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Abstract

We show that the Euler system associated with Rankin—Selberg convolutions of
modular forms, introduced in our earlier works with Lei and Kings, varies analytically as
the modular forms vary in p-adic Coleman families. We prove an explicit reciprocity law
for these families and use this to prove cases of the Bloch—Kato conjecture for

Rankin-Selberg convolutions.
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1 Background

Let p > 2 be a prime. The purpose of this paper is to study the p-adic interpolation of
étale Rankin—Eisenstein classes, which are Galois cohomology classes attached to pairs of
modular forms f; g of weights > 2, forming a “cohomological avatar” of the Rankin—Selberg
L-function L(f, g s).

In a previous work with Kings [19], we showed that these Rankin—Eisenstein classes
for ordinary modular forms f, g interpolate in 3-parameter p-adic families, with f and g
varying in Hida families and a third variable for twists by characters. We also proved an
“explicit reciprocity law” relating certain specialisations of these families to critical values
of Rankin—Selberg L-functions, with applications to the Birch—Swinnerton-Dyer conjec-
ture for Artin twists of p-ordinary elliptic curves, extending earlier works of Bertolini—
Darmon-—Rotger [5,6].

In this paper, we generalise these results to non-ordinary modular forms f, g, replacing
the Hida families by Coleman families:
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Theorem A Let f, g be eigenforms of weights > 2 and levels Ny, Ny coprime to p whose
Hecke polynomials at p have distinct roots, and let f,, g, be non-critical p-stabilisations of
f g Let F, G be Coleman families through f,,, g, (over some sufficiently small affinoid discs
V1, Va in weight space).

Then there exist classes

BFFN e H (QUum) D) & My, (F)* & My, (G)")

foreach m > 1 coprime to p and ¢ > 1 coprime to 6pNyNg, such that the specialisations of
the classes BF79) are the Rankin—Eisenstein classes for all specialisations of F and G,
and all characters of I' for which these classes are defined.

Here My, (F)* and My, (G)* are families of Galois representations over O(V7) and O(V53)
attached to F and G, and D'(I") is the algebra of distributions on the cyclotomic Galois
group I". A slightly modified version of this theorem holds for weight 1 forms as well. For
a precise statement, see Theorem 5.4.2 below.

The proof of Theorem 5.4.2 reveals some new phenomena which may be of independent
interest; the Galois modules in which these classes lie are, in a natural way, étale coun-
terparts of the modules of “nearly overconvergent modular forms” introduced by Urban
[32].

Theorem B The image of the class [BF EF’G] under an appropriately defined Perrin-Riou
“big logarithm” map is Urban’s 3-variable p-adic Rankin—Selberg L-function for F and G.

See Theorem 7.1.5 for a precise statement. In order to define the Perrin-Riou loga-
rithm in this context, one needs to work with triangulations of (¢, I")-modules over the
Robba ring; we use here results of Liu [21], showing that the (¢, I")-modules of the Galois
representations My, (F)* and My, (G)* admit canonical triangulations.

Specialising this result at a point corresponding to a critical value of the Rankin—Selberg
L-function, and applying the Euler system machine of Kolyvagin and Rubin, we obtain a
case of the Bloch—Kato conjecture for Rankin convolutions:

Theorem C (Theorem 8.2.1, Corollary 8.3.2) Let f; g be eigenforms of levels coprime to p
and weights r, r', respectively, with 1 < v’ < r, and let s be an integer such that ' < s <
r — 1 (equivalently, such that L(f, g s) is a critical value of the Rankin—Selberg L-function).
Suppose L(f, g s) # 0. Then, under certain technical hypotheses, the Bloch—Kato Selmer
groups Hfl(Q,M(f) ® M(g)(s)) and Hfl(Q,M(f)* ® M(g)*(1 — s)) are both zero, where
M(f) and M(g) are the p-adic representations attached to f and g.

One particularly interesting case is when f = fr is the modular form attached to an
elliptic curve E, and g is a weight 1 form corresponding to a 2-dimensional odd irreducible
Artin representation p. In this case, the Bloch—Kato Selmer group H, fl (QM(f)@M(g)(1))
is essentially the p-isotypical part of the p-Selmer group of E over the splitting field of p,
so we obtain new cases of the finiteness of Selmer (and hence Tate—Shafarevich) groups.
See Theorem 8.4.1 for the precise statement.

Remark Since this paper was originally submitted, it has come to light that there are some
unresolved technical issues in the paper [32] upon which Theorem B, and hence Theorem
C, relies. We hope that these issues will be resolved in the near future; as a temporary
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expedient, we have given in Sect. 9 below an alternate proof of a weaker form of Theo-
rem B which avoids these problems and thus suffices to give an unconditional proof of
Theorem C.

This paper could not have existed without the tremendous legacy of mathematical
ideas left by the late Robert Coleman. We use Coleman’s work in three vital ways: firstly,
Coleman was the first to construct the p-adic families of modular forms along which we
interpolate; secondly, the Perrin-Riou big logarithm map is a generalisation of Coleman
power series in classical Iwasawa theory (introduced in Coleman’s Cambridge Part III
dissertation); and finally, the results of [18] giving the link to values of p-adic L-functions,
which are the main input to Theorem B, are proved using Coleman’s p-adic integration
theory. We are happy to dedicate this paper to the memory of Robert Coleman, and we
hope that his work continues to inspire other mathematicians as it has inspired us.

2 Analytic preliminaries

The aim of this section is to extend some of the results of Appendix A.2 of [20], by giving a
criterion for a collection of cohomology classes to be interpolated by a distribution-valued
cohomology class.

2.1 Continuous cohomology

We first collect some properties of Galois cohomology of profinite groups acting on “large”
topological Z,-modules (not necessarily finitely generated over Z,). A very rich theory
is available for groups G satisfying some mild finiteness hypotheses (see e.g. [29, §1.1]),
but we will need to consider the Galois groups of infinite p-adic Lie extensions, which
do not have good finiteness properties, so we shall proceed on a somewhat ad hoc basis,
concentrating on H° and H'.

Definition 2.1.1 (i) If G is a profinite group, a topological G-module is an abelian
topological group M endowed with an action of G which is (jointly) continuous as a
map G x M — M.
(ii) For G and M asin (i), we define the cohomology groups H*(G, M) as the cohomology
of the usual complex of continuous cochains C*(G, M).
(iii) We equip the groups C/(G, M) = Maps(G’, M) with the compact-open topology
(equivalently, the topology of uniform convergence).

With these definitions, the groups C*(G, —) define a functor from topological G-
modules to complexes of topological groups (i.e. the topology is functorial in M, and
the differentials C/(G, M) — C*1(G, M) are continuous). Hence the cocycles Z!(G, M)
are closed in C/(G, M). However, the cochains B'(G, M) need not be closed in general, so
the quotient topology on the cohomology groups H*(G, M) may fail to be Hausdorff, and
the subspace and quotient topologies on B(G, M) may not agree. Our next goal is to show
that these pathologies can be avoided for i = 1 and some special classes of modules M.

Let A be a Noetherian Banach algebra over Q,. Then any finitely generated A-module
has a unique Banach space structure making it into a Banach A-module [7, Proposi-
tion 3.7.3/3].
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Proposition 2.1.2 Let M be a finitely generated free A-module, equipped with a continu-
ous A-linear action of a profinite group G. Then:

(1) the space BY(G, M) is closed in Z' (G, M);

(2) the subspace topology induced by B1(G, M) — Z1(G, M) coincides with the quotient
topology induced by M — B (G, M);

(3) the quotient map M — BY(G, M) has a continuous section (not necessarily A-linear
or G-equivariant).

Proof We begin by noting that Z!(G, M) is, by definition, a closed subspace of the space
C(G, M) of continuous functions from G to M, and since M is Banach, the topology of
Z1(G, M) is the Banach topology induced by the supremum norm on C!(G, M). However,
if M = A®? then we have

cl(GM)=CHGQ,) &M =CHG Q)% & A
( ) ( Qp)Qp (G Q) $

as a topological A-module. Since C1(G, Qp)®d is orthonormalisable as a Q,-Banach space
(every Qp-Banach space has this property), it follows that C 1(G, M) is orthonormalisable
as an A-Banach module, as orthonormalisability is preserved by base extension. However,
BY(G, M) is manifestly finitely generated as an A-module, and any finitely generated sub-
module of an orthonormalisable A-Banach module is closed [8, Lemma 2.8]. This proves
(1).

