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Abstract

We show that the Euler system associated with Rankin–Selberg convolutions of
modular forms, introduced in our earlier works with Lei and Kings, varies analytically as
the modular forms vary in p-adic Coleman families. We prove an explicit reciprocity law
for these families and use this to prove cases of the Bloch–Kato conjecture for
Rankin–Selberg convolutions.
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1 Background
Let p > 2 be a prime. The purpose of this paper is to study the p-adic interpolation of
étale Rankin–Eisenstein classes, which are Galois cohomology classes attached to pairs of
modular forms f, g ofweights� 2, forming a “cohomological avatar” of theRankin–Selberg
L-function L(f, g, s).
In a previous work with Kings [19], we showed that these Rankin–Eisenstein classes

for ordinary modular forms f, g interpolate in 3-parameter p-adic families, with f and g
varying in Hida families and a third variable for twists by characters. We also proved an
“explicit reciprocity law” relating certain specialisations of these families to critical values
of Rankin–Selberg L-functions, with applications to the Birch–Swinnerton-Dyer conjec-
ture for Artin twists of p-ordinary elliptic curves, extending earlier works of Bertolini–
Darmon–Rotger [5,6].
In this paper, we generalise these results to non-ordinary modular forms f, g , replacing

the Hida families by Coleman families:
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Theorem A Let f, g be eigenforms of weights � 2 and levels Nf , Ng coprime to p whose
Hecke polynomials at p have distinct roots, and let fα , gα be non-critical p-stabilisations of
f, g . Let F ,G be Coleman families through fα , gα (over some sufficiently small affinoid discs
V1, V2 in weight space).
Then there exist classes

cBF [F ,G]
m ∈ H1

(
Q(μm), Dla(Γ ) ⊗̂MV1 (F )∗ ⊗̂MV2 (G)∗

)

for each m � 1 coprime to p and c > 1 coprime to 6pNf Ng , such that the specialisations of
the classes cBF [F ,G]

m are the Rankin–Eisenstein classes for all specialisations of F and G,
and all characters of Γ for which these classes are defined.

HereMV1 (F )∗ andMV2 (G)∗ are families ofGalois representations overO(V1) andO(V2)
attached to F and G, and Dla(Γ ) is the algebra of distributions on the cyclotomic Galois
group Γ . A slightly modified version of this theorem holds for weight 1 forms as well. For
a precise statement, see Theorem 5.4.2 below.
The proof of Theorem 5.4.2 reveals some new phenomenawhichmay be of independent

interest; the Galois modules in which these classes lie are, in a natural way, étale coun-
terparts of the modules of “nearly overconvergent modular forms” introduced by Urban
[32].

Theorem B The image of the class cBF [F ,G]
1 under an appropriately defined Perrin-Riou

“big logarithm” map is Urban’s 3-variable p-adic Rankin–Selberg L-function for F and G.

See Theorem 7.1.5 for a precise statement. In order to define the Perrin-Riou loga-
rithm in this context, one needs to work with triangulations of (ϕ,Γ )-modules over the
Robba ring; we use here results of Liu [21], showing that the (ϕ,Γ )-modules of the Galois
representationsMV1 (F )∗ andMV2 (G)∗ admit canonical triangulations.
Specialising this result at a point corresponding to a critical value of the Rankin–Selberg

L-function, and applying the Euler system machine of Kolyvagin and Rubin, we obtain a
case of the Bloch–Kato conjecture for Rankin convolutions:

Theorem C (Theorem 8.2.1, Corollary 8.3.2) Let f, g be eigenforms of levels coprime to p
and weights r, r′, respectively, with 1 � r′ < r, and let s be an integer such that r′ � s �
r − 1 (equivalently, such that L(f, g, s) is a critical value of the Rankin–Selberg L-function).
Suppose L(f, g, s) �= 0. Then, under certain technical hypotheses, the Bloch–Kato Selmer
groups H1

f (Q,M(f ) ⊗ M(g)(s)) and H1
f (Q,M(f )∗ ⊗ M(g)∗(1 − s)) are both zero, where

M(f ) and M(g) are the p-adic representations attached to f and g.

One particularly interesting case is when f = fE is the modular form attached to an
elliptic curve E, and g is a weight 1 form corresponding to a 2-dimensional odd irreducible
Artin representation ρ. In this case, the Bloch–Kato Selmer groupH1

f (Q,M(f )⊗M(g)(1))
is essentially the ρ-isotypical part of the p-Selmer group of E over the splitting field of ρ,
so we obtain new cases of the finiteness of Selmer (and hence Tate–Shafarevich) groups.
See Theorem 8.4.1 for the precise statement.

Remark Since this paper was originally submitted, it has come to light that there are some
unresolved technical issues in the paper [32] upon which Theorem B, and hence Theorem
C, relies. We hope that these issues will be resolved in the near future; as a temporary
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expedient, we have given in Sect. 9 below an alternate proof of a weaker form of Theo-
rem B which avoids these problems and thus suffices to give an unconditional proof of
Theorem C.

This paper could not have existed without the tremendous legacy of mathematical
ideas left by the late Robert Coleman. We use Coleman’s work in three vital ways: firstly,
Coleman was the first to construct the p-adic families of modular forms along which we
interpolate; secondly, the Perrin-Riou big logarithm map is a generalisation of Coleman
power series in classical Iwasawa theory (introduced in Coleman’s Cambridge Part III
dissertation); and finally, the results of [18] giving the link to values of p-adic L-functions,
which are the main input to Theorem B, are proved using Coleman’s p-adic integration
theory. We are happy to dedicate this paper to the memory of Robert Coleman, and we
hope that his work continues to inspire other mathematicians as it has inspired us.

2 Analytic preliminaries
The aim of this section is to extend some of the results of Appendix A.2 of [20], by giving a
criterion for a collection of cohomology classes to be interpolated by a distribution-valued
cohomology class.

2.1 Continuous cohomology

Wefirst collect someproperties ofGalois cohomology of profinite groups acting on “large”
topological Zp-modules (not necessarily finitely generated over Zp). A very rich theory
is available for groups G satisfying some mild finiteness hypotheses (see e.g. [29, §1.1]),
but we will need to consider the Galois groups of infinite p-adic Lie extensions, which
do not have good finiteness properties, so we shall proceed on a somewhat ad hoc basis,
concentrating on H0 and H1.

Definition 2.1.1 (i) If G is a profinite group, a topological G-module is an abelian
topological groupM endowed with an action of G which is (jointly) continuous as a
map G ×M → M.

(ii) ForG andM as in (i), we define the cohomology groupsH∗(G,M) as the cohomology
of the usual complex of continuous cochains C•(G,M).

(iii) We equip the groups Ci(G,M) = Maps(Gi,M) with the compact-open topology
(equivalently, the topology of uniform convergence).

With these definitions, the groups C∗(G,−) define a functor from topological G-
modules to complexes of topological groups (i.e. the topology is functorial in M, and
the differentials Ci(G,M) → Ci+1(G,M) are continuous). Hence the cocycles Zi(G,M)
are closed in Ci(G,M). However, the cochains Bi(G,M) need not be closed in general, so
the quotient topology on the cohomology groups Hi(G,M) may fail to be Hausdorff, and
the subspace and quotient topologies on Bi(G,M) may not agree. Our next goal is to show
that these pathologies can be avoided for i = 1 and some special classes of modulesM.
Let A be a Noetherian Banach algebra over Qp. Then any finitely generated A-module

has a unique Banach space structure making it into a Banach A-module [7, Proposi-
tion 3.7.3/3].
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Proposition 2.1.2 Let M be a finitely generated free A-module, equipped with a continu-
ous A-linear action of a profinite group G. Then:

(1) the space B1(G,M) is closed in Z1(G,M);
(2) the subspace topology induced by B1(G,M) ↪→ Z1(G,M) coincides with the quotient

topology induced by M � B1(G,M);
(3) the quotient map M � B1(G,M) has a continuous section (not necessarily A-linear

or G-equivariant).

Proof We begin by noting that Z1(G,M) is, by definition, a closed subspace of the space
C1(G,M) of continuous functions from G to M, and since M is Banach, the topology of
Z1(G,M) is the Banach topology induced by the supremum norm on C1(G,M). However,
ifM ∼= A⊕d then we have

C1(G,M) = C1(G,Qp) ⊗̂
Qp

M = C1(G,Qp)⊕d ⊗̂
Qp

A

as a topologicalA-module. SinceC1(G,Qp)⊕d is orthonormalisable as aQp-Banach space
(everyQp-Banach space has this property), it follows that C1(G,M) is orthonormalisable
as anA-Banachmodule, as orthonormalisability is preserved by base extension. However,
B1(G,M) is manifestly finitely generated as an A-module, and any finitely generated sub-
module of an orthonormalisable A-Banach module is closed [8, Lemma 2.8]. This proves
(1).
Parts (2) and (3) now follow from the open image theorem [10, Proposition I.1.3], which

shows that any continuous surjective map between Qp-Banach spaces has a continuous
section (and, in particular, a continuous bijection between Qp-Banach spaces must be a
homeomorphism). 
�

Remark 2.1.3 It seems likely that this result is true for any finitely generated A-module
M with G-action (without assuming that M be free), but we do not know how to prove
this.

Definition 2.1.4 If X and Y are two Qp-Banach spaces, let Lw(X, Y ) denote the space
of continuous linear maps X → Y equipped with the weak topology (the topology of
pointwise convergence).

Now if M is a Qp-Banach space with a continuous action of a profinite group G, then
Lw(X,M) also acquires a continuous G-action by composition, for any Banach space X .

Proposition 2.1.5 Suppose the differential d:M → B1(G,M) has a continuous section.
Then the differential

Lw(X,M)→ B1(G,Lw(X,M))

also has a continuous section, for any Banach space X.

Proof Let φ:B1(G,M) → M be a section. We use this to define φ̃:B1(G,Lw(X,M)) →
Lw(X,M) as follows. Given σ ∈ B1(G,Lw(X,M)), wemay composewith an arbitrary x ∈ X
to obtain an element σx ∈ B1(G,M), and φ(σx) is then an element of M. This defines a
map from B1(G,Lw(X,M)) to the space of linear maps X → M; however, for any μ ∈
B1(G,Lw(X,M)) we may write μ = dL for some continuous L, and we can then describe
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the image of μ(g) as the map obtained by composing L with M d� B1(G,M) φ� M,
which is thus continuous. This defines a continuous map φ̃ such that the diagram

B1(G,Lw(X,M)) φ̃� Lw(X,M)

B1(G,M)
�

φ � M
�

commutes for every x ∈ X . However, in order to show that the top horizontal arrow is
continuous, it suffices (by the definition of the weak topology) to show that the diagonal
composition is continuous for every x. Since the left vertical arrow is obviously continuous,
and φ is continuous by assumption, this completes the proof. 
�

Proposition 2.1.6 If M is a topological G-module, H � G is a closed subgroup, and there
exists a continuous section B1(H,M)→ M, then there is an exact sequence

0→ H1(G/H,MH )→ H1(G,M)→ H1(H,M)G/H → H2(G/H,MH ).

Proof The injectivity of the first map, and the exactness at H1(G,M), is easily seen by a
direct cocycle computation (which is valid for arbitrary topological G-modules).
Exactness atH1(H,M)G/H is muchmore subtle. Let σ :H → M be a continuous cocycle

whose class [σ ] ∈ H1(H,M) is G-invariant. Then, for any g ∈ G, the element σ g − σ

lies in B1(H,M), where σ g is the cocycle h �→ gσ (g−1hg). This defines a continuous map
G → B1(H,M).
By hypothesis, the differentialM → B1(H,M) has a continuous section. Composing this

with the abovemap, we obtain a continuousmapφ:G → M such that gσ (g−1hg)−σ (h) =
(h−1)φ(g) for allh ∈ H and g ∈ G.Wemaynowargue as in theusual proof of the exactness
of the inflation-restriction exact sequence for discrete modules [25, Proposition 1.6.5] to
define a continuous 1-cochain σ̃ :G → M such that σ̃ |H = σ and dσ̃ ∈ Z2(G/H,MH ),
which gives exactness at H1(H,M)G/H . 
�

Remark 2.1.7 The hypotheses of this proposition are satisfied, in particular, for any mod-
ule of the form M = Lw(X,N ) where X is any Banach space, N is finitely generated
and free over a Noetherian Banach algebra A, and the group H acts A-linearly on N and
trivially on X . This covers all the cases we shall need below.

2.2 Distributions

For λ ∈ R�0, we define the Banach space Cλ(Zp,Qp) of order λ functions on Zp as in [11].
This has aBanachbasis consisting of the functionsp
λ
(n)�

(x
n
)
forn � 0,where 
(n) denotes

the smallest integer L � 0 such that pL > n. We defineDλ(Zp,Qp) as the continuous dual
of Cλ(Zp,Qp); for f ∈ Cλ(Zp,Qp) and μ ∈ Dλ(Zp,Qp) we shall sometimes write

∫
f dμ

for the evaluation μ(f ). The space Dλ(Zp,Qp) has a standard norm defined by

‖μ‖λ = sup
n�0

p−
λ
(n)�
∥∥∥∥
∫

x∈U

(
x
n

)
dμ

∥∥∥∥ .
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Proposition 2.2.1 Forany integer h � 
λ�, the standardnormonDλ(Zp,Qp) is equivalent
to the norm defined by

sup
n�0

sup
a∈Zp

p−
λn�
∥∥∥∥∥
∫

x∈a+pnZp

(
x − a
pn

)h
dμ

∥∥∥∥∥ .

Proof See [10], Lemma II.2.5. 
�

As well as the Banach topology induced by the above norms (the so-called strong topol-
ogy), the space Dλ(Zp,Qp) also has a weak topology,1 which can be defined as the weakest
topology making the evaluation maps μ �→ ∫

f dμ continuous for all f ∈ Cλ(Zp,Qp).

Remark 2.2.2 The weak topology is much more useful for our purposes than the strong
topology, since the natural map Zp ↪→ D0(Zp,Qp) given by mapping a ∈ Zp to the
linear functional f �→ f (a) is not continuous in the strong topology, while it is obviously
continuous in the weak topology.

More generally, ifM is aQp-Banach space, we define Dλ(Zp,M) = Homcts(Cλ(Zp,Qp),
M); as before, this has a strong topology induced by the operator norm (which we write
as ‖ − ‖λ), and a weak topology given by pointwise convergence on Cλ(Zp,Qp).

Proposition 2.2.3 Let X be a compact Hausdorff space, and M a Banach space, and let
σ :X → Dλ(Zp,M) be a continuous map (with respect to the weak topology on Dλ(Zp,M)).
Then sup{‖σ (x)‖λ: x ∈ X} <∞.

Proof For each f ∈ Cλ(Zp,Qp), the map X → M given by x �→ σ (x)(f ) is continuous,
and hence bounded. By the Banach–Steinhaus theorem, this implies that the collection of
linear maps {σ (x): x ∈ X} is bounded in the uniform norm. 
�

Definition 2.2.4 For h ≥ 0, denote by LP[0,h](Zp,Qp) the space of locally polynomial
functions on Zp of degree � h. If M is a Qp-vector space, write D[0,h]

alg (Zp,M) for the
Qp-linear homomorphisms of LP[0,h](Zp,Qp) intoM.

Remark 2.2.5 An element μ ∈ LP[0,h](Zp,Qp) is uniquely determined by a collection of
values

∫
a+pnZp

xiμ(x) for i ∈ [0, h], a ∈ Zp, n ∈ N, satisfying the compatibility relations

∫

a+pnZp
xiμ(x) =

p−1∑
k=0

∫

a+kpn+pn+1Zp
xiμ(x).

Lemma 2.2.6 Let (μn)n�1 be a sequence of elements of Dλ(Zp,M) which is uniformly
bounded (i.e. there is a constant C such that ‖μn‖λ � C for all n), let μ ∈ Dλ(Zp,M), and
let h � 
λ�bean integer. Ifwehave ∫

f dμn →
∫
f dμasn→∞ for all f ∈ LP[0,h](Zp,Qp),

then μn → μ in the weak topology of Dλ(Zp,M).

Proof This is immediate from the density of LP[0,h](Zp,Qp) in Cλ(Zp,Qp). 
�

1This notation is somewhat misleading; it would be better to describe this as the weak-star topology and to reserve
the term weak topology for the topology on Dλ(Zp,Qp) induced by its own continuous dual (for the strong topology),
in line with the usual terminology in classical functional analysis. However, the above abuse of notation has become
standard in the non-Archimedean theory, perhaps because the continuous duals of spaces such as Dλ(Zp,Qp) are too
pathological to be of much interest.
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Finally, if U is an open subset of Zp, we define Dλ(U,M) as the subspace of Dλ(Zp,M)
consisting of distributions supported in U ; this is closed (in both weak and strong topol-
ogy).

2.3 Cohomology of distribution modules

We now apply the theory of the preceding sections in the context of representations of
Galois groups. Our arguments are closely based on those used by Colmez [10] for local
Galois representations, but also incorporating some ideas from Appendix A.2 of [20].
We consider either of the two following settings: either K is a finite extension of Qp

and G = Gal(K/K ), or K is a finite extension of Q and G = Gal(KS/K ), where KS is the
maximal extension ofK unramified outside some finite set of places S including all infinite
places and all places above p. In both cases we write H∗(K,−) for H∗(G,−); this notation
is a little abusive in the global setting, but this should not cause any major confusion.
We set K∞ = K (μp∞ ), and H = Gal(K/K∞) (resp. Gal(KS/K∞) in the global case).

Thus H is closed in G and the cyclotomic character identifies Γ = G/H with an open
subset of Z×p .

Remark 2.3.1 More generally, one may take for K∞ any abelian p-adic Lie extension of
K of dimension 1; see forthcoming work of Francesc Castella and Ming-Lun Hsieh for
an application of this theory in the context of anticyclotomic extensions of imaginary
quadratic fields.

As in Sect. 2.1 above, we let A be a Noetherian Qp-Banach algebra, and M a finite free
A-module with a continuous A-linear action of H , and we fix a choice of norm ‖ · ‖M
on M making it into a Banach A-module. We shall be concerned with the continuous
cohomology H1(K∞, Dλ(Γ ,M)), where Dλ(Γ ,M) is equipped with the weak topology.
Note that this cohomology group is endowed with a supremum seminorm, since every
continuous cocycle H → Dλ(Γ ,M) is bounded by Proposition 2.2.3.

Proposition 2.3.2 Letλ ∈ R�0. ThenH1(K∞, Dλ(Γ ,M)) injects intoH1(K∞, D[0,h]
alg (Γ ,M))

for any integer h � 
λ�.
An element μ ∈ H1(K∞, D[0,h]

alg (K∞,M)) is in the image of this injection if and only if the
sequence

p−
λn� sup
γ∈Γ

∥∥∥∥∥
∫

γΓn

(
χ (x)− χ (γ )

pn

)h
dμ

∥∥∥∥∥ (
)

is bounded as n → ∞, where ‖·‖ is the norm on H1(K∞,M) induced by the norm of M.
Moreover, if this condition holds, we have

‖μ‖λ � D sup
n�0

p−
λn� sup
γ∈Γ

∥∥∥∥∥
∫

γΓn

(
χ (x)− χ (γ )

pn

)h
dμ

∥∥∥∥∥ ,

where ‖μ‖λ is the supremum seminorm on H1(K∞, Dλ(Γ ,M)) and D is a constant inde-
pendent of K and M.

