µ))(ϑ, θ) is the solution of the variational
problem (2.3). To approximate Jhκ,µ at the optical parameters κ(κ̃) and µ(µ̃) corresponding to

given κ̃ and µ̃, we use the FEM with the piecewise linear basis {φn}Nn=1 appearing in (3.2) to
evaluate H ′(κ, µ), letting the perturbations ϑ and θ run in turns through {φn}Nn=1. To be more
precise, denoting the node values of the FEM approximations for ϕ(κ, µ), (ϕ′(κ, µ))(ϑ, θ), and
θ by {ϕn}, {ϕ′n(ϑ, θ)}, and {θn}, respectively, we approximate

(
H ′(κ, µ)

)
(ϑ, θ) ≈

N∑
n=1

(
h′n(κ, µ)

)
(ϑ, θ)φn,

where (
h′n(κ, µ)

)
(ϑ, θ) = µnϕ

′
n(ϑ, θ) + θnϕn, n = 1, . . . , N.

Accordingly, the (approximate) Jacobian Jhκ,µ = [Jhκ , J
h
µ ] is formed as

Jhκ =
[(
h′i(κ, µ)

)
(φj , 0)

]N
i,j=1

= diag(µ) Jϕκ ,

Jhµ =
[(
h′i(κ, µ)

)
(0, φj)

]N
i,j=1

= diag(µ) Jϕµ + diag(ϕ).

We still need to consider how to handle multiplications by Jϕκ and Jϕµ matrix-freely.
Based on the weak formulation of (2.1),∫

Ω
(κ∇ϕ · ∇v + µϕv) dx+

1

2

∫
∂Ω
ϕv dS = 2

∫
∂Ω

Φv dS for all v ∈ H1(Ω),

we first form the FEM system matrix K = K(κ, µ) ∈ RN×N and load vector f = f(Φ) ∈ RN
corresponding to the basis {φn}Nn=1, and solve the node values ϕ ∈ RN from the equation

Kϕ = f.

Next, we approximate the derivative (ϕ′(κ, µ)) (ϑ, θ) based on the variational problem (2.3).
Since the left-hand side of (2.3) is identical to that in the weak formulation of (2.1), the FEM
system matrix K ∈ RN×N stays the same. Letting the perturbations on the right-hand side of
(2.3) run in turns through {φn}Nn=1, we get the load matrix G(ϕ) ∈ RN×2N and the equation

KJϕκ,µ = G i.e., K
[
Jϕκ , J

ϕ
µ

]
=
[
G(1), G(2)

]
,

where

G
(1)
i,j = −

∫
Ω
φj ∇ϕ · ∇φi dx, G

(2)
i,j = −

∫
Ω
φjϕφi dx,
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for i, j = 1, . . . , N .
Finally, instead of solving the huge system to form the Jacobian explicitly, we use the

matrices K and G to implicitly operate on a given vector: multiplying s = [(s(1))T, (s(2))T]T ∈
R2N by Jhκ̃,µ̃ ∈ RN×2N gives

Jhκ̃,µ̃s = Jhκ̃ s
(1) + Jhµ̃s

(2)

= diag(µ)K−1G(1) diag(κ)s(1)

+
(

diag(µ)K−1G(2) + diag(ϕ)
)

diag(µ)s(2)

= diag(µ)K−1
(
G(1) diag(κ)s(1) +G(2) diag(µ)s(2)

)
+ diag(ϕ) diag(µ)s(2).

We also need to be able to multiply a given vector t ∈ RN with the transpose (Jhκ̃,µ̃)T ∈ R2N×N .

Since matrices K and G(2) are symmetric, we get

Jhκ̃,µ̃
Tt =

[
JhT
κ̃ t

JhT
µ̃ t

]
=

[
diag(κ)(G(1))TK−1 diag(µ)t

diag(µ)
(
G(2)K−1 diag(µ) + diag(ϕ)

)
t

]

=

[
diag(κ) 0

0 diag(µ)

]([
(G(1))T

G(2)

]
K−1 diag(µ)t+

[
0

diag(ϕ)t

])
.

Numerically speaking, multiplying a vector by the Jacobian Jhκ̃,µ̃ or its transpose is rela-
tively cheap: one need only perform elementwise multiplications of vectors and matrix-vector
multiplications with sparse matrices, and to operate with the inverse of the FEM system ma-
trix K on a vector. However, when the number of degrees of freedom and/or illuminations
is very high, the sizes of the matrices G(1) and G(2) may become impractically large. In this
case, one can continue the analysis to avoid forming the matrices G(1) and G(2) altogether,
but the details are omitted here for brevity.
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