Parts (2) and (3) now follow from the open image theorem [10, Proposition I.1.3], which
shows that any continuous surjective map between Q,-Banach spaces has a continuous
section (and, in particular, a continuous bijection between Q,-Banach spaces must be a
homeomorphism). O

Remark 2.1.3 1t seems likely that this result is true for any finitely generated A-module
M with G-action (without assuming that M be free), but we do not know how to prove
this.

Definition 2.1.4 If X and Y are two Q,-Banach spaces, let £,,(X, Y) denote the space
of continuous linear maps X — Y equipped with the weak topology (the topology of
pointwise convergence).

Now if M is a Q,-Banach space with a continuous action of a profinite group G, then
L, (X, M) also acquires a continuous G-action by composition, for any Banach space X.

Proposition 2.1.5 Suppose the differential d: M — B(G, M) has a continuous section.
Then the differential

Lyy(X, M) — BY(G, Lu(X, M)
also has a continuous section, for any Banach space X.

Proof Let ¢: B (G, M) — M be a section. We use this to define ¢: B(G, L,,(X, M)) —
L,,(X, M) as follows. Given o € BY(G, L,,(X, M)), we may compose with an arbitrary x € X
to obtain an element o, € BY(G, M), and ¢(oy) is then an element of M. This defines a
map from BY(G, L,,(X, M)) to the space of linear maps X — M; however, for any u €
BY(G, L,,(X, M)) we may write i = dL for some continuous L, and we can then describe



Loeffler and Zerbes Res Math Sci(2016)3:29 Page 5 of 53

the image of 1(g) as the map obtained by composing L with M 4, BY(G, M) 2, M,
which is thus continuous. This defines a continuous map ¢ such that the diagram

BY(G, L6 M) o £,,(X, M)

BY(G, M) M

commutes for every x € X. However, in order to show that the top horizontal arrow is
continuous, it suffices (by the definition of the weak topology) to show that the diagonal
composition is continuous for every x. Since the left vertical arrow is obviously continuous,
and ¢ is continuous by assumption, this completes the proof. O

Proposition 2.1.6 IfM is a topological G-module, H < G is a closed subgroup, and there
exists a continuous section BY(H, M) — M, then there is an exact sequence

0 - HY(G/H, M) - HY(G,M) - H'(H, M)°'" — H?*(G/H, M").

Proof The injectivity of the first map, and the exactness at H!(G, M), is easily seen by a
direct cocycle computation (which is valid for arbitrary topological G-modules).

Exactness at H!(H, M)/ is much more subtle. Let o0: H — M be a continuous cocycle
whose class [0] € H'(H, M) is G-invariant. Then, for any g € G, the element ¢ — o
lies in B! (H, M), where o€ is the cocycle & > go (g~ 'hg). This defines a continuous map
G — BY(H,M).

By hypothesis, the differential M — B!(H, M) has a continuous section. Composing this
with the above map, we obtain a continuous map ¢: G — M such that go (g~ hg)—o (h) =
(h—1)¢(g)forallh € Handg € G. We may now argue as in the usual proof of the exactness
of the inflation-restriction exact sequence for discrete modules [25, Proposition 1.6.5] to
define a continuous 1-cochain 6: G — M such that 6|y = o and dé6 € Z*(G/H, M™),
which gives exactness at H(H, M)%/H. O

Remark 2.1.7 The hypotheses of this proposition are satisfied, in particular, for any mod-
ule of the form M = L, (X, N) where X is any Banach space, N is finitely generated
and free over a Noetherian Banach algebra A, and the group H acts A-linearly on N and

trivially on X. This covers all the cases we shall need below.

2.2 Distributions

For A € R0, we define the Banach space C;(Z,, Q) of order X functions on Zj, as in [11].
This has a Banach basis consisting of the functions pW(”)J (’};) forn > 0, where £(n) denotes
the smallest integer L > 0 such that p* > 1. We define D;(Z,, Qp) as the continuous dual
of C,.(Z,, Qp); for f € Cy(Zy, Qp) and u € D;.(Z,, Qp) we shall sometimes write [ f du
for the evaluation u(f). The space D;(Zy,, Qp) has a standard norm defined by

feG)eef

lpells. = sup p~ 1440
n=0
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Proposition 2.2.1 Forany integerh > ||, the standard norm on Dy (Zy, Qp) is equivalent
to the norm defined by

h
X —a
Lawopr, () 0]
x€a+p"Z, p

Proof See [10], Lemma I1.2.5. O

sup sup p~ M

nz=0acZ,

As well as the Banach topology induced by the above norms (the so-called strong topol-
0gy), the space D;(Z,, Q,) also has a weak topology,' which can be defined as the weakest
topology making the evaluation maps y — [ f du continuous for all f € Cy(Z,, Qp).

Remark 2.2.2 The weak topology is much more useful for our purposes than the strong
topology, since the natural map Z, <> Do(Z,, Qp) given by mapping a € Z, to the
linear functional f +— f(a) is not continuous in the strong topology, while it is obviously

continuous in the weak topology.

More generally, if M is a Q,-Banach space, we define D, (Z,, M) = Hom(C;.(Zy, Qp),
M); as before, this has a strong topology induced by the operator norm (which we write
as || — [lx), and a weak topology given by pointwise convergence on Cj(Z,, Qp).

Proposition 2.2.3 Let X be a compact Hausdor(f space, and M a Banach space, and let
0:X — Dy(Zy, M) be a continuous map (with respect to the weak topology on D;(Z,, M)).
Then sup{|lo (x)||r:x € X} < oo.

Proof For each f € C;(Zy, Qp), the map X — M given by x — o (x)(f) is continuous,
and hence bounded. By the Banach—Steinhaus theorem, this implies that the collection of
linear maps {0 (x):x € X} is bounded in the uniform norm. O

Definition 2.2.4 For i1 > 0, denote by LP[/] (Zy, Qp) the space of locally polynomial
functions on Z, of degree < h. If M is a Q,-vector space, write Dg?éh](lp, M) for the
Qp-linear homomorphisms of LploH] (Zy, Qp) into M.

Remark 2.2.5 An element u € LP1%"(Z,, Q,) is uniquely determined by a collection of
values f“ 2, xu(x) fori e [0,h],a e Z,, n € N, satisfying the compatibility relations

p—1
/ ap) =" / x p(x).
a+p"Z, r—o/ atkp"+p" 1 Z,

Lemma 2.2.6 Let (i14),>1 be a sequence of elements of D (Zy, M) which is uniformly
bounded (i.e. there is a constant C such that |||, < C for all n), let u € Dy (Zy, M), and
leth > | 1] bean integer. Ifwehave [ f du, — [fduasn — ooforallf € LpoH (Zy, Qp),
then i, — [ in the weak topology of Dy (Zy, M).

Proof This is immediate from the density of LP(*)(Z,, Q,) in C1(Z,, Q). ]

!This notation is somewhat misleading; it would be better to describe this as the weak-star topology and to reserve
the term weak topology for the topology on D; (Z,, Qp) induced by its own continuous dual (for the strong topology),
in line with the usual terminology in classical functional analysis. However, the above abuse of notation has become
standard in the non-Archimedean theory, perhaps because the continuous duals of spaces such as D; (Zy, Qp) are too
pathological to be of much interest.
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Finally, if U/ is an open subset of Z,, we define D; (U, M) as the subspace of D, (Z,, M)
consisting of distributions supported in U; this is closed (in both weak and strong topol-

ogy).

2.3 Cohomology of distribution modules
We now apply the theory of the preceding sections in the context of representations of
Galois groups. Our arguments are closely based on those used by Colmez [10] for local
Galois representations, but also incorporating some ideas from Appendix A.2 of [20].
We consider either of the two following settings: either K is a finite extension of Q,
and G = Gal(K/K), or K is a finite extension of Q and G = Gal(K®/K), where K* is the
maximal extension of K unramified outside some finite set of places S including all infinite
places and all places above p. In both cases we write H*(K, —) for H*(G, —); this notation
is a little abusive in the global setting, but this should not cause any major confusion.
We set Koo = K(up>), and H = Gal(K /Kwo) (resp. Gal(KS /Kso) in the global case).
Thus H is closed in G and the cyclotomic character identifies I' = G/H with an open
subset of Z .