Proof For the injectivity, see Proposition II.2.1 of [10], where this result is proved for
arbitrary Banach representationsM such that B1(K∞,M) is closed in Z1(K∞,M); Propo-
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sition 2.1.2 shows that this is automatic under our present hypotheses onM (the argument
in op.cit. is given for K local, but it applies identically in the global case too).
To describe the image of thismap, we follow the argument of Proposition II.2.3 of op.cit.

in which the result is shown for A = Qp and K local. Exactly as in op.cit., given any class
in H1(K∞, D[0,h]

alg (Γ ,M)) satisfying (
), then we may represent it by a cocycle g �→ μ(g) in
Z1(K∞, D[0,h]

alg (Γ ,M)) which also satisfies (
) in the supremum norm. For each h ∈ H , we
see that μ(h) lies in the image of Dλ(Γ ,M) ↪→ D[0,h]

alg (Γ ,M). Thus μ defines a cocycle on
H with values in Dλ(Γ ,M). Moreover, the values ‖μ(h)‖λ for h ∈ H are bounded above
by a constant multiple of the supremum of the sequence in (
), by Proposition 2.2.1.
It remains to check that the cocycle g �→ μ(g) is continuous (for the weak topology of

Dλ(Γ ,M)). This is asserted without proof loc.cit., and we are grateful to Pierre Colmez for
explaining the argument. Since H is a compact Hausdorff space, it suffices to show that
for every convergent sequence gn → g , the sequence μn := μ(gn) converges to μ(g) in
Dλ(Γ ,M). However, by construction we know that

∫
f dμn converges to

∫
f dμ for each

f ∈ LP[0,h](Γ ,Qp). Since the μn are uniformly bounded, Lemma 2.2.6 shows that they
converge weakly to μ(g) as required. 
�

We now consider a special case of this statement. We impose the stronger assumption
thatM is a continuous representation of the larger groupG = Gal(K/K ) (resp.Gal(KS/K )
in the global case), rather than just of H . We equip Dλ(Γ ,M) with an action of G by

∫

x∈Γ
f (x) dg(μ) = g

(∫

x∈Γ
f ([g]−1x) dμ

)

where [g] is the image of g in Γ .

Proposition 2.3.3 Let λ ∈ R�0, h � 
λ� an integer, and suppose we are given elements
xn,j ∈ H1(K∞,M)Γn=χ j , for all n � 0 and 0 � j � h, satisfying the following conditions:

• For all n � 0, we have
∑

γ∈Γn/Γn+1 χ (γ )
−jγ · xn+1,j = xn,j .

• There is a constant C such that∥∥∥∥∥∥
p−hn

h∑
j=0

(−1)j
(
h
j

)
xn,j

∥∥∥∥∥∥
� Cp
λn�

for all n.

Then there is a unique element μ ∈ H1 (K∞, Dλ(Γ ,M))Γ satisfying

xn,j =
∫

Γn
χ jμ

for all n � 0 and 0 � j � h, and there is a constant D independent of K and of M such
that

‖μ‖λ � CD,

where ‖μ‖λ is the seminorm on H1(K∞, Dλ(Γ ,M)) induced by the norm of Dλ(Γ ,M).

Proof We claim first that there is a unique μalg ∈ H1(K∞, D[0,h]
alg (Γ ,M))Γ such that

xn,j =
∫

Γn
χ jμalg .



Loeffler and Zerbes Res Math Sci (2016) 3:29 Page 9 of 53

This follows from the fact that the functions φn,j(x) := xj11+pnZp (x) for n � 0 and
0 � j � h, and their translates under Γ , span the space LP[0,h](Γ ,Qp).
By Proposition 2.3.2, the existence of the constant C implies that μalg is the image

of a class μ ∈ H1(K∞, Dλ(Γ ,M)), which must itself be Γ -invariant since the injection
H1(K∞, Dλ(Γ ,M)) ↪→ H1(K∞, D[0,h]

alg (Γ ,M)) commutes with the action ofΓ . This propo-
sition also shows that ‖μ‖λ is bounded above by CD. 
�
Using the inflation-restriction exact sequence (and the fact that Γ has cohomological

dimension 1) we see that μ lifts to a class in H1(K,Dλ(Γ ,M)). This lift is not necessar-
ily unique, but it is unique modulo H1(Γ , Dλ(Γ ,MGK∞ )) (and thus genuinely unique if
MGK∞ = 0).

2.4 Iwasawa cohomology

We now show that there is an interpretation of the module H1(K,Dλ(Γ ,M)) in terms
of Iwasawa cohomology. Since the group G has excellent finiteness properties (unlike its
subgroupH ), we have the general finite-generation and base-change results of [29] at our
disposal.
We now assume thatA is a reduced affinoid algebra overQp. By a theorem of Chenevier

(see [9, Lemma 3.18]) we may find a Banach algebra norm on A, with associated unit ball
A◦ = {a ∈ A: ‖a‖ � 1}, and a compatible Banach A-module norm on M with unit ball
M◦ ⊂ M, such that G preservesM◦ andM◦ is locally free as an A◦-module.

Definition 2.4.1 We set

H1
Iw(K∞,M) =

(
lim←−n

H1(Kn,M◦)
)
[1/p].

This is evidently independent of the choice of latticeM◦.

Proposition 2.4.2 The module H1
Iw(K∞,M) is finitely generated over D0(Γ , A), and there

are isomorphisms

H1(K,D0(Γ ,M)) ∼= H1
Iw(K∞,M),

H1(K,Dla(Γ ,M)) ∼= Dla(Γ , A)⊗D0(Γ ,A) H1
Iw(K∞,M).

Proof LetA◦ be as above. Then the ring B◦ = D0(Γ , A◦) ∼= A◦[[X]] is Noetherian, and it is
complete and separated with respect to the ideal I = (p, [γ ]− 1), where γ is a topological
generator of Γ /Γtors; moreover, D0(Γ ,M◦) = B◦ ⊗A◦ M◦ is a flat B◦-module. Hence [29,
Theorem 1.1] applies. By part (4) of the theorem, we see that H1(K,D0(Γ ,M◦)) is finitely
generated over D0(Γ , A◦). Moreover, part (3) of the theorem shows that

H1 (K,D0(Γ ,M◦)) = lim←−m
H1 (Kn, D0(Γ ,M◦)/Im) ,

and every power Im contains the kernel of D0(Γ , A◦)→ A[Γ /Γn] for all sufficiently large
n, so we also have an isomorphism

H1(K,D0(Γ ,M◦)) = lim←−n
H1 (Kn,M◦ ⊗A◦ A◦[Γ /Γn]) = H1

Iw (K∞,M◦) ,

where the last equality follows by Shapiro’s lemma. Inverting p we obtain the corre-
sponding results withA-coefficients. Finally, we obtain the statement with locally analytic
distributions by applying Theorem 1.9 of op.cit. (in the case n = ∞). 
�
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Corollary 2.4.3 In the above setting, for any λ ∈ R�0 there is a map

H1(K,Dλ(Γ ,M))→ Dla(Γ , A)⊗D0(Γ ,A) H1
Iw(K∞,M)

compatible with the natural maps to H1(K,M(χ−1)) for each character χ :M → A×.

Proof This follows from the fact that there is a continuous homomorphism Dλ(Γ , A) →
Dla(Γ , A), which gives (by the functoriality of continuous cohomology) a map

H1(K,Dλ(Γ ,M))→ H1(K,Dla(Γ ,M)).

We now compose this with the second map from the previous proposition. 
�

Proposition 2.4.4 If K is a global field, then for every prime v �= p, the inflation map

H1
(
K nr
v , Dla(Γ ,MIv )

)
→ H1

(
Kv, Dla(Γ ,M)

)

is an isomorphism.

Proof The corresponding statement for Iwasawa cohomology iswell known, and the result
now follows by tensoring with Dla(Γ , A). 
�

A very slightly finer statement is possible if we consider coefficients in a field:

Proposition 2.4.5 Suppose V is a finite-dimensional p-adic representation of G. Then

H1(K,Dλ(Γ , V )) = Dλ(Γ ,Qp)⊗D0(Γ ,Qp) H
1
Iw(K∞, V ).

Proof In the local case, this surprisingly non-trivial result is Proposition II.3.1 of [10]. The
proof relies on local Tate duality at one point, so we shall explain briefly how this can be
removed in order to obtain the result in the global case as well.
Firstly, from the finite generation of H2

Iw(K∞, V ) as a Λ(Γ )-module, there exists a k
such that H2

Iw(K∞, V (k))Γ = 0. We may suppose (by twisting) that we have, in fact,
H2
Iw(K∞, V )Γ = 0.
Let νn = (γ − 1)n where γ is a topological generator of Γ , and let T be a lattice in V .

Then the submodulesH2
Iw(K∞, T )[νn] are an ascending sequence ofΛ(Γ )-submodules of

the finitely generated module H2
Iw(K∞, T ). Since Λ(Γ ) is Noetherian and H2

Iw(K∞, T ) is
finitely generated,we conclude that this sequenceofmodulesmust eventually stabilise. But
all the modules in this sequence are finite, since H2

Iw(K∞, V )Γ vanishes by assumption;
this implies that there is a uniform power of p (independent of n) which annihilates
H2
Iw(K∞, T )[νn] for all n � 1 (compare the proof of [20, Proposition A.2.10], which is a

similar argument with νn = (γ − 1)n replaced by γ pn − 1). With this in hand we may
proceed as in [10]. 
�

Remark 2.4.6 We do not know whether this result is valid for general p-adic Banach
algebras (or even for affinoid algebras). It is also significant that themap is not an isometry
with respect to the natural norms on either side; there is a denominator arising from the
torsion in H2

Iw(K∞, T ), which is difficult to control a priori (and, in particular, could
potentially vary as we change the field K in an Euler system argument). We are grateful to
Ming-Lun Hsieh for pointing this out. We shall instead control denominators by means
of the proposition that follows, in which the denominator depends on an H0 rather than
an H2.
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Proposition 2.4.7 Suppose that V is a finite-dimensional Qp-linear representation of
G such that H0(K∞, V ) = 0, and let D′ be a constant annihilating the finite group
H0(K∞, V /T ), for T a G-invariant Zp-lattice in V .
Let xn,j be a collection of elements, and C a constant, satisfying the hypotheses of Propo-

sition 2.3.3, and let μ ∈ H1(K,Dλ(Γ , V )) be the resulting distribution. Then for every
character κ of Γ , we have

∥∥∥∥
∫

Γ

κ dμ
∥∥∥∥ � CDD′‖κ‖λ

where on the left-hand side ‖ · ‖ denotes the norm on H1(K,V (κ−1)) for which the unit ball
is the image of H1(K, T (κ−1)) (and D is as in Proposition 2.3.2).

Proof We know that ‖μ‖λ � CD as elements of H1(K∞, Dλ(Γ , V ))Γ . So ‖ ∫
Γ
κ dμ‖ �

CD‖κ‖λ as elements of H1(K∞, V (κ−1))Γ .
By the definition of the supremum seminorm, this is equivalent to stating that the class

CD‖κ‖λ ·
∫
Γ
κ dμ is the image of a class in H1(K∞, T (κ−1)). This class is not uniquely

determined, and hence not necessarily Γ -invariant, but the constant D′ was chosen to
annihilate the kernel ofH1(K∞, T (κ−1))→ H1(K∞, V (κ−1)), so CDD′‖κ‖λ ·

∫
Γ
κ dμ lifts

to a Γ -invariant class.
Since H0(K∞, T ) = 0, we conclude that H1(K, T (κ−1)) → H1(K∞, T (κ−1))Γ is an

isomorphism; thus CDD′‖κ‖λ ·
∫
Γ
κ dμ is in the image of the map H1(K, T (κ−1)) →

H1(K,V (κ−1)) as required. 
�

3 Cyclotomic compatibility congruences
In this section, we establish that the Beilinson–Flach cohomology classes constructed
in [19,20] satisfy the criteria of the previous section, allowing us to interpolate them by
finite-order distributions.

3.1 Modular curves: notation and conventions

For N � 4, we write Y1(N ) for the modular curve over Z[1/N ] parametrising elliptic
curves with a point of order N . Note that the cusp∞ is not defined overQ in this model,
but rather overQ(μN ).
More generally, forM,N integers withM + N � 5, we write Y (M,N ) for the modular

curve overZ[1/MN ] parametrising elliptic curves togetherwith two sections (e1, e2)which
define an embedding of group schemes Z/MZ× Z/NZ ↪→ E (so that Y1(N ) = Y (1, N )).
We shall only consider Y (M,N ) in the caseM | N , in which case theWeil pairing defines
a canonical map from Y (M,N ) to the scheme μ◦M of primitiveMth roots of unity, whose
fibres are geometrically connected.
If A is an integer prime toMN , we shall sometimes also consider the curve Y (M,N (A))

over Z[1/AMN ], parametrising elliptic curves with points e1, e2 as above together with a
cyclic subgroup of order A.
If Y is one of the curves Y (M,N ) or Y (M,N (A)), we writeHZp the relative Tate module

of the universal elliptic curve over Y , which is an étale Zp-sheaf on Y [1/p]. If the prime p
is clear from context, we shall sometimes drop the subscript and write H for HZp . We
write HQp for the associated Qp-sheaf. We write TSymk HZp for the sheaf of degree k
symmetric tensors overHZp ; note that this is not isomorphic to the kth symmetric power,
although these coincide after inverting p.
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Remark 3.1.1 In this paper we will frequently consider étale cohomology of modular
curves Y (M,N (A)) or products of pairs of such curves. All the coefficient sheaves we
consider will be inverse systems of finite étale sheaves of p-power order, and we shall
always work over bases on which p is invertible. To lighten the notation, the convention
that if p is not invertible on Y , then H ∗́

et(Y,−) is a shorthand for H ∗́
et(Y [1/p],−).

3.2 Iwasawa sheaves

We recall some definitions and notation from [19]. Let M,N � 1 be integers with M |
N and M + N � 5. Then, associated with the étale sheaf of abelian groups HZp on
Y (M,N )[1/p], we have a sheaf of Iwasawa algebrasΛ(HZp ) (c.f. Section 2.3 in op.cit.). For
c > 1 coprime to 6MNp, let

cEI1,N ∈ H1
ét(Y (M,N ),Λ(HZp )(1))

be the Eisenstein–Iwasawa class, as defined in [19, §4.3]. We now recall the definition of
the Rankin–Iwasawa class on the product Y (M,N )2, which is the image of cEI1,N via a
three-step procedure.
Firstly, let us write Λ(HZp )[j] = Λ(HZp ) ⊗ TSymj (HZp

)
for j � 0. Then we have a

morphism of étale sheaves on Y (M,N )[1/p], the Clebsch–Gordan map,
CG[j]:Λ(HZp ) �

(
Λ(HZp )[j]⊗̂Λ(HZp )[j]

)
(−j)

as defined in [19, Definition 5.1.1].
Secondly, let Y (M,N )2 denote the fibre product Y (M,N ) ×μ◦M Y (M,N ), where μ◦M is

the group of primitiveMth roots of unity as above. We denote byΛ[j,j] the exterior tensor
productΛ(HZp )[j] �Λ(HZp )[j] on Y (M,N )2. Pushforward along the diagonal embedding
Δ:Y (M,N ) ↪→ Y (M,N )2 gives a map

Δ∗:H1
ét

(
Y (M,N ),Λ(HZp )[j]⊗̂Λ(HZp )[j](1− j)

)
� H3

ét

(
Y (M,N )2,Λ[j,j](2− j)

)
.

Thirdly, for a ∈ Z/MZ, denote by ua the automorphism of Y (M,N )2 which is the
identity on the first Y (M,N ) factor and is given by (E, e1, e2) �→

(
E, e1 + a N

M e2, e2
)
on the

second factor.

Definition 3.2.1 For integersM,N � 1 with M | N and M + N � 5, j � 0, a ∈ Z/mZ,
p a prime > 2, and c > 1 coprime to 6MNp, define the Rankin–Iwasawa class

cRI [j]
M,N,a =

(
(ua)∗ ◦Δ∗ ◦ CG[j]

)
(cEI1,N ) ∈ H3

ét

(
Y (M,N )2,Λ[j,j](2− j)

)
.

The primary purpose of introducing the Rankin–Iwasawa class is that it is easy to prove
norm-compatibility relations for it. Our actual interest is in a second, related class, defined
by pushing forward cRI [j]

M,N,a via a degeneracy map.

Definition 3.2.2 For integersm � 1 and N � 4, j � 0, a ∈ Z/mZ, and c > 1 coprime to
6mNp, define the Beilinson–Flach class

cBF [j]
m,N,a ∈ H3

(
Y1(N )2 × μ◦m,Λ[j,j](2− j)

)

to be the image of cRI [j]
m,mN,a under the map (tm × tm)∗, where

tm:Y (m,mN ) � Y1(N )× μ◦m

is the map given in terms of moduli spaces as

(E, e1, e2) �→
(
(E/〈e1〉, e2 mod 〈e1〉) , 〈e1, Ne2〉E[m]

)
.
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Remark 3.2.3 Note that tm corresponds to z �→ z/m on the upper half-plane.

Finally, recall that there are natural maps

1⊗momj :Λ(HZp )→ Λ(HZp )[j]

which, for a geometric generic point η, are given by the maps Λ(Hη) → Λ(Hη) ⊗
TSymj Hη, [x] �→ [x]⊗ x⊗j .

3.3 Compatibility congruences

We now come to the key technical result required for the rest of this paper. Let h � 1. For
each r � 1, we would like to prove a congruence modulo phr relating the classes

Resp
hr

pr
(
cBF [j]

pr ,N,a

)

for 0 � j � h. Here Resp
hr

pr denotes the pullback along the natural map

Y1(N )× μ◦phr → Y1(N )× μ◦pr ,

which corresponds classically to restriction of cocycles in Galois cohomology.

Definition 3.3.1 For an arbitrarym, let Z(m,mN ) ⊆ Y (m,mN )2 denote the preimage of
the diagonal subvariety of Y1(N ) under the natural projectionmap Y (m,mN )2 → Y1(N )2

(i.e. the map corresponding to the identity on the upper half-plane, not the map tm).

Note 3.3.2 The subvariety Z(m,mN ) is preserved by the action of Γ1(N )× Γ1(N ) and in
particular by the action of the element ua =

(
1,

( 1 a
0 1

))
for any a ∈ Z/mZ. Since ua is an

automorphism, and its inverse is u−a, we have (ua)∗ = (u−a)∗.

There is a canonical section of the sheaf (HZp�HZp )(−1) over the subvarietyZ(m,mN ),
given by theWeil pairing (since alongZ(m,mN ) the twouniversal elliptic curves coincide).
We call this element CG (for “Clebsch–Gordan”), since the Clebsch–Gordan map CG[j]

is given by cup-product with the jth divided power CG[j] of this element. For t � 1, we
write CGt for the image of CG modulo pt . Note that we have

u∗a (CG) = CG
for any a ∈ Z/mZ, since CG is independent of the level structure.
Let i be the inclusion of Z(m,mN ) into Y (m,mN )2, so the diagonal embedding factors

as

Y (m,mN ) Δ� Z(m,mN ) i� Y (m,mN )2.