Remark 2.3.1 More generally, one may take for K, any abelian p-adic Lie extension of
K of dimension 1; see forthcoming work of Francesc Castella and Ming-Lun Hsieh for
an application of this theory in the context of anticyclotomic extensions of imaginary
quadratic fields.

As in Sect. 2.1 above, we let A be a Noetherian Q,-Banach algebra, and M a finite free
A-module with a continuous A-linear action of H, and we fix a choice of norm || - |31
on M making it into a Banach A-module. We shall be concerned with the continuous
cohomology H (K, Dy (I", M)), where D; (I", M) is equipped with the weak topology.
Note that this cohomology group is endowed with a supremum seminorm, since every
continuous cocycle H — D, (I", M) is bounded by Proposition 2.2.3.

Proposition 2.3.2 Let) € Rxo. Then H (Koo, D; (', M)) imjects into H (Ko, D (I, M))

for any integer h > | 1].

An element . € H' (Koo, Dgl)’gh] (Koo, M)) is in the image of this injection if and only if the
sequence
—Lan) x@®) — x()Y"
P~ sup KXY du *)
yel |(JyTy p

is bounded as n — oo, where ||-|| is the norm on H'(Kso, M) induced by the norm of M.
Moreover, if this condition holds, we have

/ (x(x) - x(y))h 4
” M
yIy p

where |||y, is the supremum seminorm on H' (Koo, Ds(I", M)) and D is a constant inde-
pendent of K and M.

el < Dsup p~ ™ sup
n=0 yell

>

Proof For the injectivity, see Proposition I1.2.1 of [10], where this result is proved for
arbitrary Banach representations M such that B! (K, M) is closed in Z! (Koo, M); Propo-
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sition 2.1.2 shows that this is automatic under our present hypotheses on M (the argument
in op.cit. is given for K local, but it applies identically in the global case too).

To describe the image of this map, we follow the argument of Proposition I1.2.3 of op.cit.
in which the result is shown for A = Q, and K local. Exactly as in op.cit., given any class
in H! (Ko, D?[l%;h] (I', M)) satistying (), then we may represent it by a cocycle g — pu(g) in
ZW (Koo, Dg(l)gh](F M)) which also satisfies (x) in the supremum norm. For each & € H, we
see that p(h) lies in the image of D, (I", M) — Dg(l)’gh](F, M). Thus p defines a cocycle on
H with values in D, (I", M). Moreover, the values ||1(%)], for # € H are bounded above
by a constant multiple of the supremum of the sequence in (x), by Proposition 2.2.1.

It remains to check that the cocycle g — 1(g) is continuous (for the weak topology of
D, (I", M)). This is asserted without proof loc.cit., and we are grateful to Pierre Colmez for
explaining the argument. Since H is a compact Hausdorft space, it suffices to show that
for every convergent sequence g, — g, the sequence u, := u(g,) converges to u(g) in
D, (I', M). However, by construction we know that [ f du, converges to [ f du for each
f e LploA(r, Q). Since the 1, are uniformly bounded, Lemma 2.2.6 shows that they
converge weakly to 1(g) as required. ]

We now consider a special case of this statement. We impose the stronger assumption
that M is a continuous representation of the larger group G = Gal(K /K) (resp. Gal(K® /K)
in the global case), rather than just of H. We equip D, (", M) with an action of G by

| rwdgu =g ([ s tan)
where [g] is the image of g in I".

Proposition 2.3.3 Let . € Rxo, i > |A] an integer, and suppose we are given elements
Xnj € HY (Koo, M)"=X foralln >0 and 0 < j < b, satisfying the following conditions:

o Foralln > 0, we have Zyefn/Fn+1 x(») Ty “Xntlj = Xy
o There is a constant C such that

h
(h
p—hn§ (_ly(.)xn,], < CpLAnJ
; J
j=0

foralln.

Then there is a unique element . € H' (Koo, Dy(I', M))" satisfying

Xnj = / X
r

foralln > 0and 0 < j < h, and there is a constant D independent of K and of M such
that

l[elln < CD,

where || |5, is the seminorm on H (Koo, Dy (I", M)) induced by the norm of D; (I, M).

Proof We claim first that there is a unique u®% € H'(Kx, D[O “ (I", M))"" such that

i al
Iy
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This follows from the fact that the functions ¢, j(x) := X li4prz,(x) for n > 0 and
0 <j < h, and their translates under I', span the space LPI% (", Q).

By Proposition 2.3.2, the existence of the constant C implies that 128

is the image
of a class u € H'(Ky, Dy (I", M)), which must itself be I'-invariant since the injection
HY(Koo, Dy (I, M) — HY (Koo, D?[l?;;h] (I", M)) commutes with the action of I". This propo-
sition also shows that || ]|, is bounded above by CD. O

Using the inflation-restriction exact sequence (and the fact that I has cohomological
dimension 1) we see that u lifts to a class in H(K; D, (I", M)). This lift is not necessar-
ily unique, but it is unique modulo H(I", D; (I", M GKs)) (and thus genuinely unique if
MGk = 0).

2.4 lwasawa cohomology

We now show that there is an interpretation of the module H'(K, D; (I", M)) in terms
of Iwasawa cohomology. Since the group G has excellent finiteness properties (unlike its
subgroup H), we have the general finite-generation and base-change results of [29] at our
disposal.

We now assume that A is a reduced affinoid algebra over Q. By a theorem of Chenevier
(see [9, Lemma 3.18]) we may find a Banach algebra norm on A, with associated unit ball
A° = {a € A:||a| < 1}, and a compatible Banach A-module norm on M with unit ball
M° C M, such that G preserves M° and M° is locally free as an A°-module.

Definition 2.4.1 We set

H}\, (Koo, M) = (lgl H'(K,, M°)> [1/p].

n

This is evidently independent of the choice of lattice M°.

Proposition 2.4.2 The module HIIW (Koo, M) is finitely generated over Do(I", A), and there
are isomorphisms

H'(K, Do(I", M)) = Hj\, (Koo, M),
H' (K, D*(I", M)) = D*(I", A) ®py(r,4) Hiyy (Koo, M).

Proof Let A° be as above. Then the ring B® = Do(I", A°) = A°[[X]] is Noetherian, and it is
complete and separated with respect to the ideal I = (p, [y] — 1), where y is a topological
generator of I" / I'tors; moreover, Do(I", M°) = B° ® 40 M° is a flat B°-module. Hence [29,
Theorem 1.1] applies. By part (4) of the theorem, we see that H'(K, Do(I", M°)) is finitely
generated over Do(I", A°). Moreover, part (3) of the theorem shows that
H' (K, Do(I", M) = lim H' (K, Do(I", M®)/I™),
m
and every power I” contains the kernel of Do(I", A°) — A[I"/T;,] for all sufficiently large
n, so we also have an isomorphism
H'\(K, Do(I', M) = lim H' (K, M° @ > A°[I"/ I3)]) = Hy, Kooy M®),
n
where the last equality follows by Shapiro’s lemma. Inverting p we obtain the corre-
sponding results with A-coefficients. Finally, we obtain the statement with locally analytic
distributions by applying Theorem 1.9 of op.cit. (in the case n = 00). ]
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Corollary 2.4.3 In the above setting, for any . € Rx there is a map
H'(K, D,(I", M)) = D®(I', A) ®py(r,4) Hiy, Kooy M)
compatible with the natural maps to H (K, M(x ~1)) for each character x: M — A*.

Proof This follows from the fact that there is a continuous homomorphism D, (I", A) —
D'(I, A), which gives (by the functoriality of continuous cohomology) a map

H'(K, Dy(I", M) — H' (K, D*(I", M).
We now compose this with the second map from the previous proposition. O

Proposition 2.4.4 If K is a global field, then for every prime v # p, the inflation map
H! (Kvm, D(T, M’v)) — H! (Kv, D(T, M))
is an isomorphism.

Proof The corresponding statement for Iwasawa cohomology is well known, and the result
now follows by tensoring with D2(I", A). ]

A very slightly finer statement is possible if we consider coefficients in a field:

Proposition 2.4.5 Suppose V is a finite-dimensional p-adic representation of G. Then
H'(K, D(I", V) = Dy(T", Qp) ®py(r,Q,) Hin (Koo, V).

Proof In the local case, this surprisingly non-trivial result is Proposition I1.3.1 of [10]. The
proof relies on local Tate duality at one point, so we shall explain briefly how this can be
removed in order to obtain the result in the global case as well.

Firstly, from the finite generation of HIZW(KOO, V) as a A(I')-module, there exists a k
such that HIZW(KOO, V(k)) = 0. We may suppose (by twisting) that we have, in fact,
HZ (Koo, V)T = 0.

Let v, = (y — 1)” where y is a topological generator of I, and let T be a lattice in V.
Then the submodules HIZW (Koo T)[vy] are an ascending sequence of A(I")-submodules of
the finitely generated module lew(Koo, T). Since A(I') is Noetherian and lew (Kooy T) is
finitely generated, we conclude that this sequence of modules must eventually stabilise. But
all the modules in this sequence are finite, since H12W(1<oo, V)T vanishes by assumption;
this implies that there is a uniform power of p (independent of #) which annihilates
HI2W(KOO, T)[v,] for all n > 1 (compare the proof of [20, Proposition A.2.10], which is a
similar argument with v, = (y — 1)” replaced by y#" — 1). With this in hand we may
proceed as in [10]. O

Remark 2.4.6 We do not know whether this result is valid for general p-adic Banach
algebras (or even for affinoid algebras). It is also significant that the map is not an isometry
with respect to the natural norms on either side; there is a denominator arising from the
torsion in HIZW (Koo T), which is difficult to control a priori (and, in particular, could
potentially vary as we change the field K in an Euler system argument). We are grateful to
Ming-Lun Hsieh for pointing this out. We shall instead control denominators by means
of the proposition that follows, in which the denominator depends on an H rather than
an H2.
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Proposition 2.4.7 Suppose that V is a finite-dimensional Qy-linear representation of
G such that H* (K, V) = 0, and let D' be a constant annihilating the finite group
H(Koo, V/T), for T a G-invariant Z,-latticein V.

Let x,,; be a collection of elements, and C a constant, satisfying the hypotheses of Propo-
sition 2.3.3, and let n € HY(K, D;(I", V)) be the resulting distribution. Then for every
character k of I", we have

where on the left-hand side || - || denotes the norm on H (K, V (k ~1)) for which the unit ball
is the image of H* (K, T(k =) (and D is as in Proposition 2.3.2).

/KduH < DDl
I

Proof We know that |||l < CD as elements of H (Koo, D;(I', V))!'. So || fr edu| <
CD||x || as elements of H (Ko, V (k ~1)T.

By the definition of the supremum seminorm, this is equivalent to stating that the class
CDllk |l - f}" « du is the image of a class in H!(Kxo, T'(k~1)). This class is not uniquely
determined, and hence not necessarily I"-invariant, but the constant D’ was chosen to
annihilate the kernel of H (Koo, T (k1)) = HY (Koo, V(k 1)), s0 CDD' || ||, - fr K« du lifts
to a I'-invariant class.

Since H%(Koo, T) = 0, we conclude that HY(K, T(x 1)) —» H(Koo, T(k =)' is an
isomorphism; thus CDD'||«||; - fr « du is in the image of the map H (K, T(k~1)) —
HY(K, V (k1)) as required. |

3 Cyclotomic compatibility congruences

In this section, we establish that the Beilinson—Flach cohomology classes constructed
in [19,20] satisfy the criteria of the previous section, allowing us to interpolate them by
finite-order distributions.

3.1 Modular curves: notation and conventions

For N > 4, we write Y1(N) for the modular curve over Z[1/N] parametrising elliptic
curves with a point of order N. Note that the cusp oo is not defined over Q in this model,
but rather over Q(uy).

More generally, for M, N integers with M + N > 5, we write Y (M, N) for the modular
curve over Z[1/MN] parametrising elliptic curves together with two sections (e1, e2) which
define an embedding of group schemes Z/MZ x Z/NZ — E (so that Y1(N) = Y (1, N)).
We shall only consider Y (M, N) in the case M | N, in which case the Weil pairing defines
a canonical map from Y (M, N) to the scheme uj, of primitive Mth roots of unity, whose
fibres are geometrically connected.

If A is an integer prime to MN, we shall sometimes also consider the curve Y (M, N(A))
over Z[1/AMN], parametrising elliptic curves with points ej, ep as above together with a
cyclic subgroup of order A.

If Y is one of the curves Y (M, N) or Y (M, N(A)), we write .77, the relative Tate module
of the universal elliptic curve over Y, which is an étale Z,,-sheaf on Y[1/p]. If the prime p
is clear from context, we shall sometimes drop the subscript and write 7 for 77,. We
write /7q, for the associated Q,-sheaf. We write TSym* Sz, for the sheaf of degree k
symmetric tensors over .#z,; note that this is not isomorphic to the kth symmetric power,
although these coincide after inverting p.
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Remark 3.1.1 In this paper we will frequently consider étale cohomology of modular
curves Y (M, N(A)) or products of pairs of such curves. All the coefficient sheaves we
consider will be inverse systems of finite étale sheaves of p-power order, and we shall
always work over bases on which p is invertible. To lighten the notation, the convention
that if p is not invertible on Y, then H}, (Y, —) is a shorthand for H, (Y'[1/p], —).
3.2 lwasawa sheaves
We recall some definitions and notation from [19]. Let M, N > 1 be integers with M |
N and M + N > 5. Then, associated with the étale sheaf of abelian groups 7, on
Y (M, N)[1/p], we have a sheaf of Iwasawa algebras A(.7#7,) (c.f. Section 2.3 in op.cit.). For
¢ > 1 coprime to 6 MNp, let

ETIN € HY(Y (M, N), A(H7,)(1)
be the Eisenstein—Iwasawa class, as defined in [19, §4.3]. We now recall the definition of
the Rankin—Iwasawa class on the product Y (M, N)?, which is the image of .£T; y via a
three-step procedure.

Firstly, let us write A(%”ZP)U] = A(jfzp) ® TSymj (jfzp) for j > 0. Then we have a
morphism of étale sheaves on Y (M, N)[1/p], the Clebsch—Gordan map,

Gl A(Ay,) — (A, V&AW, ()
as defined in [19, Definition 5.1.1].

Secondly, let Y (M, N)? denote the fibre product Y (M, N) x e Y (M, N), where uj, is
the group of primitive Mth roots of unity as above. We denote by AV/! the exterior tensor
product A(,%ﬂzp)m X A(szp)m on Y (M, N)?. Pushforward along the diagonal embedding
A:Y(M,N) < Y (M, N)? gives a map

A H) (Y(M, N), A(#,) P& A, (1 — j)) — H (Y(M, N)2, A2 — j)).

Thirdly, for a € Z/MZ, denote by u, the automorphism of Y (M, N)?> which is the
identity on the first Y (M, N) factor and is given by (E, e1, e2) (E, el + 61%62, ez) on the
second factor.

Definition 3.2.1 For integers M, N > 1withM | Nand M + N > 5,j > 0,a € Z/mZ,
p aprime > 2, and ¢ > 1 coprime to 6 MNp, define the Rankin—Iwasawa class

RIYina = (a0 4s 0 CGV) (ET1x) € H (Y, N)% AW (2 = ).

The primary purpose of introducing the Rankin—Iwasawa class is that it is easy to prove
norm-compatibility relations for it. Our actual interest is in a second, related class, defined
by pushing forward CRI][G N Via a degeneracy map.