By construction, the element cRI [j]
m,mN,a ∈ H3

ét(Y (m,mN )2,Λ[j,j](2− j)) is given by

cRI [j]
m,mN,a = i∗ ◦ u∗−a ◦Δ∗ ◦ CG[j] (cEI1,mN )

= i∗ ◦ u∗−a
(
Δ∗(cEI1,mN ) ∪ CG[j]

)

= i∗
(
(ua ◦Δ)∗(cEI1,mN ) ∪ CG[j]

)
. (3.3.1)

We now take integers r � 1 and h � 1 as above, and we assume p � m. We also assume
that the following condition is satisfied:

Assumption 3.3.3 We have p(h−1)r | N , so there is a canonical section Yhr of Hhr over
Y (mpr,mprN ).
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Under this assumption, the moment map modulo phr is given by cup-product with the
element Yhr , so we obtain the following somewhat messy formula:

Proposition 3.3.4 For any a ∈ Z/mphrZ, we have the following equality modulo phr :

h∑
j=0

ah−j(h− j)!(1⊗momh−j)�2 Resmphr
mpr

(
cRI [j]

mpr ,mprN,a

)
⊗ ζ

⊗j
phr

= i∗
(
(ua ◦Δ)∗

(
cEI1,mprN

) ∪
(
a · Yhr � Yhr + CGhr ⊗ ζphr

)[h])
.

Proof This is a straightforward exercise from the definition ofmultiplication in the algebra
TSym• (the factor of (h− j)! appears because (Y � Y )[h−j] = (h− j)!Y [h−j] � Y [h−j]). 
�
We can now prove the main theorem of this section:

Theorem 3.3.5 Suppose that p | N. Then for any a ∈ Z/mphrZ and any m coprime to p,
we have

h∑
j=0

ah−j(h− j)! Resmp∞
mpr (1⊗momh−j)�2

(
cBF [j]

mpr ,N,a

)
⊗ ζ

⊗j
phr

∈ phrH3
ét

(
Y1(N )2 × μ◦mp∞ ,Λ

[h,h](HZp )(2)
)
.

Proof It follows from [19, Theorem 5.3.1] that if N ′ is any multiple of N with the same
prime divisors as N , then cBF [j]

pr ,N,a is the image of cBF [j]
pr ,N ′ ,a under pushforward along

the natural degeneracy map Y1(N ′) → Y1(N ). We can therefore assume without loss of
generality that N satisfies Assumption 3.3.3.
We may factor the map (tmpr × tmpr )∗ as the composite of a map on the coefficient

sheaves, which is a morphism

(tmpr × tmpr )�:H � H → t∗mpr (H ) � t∗mpr (H )

of sheaves on Y (mpr,mprN )2, followed by the pushforward via tmpr × tmpr on the under-
lying modular curve.
We claim that when restricted to the image of ua ◦Δ:Y (mpr,mprN )→ Z(mpr,mprN ),

the section a · Yr � Yr + CGr ⊗ ζpr ofHr � Hr is in the kernel of (tmpr × tmpr )�.
This follows from the fact that the map (tmpr × tmpr )� is given by quotienting out by the

first component of the level structure in each factor: on the fibre at a point (E1, P1, Q1)×
(E2, P2, Q2) of Y (mpr,mprN )2, the fibre ofH �H is the Tate module of E1×E2, and the
map (tmpr × tmpr )� is the quotient map E1×E2 → E1/〈P1〉×E2/〈P2〉. A point in the image
of ua ◦Δ is given by (E, P, Q)× (E, P+ aNQ,Q) for some point (E, P, Q) of Y (mpr,mprN ),
and the section CGr ⊗ ζpr is given by NQ � P − P � NQ. Thus we have

a · Yr � Yr + CGr ⊗ ζpr = aNQ � NQ + (NQ � P − P � NQ)

= NQ � (P + aNQ)− P � NQ,

which is annihilated by (tmpr × tmpr )� as claimed.
Since this element is annihilated by (tmpr × tmpr )� modulo pr , its hth tensor power is

annihilated by the same map modulo phr . This gives the congruence stated above. 
�

Remark 3.3.6 We shall in fact use a slight refinement of this theorem. Let E be the uni-
versal elliptic curve over Y1(N ), and let D′ = C − {0} ⊂ E[p], where C is the universal
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level p subgroup. Then there is a subsheaf HZp〈D′〉 of HZp , which is the preimage of D′

under reduction modulo p, and a corresponding sheaf of Iwasawa modulesΛ(HZp〈D′〉).
The Beilinson–Flach elements for p | N are, by construction, the images of elements of

the group

H3
ét

(
Y1(N )× μ◦m, (Λ(HZp〈D′〉)⊗ TSymj HZp )�2(2)

)
;

and exactly the same argument as above shows that we have a congruence modulo phr

in this group. We will need this below, in order to interpolate our elements in Coleman
families.

3.4 Galois representations: notation and conventions

In this section, we shall fix notations forGalois representations attached tomodular forms.
Let f be a normalised cuspidalHecke eigenformof someweight k+2 � 2 and levelNf � 4,
and let L be a number field containing the q-expansion coefficients of f .

Definition 3.4.1 For each prime P | p of L, we write MLP (f ) for the maximal subspace
of

H1
ét,c

(
Y1(Nf )Q , Sym

k H ∨
Qp

)
⊗Qp LP

on which the Hecke operator T
, for every prime 
, acts as multiplication by a
(f ). Dually,
we writeMLP (f )∗ for the maximal quotient of the space

H1
ét

(
Y1(Nf )Q ,TSym

k (HQp )(1)
)
⊗Qp LP

on which the dual Hecke operators T ′
 act as a
(f ).

Both spacesMLP (f ) andMLP (f )∗ are 2-dimensional LP-vector spaces with continuous
actions of Gal(Q/Q), unramified outside S, where S is the finite set of primes dividing
pNf . The twist by 1 implies that the Poincaré duality pairing

MLP (f )×MLP (f )∗ → LP

is well defined (and perfect), justifying the notation. If f is new and f ∗ is the eigenform
conjugate to f , then the natural map MLP (f ∗)(1) → MLP (f )∗ is an isomorphism of LP-
vector spaces, although we shall rarely use this.
If f , g are two eigenforms (of some levels Nf , Ng and weights k + 2, k ′ + 2 � 2) with

coefficients in L, we write MLP (f ⊗ g) for the tensor product MLP (f ) ⊗LP MLP (g) and
similarly for the dualMLP (f ⊗ g)∗. Via the Künneth formula, we may regardMLP (f ⊗ g)∗

as a quotient of H2
ét(Y1(N )2Q ,TSym

[k,k ′](HQp )(2))⊗Qp LP, for any N � 4 divisible by Nf

and Ng , where TSym[k,k ′](HQp ) denotes the étaleQp-sheaf TSymk HQp � TSymk ′ HQp .

3.5 Consequences for pairs of newforms

We now use the congruences of Theorem 3.3.5, together with the p-adic analytic machin-
ery of Sect. 2, in order to define “unbounded Iwasawa cohomology classes” interpolating
the Beilinson–Flach elements for a given pair (f, g) of eigenforms.

Remark 3.5.1 We shall prove a considerably stronger result below (incorporating varia-
tion in Coleman families) which will mostly supersede Theorem 3.5.9: see Theorem 5.4.2.
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However, the proof of the stronger result is much more involved, so for the reader’s
convenience we have given this more direct argument.

Let us choose two normalised cuspidal eigenforms f , g , of weights k+2, k ′ +2 and levels
Nf , Ng , respectively, with k, k ′ � 0. Let L be a number field containing the coefficients
of f and g , and P a prime of L above p, so that the Galois representation MLP (f ⊗ g)∗

of Sect. 3.4 is defined. Assume that 0 ≤ j ≤ min{k, k ′}, and let N be an integer divisible
by Nf and Ng and having the same prime factors as Nf Ng . Let m ≥ 1. Recall from [19,
Definition 3.3.1] that we have an étale Eisenstein class

Eis[k,k
′ ,j]

ét,1,mN ∈ H3
ét

(
Y1(mN )2,TSym[k,k ′]HQp (2− j)

)
,

which can be constructed using Beilinson’s Eisenstein symbol (and in particular is the
image of a class inmotivic cohomology). By abuse of notation, we also denote by Eis[k,k

′ ,j]
ét,1,mN

the pullback of this class to Y (m,mN )2.

Definition 3.5.2 For a ∈ Z/mZ, define BF [f,g,j]
m,a to be the image of (ua)∗Eis[k,k

′ ,j]
ét,1,mN under

the following composition of maps:

H3
ét

(
Y (m,mN )2,TSym[k,k ′]HQp (2− j)

)

(tm×tm)∗� H3
ét

(
Y1(N )2 × μ◦m,TSym[k,k ′]HQp (2− j)

)

� H1
(
Q(μm), H2

ét(Y1(N )2Q ,TSym
[k,k ′]HQp (2− j)

)

� H1 (
Q(μm),MLP (f ⊗ g)∗(−j)) .

This is independent of the choice of N . For c > 1 coprime to 6mpNf Ng , we define

cBF [f,g,j]
m,a :=

(
c2 − c−(k+k ′−2j)εf (c)−1εg (c)−1σ 2

c

)
BF [f,g,j]

m,a .

Remark 3.5.3 Note that form = 1 the classBF [f,g,j]
m,a is theEisenstein classAJf,g,ét

(
Eis[k,k

′ ,j]
ét,1,N

)

of [18, §5.4].

Let us recall the connection between these classes and the Iwasawa-theoretic classes of
the previous sections. Recall that we have maps

momk−j ·1:Λ(H )⊗ TSymj(H )→ TSymk (H )

for each k � j.

Proposition 3.5.4 ([19, Proposition 5.2.3 (3)])The class cBF [f,g,j]
m,a coincideswith the image

of
[
(momk−j ·1) � (momk ′−j ·1)

] (
cBF [j]

m,N,a

)

under projection to the (f, g)-eigenspace.

We now consider “p-stabilised” versions of these objects. If p � Nf , we choose a root
αf ∈ L of the Hecke polynomial of f (after extending L if necessary), and we let fα be the
corresponding p-stabilisation of f , so fα is a normalised eigenform of level Nfα = pNf ,
with Up-eigenvalue αf and the same T
-eigenvalues as f for all 
 �= p. If p | Nf , then we
assume that ap(f ) �= 0, and we set αf = ap(f ) and (for consistency) fα = f and Nfα = Nf .
We define αg and gα similarly.
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If p � Nf Ng , then the class cBF [fα ,gα ,j]
m,a form coprime to p is related to the Eisenstein class

for the forms f, g as follows. There is a correspondence Prαf :Y1(pNf )→ Y1(Nf ) given by
pr1− β

pk+1 pr2, and (Prαf )∗ gives an isomorphism

MLP (fα)∗ → MLP (f )∗,

and similarly for g .

Proposition 3.5.5 For p � mNf Ng , we have

(Prαf ×Prαg )∗
(
BF [fα ,gα ,j]

m,a
)

=
(
1− αf βg

p1+jσp

) (
1− βf αg

p1+jσp

) (
1− βf βg

p1+jσp

)
· cBF [f,g,j]

m,a .

If p | Nf but p � mNg , then we have

(id × Prαg )∗
(
BF [f,gα ,j]

m,a
)
=

(
1− αf βg

p1+jσp

)
· cBF [f,g,j]

m,a .

Proof This is a restatement of Lemma 5.6.4 and Remark 5.6.5 of [19]. 
�
Weshall now interpolate the cBF [fα ,gα ,j]

m,a for varyingm and j, under the following assump-
tion:

Assumption 3.5.6 The automorphic representations πf and πg corresponding to f and
g are not twists of each other.

Note 3.5.7 Assumption 3.5.6 is automatically satisfied if k �= k ′.

Let m be coprime to p and r ≥ 1. Then Assumption 3.5.6 implies that H0(Q(μmp∞ ),
MLP (f ⊗ g)) = 0, so the restriction map induces an isomorphism

H1 (
Q(μmpr ),MLP (f ⊗ g)∗(−j)) ∼= H1 (

Q(μmp∞ ),MLP (f ⊗ g)∗
)Γr=χ j

.

Convention By abuse of notation,wewrite cBF [fα ,gα ,j]
mpr ,a for the image of theBeilinson–Flach

element in H1(Q(μmp∞ ),MLP (fα ⊗ gα)∗)Γr=χ
j .

These elements satisfy the following compatibility:

Lemma 3.5.8 Let m ≥ 1 be coprime to p, and let r ≥ 0. Then

∑
Γr/Γr+1

χ (γ )−jγ · cBF [fα ,gα ,j]
mpr+1 ,a =

⎧⎨
⎩
(αf αg ) cBF [fα ,gα ,j]

mpr ,a if r > 0

(αf αg − pjσp) cBF [fα ,gα ,j]
mpr ,a if r = 0

Proof This follows from the second norm relation for the Rankin–Iwasawa classes (c.f.
[19, Theorem 5.4.4]). 
�
We impose the following “small slope” assumption:

vp(αf αg ) < 1+min(k, k ′). (3.5.1)

Theorem 3.5.9 If the small slope assumption (3.5.1) holds, then for any integers m � 1
coprime to p and a ∈ (Z/mp∞Z)×, there exists a unique element

cBF [fα ,gα ]
m,a ∈ Dλ(Γ ,Qp)⊗D0(Γ ,Qp) H

1
Iw

(
Q(μmp∞ ),MLP (fα ⊗ gα)∗

)
,
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where λ = vp(αf αg ), such that for every r � 0 and 0 � j � min(k, k ′), the image of

cBF [fα ,gα ]
m,a in H1(Q(μmpr ),MLP (fα ⊗ gα)∗(−j)) is given by
⎧
⎨
⎩
(αf αg )−r if r > 0

1− pjσp
αf αg

if r = 0

⎫
⎬
⎭× cBF [fα ,gα ,j]

mpr ,a

(−a)j j!(kj
)(k ′

j
) .

Remark 3.5.10 Compare Theorem 6.8.4 of [20], which is the case k = k ′ = 0.

Proof This amounts to reorganising the output of Theorem 3.3.5 and Proposition 2.3.3.
Let h = min(k, k ′). Consider the composition of maps

H3
ét

(
Y1(N )2 × μmp∞ ,Λ[h,h](HZp )(2− h)

)

⊗eh� H3
ét

(
Y1(N )2 × μmp∞ ,Λ[h,h](HZp )(2)

)

� H1
(
Q(μmp∞ ), H2

ét(Y1(N )2Q ,Λ
[h,h](HZp )(2))

)

� H1
(
Q(μmp∞ ), H2

ét(Y1(N )2Q ,TSym
[k,k ′](HZp )(2))

)

� H1 (
Q(μmp∞ ),MLP (fα ⊗ gα)∗

)

where eh is the canonical basis of Zp(h) over Q(μp∞ ), and the third map is given by
(momk−h · id) � (momk ′−h · id). An unpleasant manipulation of factorials shows that the
image of the expression in Theorem 3.3.5 under this composition of maps is equal to

k !(k ′)!
(k − h)!(k ′ − h)!h!

h∑
j=0

(−1)j
(
h
j

)
yr,j , (3.5.2)

where we write yr,j for the quantity

[
(−a)j j!

(
k
j

)(
k ′

j

)]−1
cBF [f,g,j]

mpr ,a ∈ H1 (
Q(μmp∞ ),MLP (f ⊗ g)∗

)Γr=χ j
.

The image ofH2
ét(Y1(N )2Q ,TSym

[k,k ′](HZp )(2))⊗OP inMLP (f ⊗ g)∗ is aOP-lattice, and
hence it defines a norm ‖ · ‖ onMLP (f ⊗ g)∗. So Theorem 3.3.5 gives the norm bound

∥∥∥∥∥∥
h∑

j=0
(−1)j

(
h
j

)
yr,j

∥∥∥∥∥∥
= O(p−hr),

where the implied constant in the O() term depends on k, k ′, h but not on r. Combining
this fact with Lemma 3.5.8, we deduce that the quantities

xr,j = (αf αg )−ryr,j ∈ H1 (
Q(μmp∞ ),MLP (fα ⊗ gα)∗

)Γr=χ j

satisfy the hypotheses of Proposition 2.3.3, so there exists an element

cBF [fα ,gα ]
m,a ∈ H1 (

Q(μmp∞ ), Dλ
(
Γ ,MLP (fα ⊗ gα)∗

))Γ

interpolating the xr,j . Using again that H0(Q(μmp∞ ),MLP (fα ⊗ gα)∗) = 0 by Assump-
tion 3.5.6, this element lifts uniquely to



Loeffler and Zerbes Res Math Sci (2016) 3:29 Page 19 of 53

Dλ(Γ ,Qp)⊗D0(Γ ,Qp) H
1
Iw

(
Q(μmp∞ ),MLP (fα ⊗ gα)∗

)

and has the required interpolation properties, which finishes the proof. 
�
Wenownote, for future use, the following vital property of the classes cBF [fα ,gα ]

m,a . Denote
by

LMLP (fα⊗gα )∗ :D
la(Γ ,Qp)⊗D0(Γ ,Qp) H

1
Iw

(
Qp,∞,MLP (fα ⊗ gα)∗

)

� Dla (
Γ ,Qp

)⊗Qp Dcris
(
MLP (fα ⊗ gα)∗

)

Perrin-Riou’s regulator map (c.f. [27] and [23, Appendix B]).

Proposition 3.5.11 If the stronger inequality

vp(αf αg ) <
1+min(k, k ′)

2

holds, then the projection of LMLP (fα⊗gα )∗
(
cBF [fα ,gα ]

m,a
)
to the ϕ = (αf αg )−1-eigenspace of

Q(μm)⊗Q Dcris(MLP (fα ⊗ gα)∗) is zero.

Proof Let W be this eigenspace. It is well known that the projection of LM(f⊗g)∗ to W
gives a map

H1
Iw(Qp,∞,M(LP (fα ⊗ gα)∗)→ Dλ(Γ ,Qp)⊗W,

where λ = vp(αf αg ) as before. So it gives a map

Dλ(Γ ,Qp)⊗D0(Γ ,Qp) H
1
Iw

(
Qp,∞,MLP (fα ⊗ gα)∗

) → D2λ(Γ , E)⊗W.

However, for any character of Γ of the form z �→ zjχ (z), with 0 � j � min(k, k ′) and χ
of finite order, the image of cBF [fα ,gα ]

m,a inH1(Q(μm)⊗Qp,MLP (fα⊗gα)∗(−j−χ )) lies in the
Bloch–Kato H1

g subspace, by construction (c.f. [19, Proposition 3.3.2]). If χ is non-trivial
(so that the interpolation factors relating LMLP (fα⊗gα )∗ to the dual-exponential map are

invertible, see [23, Theorem B.5]), then this implies thatLMLP (fα⊗gα )∗ (cBF [fα ,gα ]
m,a )(j+χ ) =

0.
So the projection of LMLP (fα⊗gα )∗

(
cBF [fα ,gα ]

m,a
)
to W is an element of D2λ(Γ ,Qp) ⊗

W which vanishes at all but finitely many characters of the form j + χ with j ∈
{0, . . . ,min(k, k ′)} and χ of finite order. Since 2λ < 1+min(k, k ′), this projection must be
zero as required. 
�

Remark 3.5.12 We shall in fact show below that the result of Proposition 3.5.11 is actually
truewheneverαf αg satisfies theweaker assumption (3.5.1) (i.e.whenever the class cBF fα ,gα

m,a
is defined), by deforming Proposition 3.5.11 along a Coleman family.
This vanishing property is natural in the context of Conjecture 8.2.6 of [20], which

predicts the existence of an element in
∧2H1

Iw(Q(μmp∞ ),MLP (f ⊗ g)∗) from which the
Beilinson–Flach elements (for all choices of αf and αg ) can be obtained by pairing with
the map LMLP (f⊗g)∗ and projecting to a ϕ-eigenspace. Clearly, pairing an element of

∧2

with the same linear functional twice will give zero.