Definition 3.2.2 Forintegersm > land N > 4,j > 0,a € Z/mZ, and ¢ > 1 coprime to
6mNp, define the Beilinson—Flach class

B e € H? (YiNP x 15, AV 2 - )

il

m,mN,a

to be the image of \RT under the map (¢, X £;,)«, where
bt Y (m, mN) — Y1(N) x u,,
is the map given in terms of moduli spaces as

(E e1, €2) — ((E/(e1), e2 mod (e1)), (e1, Nea)gpm)) -
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Remark 3.2.3 Note that t,,, corresponds to z > z/m on the upper half-plane.

Finally, recall that there are natural maps
1 ® monv : A(z,) — A(Hg,)V

which, for a geometric generic point 7, are given by the maps A(J%) — A(J4) ®
TSyn/ 7, [x] > [x] @ x.

3.3 Compatibility congruences
We now come to the key technical result required for the rest of this paper. Let # > 1. For
each r > 1, we would like to prove a congruence modulo p"" relating the classes

Resifr (CB]-" E;,Mu)
for 0 <j < h. Here Resﬁfr denotes the pullback along the natural map

YiN) % 1, — Yi(N) % 15
which corresponds classically to restriction of cocycles in Galois cohomology.
Definition 3.3.1 For an arbitrary m, let Z(m, mN) C Y (m, mN)? denote the preimage of

the diagonal subvariety of Y7 (N) under the natural projection map Y (m, mN)? — Y1(N)?
(i.e. the map corresponding to the identity on the upper half-plane, not the map £,,).

Note 3.3.2 The subvariety Z(m, mN) is preserved by the action of I'1(N) x I'1(N) and in
particular by the action of the element u, = (1, (} %)) for any a € Z/mZ. Since u, is an

automorphism, and its inverse is u_,, we have (u,). = (u—_,)*.

There is a canonical section of the sheaf (777, .77, ) (—1) over the subvariety Z (m, mN),
given by the Weil pairing (since along Z(m, mN) the two universal elliptic curves coincide).
We call this element CG (for “Clebsch—Gordan”), since the Clebsch—Gordan map cG!
is given by cup-product with the jth divided power CGU! of this element. For ¢ > 1, we
write CG, for the image of CG modulo p’. Note that we have

u, (CG) =CG

for any a € Z/mZ, since CG is independent of the level structure.
Let i be the inclusion of Z(m, mN) into Y (m, mN)?, so the diagonal embedding factors
as

Y (m, mN) A, Z(m, mN) L Y (m, mN)2.

By construction, the element CRIE'[],mI\[,a € Hést(Y(m, mN)%, A2 — j)) is given by

CRII[’il],mMa =ix0 uta o0Ayo CGU] (CgII,mN)
=40 uiﬂ (A*(cgzl,mN) U Cg[}])
= ix ((ua 0 A)s(cEL1,mn) U CQU]) . (3.3.1)

We now take integers r > 1 and & > 1 as above, and we assume p { m. We also assume
that the following condition is satisfied:

Assumption 3.3.3 We have p"~1" | N, so there is a canonical section Y}, of ., over
Y (mp", mp"N).
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Under this assumption, the moment map modulo p’" is given by cup-product with the
element Y},, so we obtain the following somewhat messy formula:

Proposition 3.3.4 For any a € Z/mp"" Z, we have the following equality modulo p":

h

; . hr . .
> &= 11 © mom* ) Resyy (RTU, ) @65
j=0

[A]
= iy ((ubZ o Ay (CEImerN) U (a Y, ®Y +CGpr @ Cphr) )

Proof Thisis astraightforward exercise from the definition of multiplication in the algebra
TSym* (the factor of (4 — j)! appears because (Y X 7 = (n —j)!Y[h’/'] Xyl o

We can now prove the main theorem of this section:

Theorem 3.3.5 Suppose that p | N. Then for any a € Z/mp"" Z and any m coprime to p,
we have

h
> = i Resy?” (1 @ mom )2 (BFU, ) @5

j=0
& P HE, (V0 X s AP (7, 2)).

Proof 1t follows from [19, Theorem 5.3.1] that if N’ is any multiple of N with the same
prime divisors as N, then CBFZJ,N, , is the image of CBFI[;}, Na

the natural degeneracy map Y;(N’) — Y1(N). We can therefore assume without loss of

under pushforward along

generality that N satisfies Assumption 3.3.3.
We may factor the map (£, X typr)« as the composite of a map on the coefficient
sheaves, which is a morphism

(b Xty )22 AR A = 83, () B 85, (H)

of sheaves on Y (mp”, mp”N)?, followed by the pushforward via tmpr X Lpr on the under-
lying modular curve.

We claim that when restricted to the image of u, 0 A: Y (mp”, mp"N) — Z(mp", mp"N),
the sectiona - ¥, WY, + CG, ® {,r of 77 W 77 is in the kernel of (£,,r X typr)s.

This follows from the fact that the map (£~ X tpr)y is given by quotienting out by the
first component of the level structure in each factor: on the fibre at a point (E1, P, Q1) x
(Ez, Py, Qq) of Y (mp”, mp"N)?, the fibre of s# X J# is the Tate module of E1 x E,, and the
map (typr X tupr )y is the quotient map E; x Ey — E1/(P1) x E3/(P3). A point in the image
of u, o Aisgiven by (E, P, Q) x (E, P+ aNQ, Q) for some point (E, P, Q) of Y (mp", mp"N),
and the section CG, ® ¢r is given by NQ X P — P XI NQ. Thus we have

a-Y,®Y, +CG, ® {r =aNQXRNQ+ (NQX P —PXNQ)
= NQX (P + aNQ) — P X NQ,
which is annihilated by (£,,,r X pr )¢ as claimed.

Since this element is annihilated by (£, X £ur); modulo p, its hth tensor power is
annihilated by the same map modulo p". This gives the congruence stated above. ]

Remark 3.3.6 We shall in fact use a slight refinement of this theorem. Let £ be the uni-
versal elliptic curve over Y1(N), and let D’ = C — {0} C &[p], where C is the universal
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level p subgroup. Then there is a subsheaf 77, (D’) of /7, which is the preimage of D’
under reduction modulo p, and a corresponding sheaf of Iwasawa modules A(%”Zp (D).

The Beilinson—Flach elements for p | N are, by construction, the images of elements of
the group

H, (YN X 115, (A(H2, (D)) @ TSymd #2,)™2(2)) 3

and exactly the same argument as above shows that we have a congruence modulo p""
in this group. We will need this below, in order to interpolate our elements in Coleman

families.

3.4 Galois representations: notation and conventions

In this section, we shall fix notations for Galois representations attached to modular forms.
Let f be anormalised cuspidal Hecke eigenform of some weight k+2 > 2and level Ny > 4,
and let L be a number field containing the g-expansion coefficients of f.

Definition 3.4.1 For each prime P | p of L, we write M (f) for the maximal subspace
of

HY ., (Y1 (Np)g Sym" %va) ®q, Ly

on which the Hecke operator T, for every prime ¢, acts as multiplication by a,(f). Dually,
we write My, (f)* for the maximal quotient of the space

1 (1) Tsym* (0,)) @q, Ly

on which the dual Hecke operators T} act as a(f).

Both spaces My, (f) and My, (f)* are 2-dimensional Lg;-vector spaces with continuous
actions of Gal(Q/Q), unramified outside S, where S is the finite set of primes dividing
pNy. The twist by 1 implies that the Poincaré duality pairing

Mg (f) Mgy () — Ly

is well defined (and perfect), justifying the notation. If f is new and f* is the eigenform
conjugate to f, then the natural map My (f*)(1) — My (f)* is an isomorphism of Lo~
vector spaces, although we shall rarely use this.

If f, g are two eigenforms (of some levels Ny, Ny and weights k + 2, k" + 2 > 2) with
coefficients in L, we write ML33 (f ® g) for the tensor product M, Ly (f) Ly MLm (g) and
similarly for the dual My, (f ® g)*. Via/ the Kiinneth formula, we may regard My, (f ® g)*
as a quotient of Hé?t(Yl (N)%, TSym[k’k ](%%)(2)) ®q, Ly, for any N > 4 divisible by Ny
and N, where TSym 4] (7£q,) denotes the étale Qp-sheaf TSymK Hq, W TSym*’ HQ,-

3.5 Consequences for pairs of newforms

We now use the congruences of Theorem 3.3.5, together with the p-adic analytic machin-
ery of Sect. 2, in order to define “unbounded Iwasawa cohomology classes” interpolating
the Beilinson—Flach elements for a given pair (f, g) of eigenforms.