4 Overconvergent étale cohomology and Coleman families
We now recall the construction of p-adic families of Galois representations attached to
modular forms via “big” étale sheaves onmodular curves.We follow the account of [1, §3],
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but with somewhat altered conventions (for reasons which will become clear later). We
also use some results of Hansen [14] (from whomwe have also borrowed the terminology
“overconvergent étale cohomology”).

4.1 Set-up and notation

Definition 4.1.1 We write W for the rigid-analytic space over Qp parametrising con-
tinuous characters of the group Z×p . For an integer m � 0, we shall write Wm for the
wide open subspace parametrising “m-accessible” weights, which are those satisfying
vp(κ(t)p−1 − 1) > 1

pm(p−1) for all t ∈ Z×p .

Remark 4.1.2 Note that W is isomorphic to a disjoint union of p − 1 open unit discs,
and the bounded-by-1 rigid-analytic functions onW are canonicallyΛ(Z×p ); whileWm is
the union of the corresponding open subdiscs of radius p−1/pm(p−1) with centres in Z×p .
ThusW0 (which is the space denoted byW∗ in [1]) contains everyQp-point ofW , and in
particular every weight of the form z �→ zj , j ∈ Z.

Now let us fix some coefficient field E (a finite extension ofQp) with ring of integersOE .

Definition 4.1.3 We let U denote a wide open disc defined over E, contained in Wm
for some m � 0, and ΛU the OE-algebra of rigid functions on U bounded by 1 (so
ΛU ∼= OE[[u]]). We write κU for the universal character Z×p ↪→ Λ(Z×p )× → Λ×U .

The ring ΛU is endowed with two topologies: the p-adic topology (which we shall not
use) and the mU -adic topology, which is the topology induced by the ideals mn

U , where
mU is the maximal ideal ofΛU .

Definition 4.1.4 Form � 0, we write LAm(Zp,ΛU ) for the space of functions Zp → ΛU
such that for all a ∈ Z/pmZ, the function z �→ f (a + pmz) is given by a power series∑

n�0 bnzn with bn → 0 in themU -adic topology ofΛU .

Lemma 4.1.5 If U ⊆Wm, then the function z �→ κU (1+ pz) is in LAm(Zp,ΛU ).

Proof This is a standard computation, but we have not been able to find a reference, so
we shall give a brief sketch of the proof. Let us write Xm for the affinoid rigid-analytic
space overQp defined by {x: |x − a| � p−m for some a ∈ Zp} ⊆ A1

rig. Then LAm(Zp,ΛU )
is precisely the space of functions Zp → ΛU which extend to rigid-analytic ΛU -valued
functions on Xm.
Firstly, the map x �→ log(1+px)

log(1+p) is a bijection from Zp to Zp which extends to a rigid-
analytic isomorphism from Xm to itself for every m, so it suffices to show that x �→
κU ((1 + p)x) extends to a ΛU -valued rigid-analytic function on Xm whenever U ⊆ Wm.
It suffices to consider the universal case U = Wm. After enlarging the coefficient field E
if necessary, we identifyΛU withOE[[u]] in such a way that κU (1+ p) = 1+ εu where ε
is some element ofOE of valuation 1

(p−1)pm . Then

κU ((1+ p)x) =
∑
n�0

(
x
n

)
εnun,

and we have εn
( x
m
) ∈ LAm(Zp,Zp) for any n, by [11, Theorem 1.29]. 
�
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Remark 4.1.6 It is important to use the right topology on ΛU , because if one takes U =
Wm and writes x �→ κU (1+ pm+1x) as a series

∑
cnxn with cn ∈ ΛU , the cn tend to zero

mU -adically (the above argument shows in fact that cn ∈ mn
U ), but they do not tend to

zero p-adically.

4.2 The spaces D◦
U(T0) and D◦

U(T
′
0)

Definition 4.2.1 Let H be the group Z⊕2p . We define subsets T0, T ′0 ⊂ H by

T0 := Z×p × Zp, T ′0 := pZp × Z×p .

Proposition 4.2.2 The subset T0 is preserved by right multiplication by the monoid

Σ0(p) =
(
Z×p Zp
Zp pZp

)
⊂ Mat2×2(Zp), and T ′0 by the monoid Σ ′

0(p) =
(
Zp Zp
pZp Z×p

)
.

In particular, both T0 and T ′0 are preserved by scalar multiplication by Z×p . 
�

Remark 4.2.3 The definition of T0 coincides with that used in [1] (and our Σ0(p) is their

�(p)). The subspace T ′0 is the image of T0 under right multiplication by
(
0 −1
p 0

)
and

conjugation by this element interchangesΣ0(p) andΣ ′
0(p).

Definition 4.2.4 Form � 0, we write A◦U,m(T0) for the space of functions

f :T0 → ΛU

which are homogenous of weight κU , i.e. satisfy

f (γ t) = κU (γ )f (t)

for γ ∈ Z×p , t ∈ T0, and are such that the function z �→ f (1, z) lies in LAm(Zp,ΛU ). We
equip this module with the topology defined by the subgroupsmn

UA
◦
U,m.

Similarly, wewriteA◦U,m(T ′0) for the space of functionsT ′0 → ΛU which are homogenous
of weight κU and are such that z �→ f (pz, 1) ∈ LAm(Zp,ΛU ), again endowed with themU -
adic topology.

Proposition 4.2.5 If U ⊆ Wm, then the space A◦U,m(T0) is preserved by the left action of
Σ0(p) on functions T0 → ΛU defined by

(γ f )(t) = f (tγ ),

and similarly for A◦U,m(T ′0).

Proof We give the proof for T ′0; the proof for T0 is similar.
Unravelling the definition of the actions, we must show that if γ = ( a

b pc
)

d ∈ Σ ′
0(p)

and f ∈ A◦U (T ′0), then the function

z �→ κU (d)κU (1+ pd−1bz)f
(
p · c + az

d + pbz
, 1

)

is in LAm(Zp,ΛU ). Since LAm(Zp,ΛU ) is closed under multiplication and contains Zp, it
suffices to check that z �→ κU (1+ pd−1bz) and z �→ f

(
p · c+az

d+pbz , 1
)
are in this space. For

the factor κU (1+ pd−1bz) this follows from Lemma 4.1.5.
For the factor f

(
p · c+az

d+pbz , 1
)
, we note that the map z �→ c+az

d+pbz preserves all the rigid-
analytic neighbourhoods Xm of Zp, so it preserves the ring of rigid-analytic functions
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convergent and bounded by 1 on these spaces; thus, z �→ g
(

c+az
d+pbz

)
is in LAm(Zp,ΛU ) if

g ∈ LAm(Zp,ΛU ). 
�
For the rest of this section, let T denote either T0 or T ′0, and Σ either Σ0 or Σ ′

0,
respectively.
Note that as a topologicalΛU -module, A◦U,m(T ) is isomorphic to the space of countable

sequences (cn)∞n=1 with cn ∈ ΛU such that cn → 0 in themU -adic topology.

Definition 4.2.6 We write

D◦U,m(T ) = HomΛU (A◦U,m(T ),ΛU ),

and DU,m(T ) = D◦U,m(T )[1/p].

Note that any linear functionalμ ∈ D◦U,m(T ) is necessarily continuous (where we endow
both A◦U,m(T ) and ΛU with their mU -adic topologies). We equip D◦U,m(T ) with the weak
(or more formally weak-star) topology, generated by sets of the form {μ:μ(f ) ∈ mn

U }
for f ∈ A◦U,m(T ) and n � 0, i.e. the weakest topology such that all the evaluation-at-f
morphisms are continuous (when the targetΛU is equipped with themU -adic topology).
In this topologyD◦U,m(T ) becomes compact; indeed, we have a topological isomorphism

D◦U →
∏∞

n=0ΛU , with the inverse-limit topology.

Lemma 4.2.7 The formation of D◦U,m(T ) commutes with base change in U, in the sense
that for V ⊆ U two open discs defined over E, we have

D◦U,m(T ) ⊗̂
ΛU

ΛV = D◦V,m(T ).

Proof Clear by construction. 
�
Lemma 4.2.8 We may write D◦U,m(T ) as an inverse limit

D◦U,m(T ) = lim←−n
D◦U,m(T )/ Filn,

where each Filn is preserved by the action ofΣ , and the quotient D◦U,m(T )/ Filn is finite.

Proof For T = T0 andm = 0 this is [1, Proposition 3.10], and the generalisation tom � 1
is given in [14, §2.1]. The case ofT = T ′0 is proved similarly [or, alternatively, follows from
the case of T = T0 via conjugation by

( 0−1 p
)

0]. 
�
Proposition 4.2.9 Let Dla(T, E) be the algebra of E-valued locally analytic distributions
on T . Then there is an isomorphism

Dla(T, E)→ lim←−
U,m

DU,m(T ),

given by mapping the Dirac distribution [t], for t ∈ T, to the ΛU-linear functional on
A◦U,m given by evaluation at t. This map commutes with the action ofΣ on both sides and
restricts to an isomorphism

ΛOE (T )→ lim←−
U,m

D◦U,m(T ).

Proof Wegive the proof forT ′0, the proof forT0 being similar. Because of the homogeneity
requirement, any function inA◦U,m(T ′0) is uniquely determined by its restriction to pZp×1,
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and this gives an isomorphism D◦U,m(T ) ∼= LAm(Zp,OE)∗ ⊗̂OE ΛU . Both results now
follow by passing to the inverse limit. 
�

Now let k ∈ W be an integer weight (i.e. of the form z �→ zk with k � 0); any such
weight automatically lies in W0. As for U above, we may define a space A◦k,m(T ) of m-
analyticOE-valued functions on T homogenous of weight k , and its dualD◦k,m(T ), for any
m � 0.
Restriction to T gives a natural embedding P◦k ↪→ A◦k,m(T ), where P◦k is the space of

polynomial functions on Z2
p, homogenous of degree k , with OE coefficients. Dually, we

obtain a canonical,Σ0(p)-equivariant projection ρk :D◦k,m → (P◦k )
∗ = TSymk O2

E .

Proposition 4.2.10 The following diagram is commutative, for any U, any m sufficiently
large that U ⊆Wm, and any k ∈ U:

Λ(T ) � D◦U,m(T ) � D◦k,m(T )

Λ(H )
�

∩

momk
� TSymk H

ρk
�

Heremomk is as defined in [17], and the left vertical arrow is the natural inclusion T ↪→
Z⊕2p .

Proof This is clear by construction. 
�

4.3 The Ohta pairing

We now define a pairing between distribution modules on T0 and T ′0, following [26, §4].

Definition 4.3.1 Let H = Z⊕2p , as above. We define a bilinear map φ : H ×H → Zp by

φ ((x1, y1), (x2, y2)) = x1y2 − x2y1.

This clearly restricts to a map T0×T ′0 → Z×p , so theΛU -valued function� on T0×T ′0
given by�(t, t ′) = κU (φ(t, t ′)) is well defined, homogenous of weight κU in either variable,
andm-analytic whenever U ⊆Wm.

Definition 4.3.2 We write

{−,−}:D◦U,m(T0)× D◦U,m(T ′0)→ ΛU

for the bilinear map given by pairing with the function� ∈ A◦U,m(T0) ⊗̂ΛU A◦U,m(T ′0).

This is evidentlyΛU -bilinear, and it satisfies
{
μγ ,μ′γ

} = κU (det γ ) ·
{
μ,μ′

}

for anyμ ∈ D◦U,m(T0), μ′ ∈ D◦U,m(T ′0), and γ ∈ U0(p), whereU0(p) = Σ0(p)∩Σ ′
0(p) is the

Iwahori subgroup of GL2(Zp).

Remark 4.3.3 Let us describe the above map slightly more concretely. We take m = 0,
for simplicity; then, the functions fn((x, y)) = κU (x) · (y/x)n are an orthonormal basis of
A◦U,0(T0), so a distribution μ ∈ D◦U,0(T0) is uniquely determined by its moments μn =
μ(fn), which can be any sequence of elements ofΛU . Similarly, the functions gn((px, y)) =
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κU (y)(x/y)n are an orthonormal basis of A◦U,0(T ′0) and any μ′ ∈ D◦U,0(T ′0) is uniquely
determined by its moments μ′n = μ′(gn).
Given suchμ,μ′, we define an element ofΛU as follows: the function� ((1, z), (pw, 1)) =

κU (1− pzw) can be written as a power series
∑

an(wz)n, with an ∈ ΛU such that an → 0
in themU -adic topology, by Lemma 4.1.5; then {μ,μ′} is the value of the convergent sum∑

n�0 anμnμ′n.

4.4 Sheaves onmodular curves

Notation 4.4.1 LetM,N be integers � 1 withM | N andM +N � 5. We write Y (M,N )
for the modular curve over Z[1/N ] defined in [15, §2.1].

We recall the construction of an étale sheaf of abelian groupsHZp , and the correspond-
ing sheaf of Iwasawa algebras Λ(HZp ), associated with the universal elliptic curve E over
Y (M,N ), and more generally the sheaf of sets HZp〈D〉 and sheaf of Λ(HZp )-modules
Λ(HZp〈D〉), where D is a subscheme of E finite étale over Y (M,N ). Cf. [19, §4.1].
We shall apply this to the curve Y = Y (1, N (p)) where p � N , parametrising triples

(E, P, C) where E is an elliptic curves (over some Z[1/Np]-algebra), P is a point of exact
order N on E, and C is a subgroup of E of order p. Let D = E[p]− C , which is finite étale
over Y of degree p2 − p, and D′ = C − {0}, which is finite étale of degree p − 1; then
the sheavesHZp〈D〉 andHZp〈D′〉 are defined. Since both D and D′ are contained in E[p],
there is a multiplication-by-pmap

[p]∗:Λ(HZp〈D〉)→ Λ(HZp ),

and similarly for D′.

Proposition 4.4.2 Thepullbacks of the sheavesΛ(HZp ), andΛ(HZp〈D〉), andΛ(HZp〈D′〉)
to the pro-scheme Y (p∞, Np∞) are isomorphic to the constant sheaves Λ(Z2

p), Λ(T0), and
Λ(T ′0), respectively, and the maps [p]∗ are induced by the natural inclusions T0 ↪→ Z2

p and
T ′0 ↪→ Z2

p.

Proof It suffices to check the corresponding statement for the inverse systemsof sheaves of
setsHZp ,HZp〈D〉 andHZp〈D′〉. However, over Y (p∞, Np∞) we have two sections e1, e2 of
HZp identifying it with the constant sheafZ2

p, and since the level p subgroupC is generated
by e2 mod p, the sheaf HZp〈D〉 is precisely the subset of linear combinations ae1 + be2
such that a �= 0 mod p, which is T0, whileHZp〈D′〉 is similarly identified with T ′0. 
�
Now letm � 0, and U a wide open disc contained inWm, as before.

Proposition 4.4.3 There are pro-sheaves of ΛU-modules D◦
U,m(H0) and D◦

U,m(H
′
0 ) on

Y , whose pullbacks to Y (p∞, Np∞) are the constant pro-sheaves D◦U,m(T0) and D◦U,m(T ′0),
respectively, and the Galois group of Y (p∞, Np∞)/Y acts on D◦U,m(T0) and D◦U,m(T ′0) via
its natural identification with the Iwahori subgroup of GL2(Zp).

Proof The above trivialisation of HZp over Y (p∞, Np∞) determines a homomorphism
from the étale fundamental group π ét

1 (Y ) to the Iwahori subgroup U0(p) ⊆ GL2(Zp).
Since D◦U,m(T0) is an inverse limit of finite right modules for U0(p), and any finite right
π ét
1 (Y )-module defines an étale sheaf on Y , we obtain a pro-sheafD◦

U,m(H0), and similarly
for D◦U,m(T ′0). These are sheaves ofΛU -modules since the action ofU0(p) on the modules
D◦U,m(T0) and D◦U,m(T ′0) isΛU -linear. 
�
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Remark 4.4.4 Compare [1, §3.3]; the argument is given there for the Kummer étale site
on a log rigid space over Qp (with log structure given by the cusps), but the argument
works equally well in the much simpler case of affine modular curves overQ.

Proposition 4.4.5 For any k ∈ U we have commutative diagrams of pro-sheaves on Y
Λ(HZp〈D〉) � D◦

U,m(H0) � D◦
k,m(H0)

Λ(HZp )

[p]∗
� momk

� TSymk (H )

ρk
�

and
Λ(HZp〈D′〉) � D◦

U,m(H
′
0 ) � D◦

k,m(H
′
0 )

Λ(HZp )

[p]∗
� momk

� TSymk (H )

ρk
�

Heremomk is as defined in [17].

Proof We have the diagram of Proposition 4.2.10, which wemay interpret as a diagram of
constant pro-sheaves on Y (p∞, Np∞), and the morphisms in the diagram are all equivari-
ant for the action of the Iwahori subgroup, so they descend to morphisms of sheaves
on Y . 
�
We can similarly constructD◦

U,m(H0) andD◦
U,m(H

′
0 ) as sheaves on Y (U ), for any suffi-

ciently small open compact subgroup U ⊆ GL2(Ẑ) whose image in GL2(Zp) is contained
in the Iwahori subgroup. Moreover, if g ∈ GL2(Q) ∩Σ0(p), so there is a natural map

Y (U )→ Y (gUg−1)

corresponding to z �→ gz on the upper half-plane, then the action of g onD◦U,m(H0) gives
a map of sheaves on Y

D◦
U,m(H0)→ g∗

(D◦
U,m(H0)

)
;

the same holds withH ′
0 andΣ ′

0 in place ofH0 andΣ0.

Definition 4.4.6 We define

M◦
U,m(H0) = H1

ét
(
Y ,D◦

U,m(H0)
)
(−κU ),

M◦
U,m(H

′
0 ) = H1

ét
(
Y ,D◦

U,m(H
′
0 )

)
(1).

We also make the same definitions for compactly supported and parabolic cohomology,
which we write asM◦

U,m(H0)c,M◦
U,m(H0)par (and similarly forH ′

0 ).

These are profinite topological ΛU -modules, equipped with continuous actions of
Gal(Q/Q) unramified outside Np∞. As topological ΛU -modules (forgetting the Galois
actions) they are isomorphic to more familiar objects:

• The space M◦
U,m(H0) is isomorphic to the group cohomology H1 (

Γ ,D◦
U,m(T0)

)
,

where Γ = Γ1(N (p)) = Γ1(N ) ∩ Γ0(p) (since Y1(N (p))(C) has contractible universal
cover and its fundamental group is Γ1(N ) ∩ Γ0(p)).
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• The spaceM◦
U,m(H0)c is isomorphic to the space of modular symbols

HomΓ

(
Div0(P1

Q),D◦
U,m(T0)

)
.

The same statements hold withH ′
0 and T ′0 in place ofH0 and T0.

Notation 4.4.7 We shall refer toM◦
U,m(H0) andM◦

U,m(H
′
0 ) as étale overconvergent coho-

mology (of weight U , tame level N and degree of overconvergencem).

We now state some properties of these modules:

Proposition 4.4.8 (1) (Compatibility with specialisation) Let �k be the ideal of ΛU
corresponding to the character z �→ zk . For any integer k � 0 ∈ U, there is an
isomorphism

M◦
U,m(H0)/�k ∼= M◦

k,m(H0).

For compactly supported cohomology this is true for k � 1, while for k = 0 we have
an injective map

M◦
U,m(H0)c/�0 ↪→ M◦

0,m(H0)c

whose cokernel has rank 1 overOE, with the Hecke operator Up acting as multiplica-
tion by p. Similar statements hold forH ′

0 in place ofH0.
(2) (Control theorem) For any integer k � 0, the map

Mk,m(H0)
ρk� H1

ét(Y ,TSymk (H )(−k))[1/p]
is an isomorphism on the Up = α eigenspace, for any α of valuation < k + 1. The
same holds for compactly supported and parabolic cohomology, and for H ′

0 and U ′
p

in place ofH0 and Up.
(3) (Duality) There areΛU-bilinear, GQp -equivariant pairings

M◦
U,m(H0)c ×M◦

U,m(H
′
0 ) → ΛU ,

M◦
U,m(H0)×M◦

U,m(H
′
0 )c → ΛU ,

M◦
U,m(H0)par ×M◦

U,m(H
′
0 )par → ΛU ,

which we denote by {−,−}. For integers k � 0 we have

evk
({x, x′}) = {

ρk (x), ρk (x′)
}
k

where evk is evaluation at k, and on the right-hand side {−,−}k signifies the Poincaré
duality pairing.

(4) There is an isomorphism W :M◦
U,m(H0)? → M◦

U,m(H
′
0 )? (where ? ∈ {∅, c, par}),

intertwining the action of the Hecke operators Tn with the T ′n (including n = p); this
is compatible via the maps ρk with the Atkin–Lehner operatorWNp (but not with the
Galois action).

Proof For part (1), see [1, Lemma 3.18]. For compactly supported cohomology see [2,
Theorem 3.10]. (Bellaïche works with coefficients in an affinoid disc, rather than a wide
open disc as we do, but the argument is the same.)
Part (2) is the celebrated Stevens control theorem; see [1, Theorem 3.16] forH1 and [28,

Theorem 1.1] for H1
c .
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For part (3), if we identify Zp(1) with Zp as sheaves on Y (p∞, Np∞) via the section
given by the Weil pairing and our trivialisation of H , then the Iwahori subgroup U0(p)
acts on Zp(1) via the determinant character, and hence our pairing of U0(p)-modules
D◦U,m(H0)× D◦U,m(H ′

0 )→ ΛU gives a pairing of étale pro-sheaves on Y

DU,m(H0)×DU,m(H0)→ ΛU (κU ),

where κU is the composite of the cyclotomic character with the canonical mapZ×p → Λ×U .
Hence we have a cup-product pairing

H1
c (Y ,DU,m(H0)(1))×H1 (

Y ,DU,m(H ′
0 )(1)

) → H2
c

(
Y ,ΛU (2+ κU )

)
,

and since there is a canonical isomorphism H2
c (Y ,Zp(1)) ∼= Zp, this gives a pairing into

ΛU (1+κU ) as claimed. It is clear by construction that this is compatible with the Poincaré
duality pairings with TSymk coefficients for each k � 0.
Part (4) follows from the fact that the action of the matrix

(
0 −1
Np 0

)
on H interchanges

T0 and T ′0. 
�
Remark 4.4.9 The pairing {−,−} (in any of its various incarnations) is far from perfect
(since its specialisation at a classical weight k � 0 factors through the maps ρk , so any
non-classical eigenclass of weight k must be in its kernel). Nonetheless, we shall see below
that it induces a perfect pairing on small slope parts.

4.5 Slope decompositions

As before, let U be a wide open disc contained in Wm, for some m. Let BU = ΛU [1/p],
and letM be one of the BU -modulesMU,m(H0)?, for ? ∈ {∅, c, par}, and let λ ∈ R�0.

Definition 4.5.1 We say M has a slope � λ decomposition if we can write it as a direct
sum of BU -modules

M = M(�λ) ⊕M(>λ),

where the following conditions are satisfied:

• the action of the Hecke operator Up preserves the two summands;
• the moduleM(�λ)

U is finitely generated over BU ;
• the restrictions ofUp toM(�λ)

U andM(>λ)
U have slope� λ and slope> λ, respectively.

Remark 4.5.2 There are several equivalent definitions of slope � λ, see [1] for further
discussion. We shall use the following formulation: the endomorphism Up of M(�λ)

U is
invertible, and the sequence of endomorphisms

(
p
nλ� · (Up)−n

)
n�0 is bounded in the

operator norm.

Note that the summands M(�λ) and M(>λ) must be stable under the actions of the
prime-to-p Hecke operators, and of the Galois group GQ , since these commute with the
action of Up.

Theorem 4.5.3 ([1, Theorem 3.17]) Let k � 0 and 0 � λ < k + 1. Then there exists an
open disc U � k in W , defined over E, such that the module MU,0(H0) has a slope � λ

decomposition.

The same results holdmutatis mutandis forM = MU,0(H ′
0 ), using the Hecke operator

U ′
p in place of Up; this follows directly from the previous statement using the isomor-
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phism between the twomodules provided by the Atkin–Lehner involution. There are also
corresponding statements for compactly supported and parabolic cohomology.

4.6 Coleman families

A considerably finer statement is possible if we restrict to a “neighbourhood” of a classical
modular form. We make the following definition:

Definition 4.6.1 LetU ⊆W be an open disc such that the classical weightsU ∩Z�0 are
dense in U . A Coleman family F over U (of tame level N ) is a power series

F =
∑
n�1

an(F )qn ∈ ΛU [[q]],

with a1(F ) = 1 and ap(F ) invertible in BU , such that for all but finitely many classical
weights k ∈ U ∩ Z�0, the series Fk =

∑
n�1 an(F )(k) ∈ OE[[q]] is the q-expansion of

a classical modular form of weight k + 2 and level Γ1(N ) ∩ Γ0(p) which is a normalised
eigenform for the Hecke operators.

Remark 4.6.2 This definition is somewhat crude, since for a more satisfying theory one
should also consider more general classical weights of the form z �→ zkχ (z) for χ of finite
order and allow families indexed by a finite flat rigid-analytic cover of U rather than by
U itself. This leads to the construction of the eigencurve. However, the above definition
will suffice for our purposes, since we are only interested in small neighbourhoods in the
eigencurve around a classical point.

Definition 4.6.3 A noble eigenform of tame levelN is a normalised cuspidal Hecke eigen-
form fα of level Γ1(N ) ∩ Γ0(p) and some weight k + 2 � 2, with coefficients in E, having
Up-eigenvalue α = ap(fα), such that:

• fα is a p-stabilisation of a newform f of levelN whoseHecke polynomialX2−ap(f )X+
pk+1εf (p) has distinct roots (“p-regularity”);

• if vp(α) = k + 1, then the Galois representationME(f )|GQp is not a direct sum of two
characters (“non-criticality”).

Theorem 4.6.4 Suppose fα is a noble eigenform of weight k0 + 2. Then there exists a disc
U � k0 inW , and a unique Coleman family F over U, such that Fk0 = fα .

Proof This follows from the fact that the Coleman–Mazur–Buzzard eigencurve C (N ) of
tame level N is étale overW (and, in particular, smooth) at the point corresponding to a
noble eigenform fα . See [2].

Remark 4.6.5 As remarked in [14], the condition that the Hecke polynomial of f has
distinct roots is conjectured to be redundant, and known to be so when f has weight 2,
and it is also conjectured that the only newforms f of weight �2 such that ME(f )|GQp

splits as a direct sum are those which are of CM type with p split in the CM field.

Theorem 4.6.6 Let fα be a noble eigenform, and F the Coleman family passing through
fα . If the disc U � k0 is sufficiently small, then:
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• The module

MU (F ) := MU,0(H0)
[
Tn = an(F ) ∀n � 1

]

is a direct summand of MU,0(H0) as a BU-module, free of rank 2 over BU , and lifts
canonically to MU,0(H0)c.

• The same is true of the module

MU (F )∗ := MU,0(H ′
0 )

[
T ′n = an(F ) ∀n � 1

]
.

• The pairing {−,−} induces an isomorphism of BU [GQp ]-modules

MU (F )∗ ∼= HomBU (MU (F ), BU ).

• For each k � 0 ∈ U, the form Fk is a classical eigenform, and we have isomorphisms
of E-linear GQp -representations

MU (F )/�kMU (F ) = ME(Fk ) and MU (F )∗/�kMU (F )∗ = ME(Fk )∗.

Proof The finite-slope parts of all the various overconvergent cohomology groups can
be glued into coherent sheaves on the eigencurve C (N ). In a neighbourhood of a noble
point, the eigencurve is étale over weight space and these sheaves are all locally free of
rank 2, and the map fromH1

c toH1 is an isomorphism at the noble point, so it must be an
isomorphism on some neighbourhood of it. See [14, Proposition 2.3.5] for further details.


�

4.7 Weight one forms

If f is a cuspidal newform of level N and weight 1, and fα is a p-stabilisation of f , then it is
always the case that vp(α) = k0+ 1 = 0 andME(f )|GQp splits as a direct sum (sinceME(f )
is an Artin representation). Nonetheless, analogues of Theorems 4.6.4 and 4.6.6 do hold
for these forms.

Notation 4.7.1 We say that f has real multiplication by a real quadratic field K if there is
a Hecke character ψ of K such thatME(f ) ∼= IndGQ

GK
(ψ).

Theorem 4.7.2 Let fα be a p-stabilisation of a p-regular weight 1 eigenform.

(1) There is an open disc U � −1 in W , a finite flat rigid-analytic covering Ũ κ� U
unramified away from −1 and totally ramified at −1, and a family of eigenforms
F ∈ BŨ [[q]], whose specialisation at κ−1(−1) is fα . We may take Ũ = U if (and only
if) f does not have real multiplication by a quadratic field in which p is split.

(2) The module

MŨ (F ) = (
κ∗MU,0(H0)

)
[Tn = an(F )∀n � 1]

is a direct summand of κ∗MU,0(H0), free of rank 2 as a BŨ -module, and lifts canoni-
cally to κ∗MU,0(H0)c.

(3) The same is true of

MŨ (F )∗ = (
κ∗MU,0(H ′

0 )
) [
T ′n = an(F )∀n � 1

]
,

and the pairing {−,−} induces an isomorphism MŨ (F )∗ ∼= HomBŨ (MŨ (F ), BŨ ).
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Proof Part (1) is exactly the statement that the eigencurve is smooth at the point corre-
sponding to fα , and is étale over weight space except in the real-multiplication setting, see
[3].
Part (2) for compactly supported cohomology is an instance of [2, Proposition 4.3].

However, the kernel and cokernel of the mapMU,0(H0)c → MU,0(H0) are supported on
the Eisenstein component of the eigencurve, and since fα is a smooth point on the cuspidal
eigencurveC 0(N ) ⊂ C (N ), it does not lie on the Eisenstein component. Hence the kernel
and cokernel localise to 0 at fα , implying that for small enough U the F-eigenspaces of
MU (H0)c andMU (H0) coincide.
For part (3)we use the fact that theOhta pairings induce perfect dualities on the ordinary

parts of the modulesMU (H0)c andMU (H ′
0 ) (cf. [26]). 
�

Remark 4.7.3 Parts (1) and (2) of Theorem 4.7.2 also hold for non-noble points of weight
�2 corresponding to the critical p-stabilisations of ordinary CM forms, by [2, Proposi-
tion 4.5]. However, we do not know if part (3) holds in this situation.

5 Rankin–Eisenstein classes in Coleman families
5.1 Coefficient modules

LetH be a group isomorphic toZ2
p (but not necessarily canonically so), for p an odd prime.

Then we can regard the modules TSymr H as representations of Aut(H ) ≈ GL2(Zp).
In this section, we shall show that the Clebsch–Gordan decompositions of the groups
TSymr H ⊗TSyms H can themselves be interpolated as r varies (for fixed s), after passing
to a suitable completion.
In this section we shall refer to morphisms as natural if they are functorial with respect

to automorphisms of H .

Proposition 5.1.1 For A an open compact subset of H such that A ∩ pH = ∅, and any
r � 1, there is a short exact sequence

0 � C(A)⊗ Symj−1(H∨)⊗∧2(H∨) α� C(A)⊗ Symj H∨ β� C(A) � 0

where C(A) is the space of continuousOE-valued functions on A. This short exact sequence
is natural, and split (but not naturally split).

Proof Let us begin by defining the maps. The map β , which is the simpler of the two, is
given by interpreting Symj H∨ as a subspace ofC(A) (consisting of functionswhich are the
restrictions to A of homogenous polynomial functions on H of degree j) and composing
with the multiplication map C(A)⊗ C(A)→ C(A).
The map α is more intricate: it is given by including

∧2(H∨) inH∨⊗H∨, and grouping
the terms as

(C(A)⊗H∨)⊗ (Symj−1(H∨)⊗H∨).

As above, we have a canonical multiplication map C(A)⊗H∨ → H∨, and multiplication
in the symmetric algebra Sym•(H∨) gives a map Symj−1(H∨) ⊗ H∨ → Symj H∨, and
this gives the first map in the sequence. The composite β ◦ α is clearly 0, since it factors
through the map ∧2H∨ → Sym2H∨.
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Having defined the maps intrinsically, we may check the exactness of the sequence
after fixing a basis of H . Let x, y be the corresponding coordinate functions, so that
xj, xj−1y, . . . , yj is a basis of Symj H∨ and x ⊗ y − y ⊗ x is a basis of ∧2H∨. With these
identifications we can write the sequence as

0 � C(A)⊕j � C(A)⊕(j+1) � C(A) � 0

with the maps being (f0, . . . , fj−1) �→ (−yf0, xf0 − yf1, . . . , xfj−1) and (f0, . . . , fj) �→ xjf0 +
· · · + yjfj . The injectivity of α is now clear, since multiplication by x (or by y) is injective
in C(A).
To show that the map β is surjective, we write down a (non-canonical) section. We can

decompose A as a union A1 �A2 where x is invertible on A1 and y is invertible on A2. We
define δ(f ) = (x−j f, 0, . . . , 0) onC(A1) and δ(f ) = (0, . . . , 0, y−j f ) on theC(A2) factor; then
β ◦ δ is clearly the identity, so β is surjective.
Finally, let (f0, . . . , fj) ∈ ker(β). Choosing A = A1 � A2 as before, we may assume either

x or y is invertible on A. We treat the first case, the second being similar. We define
γ (f1, . . . , fj) = (g0, . . . , gj−1) where gj−1 = x−1fj , gj−2 = x−2(xfj−1 + yfj), etc., down to
g0 = x−j(xj−1f1 + · · · + yj−1fj). But then (α ◦ γ ) + (β ◦ δ) = id, so we have exactness at
the middle term. 
�

Now let C la(A) denote the space of locally analytic E-valued functions on A; exactly the
same argument shows that we have an exact sequence analogous to (5.1.1),

0 � C la(A)⊗ Symj−1(H∨)⊗∧2(H∨) α� C la(A)⊗ Symj H∨ β� C la(A) � 0.

Proposition 5.1.2 Let δ:C la(A)→ C la(A)⊗ Symj H∨ be the morphism defined in a basis
by

δ(f ) = 1
j!

∑
s+t=j

(
j
s

)
∂ j f

∂xs∂yt
⊗ xsyt . (5.1.1)

Then δ is natural, and the composite β ◦ δ is the endomorphism of C la(A) given by
1
j!

∏j−1
i=0(∇ − i), where ∇ is given by

(∇f )(h) = d
dt

f (th)
∣∣∣∣
t=1

.

Proof The morphism δ is simply 1
j! times the jth power of the total derivative map

C la(A) → C la(A) ⊗ Tan(A)∗, combined with the identification Tan(A) ∼= Tan(H ) ∼= H .
From this description the naturality is clear, and a computation shows that it agrees with
themore concrete description above. The identity for β ◦δ is easily seen by induction on j.


�

It will be convenient to adopt the notation
(∇
j
)
for the endomorphism 1

j!
∏j−1

i=0(∇ − i).
We may regard this as an element of the space Dla(Z×p ) of locally analytic distributions
on Z×p .

Proposition 5.1.3 For any k � j, the restriction of δ to the space Symk H∨ of homogenous
polynomials of degree k lands in the subspace

Symk−j H∨ ⊗ Symj H∨ ⊂ C la(A)⊗ Symj H∨,



Loeffler and Zerbes Res Math Sci (2016) 3:29 Page 32 of 53

and the resulting map Symk H∨ → Symk−j H∨ ⊗ Symj H∨ is the dual of the symmetrised
tensor product map TSymk−j H ⊗ TSymj H → TSymk H.
If k < j, then the restriction of δ to Symk H∨ is the zero map.

Proof It is obvious that Symk H∨ embeds naturally into C la(A), and its image under δ
is contained in Symk−j H∨ ⊗ Symj H∨. A straightforward computation in coordinates
shows that this map sends xayb to

∑
s+t=j

(a
s
)(b

t
) (
xa−syb−t ⊗ xsyt

)
, which coincides with

the dual of the symmetrised tensor product.
On the other hand it is obvious from Eq. (5.1.1) that δ vanishes on any polynomial of

total degree < j. 
�

Corollary 5.1.4 There are natural maps

δ∗:Dla(A)⊗ TSymj(H )→ Dla(A)

and

β∗:Dla(A)→ Dla(A)⊗ TSymj(H ),

where β∗ is given on group elements by [h] �→ [h]⊗ h[j], and δ∗ satisfies

δ∗ ◦ β∗ =
(∇
j

)
.

Moreover, for any k � 0 we have

momk ◦ δ∗ =
⎧⎨
⎩
0 if k < j,

momk−j ·1 if k � j,

wheremomk−j ·1 denotes the composition

Dla(A)⊗ TSymj(H ) momk−j ⊗1� TSymk−j H ⊗ TSymj H � TSymk H

(where the second map is the symmetrised tensor product).

Proof This follows by dualising the previous proposition. 
�

We now consider varying j, for which it is convenient to re-label the maps β∗, δ∗ above
as β∗j and δ∗j .

Lemma 5.1.5 Let h � j � 0. Then the composition

Dla(A)⊗ TSymj(H )
β∗h−j⊗id� Dla(A)⊗ TSymh−j H ⊗ TSymj H
� Dla(A)⊗ TSymh H
δ∗h� Dla(A),

where the unlabelled arrow is given by the symmetrised tensor product, is given by
(∇ − j
h− j

)
δ∗j .

Proof Explicit computation. 
�
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5.2 Nearly overconvergent étale cohomology

Wealsohave ananalogueof theClebsch–Gordanmap for thedistribution spacesD◦U,m(T ′0)
introduced above, which are completions of Dla(T ′0). The rigid space W has a group
structure, so we can make sense of U − j for any integer j.

Proposition 5.2.1 There are natural maps

β∗j :D◦U,m(T ′0)→ D◦U−j,m(T ′0)⊗ TSymj H

and

δ∗j :D◦U−j,m(T ′0)⊗ TSymj H → DU,m(T ′0),

commuting with the action ofΣ0(p), such that δ∗j ◦ β∗j is multiplication by
(∇
j
) ∈ ΛU [1/p].