Remark 3.5.1 We shall prove a considerably stronger result below (incorporating varia-
tion in Coleman families) which will mostly supersede Theorem 3.5.9: see Theorem 5.4.2.
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However, the proof of the stronger result is much more involved, so for the reader’s
convenience we have given this more direct argument.

Let us choose two normalised cuspidal eigenforms f, g, of weights k +2, kK’ 42 and levels
Ny, N, respectively, with &, k" > 0. Let L be a number field containing the coefficients
of f and g, and ‘P a prime of L above p, so that the Galois representation My, (f ® g)*
of Sect. 3.4 is defined. Assume that 0 < j < min{k k’}, and let N be an integer divisible
by Ny and N and having the same prime factors as NyNg. Let m > 1. Recall from [19,
Definition 3.3.1] that we have an étale Eisenstein class

(kK j]

Eisg; 1y € Hy (Yl(mN)Z, TSym“K1 sz, (2 — j)),

which can be constructed using Beilinson’s Eisenstein symbol (and in particular is the

[kK',j]

image of a class in motivic cohomology). By abuse of notation, we also denote by Eis.; » \/

the pullback of this class to Y (1, mN)>.

[k ,j1

et LN under

Definition 3.5.2 For a € Z/mZ, define B.?’-'%‘,%lj] to be the image of (u,).Eis
the following composition of maps:

H} (Y(m, mN)?, TSym**1 o (2 —1’))
(Xt 3 (V)2 x s, TSy gy (2 )
v H! (Q(Mm), HX(" (N%, TSym*1 s (2 — j))
— H" (QUum), Miy, (f ® 2)"(—)).
This is independent of the choice of N. For ¢ > 1 coprime to 6mpNyNg, we define

CB.F%‘,%Z] = (cz — c_(k+k/_2j)sf(c)_leg(c)_laf) Bf,[f,j%,j].

Remark 3.5.3 Note thatfor m = 1theclass BF [,f,%{ Vis the Eisenstein class Afg st (Elsgy{/]{[})
of [18, §5.4].

Let us recall the connection between these classes and the Iwasawa-theoretic classes of
the previous sections. Recall that we have maps

momt/ 1: A(#) ® TSym/ (') — TSym* ()
for each k > ;.

Proposition 3.5.4 ([19, Proposition 5.2.3 (3)]) The class CBF,[f,jg;,j] coincides with the image
of
k—j K —j Ul
(mom"™™ 1) W (mom™ 7 -1) | (BF, s

under projection to the (f, g)-eigenspace.

We now consider “p-stabilised” versions of these objects. If p { Ny, we choose a root
ar € L of the Hecke polynomial of f (after extending L if necessary), and we let f, be the
corresponding p-stabilisation of f, so fy is a normalised eigenform of level Ny, = pNy,
with U,-eigenvalue oy and the same T-eigenvalues as f for all £ # p. If p | N, then we
assume that a,(f) # 0, and we set &y = a,(f) and (for consistency) fo = f and N, = Ny.
We define o, and g, similarly.
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If p { Ny Ny, then the class . BF ,U:ff;;g“’j Y or m coprime to p is related to the Eisenstein class
for the forms f, g as follows. There is a correspondence Pr® : Y1(pNy) — Y1(Ny) given by
pr; — 1% pry, and (Pr%), gives an isomorphism

ML;B (fa)* g MLsp (f)*;

and similarly for g.
Proposition 3.5.5 Forp{ mNy Ny, we have
(Pr% x Pr%), (Bf ,[ﬁf;‘,g“’j ])
N (1 - Pollffjp) (1 - P?j:;tip) (1 - Pfﬁf‘ip) ' CB.F%;%{],

Ifp | Ny but p { mNg, then we have

. « gail\ _ ar By lfe))
(1d X Pr g)* (Bfm,a ) = (1 _191+—]o‘p) 'ch:m,a .

Proof This is a restatement of Lemma 5.6.4 and Remark 5.6.5 of [19]. O

We shall now interpolate the . BF y[z‘f;zg“’j Yor varying m and j, under the following assump-
tion:

Assumption 3.5.6 The automorphic representations 7y and 7, corresponding to f and
g are not twists of each other.

Note 3.5.7 Assumption 3.5.6 is automatically satisfied if k # k.

Let m be coprime to p and r > 1. Then Assumption 3.5.6 implies that H O(Q([,meoc )
My (f ® g)) = 0, so the restriction map induces an isomorphism

HY (QUump) Miyy (f © )*(—) = H' (QUutmy<), Mig (f © %) 7.

Convention By abuse of notation, we write ;BF Eff‘};‘gf;] Tfor the image of the Beilinson—Flach

element in H(Q(imp), My (fo ® ga)*)Ferj'
These elements satisfy the following compatibility:

Lemma 3.5.8 Let m > 1 be coprime to p, and let r > 0. Then

o, al‘] .
—j o8] (aorg) BF ke ifr >0

> x0Ty BEREL = T e
L/ T (O‘fo‘g _Plap) CB]:mpf,a ifr=0

Proof This follows from the second norm relation for the Rankin—Iwasawa classes (c.f.
[19, Theorem 5.4.4]). O

We impose the following “small slope” assumption:
vplarag) < 14 min(k k). (3.5.1)

Theorem 3.5.9 If the small slope assumption (3.5.1) holds, then for any integers m > 1
coprime to p and a € (Z/mp™>Z)*, there exists a unique element

BFE) € Dy (I, Qp) ®py(r,qy) Hibe (QUutmp) Mig, (fo ® 80)*),
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where ). = vy(arag), such that for every r > 0 and 0 < j < min(k k'), the image of

BFEE iy HYQUmpr ) Mgy (fie ® g)*(—)) is given by
(afag)_r ifr >0 Bf[f"‘g‘”]

mp’,a

Po .
=22 o Cap()E)
Remark 3.5.10 Compare Theorem 6.8.4 of [20], which is the case k = k' = 0.

Proof This amounts to reorganising the output of Theorem 3.3.5 and Proposition 2.3.3.
Let # = min(k k’). Consider the composition of maps

H, (Y00 X e, AP (58,2 — 1)
E% 1 (YUND X pampees AT (7, (2)
H' (QUup), HE (I (N, AP (525,)(2))
H' (QUumpe), HE (1 (N)Z, TSym ™K (,)(2)))
H (Qump) Mgy (for ® ga))
where ey, is the canonical basis of Z,(h) over Q(up~), and the third map is given by

(momf =" .id) X (mom* " - id). An unpleasant manipulation of factorials shows that the
image of the expression in Theorem 3.3.5 under this composition of maps is equal to

h

KUK
- h( ) Wz 1)1( )y,,, (35.2)

Jj=

where we write y,,; for the quantity

k' j
[( a)/]'( )(] )] B}—-Z}il]a c Hl (Q(Mmpoo); ML‘E(}(@g)*)Fr—X

The image of HZ,(Y1(N)%, TSym“*1(7,)(2)) ® Oy in My, (f ® ¢)* is a Oy-lattice, and

hence it defines a norm || - || on My (f ® g)*. So Theorem 3.3.5 gives the norm bound
h (h
> ()| =00
j=0 /

where the implied constant in the O() term depends on k k', & but not on r. Combining
this fact with Lemma 3.5.8, we deduce that the quantities

_ L=y
Xrj = (OlfOlg) ryr,j eH' (Q(,U«mp‘x’); ML:B (fo ®ga)*) x
satisfy the hypotheses of Proposition 2.3.3, so there exists an element
osa r
B]:[f o] € Hl (Q(Mmp“’): D;, (F; ML(B (fot ®ga)*))

interpolating the x,,;. Using again that H%(Q(imp), My (fo ® g)*) = 0 by Assump-
tion 3.5.6, this element lifts uniquely to
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Dy(I", Qp) ®po(1,Q,) Hi (QUitmpe), My, (for ® ga)*)
and has the required interpolation properties, which finishes the proof. O
We now note, for future use, the following vital property of the classes . BF ,[ﬁff“]
by

.Denote

EML‘B (fa®ga)*;Dla(F, Qp) ®D0(F,Qp) Hllw (QP’OO’ ML‘B (f“ ®ga)*)
— Dla (F, Qp) ®QP Dcris (MLq3 (fOt ®ga)*)

Perrin-Riou’s regulator map (c.f. [27] and [23, Appendix B]).