Proof We simply transport the constructions of Sect. 5.1 to the present setting (taking
A = T ′0). The naturality of these constructions precisely translates into the assertion
that the resulting maps commute with the Σ0(p)-action. Since the functions in AU,m are
homogenous of weight κU (the canonical character Z×p → Λ×U ), we have

d
dt f (th)|t=1 =

∇ · f (h) for all f ∈ AU,m, where on the right-hand side ∇ is regarded as an element of
ΛU [1/p]; that is, the two actions of∇ onAU,m, as a differential operator and as an element
of the coefficient ring, coincide. 
�

Remark 5.2.2 Note that δ∗j takes values in DU,m = D◦U,m[1/p], not in D◦U,m itself; the
denominator arises from the fact that themap δj onA◦U,m does not preserve theΛU -lattice
A◦U,m, but rather mapsA◦U,m to 1

j!p1+mA
◦
U,m. Note also that ifU ⊂W0 andU contains none

of the integers {0, . . . , j − 1}, then (∇
j
)
is invertible inΛU [1/p].

The maps of spaces β∗j and δ∗j induce maps of étale sheaves on Y = Y1(N (p)) (for any
N ),D◦

U,m(H
′
0 )→ D◦

U−j,m(H ′
0 )⊗TSymj H andD◦

U−j,m(H ′
0 )⊗TSymj H → DU,m(H ′

0 ),
which we denote by the same symbols.

Definition 5.2.3 We shall refer to the cohomology groups H ∗́
et(Y ,DU−j,m(H ′

0 ) ⊗
TSymj H ) as nearly overconvergent étale cohomology, and the map

δ∗j :H ∗́
et

(
Y ,DU−j,m(H ′

0 )⊗ TSymj H
)
→ H ∗́

et
(
Y ,DU,m(H ′

0 )
)

as the overconvergent projector.

Remark 5.2.4 The motivation for this terminology is that the sheaves DU−j,m(H ′
0 ) ⊗

TSymj H , and the maps β∗j and δ∗j relating them to the overconvergent cohomology
sheavesDU,m(H ′

0 ), are an étale analogue of the coherent sheaves appearing in the theory
of nearly overconvergent p-adic modular forms (see [32]).

Recall from Corollary 5.1.4 that the composite of δ∗j with the moment map ρk is zero
if 0 � k < j, which is somewhat undesirable. We can rectify this issue as follows. Recall
that we have definedMU (H ′

0 ) = H1
ét(Y ,DU,m(H ′

0 )(1)).

Proposition 5.2.5 Let U be an open disc contained in W0, and F a Coleman family
defined over U. Suppose the following condition is satisfied: for any integer weight k � 0 in
U, the projection map Mk (H ′

0 )→ Mk (F )∗ factors through ρk .
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Then, for any j � 0, the composite map

H1(Y ,DU−j(H ′
0 )⊗ TSymj(H )(1))

δ∗j� MU (H ′
0 )

prF� MU (F )∗

takes values in ∇(∇ − 1) . . . (∇ − j + 1)MU (F )∗, and hence the map

pr[j]F = 1(∇
j
) prF ◦ δ∗j :H1

(
Y ,DU−j(H ′

0 )⊗ TSymj(H )(1)
)
→ MU (F )∗

is well defined.

Proof Note that ∇ , regarded as a rigid-analytic function on W , takes the value k at an
integer weight k . So the only points in W0 at which ∇(∇ − 1) . . . (∇ − j + 1) fails to be
invertible are the positive integers {0, . . . , j − 1}, and it has simple zeroes at all of these
points.
If k is one of these integers, then we have MU (H ′

0 )/(∇ − k)MU (H ′
0 ) = Mk (H ′

0 ).
Hence it suffices to show that prF ◦δ∗j is zero onMk (H ′

0 ), but this is immediate since the
specialisation of prF at k factors through ρk , and ρk ◦ δ∗j is zero for 0 � k < j.
This shows that prF ◦δ∗j lands in the stated submodule. SinceMU (F )∗ is a freeΛU [1/p]-

module (andΛU [1/p] is an integral domain), the map pr[j]F is therefore well defined. 
�

Remark 5.2.6 This proposition can be interpreted as follows: we can renormalise δ∗j to be
an inverse to β∗j , as long as we avoid points on the eigencurve which are non-classical but
have classical weights.

By construction, the map pr[j]F has the property that the following diagram commutes:
H1(Y ,DU (H ′

0 )(1))

H1(Y ,DU−j(H ′
0 )⊗ TSymj(H )(1))

β∗j
�

pr[j]F
� MU (F )∗.

prF

�

More generally, if 0 � j � h, then (as in Lemma 5.1.5) we can consider β∗h−j · id as a map

DU−j(H ′
0 )⊗ TSym[j](H )→ DU−h(H ′

0 )⊗ TSym[h](H ),

and from Lemma 5.1.5 one computes that

pr[h]F ◦ (β∗h−j · id) =
(
h
j

)
pr[j]F . (5.2.1)

5.3 Two-parameter families of Beilinson–Flach elements

Let N1, N2 be integers such that p � Ni and pN1, pN2 � 4. We also choose two wide open
discs U1 and U2 inW0, and consider the sheaf

D◦
[U1 ,U2] := D◦

U1 (H
′
0 ) � D◦

U2 (H
′
0 )

on the affine surface Y1(N1(p))× Y1(N2(p)).

Definition 5.3.1 Let N be any integer divisible by N1 and N2 and with the same prime
factors as N1N2. For any j � 0 andm � 1, we define the element

cBF [U1 ,U2 ,j]
m,N1 ,N2 ,a ∈ H3

ét

(
Y1(N1(p))× Y1(N2(p))× μ◦m,D◦

[U1 ,U2](2− j)
)
[1/p]
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as the image of the class

cBF [j]
m,Np,a ∈ H3

ét

(
Y1(Np)2 × μ◦m, (Λ(H 〈C〉)⊗ TSymj H )�2(2− j)

)
,

under pushforward along Y1(Np)2 → Y1(N1(p)) × Y1(N2(p)), composed with the map
induced by the morphisms of sheaves

Λ(H 〈C〉)⊗ TSymj H � D◦
Ui−j(H )⊗ TSymj H

δ∗j� D◦
Ui (H )[1/p]

for i = 1, 2. Here, the first map is given by the natural maps Λ(H 〈C〉) → D◦
U , for

U = Ui − j, and the second map is the overconvergent projector δ∗j of Proposition 5.2.1.

Remark 5.3.2 We are using implicitly here the fact that the Beilinson–Flach elements can
be lifted canonically to classes with coefficients in the sheaves Λ(HZp〈D′〉). Cf. Remark
3.3.6 above.

The Hochschild–Serre spectral sequence and the Künneth formula give a canonical
surjection

H3
ét

(
Y1(N1(p))× Y1(N2(p))× μ◦m,D◦

[U1 ,U2](2− j)
)
[1/p]

→ H1
ét

(
Z[1/mN1N2p,μm],MU1 ⊗̂MU2 (−j)

)
,

and we (abusively) denote the image of cBF [U1 ,U2 ,j]
m,N1 ,N2 ,a under this map by the same symbol.

Proposition 5.3.3 For any integer weights k1 ∈ U1 and k2 ∈ U2 withmin(k1, k2) � j, the
map

ρk1 � ρk2 :D[U1 ,U2] → TSymk1 H ⊗ TSymk2 H

sends cBF [U1 ,U2 ,j]
m,N1 ,N2 ,a to the pushforward of cBF [k,k ′ ,j]

m,Np,a. On the other hand, if 0 � k1 < j or
0 � k2 < j, then the image of cBF [U1 ,U2 ,j]

m,N1 ,N2 ,a under ρk1 � ρk2 is zero.

Proof This follows from the last statement of 5.1.4, since cBF [k,k ′ ,j]
m,Np,a is by definition the

image of cBF [j]
m,Np,a under the map (momk−j · id) � (momk ′−j · id). 
�

Now let us choose newforms f, g , of levels N1, N2 and weights k1 + 2, k2 + 2 � 2, and
roots α1,α2 of their Hecke polynomials, such that the p-stabilisations fi,αi both satisfy
the hypotheses of Theorem 4.6.6. The theorem then gives us families of overconvergent
eigenformsF1,F2 passing through the p-stabilisations of f and g , defined over some discs
U1 � k1, U2 � k2.

Proposition 5.3.4 If the discs Ui are sufficiently small, then there exist classes

cBF [F ,G,j]
m,a ∈ H1

(
Z

[
μm, 1

mpN1N2

]
,MU1 (F )∗ ⊗̂MU2 (G)∗(−j)

)

such that

(prF × prG)
(
cBF [U1 ,U2 ,j]

m,a
)
=

(∇1
j

)(∇2
j

)
cBF [F ,G,j]

m,a ,

where ∇i denotes the image of ∇ inΛUi [1/p].
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Proof After shrinking the discsUi if necessary so that all integer-weight specialisations of
F and G are classical, so that Proposition 5.2.5 applies, we can simply define cBF [F ,G,j]

m,a as
the image of cBF [j]

m,a under pr
[j]
F × pr[j]G . 
�

5.4 Interpolation in j

Now let F ,G be Coleman families over open discs U1, U2, satisfying the conditions of
Proposition 5.3.4.

Proposition 5.4.1 For any h � 0, and any a, there is a constant C independent of r such
that the elements cBF [F ,G,j]

mpr ,a , for 0 � j � h and r � 1, satisfy the following norm bound:
∥∥∥∥∥∥

h∑
j=0

(−1)j
(
h
j

)
Resp

∞
pr

(
1

(−a)j j! · cBF
[F ,G,j]
mpr ,a

)∥∥∥∥∥∥
� Cp−hr .

Proof We shall deduce this from Theorem 3.3.5 (and Remark 3.3.6). This theorem gives
a bound for the classes

h∑
j=0

ah−j(h− j)!(1⊗momh−j)�2 Resp
∞

pr
(
cBF [j]

mpr ,Np,a

)
.

We apply to this themap pr[h]F �pr[h]G . Thismaps (1⊗momh−j)�2cBF [j] to
(h
j
)2

cBF [F ,G,j]
mpr ,a ,

by (5.2.1). So the image of the expression of Theorem 3.3.5 is
h∑

j=0
ah−j(h− j)!

(
h
j

)2
Resp

∞
pr

(
cBF [F ,G,j]

mpr ,a

)
,

which is exactly ahh! times the quantity in the proposition.Wemay ignore the factor ahh!,
since it is nonzero and independent of r. 
�
We now choose affinoid discs Vi contained in the Ui (so theMVi (Fi)∗ become Banach

spaces).

Theorem 5.4.2 There is a element

cBF [F ,G]
m,a ∈ H1 (

Q(μm), Dλ1+λ2 (Γ ,MV1 (F )∗ ⊗̂MV2 (G)∗)
)

which enjoys the following interpolating property: for any integers (k1, k2, j) with ki ∈ Vi
and 0 � j � min(k, k ′), the image of cBF [F ,G]

m,a at (k1, k2, j) is

(
1− pj

ap(Fk1 )ap(Gk2 )

)
cBF [Fk1 ,Gk2 ,j]

m,a

(−a)j j!(k1j
)(k2

j
) .

Proof We choose an integer h � 
λ1+λ2�, and apply Proposition 2.3.3 with K = Q(μm),
S the set of primes dividing pmN1N2, A = O(V1 × V2), M = MV1 (F )∗ ⊗̂MV2 (G)∗,
λ = λ1 + λ2, and

xn,j = (ap(F )ap(G))−n · c
BF [F ,G,j]

mpn,a

(−a)j j!
for 0 � j � h and n � 1. These xn,j are norm-compatible for n � 1, and we obtain
norm-compatible elements for all n � 0 by defining

x0,j := coresQ(μp)/Q
(
x1,j

) =
(
1− pj

ap(F )ap(G)
)

cBF [F ,G,j]
m,a

(−a)j j! .



Loeffler and Zerbes Res Math Sci (2016) 3:29 Page 37 of 53

Moreover, the bound we have just established in Proposition 5.4.1 shows that∥∥∥p−nh ∑h
j=0(−1)j

(h
j
)
xn,j

∥∥∥ � Cpλn, which is exactly the growth bound required for Propo-
sition 2.3.3. It is not difficult to see that H0(Q∞,MV1 (F )∗ ⊗̂MV2 (G)∗) = 0, so we obtain
a class

x[h] ∈ H1 (
Q(μm), Dλ1+λ2 (Γ ,MV1 (F )∗ ⊗̂MV2 (G)∗)

)

interpolating the classes xn,j for all n � 0 and all j ∈ {0, . . . , h}. However, if we have two
integers h′ � h � 
λ1 + λ2�, then the element x[h′] satisfies an interpolating property
strictly stronger than that of x[h], so we deduce that x[h] is in fact independent of h and
interpolates xn,j for all j � 0. We define cBF [F ,G]

m,a to be this element. The interpolat-
ing property is now immediate from the interpolating property of the 2-variable classes
cBF [F ,G,j]

m,a at integers k1, k2 � j. 
�

6 Phi–Gammamodules and triangulations
6.1 Phi–Gammamodules in families

LetR denote2 the Robba ring (ofQp), which is the ring of formal Laurent series overQp
in a variable π , convergent on some annulus of the form {x: 0 < vp(x) < ε} ⊆ A1

rig, and let
R+ ⊆ Qp[[π ]] be its subring of elements that are analytic on the whole disc {x: vp(x) > 0}.
We endow thesewith their usual actions of Frobenius ϕ and the groupΓ ∼= Z×p .We define
a left inverse ψ of ϕ by putting

ϕ ◦ ψ f (π ) = 1
p

∑
ζ p=1

f (ζ (π + 1)− 1)

for any f (π ) ∈ R+.
As iswell known, there is a functorD†

rig mappingp-adic representations ofGQp to (ϕ,Γ )-
modules overR (finitely generated freeR-modules with commutingR-semilinear oper-
ators ϕ and Γ ), and this is a fully faithful functor whose essential image is the subcategory
of (ϕ,Γ )-modules of slope 0.

Remark 6.1.1 Strictly speaking, the definition of the functorD†
rig depends on the auxiliary

choice of a compatible system of p-power roots of unity (ζpn )n�0 inQp. We shall fix, once
and for all, such a choice, and in applications to global problems we shall often assume
that ζpn corresponds to e2π i/pn ∈ C.

Now let A be a reduced affinoid algebra over Qp, and write RA = R ⊗̂A and simi-
larly forR+

A . We define an A-representation of GQp to be a finitely generated locally free
A-module endowedwith anA-linear action ofGQp (continuous with respect to the canon-
ical Banach topology ofM).

Theorem 6.1.2 (Berger–Colmez [4]) For any A-representation M of GQp , we may define
a finite locally freeRA-module D†rig(V ), endowed with semilinear continuous actions of ϕ
and �, such that

D†
rig(Vx) ∼= D†

rig(V )/mx

for every x ∈Max(A).

2The ringsR andR+ are often also denoted by B†rig,Qp
and B+rig,Qp

, respectively; this notation is used in several earlier
works of the present authors.
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Definition 6.1.3 If D is a (ϕ,Γ )-module over RA, we define cohomology groups
Hi(Qp, D) as the cohomology of the “Herr complex”

C(ϕ,γ )(D) := D

(
ϕ−1
γ−1

)
� D⊕ D (1−ϕ,γ−1)� D

and analytic Iwasawa cohomology Hi
Iw(Qp,∞, D) as the cohomology of the complex

Cψ (D) := 0 � D ψ−1� D.

These groups are compatible with the usual Galois cohomology in the sense that if M
is a A-representation of GQp , then we have Hi(Qp,D†

rig(M)) = Hi(Qp, V ) and

Hi
Iw(Qp,∞,D†

rig(M)) = Dla(Γ ,Qp) ⊗̂
D0(Γ ,Qp)

(
lim←−n

Hi(Qp,n, T )
)
,

where T is the unit ball for any GQp-invariant Banach module norm onM, by [16, Corol-
lary 4.4.11].

Corollary 6.1.4 For M an A-representation of GQp , we have a canonical isomorphism

H1
Iw(Qp,∞,D†

rig(M)) ∼= H1
(
Qp, Dla(Γ ,M)

)
.

In particular there is a canonical map

H1(Qp, Dλ(Γ ,M))→ H1
Iw(D)

compatible with the natural maps to H1(Qp,M(η)) for every character η of Γ .

Proof Let us choose an increasing sequence of affinoid discs Xn ⊆W whose union isW .
Since we have Dla(Γ ,Qp) = O(W) = lim←−nO(Xn), we can regard Dla(Γ ,M) as a locally
free sheaf of GQp-representations onW ×MaxA, and we deduce that

H1(Qp, Dla(Γ ,M)) = lim←−n
H1(Qp,O(Xn) ⊗̂M),

by [29, Theorem 1.7]. For each n, Xn ×MaxA is an affinoid space, so we obtain

H1(Qp,O(Xn) ⊗̂M) = H1
(
Qp,D†

rig(O(Xn) ⊗̂M)
)
,

by [29, Proposition 2.7]. Finally, the inverse limit of the modules D†
rig(O(Xn) ⊗̂M) is the

module Dfm(D†
rig(M)) considered in [16, Theorem 4.4.8], where it is shown that

H1(Qp,Dfm(D)) = H1
Iw(Qp,∞, D)

for any (ϕ,Γ )-module D overRA. 
�
Finally, if the base A is a finite field extension of Qp, then the functors Dcris(−) and

DdR(−) can be extended from A-linear representations of GQp to the larger category of
(ϕ,Γ )-modules overRA, and one has the following fact:

Theorem 6.1.5 (Nakamura, see [24]) If A is a finite extension ofQp, there exist Bloch–Kato
exponential and dual-exponential maps

expQp,D :DdR(D)→ H1(Qp, D)

and

exp∗Qp,D∗(1) :H
1(Qp, D)→ DdR(D)
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for de Rham (ϕ,Γ )-modules D overRA, which are functorial in D and are compatible with
the usual definitions when D = D†

rig(V ) for a de Rham representation V .

6.2 Perrin-Riou logarithms in families

Throughout this section,A denotes a reduced affinoid algebra, with supremum norm ‖ ·‖,
and α ∈ A×.

Definition 6.2.1 We write RA(α−1) for the free rank 1 (ϕ,Γ )-module over RA with
basis vector e such that ϕ(e) = α−1e and γ e = e for all γ ∈ Γ . We writeR+

A (α
−1) for the

submoduleR+
A · e ofRA(α−1).

Lemma 6.2.2 Suppose ‖α‖ � 1 and α − 1 is not a zero-divisor in A. Then

RA(α−1)ψ=1 ⊆ R+
A (α

−1).

Proof This follows from Lemma 1.11 of [12]. Cf. [14, §4.1]. 
�
We use this lemma to define a Perrin-Riou big logarithm map forRA(α−1) when α − 1

is not a zero-divisor, following closely the construction in [14, §4.2], as the composition

LRA(α−1):H
1
Iw(Qp,∞,RA(α−1)) = RA(α−1)ψ=1

∼=� R+
A (α

−1)ψ=1

1−ϕ� R+
A (α

−1)ψ=0

M� A ⊗̂O(W)

(6.2.1)

where the third arrow is the base extension to A of the Mellin transform (and W is
weight space). Note that our assumption that α − 1 is not a zero-divisor in A implies that
RA(α−1)ϕ=1 = 0, and hence that LRA(α−1) is injective.

6.3 Triangulations

Definition 6.3.1 Let D be a (ϕ,Γ )-module overR ⊗̂A which is locally free of rank 2. A
triangulation of D is a short exact sequence of (ϕ,Γ )-modules overR ⊗̂A,

0→ F+D→ D→ F−D→ 0,

where the modulesF±D are locally free of rank 1 overR ⊗̂A.

Theorem 6.3.2 (Ruochuan Liu, [21]) Let (f,α) be as in Theorem 4.6.6. Then one can find
an affinoid disc V ⊂W containing k such that the (ϕ,Γ )-module

DV (F )∗ := D†
rig(MV (F )∗)

over O(V ) admits a canonical triangulation, with F−DV (F )∗ ∼= RA(α−1F ) and
F+DV (F )∗ ∼= RA(αF · εF (p)−1)(1+ κV ).

6.4 Eichler–Shimura isomorphisms

The last technical ingredient needed to proceed to the proof of our explicit reciprocity
law is the following:

Theorem 6.4.1 (Eichler–Shimura relation in families) In the setting of Theorem 6.3.2,
after possibly shrinking V , there is a canonicalO(V )-basis vector

ωF ∈
(
F−DV (F )(1+ κV + ε

(p)
F )

)Γ=1
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such that for every integer weight t � 0 in V , the specialisation of ωF at t coincides with
the image of the differential form ωft attached to the normalised eigenform ft .

This is a minor modification of results of Ruochuan Liu (in preparation); we outline the
proof below. The starting point is the following theorem:

Theorem 6.4.2 (Andreatta–Iovita–Stevens, [1])For any integer k0 � 0, and realλ < k0+
1, we can find an open disc V ⊂W containing k0 and a Hecke-equivariant isomorphism

H0(X(w),ω†,κV+2V )�λ compV
∼=
�

(
H1
ét(Y,D◦

V,m(1))
�h ⊗̂Cp

)GQp

interpolating Faltings’ Hodge–Tate comparison isomorphisms for each k ∈ V . Here X(w)
is a rigid-analytic neighbourhood of the component of ∞ in the ordinary locus of the
compactification X of Y , and ω†,κV+2V is a certain sheaf of O(V )-modules on X(w), whose
specialisation at any integer k � 0 ∈ V is the (k+2)th power of the Hodge bundle for every
k ∈ V .

Proof of Theorem 6.4.1 Wetranslate the statement of the above theorem into the language
of (ϕ,Γ )-modules. For any family of GQp-representations M over an affinoid algebra A,
we have a canonical isomorphism

(
M ⊗̂

Qp
Cp

)GQp
∼= DSen(M)Γ ,

where DSen(M) is defined in terms of the (ϕ,Γ )-module D†
rig(M).

Moreover, DSen
(
F+DV (F )(1+ κV )

)Γ is zero. Hence, by composing compV with the
projection toF−, we have an isomorphism

H0(X(w),ωκV+2V )[F ]
∼=� DSen

(
F−DV (F )(1+ κV )

)Γ .

The left-hand side is free of rank 1, spanned by τ ·F where τ is the Gauss sum of ε(p)F . On
the other hand, since the (ϕ,Γ )-moduleD− = F−DV (F )(1+ κV ) is unramified, we have
DSen(D−)Γ = (D−)Γ . 
�

Corollary 6.4.3 Under the same hypotheses as Theorem 6.4.1, possibly after shrinking V
further, there is aO(V )-basis vector

ηF ∈ (
F+DV (F )

)Γ=1

with the property that for every classical specialisation Ft of F , the specialisation of ηF at
t is the unique vector whose cup-product with the differential ωFt attached to the complex
conjugate F t of Ft is given by

1

λN (Ft ) ·
(
1− β

α

) (
1− β

pα

) ,

where α and β are the roots of the Hecke polynomial ofFt , and λN (Ft ) is its Atkin–Lehner
pseudo-eigenvalue.

Proof This follows by dualising ωF using the Ohta pairing {−,−}; the computations are
exactly the same as in the ordinary case, for which see [19, Proposition 10.1.2]. 
�
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7 The explicit reciprocity law
7.1 Regulator maps for Rankin convolutions

Now let us choose two newforms f, g and p-stabilisations (αf ,αg ) satisfying the hypotheses
of Theorem 4.6.4.

Notation 7.1.1 We write

F−−DV1×V2 (F ⊗ G)∗ = F−DV1 (F )∗⊗̂F−DV2 (G)∗,
and similarly for F−+, F+− and F++. We also define F−◦DV1×V2 (F ⊗ G)∗ =
F−DV1 (F )∗⊗̂DV2 (G)∗.

Theorem 7.1.2 If V1 andV2 are sufficiently small, then (for anym coprime to p) the image
of cBF [F ,G]

m,a under projection to the module H1
Iw(Q(μm)⊗Qp,∞,F−−DV1×V2 (F ⊗ G)∗) is

zero.

Proof By taking the Vi sufficiently small, we may assume that F−−DV1×V2 (F ⊗ G)∗
is actually isomorphic to RA(α−1), where α = αFαG and A = O(V1 × V2), and that
‖α−1‖ < p1+h and α− 1 is not a zero-divisor. It suffices, therefore, to show that LRA(α−1)
maps the image of cBF [F ,G]

m,a to zero.
However, for each pair of integers (
, 
′) ∈ V1 × V2 with 
, 
′ � 1 + 2h and such that

F
 and G
′ are not twists of each other, we know that the image of LRA(α−1)(cBF [F ,G]
m,a )

vanishes when restricted to (
, 
′)×W ⊆Max(A)×W , by Proposition 3.5.11. Since such
pairs (
, 
′) are Zariski-dense in Max(A), the result follows. 
�

Remark 7.1.3 Cf. [19, Lemma8.1.5],which is an analogous (but rather stronger) statement
in the ordinary case.

Hence the projection of cBF [F ,G]
m,a toF−◦ is in the image of the injection

H1
Iw(Qp,∞,F−+DV1×V2 (F ⊗ G)∗)→ H1

Iw(Qp,∞,F−◦DV1×V2 (F ⊗ G)∗).
SinceF+DV2 (G)∗ is isomorphic to an unramified module twisted by an A×-valued char-
acter of the cyclotomic Galois group Γ , we may define a Perrin-Riou logarithm map for
F−+DV1×V2 (F ⊗G)∗ by reparametrising the corresponding map for its unramified twist,
exactly as in Theorem 8.2.8 of [19]. That is, if we define

D(F−+M(F ⊗ G)∗) = (
F−+D(F ⊗ G)∗(−1− κV2 )

)Γ=1 ,
which is free of rank 1 overO(V1 × V2), then we obtain the following theorem:

Theorem 7.1.4 There is an injective morphism ofO(V1 × V2 ×W )-modules

L:H1
Iw(Qp,∞,F−+DV1×V2 (F ⊗ G)∗)→ D(F−+M(F ⊗ G)∗) ⊗̂O(W),

with the following property: for all classical specialisations f, g of F ,G, and all characters
of Γ of the form τ = j+η with η of finite order and j ∈ Z, we have a commutative diagram

H1
Iw

(
Qp,∞,F−+DV1×V2 (F ⊗ G)∗) L� D(F−+M(F ⊗ G)∗) ⊗̂O(W)

H1(Qp,F−+D(f ⊗ g)∗(−j − η))
�

� F−+Dcris(M(f ⊗ g)∗(−εg,p))
�
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in which the bottom horizontal map is given by
⎧
⎪⎨
⎪⎩

(
1− pj

αf βg

) (
1− αf βg

p1+j
)−1

if r = 0
(
p1+j
αf βg

)r
G(ε)−1 if r > 0

⎫
⎪⎬
⎪⎭
·
⎧
⎨
⎩

(−1)k′−j
(k ′−j)! log if j � k ′,

(j − k ′ − 1)! exp∗ if j > k ′,

where exp∗ and log are the Bloch–Kato dual-exponential and logarithm maps, ε is
the finite-order character εg,p · η−1 of Γ , r � 0 is the conductor of ε, and G(ε) =∑

a∈(Z/prZ)× ε(a)ζ apr is the Gauss sum.

Proof The construction of the map L is immediate from (6.2.1). The content of the
theorem is that the mapL recovers the maps exp∗ and log for the specialisations ofF and
G; this follows from Nakamura’s construction of exp∗ and log for (ϕ,Γ )-modules. 
�

Theorem 7.1.5 (Explicit reciprocity law) If the Vi are sufficiently small, then we have
〈
L

(
cBF [F ,G]

1,1

)
, ηF ⊗ ωG

〉

= (c2 − c−(k+k′−2j)εF (c)−1εG(c)−1)(−1)1+jλN (F )−1Lp(F ,G, 1+ j).

Here, Lp(F ,G, 1 + j) denotes Urban’s 3-variable p-adic L-function as constructed in [32],
and εF and εG are the characters by which the prime-to-p diamond operators act on F
and G.

Proof The two sides of the desired formula agree at every (k, k ′, j) with k ∈ V1, k ′ ∈ V2
and 0 � j � min(k, k ′), by [18, Theorem 6.5.9]. These points are manifestly Zariski-dense,
and the result follows. 
�

Remark 7.1.6 The construction ofωG and the proof of the explicit reciprocity law are also
valid if G is a Coleman family passing through a p-stabilisation gα of a p-regular weight 1
form, as in Theorem 4.7.2; the only difference is that one may need to replace V2 with a
finite flat covering Ṽ2. In this setting, gα is automatically ordinary, so G is in fact a Hida
family, and one can use the construction of ωG given in [19, Proposition 10.12.2].

8 Bounding Selmer groups
8.1 Notation and hypotheses

Let f, g be cuspidal modular newforms of weights k + 2, k ′ + 2, respectively, and levels
Nf , Ng prime to p.We do permit here the case k ′ = −1.We suppose, however, that k > k ′,
so in particular k � 0, and we choose an integer j such that k ′ +1 � j � k . If j = k+k ′

2 +1,
then we assume that εf εg is not trivial, where εf and εg are the characters of f and g .
As usual, we let E be a finite extension of Qp with ring of integers O, containing the

coefficients of f and g . Our goal will be to bound the Selmer group associated with the
Galois representationMO(f ⊗g)(1+ j), in terms of the L-value L(f, g, 1+ j); our hypotheses
on (k, k ′, j) are precisely those required to ensure that this L-value is a critical value.
It will be convenient to impose the following local assumptions at p:

• (p-regularity) We have αf �= βf and αg �= βg , where αf ,βf are the roots of the Hecke
polynomial of f at p, and similarly for g .

• (no local zero) None of the pairwise products
{
αf αg ,αf βg ,βf αg ,βf βg

}
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is equal to pj or p1+j , so the Euler factor of L(f, g, s) at p does not vanish at s = j or
s = 1+ j.

• (nobility of fα) If f is ordinary, then either αf is the unit root of the Hecke polynomial,
orME(f )|GQp is not the direct sum of two characters (so the eigenform fα is noble in
the sense of 4.6.3).

• (nobility of gα and gβ ) If k ′ � 0, then ME(g)|GQp does not split as a direct sum of
characters, so both p-stabilisations gα and gβ are noble.

Remark 8.1.1 (1) In our arguments we will use both p-stabilisations gα and gβ of g , but
only the one p-stabilisation fα of f ; in particular, we do not require that the other
p-stabilisation fβ be noble.

(2) Note that the “no local zero” hypothesis is automatic, for weight reasons, unless k+k ′

is even and j = k+k ′
2 or j = k+k ′

2 + 1 (so the L-value L(f, g, 1 + j) is a “near-central”
value).

The p-regularity hypothesis implies that we have direct sum decompositions

Dcris(ME(f )∗) = Dcris(ME(f )∗)αf ⊕Dcris(ME(f )∗)βf

where ϕ acts on the two direct summands as multiplication by α−1f , β−1f , respectively,
and similarly for g . This induces a decomposition of Dcris(ME(f ⊗ g)∗) into four direct
summands Dcris(ME(f ⊗ g)∗)αf αg etc.

Definition 8.1.2 We write

Dcris
(
ME(f ⊗ g)∗

)αf ◦ = Dcris
(
ME(f ⊗ g)∗

)αf αg ⊕Dcris
(
ME(f ⊗ g)∗

)αf βg
= Dcris(ME(f )∗)αf ⊗E Dcris

(
ME(g)∗

)
.

We write prαf for the projection

Dcris(ME(f ⊗ g)∗)→ Dcris(ME(f ⊗ g)∗)αf ◦

with Dcris(ME(f ⊗ g)∗)βf ◦ as kernel.

Proposition 8.1.3 If W denotes the Galois representation ME(f ⊗ g)∗(−j), then:
• H1(Qp,W ) is 4-dimensional (as an E-vector space), and H0(Qp,W ) = H2(Qp,W )
= 0;

• we have

H1
e (Qp,W ) = H1

f (Qp,W ) = H1
g (Qp,W ),

and this space has dimension 2;
• the dual-exponential map gives an isomorphism

H1(Qp,W )
H1
f (Qp,W )

∼=� Fil0Dcris(W );

• the projection

Fil0Dcris(W )
prαf� Dcris(W )αf ◦

is an isomorphism.
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Proof This is an elementary exercise using local Tate duality, Tate’s local Euler charac-
teristic formula, and the “no local zero” hypothesis. 
�

Theorem 8.1.4 Fix some c > 1 coprime to 6pNf Ng . For each m � 1 coprime to pc, we
obtain two classes

cαf αgm , cαf βgm ∈ H1(Q(μm),ME(f ⊗ g)∗(−j)),
with the following properties:

(i) for every prime v � p ofQ(μm), we have

locv
(
cαf αgm

)
∈ H1

f
(
Q(μm)v,ME(f ⊗ g)∗(−j)) ;

(ii) there is a constant R (independent of m) such that

Rcαf αgm , Rcαf βgm ∈ H1(Q(μm),MOE (f ⊗ g)∗(−j))/{torsion},
where MOE (f ⊗ g)∗ is the lattice in ME(f ⊗ g)∗ which is the image of the étale coho-
mology withOE-coefficients;

(iii) for 
 � mNf Ng , we have

norm
m
m

(
cαf αg
m

)
= P
(
−1−jσ−1
 ) · cαf αgm ,

where P
(X) is the local Euler factor of L(f, g, s) at 
, and similarly for cαf βg
m ;
(iv) the images of cαf αgm and cαf βgm under the map

H1(Q(μm)⊗Qp,ME(f ⊗ g)∗(−j)) exp∗� Q(μm)⊗Q Fil0Dcris
(
ME(f ⊗ g)∗(−j))

prαf� Q(μm)⊗Q Dcris(ME(f ⊗ g)∗)αf ◦

lie in the subspaces Dcris(ME(f )∗)αf βg and Dcris(ME(f )∗)αf αg , respectively;
(v) for m = 1, the projections prα

(
exp∗ cαf αg1

)
and prα

(
exp∗ cαf βg1

)
are nonzero (for

some suitable choice of c) if and only if L(f ⊗ g, 1+ j) �= 0.

Proof We define the class cαf αg as follows. Using the p-stabilisations fα of f and gα of g ,
Theorem 5.4.2 gives rise to elements

cBF [F ,G]
m,1 ∈ H1(Q(μm), Dλ

(
Γ ,MV1×V2 (F ⊗ G)∗)

whereF and G are Coleman families through fα and gα (which exist, since fα is noble, and
gα is either noble of weight � 2 or p-regular of weight 1). Specialising these at (fα , gα , j),
and identifyingME(fα⊗gα)∗ withME(f ⊗g)∗ via themaps Prαf and Prαg , we obtain classes
zαf αgm ∈ H1(Q(μm),ME(f ⊗ g)∗(−j)).
These classes satisfy (i), by Proposition 2.4.4. They also satisfy (ii), by Proposi-

tion 2.4.7 (using the fact that f and g have differing weights, by hypothesis, so we have
H0(Qab,ME(fα ⊗ gα)∗) = 0).
The classes zαf αgm do not satisfy (iii); instead, they satisfy the a slightly more compli-

cated norm-compatibility relation norm
m
m

(
cαf αg
m

)
= Q
(
−1−jσ−1
 )cαf αgm where Q
(X) ∈

X−1OL[X] is a polynomial congruent to −X−1P
(X) modulo 
 − 1. However, the “cor-
rect” Euler system relation can be obtained bymodifying each class zαf αgm by an appropriate
element ofOL[(Z/mZ)×], as in [20, §7.3]. This gives classes cαf αgm satisfying (i)–(iv).
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It remains to verify (iv) and (v). It suffices to prove these for the un-modified classes zαf αgm .
For (iv), let K denote the completion of Q(μm) at a prime above p, and K∞ = K (μp∞ ).
Then we have a diagram

Dla(Γ ,Qp)⊗D0(Γ ,Qp) H
1
Iw(K∞, V ) � H1

Iw(K∞,F−−D)

H1(K,W )
�

� H1(K,F−−D)
�

Dcris,K (W )

exp∗K,W ∗(1)
�

� Dcris,K (F−−D).

exp∗K,(F−−D)∗(1)
�

HereW denotes the Galois representationME(f ⊗ g)∗(−j), as above, D denotes D†
rig(V ),

and F−−D is the quotient of D (in the category of (ϕ,Γ )-modules) determined by the
triangulations of ME(fα)∗ and ME(fβ )∗. Note that this quotient depends on the choice of
αf and αg , although the Galois representationW does not.
The horizontal arrows in the diagram are induced by the morphism of (ϕ,Γ )-modules

D → F−−D. We know that the image of cBF [fα ,gα ]
m,1 in H1

Iw(K∞,F−−D) is zero, by The-
orem 7.1.2, so its image in the bottom right-hand corner is zero. However, the projection
Dcris(V )→ Dcris(F−−D) factors through projection to the eigenspaceDcris(V )αf αg and is
an isomorphism on this eigenspace, so we recover the statement that exp∗(cαf αgm ) projects
to zero in Dcris(V )αf αg , as required.
Finally, we prove (v). For this, we use an analogous commutative diagram withF−◦ in

place ofF−−:

Dla(Γ ,Qp)⊗D0(Γ ,Qp) H
1
Iw(Qp,∞, V ) � H1

Iw(Q∞,F−◦D) �⊃ H1
Iw(Qp,∞,F−+D)

H1(Qp, V )
�

� H1(Qp,F−◦D)
�

� H1(Qp,F−+D)
�

Dcris(V )

exp∗Qp,V ∗(1)
�

� Dcris(F−◦D)

exp∗Qp,(F−◦D)∗(1)
�

� ⊃ Dcris(F−+D).

exp∗Qp,(F−+D)∗(1)
�

The projection Dcris(V )→ Dcris(F−◦D) induces an isomorphism

Dcris(V )αf ◦
∼=� Dcris(F−◦D).