Proposition 3.5.11 If the stronger inequality

1 + min(k, k')

vplarag) < 5

holds, then the projection OfLMLm(ﬂ@ga)* (CB]:,[Z'f;Za]) to the ¢ = (o)~ -eigenspace of
Q(1m) ®Q Dcris(MLm (fa ®ga)*) is zero.

Proof Let W be this eigenspace. It is well known that the projection of Lyj(rgg)« to W
gives a map

H}\ (Qpo0 MLy (fo ® g0)*) = Da(I7,Qp) @ W,

where A = v,(arag) as before. So it gives a map

D3(I", Qp) ®y(r,Q,) Hik (Quoo MLy (for ® gu)*) — Do (I', E) @ W.

However, for any character of I" of the form z > 2/ x (z), with 0 < j < min(k k') and x
of finite order, the image ofCBf,[f,’ff"] in HY(Q (i) ®Qp, M1y, (fa ®ga)*(—j—x)) liesin the
Bloch—Kato Hg1 subspace, by construction (c.f. [19, Proposition 3.3.2]). If x is non-trivial
(so that the interpolation factors relating EML;B (f,®g.)* to the dual-exponential map are

invertible, see [23, Theorem B.5]), then this implies that EMLsp (o ®ga)* (CB]:,[{,”ff“])(]’ +x)=
0.

So the projection of EML(‘]3 (o ®ga)* (CB]-"r[ﬁff“]) to W is an element of Doy (I, Qy) ®
W which vanishes at all but finitely many characters of the form j + x with j €
{0, ..., min(k k)} and x of finite order. Since 2A < 1+ min(k, k'), this projection must be
zero as required. O

Remark 3.5.12 We shall in fact show below that the result of Proposition 3.5.11 is actually
true whenever oo satisfies the weaker assumption (3.5.1) (i.e. whenever the class CBF%‘%’
is defined), by deforming Proposition 3.5.11 along a Coleman family.

This vanishing property is natural in the context of Conjecture 8.2.6 of [20], which
predicts the existence of an element in /\2 HIIW(Q(/Jmeoo ), M Ly (f ® g)*) from which the
Beilinson—Flach elements (for all choices of &y and o) can be obtained by pairing with
the map £ML33 (fog)* and projecting to a ¢-eigenspace. Clearly, pairing an element of /\2
with the same linear functional twice will give zero.

4 Overconvergent étale cohomology and Coleman families
We now recall the construction of p-adic families of Galois representations attached to
modular forms via “big” étale sheaves on modular curves. We follow the account of [1, §3],
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but with somewhat altered conventions (for reasons which will become clear later). We
also use some results of Hansen [14] (from whom we have also borrowed the terminology
“overconvergent étale cohomology”).

4.1 Set-up and notation

Definition 4.1.1 We write WV for the rigid-analytic space over Q, parametrising con-
tinuous characters of the group Z;. For an integer m > 0, we shall write W,, for the
wide open subspace parametrising “m-accessible” weights, which are those satisfying
vple(P ! —1) > o forallt € Z;.

Remark 4.1.2 Note that WV is isomorphic to a disjoint union of p — 1 open unit discs,
and the bounded-by-1 rigid-analytic functions on }V are canonically A(Z,); while W), is
the union of the corresponding open subdiscs of radius p~ /7" #?~1) with centres in Z;.
Thus Wy (which is the space denoted by W* in [1]) contains every Q,-point of WV, and in
particular every weight of the form z > 7/, j € Z.

Now let us fix some coefficient field E (a finite extension of Q) with ring of integers Of.

Definition 4.1.3 We let U/ denote a wide open disc defined over E, contained in W,,
for some m > 0, and Ay the Of-algebra of rigid functions on U bounded by 1 (so
Ay = Og[[u]]). We write «; for the universal character Z; . A(Z;)X — ALX[.

The ring Ay is endowed with two topologies: the p-adic topology (which we shall not
use) and the m1;-adic topology, which is the topology induced by the ideals m};, where
myy is the maximal ideal of Ay;.

Definition 4.1.4 For m > 0, we write LA,,(Z,, Ay;) for the space of functions Z,, — Ay
such that for all a € Z/p™Z, the function z — f(a + p"z) is given by a power series
ano b,z" with b, — 0 in the m;-adic topology of Ay;.

Lemma 4.1.5 IfU C Wy, then the function z — k(1 + pz) is in LA, (Z,, Ay).

Proof This is a standard computation, but we have not been able to find a reference, so
we shall give a brief sketch of the proof. Let us write X,, for the affinoid rigid-analytic
space over Q,, defined by {x: |x — a| < p™" for somea € Z,} C A}ig. Then LA,.(Zy, Ay)
is precisely the space of functions Z, — Ay which extend to rigid-analytic Ay-valued

functions on X,,,.

log(1+px)
log(1+p)
analytic isomorphism from X, to itself for every m, so it suffices to show that x +—

Firstly, the map x +— is a bijection from Z, to Z, which extends to a rigid-
ky((1 4 p)*) extends to a Ays-valued rigid-analytic function on Xj,, whenever U C W,,.
It suffices to consider the universal case U = W,,. After enlarging the coefficient field E
if necessary, we identify Ay with Og[[u]] in such a way that k;;(1 4+ p) = 1 + eu where ¢
is some element of Of of valuation m. Then

a+p) =3 (M),
n=0

and we have 8”( ) € LA, (Zy, Z) for any n, by [11, Theorem 1.29]. O

X
m



Loeffler and Zerbes Res Math Sci(2016)3:29 Page 21 of 53

Remark 4.1.6 1t is important to use the right topology on Ay, because if one takes U =
W,, and writes x — k(1 +p”’+1x) as a series Y ¢,&” with ¢, € Ay, the ¢, tend to zero
my;-adically (the above argument shows in fact that ¢, € mJ;), but they do not tend to
zero p-adically.

4.2 The spaces Dj;(To) and D,(T;)
Definition 4.2.1 Let H be the group Z;‘?z. We define subsets Ty, Ty C H by

T()::Z;XZ, Té::pszz;_
Proposition 4.2.2 The subset Ty is preserved by right multiplication by the monoid
7z Z 7 Vi
Zolp) = ( ; p) C Matyu2(Zy), and T} by the monoid X(p) = ( P 1’)_

Z, pZ, rL, Z;
In particular, both Ty and T are preserved by scalar multiplication by z;. |

Remark 4.2.3 The definition of Ty coincides with that used in [1] (and our Xy(p) is their
0o -1

E(p)). The subspace T} is the image of Ty under right multiplication by 0 and
p

conjugation by this element interchanges Xo(p) and X (p).

Definition 4.2.4 For m > 0, we write A‘ZL (To) for the space of functions
f:To — Ay
which are homogenous of weight «y;, i.e. satisfy

frt) =kuly)f ()

fory € ZPX, t € Ty, and are such that the function z — f(1, z) lies in LA,,(Z,, Ay). We
equip this module with the topology defined by the subgroups my;A7; .

Similarly, we write A7, (T) for the space of functions Ty — Ay which are homogenous
of weight k¢ and are such that z — f(pz, 1) € LA,(Z,, Ay), again endowed with the ;-
adic topology.

Proposition 4.2.5 If U C Wy, then the space A7y, (To) is preserved by the left action of
Xo(p) on functions Ty — Ay defined by

(&) =f(ty)

and similarly for A3, (T().

Proof We give the proof for T(; the proof for Tj is similar.
Unravelling the definition of the actions, we must show that if y = (Z e ) de x)p)
andf € A7,(T}), then the function

_ c+az
z > ky(d)ky (1 + pd 1bz)f (p T e 1)

is in LA, (Zy, Ay). Since LA,,(Zy, Ayr) is closed under multiplication and contains Z,, it

suffices to check that z > k(1 4+ pd~'bz) and z > f (p . ;I;bzz, 1) are in this space. For

the factor k77 (1 4+ pd~'bz) this follows from Lemma 4.1.5.