Theorem 7.1.2 implies that the image of cBF [fα ,gα ]
1 in H1

Iw(Qp,∞, V ) lies in the image of
H1
Iw(Qp,∞,F−+D), and the explicit reciprocity law shows that the image of this class

in Dcris(F−+D) is nonzero if and only if (c2 − c2j−k−k ′εf (c)εg (c))L(f, g, 1 + j) �= 0. Our
hypothesis that εf (c)εg (c) be non-trivial if j = k+k ′

2 + 1 shows that we can choose c such
that the first factor is nonzero. So, for a suitable choice of c, the projection of zαf αg1 to
Dcris(V )αf βg is nonzero if and only if L(f, g, 1+ j) �= 0.
This completes the construction of classes cαf αgm with the required properties. The con-

struction of cαf βgm is identical, using the p-stabilisation gβ in place of gα . 
�
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8.2 Bounding the Bloch–Kato Selmer group

Recall that if V is a geometric p-adic representation of Gal(Q/Q), then we define

H1
f (Q, V ) = {

x ∈ H1(Q, V ): loc
(x) ∈ H1
f (Q
, V ) for all finite primes 


}
.

Theorem 8.2.1 Suppose the assumptions of Theorem 8.1.4 are satisfied, and in addition
the following hypothesis is satisfied:

• (big image) There exists an element τ ∈ Gal(Q/Q(μp∞ )) such that V /(τ − 1)V is
1-dimensional, where V = ME(f ⊗ g)(1+ j).

If L(f, g, 1+ j) �= 0, then the Bloch–Kato Selmer group H1
f (Q, V ) is zero.

Remark 8.2.2 It is shown in [22] that, under fairly mild hypotheses on f and g , the “big
image” hypothesis is satisfied for all but finitely many primesP of the coefficient field.

Proof Let H1
strict(Q, V ) denote the strict Selmer group, which is the kernel of the localisa-

tion map

locp :H1
f (Q, V )→ H1

f (Qp, V ).

Let T be a lattice in V , and let A = V /T . By Theorem 8.1.4, for some nonzero scalar
R, the classes R · cαf αgm form a nonzero Euler system for T ∗(1) in the sense of [31, Defini-
tion 2.1.1], if we replace condition (ii) in the definition by the alternative condition (ii’)(b)
of §9.1 of op.cit..
By [31, Theorem 2.2.3], the existence of any nonzero Euler system for V ∗(1), together

with the “big image” hypothesis, implies that the p-torsion Selmer group

H1
strict(Q, A) := ker

(
H1(Q, A)→

⊕



H1(Q
, A)
H1
strict(Q
, A)

)

is finite, where H1
strict(Q
, A) is defined as the image of the map

H1
f (Q
, V )→ H1(Q
, A)

for 
 �= p, andH1
strict(Qp, A) = 0.However, the image ofH1

strict(Q, V ) inH1(Q, A) is clearly
contained in H1

strict(Q, A), so we conclude that H1
strict(Q, V ) is zero.

In order to refine this, we use Poitou–Tate duality. Let H1
relaxed(Q, V ∗(1)) (the “relaxed

Selmer group”) denote the classes in H1(Q, V ∗(1)) whose localisation lies in H1
f for all


 �= p (but may be arbitrary at p). Then we have two exact sequences

0 � H1
strict(Qp, V ) � H1

f (Qp, V )
locfp� H1

f (Qp, V )

and

0 � H1
f (Qp, V ∗(1)) � H1

relaxed(Qp, V ∗(1))
locsp� H1

s (Qp, V ∗(1)),

where H1
s (Qp, V ∗(1)) = H1(Qp,V ∗(1))

H1
f (Qp,V ∗(1)) (the “singular quotient”). Local Tate duality identi-

fies H1
s (Qp, V ∗(1)) with the dual of H1

f (Qp, V ), and the Poitou–Tate global duality exact
sequence implies that the images of locfp and locsp are orthogonal complements of each
other; compare [31, Theorem 1.7.3].
We have constructed two classes in H1

relaxed(Qp, V ∗(1)), namely cαf αg1 and cαf βg1 , whose
images in H1(Qp,V ∗(1))

H1
f (Qp,V ∗(1)) are linearly independent (since their images under exp∗ spandistinct

eigenspaces). So locsp is surjective, and consequently locfp is the zero map. As we have
already shown that H1

strict(Qp, V ) = 0, this shows that H1
f (Qp, V ) is zero. 
�
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Remark 8.2.3 The above argument is an adaptation of the ideas of [13, §6.2], in which
Poitou–Tate duality is used to bound the image of themap locfp for aGalois representation
arising from the product of three cusp forms. In our setting, since we have a full Euler
system rather than just the two classes cαf αg1 and cαf βg1 , we can also bound the kernel of
this map.

8.3 Corollaries

From Theorem 8.2.1 one obtains a rather precise description of the global cohomology
groups. We continue to write V = ME(f ⊗ g)(1+ j).
Let S be any finite set of places ofQ, containing∞ and all primes dividing pNf Ng . Then

the action of Gal(Q/Q) onV factors throughGal(QS/Q), the Galois group of themaximal
extension ofQ unramified outside S. Since the Bloch–Kato local condition coincides with
the unramified condition for 
 /∈ S, we have

H1
f (Q, V ) =

{
x ∈ H1(QS/Q, V ): loc
(x) ∈ H1

f (Q
, V ) for all 
 ∈ S
}
.

Remark 8.3.1 Since Gal(QS/Q) is the étale fundamental group of Z[1/S], we may inter-
pret any continuous Qp-linear representation of Gal(QS/Q) as a p-adic étale sheaf on
SpecZ[1/S], and the continuous cohomology groupsHi(QS/Q,−) coincide with the étale
cohomology groupsHi

ét(Z[1/S],−). The latter language is used in [19] for instance, but in
the present work we have found it easier to use the language of group cohomology, since
this makes the arguments of Sect. 2 easier to state.

Corollary 8.3.2 If the hypotheses of Theorem 8.2.1 hold, then:

(1) The localisation maps

H2(QS/Q, V ) →
⊕

∈S

H2(Q
, V ) and

H2(QS/Q, V ∗(1)) →
⊕

∈S

H2(Q
, V ∗(1))

are isomorphisms.
(2) The space H1

f (Q, V ∗(1)) is zero.
(3) The space H1

relaxed(Q, V ∗(1)) is 2-dimensional, and cαf αg1 and cαf βg1 are a basis.

Proof Again by Poitou–Tate global duality, we have an exact sequence

0 � H1
f (Q, V ∗(1)) � H1(QS/Q, V ∗(1)) �

⊕

∈S

H1
s (Q
, V ∗(1))

� H1
f (Q, V )∗ � H2(QS/Q, V ∗(1)) �

⊕

∈S

H2(Q, V ∗(1)) � 0.

In the situation of the theorem, we have H1
f (Q, V ) = 0, so the localisation map for

H2(QS/Q, V ∗(1)) is an isomorphism.
Now let c
 = dimH2(Q
, V ∗(1)). Using Tate’s local Euler characteristic formula,

for any 
 ∈ S\{p} we have dimH1(Q
, V ∗(1)) = c
; while for 
 = p we have
cp = 0 and dimH1

s (Qp, V ∗(1)) = 2. Thus dim
⊕


∈S H1
s (Q
, V ∗(1)) = 2 + ∑

c
 =
2 + dimH2(QS/Q, V ∗(1)). However, Tate’s global Euler characteristic formula gives
dimH1(QS/Q, V ∗(1)) = 2+ dimH2(QS/Q, V ∗(1)).
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Thus themapH1(QS/Q, V ∗(1)) � ⊕

∈S H1

s (Q, V ∗(1)) is a surjection betweenfinite-
dimensional vector spaces of the same dimension, so it is injective and we conclude that
H1
f (Q, V ∗(1)) = 0. Repeating the duality argument with V ∗(1) in place of V we now

deduce that the localisation map for H2(QS/Q, V ) is an isomorphism.
Finally, sinceH1

f (Q, V ∗(1)) = 0, we deduce thatH1
relaxed(Q, V ∗(1)) maps isomorphically

to its image inH1
s (Qp, V ∗(1)), but the images of cαf αg1 and cαf βg1 are a basis ofH1

s (Qp, V ∗(1)),
so these two classes must be a basis of H1

relaxed(Q, V ∗(1)). 
�

Corollary 8.3.3 Let LS(f, g, s) = ∏

/∈S P
(
−s)−1 be the L-function without its local factors

at places in S. If the hypotheses of Theorem 8.2.1 are satisfied and LS(f, g, 1 + j) �= 0, then
H2(QS/Q,ME(f ⊗ g)∗(−j)) = 0.

Proof For primes 
 ∈ S, 
 �= p, let us set

P
(X) = det
(
1− XFrob−1
 :ME(f ⊗ g)I


)
,

and

P0

 (X) = det

(
1− XFrob−1
 :ME(f )I
 ⊗ME(g)I


)
.

We define Pp(X) = P0
p(X) = det (1− Xϕ:Dcris(ME(f ⊗ g))). Then we have

LS(f, g, s) = L(πf ⊗ πg , s)
∏

∈S

P
(
−s)

= L(f, g, s)
∏

∈S

P0

 (


−s)

whereL(πf ⊗πg , s) (the “primitive” Rankin–Selberg L-function) and L(f, g, s) (the “imprim-
itive” Rankin–SelbergL-function) are both holomorphic on thewhole complex plane. So if
LS(f, g, 1+j) is nonzero, thenwemust have P
(
−1−j) �= 0 for all 
 ∈ S, and L(f, g, 1+j) �= 0.
From the definition of P
(X), the fact that P
(
−1−j) �= 0 implies that H0(Q
,ME(f ⊗

g)(1+ j)) = 0 for all 
 ∈ S. Thus H2(Q
,ME(f ⊗ g)∗(−j)) = 0 for all 
 ∈ S, and since the
global H2 injects into the direct product of these groups, it must also vanish. 
�

Remark 8.3.4 One can check that the only values of s at which the Euler factors P
(
−s)
may vanish for some 
 ∈ S are

s ∈
{
k + k ′

2
,
k + k ′ + 1

2
,
k + k ′ + 2

2

}
.

Note that the centre of the functional equation, with our normalisations, is at s = k+k ′+3
2 .

8.4 Application to elliptic curves

Theorem 8.2.1 above allows us to strengthen one of the results of [19] to cover elliptic
curves which are not necessarily ordinary at p:

Theorem 8.4.1 Let E/Q be an elliptic curve without complex multiplication, and ρ a 2-
dimensional odd irreducible Artin representation of GQ (with values in some finite exten-
sion L/Q). Let p be a prime. Suppose that the following hypotheses are satisfied:

(i) The conductors NE and Nρ are coprime;
(ii) p � 5;
(iii) p � NENρ ;
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(vi) the map GQ → AutZp (TpE) is surjective;
(v) ρ(Frobp) has distinct eigenvalues.

If L(E, ρ, 1) �= 0, then the group

HomZp[Gal(F/Q)](ρ, Selp∞ (E/F ))

(where F is the splitting field of ρ) is finite. In particular,

HomZp[Gal(F/Q)](ρ,Xp∞ (E/F ))

is finite.

Proof This is exactly Theorem 8.2.1 applied with f = fE , the weight 2 form attached to
E, and g = gρ , the weight 1 form attached to ρ. Compare Theorem 11.7.4 of [19], which
is exactly the same theorem under the additional hypotheses that E is ordinary at p and
ρ(Frobp) has distinct eigenvalues modulo a prime of L above p. 
�

9 Addendum: remarks on the proof of the reciprocity law
In order to formulate the explicit reciprocity law of Theorem7.1.5, one needs to invoke the
main theorem of [32]: the construction of a 3-variable p-adic Rankin–Selberg L-function
as a rigid-analytic function on V1 × V2 ×W , where Vi are small discs in the Coleman–
Mazur eigencurve surrounding classical p-stabilised eigenforms, andW is weight space.
Unfortunately, since thepresent paperwas submitted, it has emerged that there are some

unresolved technical issues in the paper [32], so the existence of this p-adic L-function is
not at present on a firm footing.We hope that this issue will be resolved in the near future,
but as a temporary expedient we explain here an unconditional proof of a weaker form of
explicit reciprocity law which suffices for the arithmetic applications in the present paper.

9.1 A three-variable geometric p-adic L-function

We place ourselves in the situation of Sect. 7.1, so fα , gα are noble eigenforms, obtained as
p-stabilisations of newforms f, g of weights k0+ 2, k ′0+ 2 and levels prime to p, and V1, V2
are small enough affinoid discs in weight space around k0 and k ′0, over which there are
Coleman familiesF ,G passing through fα , gα .We also allow the possibility that k ′0 = −1, g
is a p-regular weight 1 newform, and g does not have real multiplication by a field in which
p splits. (The exceptional real-multiplication case can be handled similarly by replacing
V2 with a ramified covering; we leave the details to the reader.)
For notational simplicity, we shall suppose that εFεG is non-trivial and is not of

p-power order. Thus there is a c > 1 coprime to 6pNf Ng for which the factor
c2 − c2j−k−k′εF (c)−1εG(c)−1 is a unit in O(V1 × V2 ×W), and we may define BF [F ,G]

1,1
(without c) by dividing out by this factor.
We shall begin by turning Theorem C on its head and defining a p-adic L-function to

be the output of this theorem:

Definition 9.1.1 We define Lgeomp (F ,G) ∈ O(V1 × V2 ×W) by

Lgeomp (F ,G) := (−1)1+jλN (F )
〈
L

(
BF [F ,G]

1,1

)
, ηF ⊗ ωG

〉
.

Our goal is now to show that this geometrically defined p-adic L-function is related to
critical values of complex L-functions.
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9.2 Values in the geometric range

By construction, for integer points of V1 ×V2 ×W in the “geometric range”—that is, the
points (k, k ′, j) with 0 � j � min(k, k ′)—the geometric p-adic L-function interpolates the
syntomic regulators of the Rankin–Eisenstein classes. From the computations of [18], we
have the following explicit formula for these syntomic regulators.
Let fk,α be the p-stabilised eigenform that is the specialisation of F in weight k + 2, and

let λfk,α be the unique linear functional on the space Sock+2(Nf , E) of overconvergent cusp
forms that factors through projection to the fk,α-isotypical subspace and sends fk,α to 1.
We view λfk,α as a linear functional on Sock+2(N, E), where N = lcm(Nf , Ng ), by composing
with the trace map from level N to level Nf .

Theorem 9.2.1 ([18, Theorem 6.5.9]) For (k, k ′, j) in the geometric range, with j > k
2 − 1,

we have

Lgeomp (F ,G)(k, k ′, j) = Nk+k ′−2jλfk,α
[
"oc

(
gk ′ ,α · F [p]

k−k ′ ,k ′−j+1
)]

.

Here F [p]
k−k ′ ,k ′−j+1 is a nearly overconvergent p-adic Eisenstein series of weight k − k ′

and degree of near-overconvergence� k− j, whose p-adic q-expansion (image under the
unit-root splitting) is given by∑

p�n
qn

∑
d|n

dk−j(d′)j−1−k ′
(
ζ d

′
N + (−1)k−k ′ζ−d′N

)
.

Note that we have

F [p]
k−k ′ ,k ′−j+1 = θk−j

(
E[p]
2j−k−k ′

)
,

where θ = q d
dq and E[p]

κ , for κ ∈ W , denotes the weight κ overconvergent Eisenstein
series∑

p�n
qn

∑
d|n

dκ−1
(
ζ dN + (−1)κζ−dN

)
.

Since E[p]
r is overconvergent of weight r, it follows that gk ′ ,α · θk−j

(
E[p]
2j−k−k ′

)
lies in the

space Sn−oc,k−jk+2 (N ) of nearly overconvergent cusp forms of weight k + 2 and degree of
near-overconvergence k − j. The condition j > k

2 − 1 implies that k + 2 > 2(k − j), so
Urban’s overconvergent projector "oc is defined on Sn−oc,k−jk+2 (N ) [32, §3.3.3]. Thus the
right-hand side of the formula in the theorem is defined.

9.3 Two-variable analytic L-functions

Let us now pick an integer t � 0, and set j = k − t in the above formulae. Then, for
varying k and k ′ (but t fixed), the forms gk ′ ,α · θ t

(
E[p]
k−k ′−2t

)
interpolate to a 2-parameter

family of nearly overconvergent cusp forms over V1 × V2 (of weight k + 2 and degree t,
where k is the universal weight of V1). Hence we may make sense of

L(t)p (F ,G) = N 2t−k+k′λF
[
"oc

(
G · θ t

(
E[p]
k−k′−2t

))]

as a meromorphic rigid-analytic function on V1 × V2, analytic except possibly for simple
poles along V1 ∩ {0, . . . , 2t − 2} [32, §3.3.4].
Remark 9.3.1 The important point here is that the power of the differential operator
appearing is constant in the family; this circumvents the technical issues in [32], which
concern interpolationof familieswhere thedegreeofnear-overconvergence is unbounded.
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We have the following special sets of integer points (k, k ′) ∈ V1 × V2:

(i) If k � max(t, 2t − 1) and k ′ � k − t, then the “geometric” interpolating property
above applies, showing that for these values of (k, k ′) we have

L(t)p (F ,G)(k, k ′) = Lgeomp (F ,G)(k, k ′, k − t).

Since such (k, k ′) are manifestly Zariski-dense in V1 × V2, this relation must in fact
hold for all points (κ , κ ′) ∈ V1 × V2.

(ii) If k ′ � 0 and k − k ′ � 2t + 1, then both gk ′ ,α and E[p]
k−k ′−2t are classical modular

forms (since, after possibly shrinking V2, we may arrange that the specialisations of
the family G at classical weights are classical). Thus the product gk ′ ,α · θ t

(
E[p]
k−k ′−2t

)

is a classical nearly holomorphic form, and on such forms Urban’s overconvergent
projector coincides with the holomorphic projector"hol. This shows that the values
of L(t)p (F ,G)(k, k ′) for (k, k ′) in this range are algebraic, and they compute the values
of the Rankin–Selberg L-function in the usual way. This also holds for k ′ = −1, as
long as we assume that the weight 1 specialisation gk ′ ,α is classical (which is no longer
automatic).

Combining these two statements, we deduce the following version of an explicit reci-
procity law:

Theorem 9.3.2 Let (k, k ′, j) be an integer point of V1×V2×W with k � 0, k ′ � −1, and
k+k ′+1

2 � j � k, and suppose fk,α and gk ′ ,α are p-stabilisations of classical forms fk , gk ′ .
Then we have

Lgeomp (F ,G)(k, k ′, j) = E(fk , gk ′ , 1+ j)
E(fk )E∗(fk )

· j!(j − k ′ − 1)!
π2j−k ′+1(−1)k−k ′22j+2+k−k ′ 〈fk , fk〉Nf

· L(fk , gk ′ , 1+ j),

where the local Euler factors are given by

E(f ) =
(
1− βf

pαf

)
, E∗(f ) =

(
1− βf

αf

)
,

E(f, g, 1+ j) =
(
1− pj

αf αg

) (
1− pj

αf βg

) (
1− βf αg

p1+j

) (
1− βf βg

p1+j

)
.

This suffices to prove Theorem C of the introduction when j � k+k ′+1
2 . The remaining

cases of Theorem C, when k ′ + 1 � j < k+k ′+1
2 , are easily reduced to these cases using

the functional equation.

Remark 9.3.3 It is important to be clear about what this argument does not prove: we
obtain no information at all about the values of the geometric p-adic L-function at points
of the form (k, k ′, j + χ ) for a non-trivial finite-order character χ . In particular, we can-
not determine by this method whether the specialisation of our 3-variable geometric L-
function to {k0}×{k ′0}×W coincides with other existing constructions of a single-variable
p-adic Rankin–Selberg L-function (cf. [30]).
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