For the factor f ( . ;:;ZZ, 1), we note that the map z — ;:;ZZ preserves all the rigid-

analytic neighbourhoods X, of Z, so it preserves the ring of rigid-analytic functions
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convergent and bounded by 1 on these spaces; thus, z > g (;I;ZZ) is in LA, (Zp, Ay) if

g € LAW(Z,, Aur). O
For the rest of this section, let T denote either T, or T(’), and X either Xy or Z‘(’),
respectively.
Note that as a topological Ay -module, ACiLm(T) is isomorphic to the space of countable
sequences (cy)5> ; with ¢, € Ay such that ¢, — 0 in the m;-adic topology.

Definition 4.2.6 We write
D&m(T) = HomAu(AiLm(T), Ay),
and Dyy,,(T) = Dz[,m(T)[l/p].

Note that any linear functional u € DiLm(T) is necessarily continuous (where we endow
both A7, (T) and Ay with their my-adic topologies). We equip Dy, (T') with the weak
(or more formally weak-star) topology, generated by sets of the form {u: u(f) € mfj;}
for f € Ay, (T) and n > 0, i.e. the weakest topology such that all the evaluation-at-f
morphisms are continuous (when the target A is equipped with the m;-adic topology).

In this topology Dy, ,,(T') becomes compact; indeed, we have a topological isomorphism
D5, — 1,2y Au, with the inverse-limit topology.

Lemma 4.2.7 The formation of D, (T) commutes with base change in U, in the sense
that for V. C U two open discs defined over E, we have

tm(T) ® Ay =Dy, (T).
Ay
Proof Clear by construction. O

Lemma 4.2.8 We may write Dsz(T) as an inverse limit

Dyy,(T) = lim Dy, (T)/ Fil",
n

where each Fil" is preserved by the action of X, and the quotient Dy, (T)/ Fil" is finite.

Proof For T = Tpand m = 0 thisis [1, Proposition 3.10], and the generalisation to m > 1
is given in [14, §2.1]. The case of T = T|} is proved similarly [or, alternatively, follows from

the case of T = T via conjugation by (_01 ? ) Ol ]

Proposition 4.2.9 Let D(T, E) be the algebra of E-valued locally analytic distributions
on T. Then there is an isomorphism
D*(T, E) — lim Dyyu(T),
Um
given by mapping the Dirac distribution [t], for t € T, to the Ay-linear functional on
A}, given by evaluation at t. This map commutes with the action of X' on both sides and
restricts to an isomorphism
Ao (T) — l}ﬂlDzl,m(T)'
Um
Proof We give the proof for Tj, the proof for Tj being similar. Because of the homogeneity
requirement, any function in A7, (77) is uniquely determined by its restriction to pZ, x 1,
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and this gives an isomorphism Dy, (T) = LA;(Zy, O)* ®o; Ay. Both results now
follow by passing to the inverse limit. ]

Now let k € W be an integer weight (i.e. of the form z > 2z with k > 0); any such
weight automatically lies in Wp. As for U above, we may define a space A7 (T) of m-
analytic Op-valued functions on T homogenous of weight k, and its dual DY (T'), for any
m > 0.

Restriction to 7' gives a natural embedding P} — A} (T), where P} is the space of
polynomial functions on Z2, homogenous of degree k, with Of coefficients. Dually, we
obtain a canonical, X(p)-equivariant projection pk:Dy, — (P = TSymk (9]25.

Proposition 4.2.10 The following diagram is commutative, for any U, any m sufficiently
large that U € W,y,, and any k € U:
A(T) — Dy, (T) — Dg,(T)

Pk
momX k
A(H) TSym* H
Here mom” is as defined in [17), and the left vertical arrow is the natural inclusion T —
792
i
Proof This is clear by construction. O

4.3 The Ohta pairing

We now define a pairing between distribution modules on Ty and T}, following [26, §4].
Definition 4.3.1 LetH = 2232, as above. We define a bilinear map ¢ : H x H — Z, by
& ((x1, 91), (%2, ¥2)) = x1y2 — X291

This clearly restricts to a map To x T — Z;, so the Ay7-valued function ® on Tp x T
given by ®(t, t') = ki (¢(t t')) is well defined, homogenous of weight «;; in either variable,
and m-analytic whenever U C W,,.

Definition 4.3.2 We write
{— =}:Dg;,u(To) x D3, (To) = Au
for the bilinear map given by pairing with the function ® € A‘L’Lm(TO) ®ay AZI,m(T(;)'
This is evidently Ay/-bilinear, and it satisfies

{wy, 'y} =ru(dety) - {u n'}

forany u € Dy, (To), u e DZLm(Té), and y € Uy(p), where Up(p) = Zo(p) N Z((p) is the
Iwahori subgroup of GL2(Z,).

Remark 4.3.3 Let us describe the above map slightly more concretely. We take m = 0,
for simplicity; then, the functions f,((x, ¥)) = ky(x) - (y/x)" are an orthonormal basis of
A70(To), so a distribution u € DZLO(TO) is uniquely determined by its moments u, =
w1 (fir), which can be any sequence of elements of Ay;. Similarly, the functions g, ((px, y)) =
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ku()(x/y)" are an orthonormal basis of A‘ELO(T(;) and any u’ € D&O(Té) is uniquely
determined by its moments u), = u'(gy)-

Given such y, i/, we define an element of A; as follows: the function @ ((1, z), (pw, 1)) =
k17 (1 — pzw) can be written as a power series > a,(wz)", with a, € Ay such thata, — 0
in the my-adic topology, by Lemma 4.1.5; then {1, '} is the value of the convergent sum

’
Zn}O Anfhnlly-

4.4 Sheaves on modular curves
Notation 4.4.1 Let M, N be integers > 1 with M | N and M + N > 5. We write Y(M, N)
for the modular curve over Z[1/N] defined in [15, §2.1].

We recall the construction of an étale sheaf of abelian groups .#7,, and the correspond-
ing sheaf of Iwasawa algebras A(7,), associated with the universal elliptic curve £ over
Y (M, N), and more generally the sheaf of sets %p (D) and sheaf of A(%”Zp)-modules
A(Hz, (D)), where D is a subscheme of £ finite étale over Y (M, N). Cf. [19, §4.1].

We shall apply this to the curve Y = Y (1, N(p)) where p { N, parametrising triples
(E, P, C) where E is an elliptic curves (over some Z[1/Np]-algebra), P is a point of exact
order N on E, and C is a subgroup of E of order p. Let D = E[p] — C, which is finite étale
over Y of degree p2 — p,and D' = C — {0}, which is finite étale of degree p — 1; then
the sheaves 77, (D) and 77, (D'} are defined. Since both D and D’ are contained in E[p],
there is a multiplication-by-p map

[l A, (D) — A(A)

and similarly for D'.

Proposition 4.4.2 The pullbacks of the sheaves A(H#z,,), and A(Hz,, (D)), and A(Hy, (DY)
to the pro-scheme Y (p*°, Np°) are isomorphic to the constant sheaves A(ZIZ,), A(Ty), and
A(T)), respectively, and the maps [p)« are induced by the natural inclusions To — Zf, and
Ty — 2127'

Proof It suffices to check the corresponding statement for the inverse systems of sheaves of
sets %ﬂzp, «%ﬂzp (D) and %ﬂzp (D'). However, over Y (p°°, Np*>°) we have two sections ey, ey of
3, identifying it with the constant sheaf Z2, and since the level p subgroup C is generated
by e3 mod p, the sheaf <%pr (D) is precisely the subset of linear combinations ae; + bes
such that a # 0 mod p, which is Ty, while 77, (D’) is similarly identified with T},. ]

Now let m > 0, and U a wide open disc contained in W,,, as before.

Proposition 4.4.3 There are pro-sheaves of Ay-modules Dy, (7)) and Dy, (H() on
Y, whose pullbacks to Y (p>°, Np*) are the constant pro-sheaves Dy, (To) and Dam(T{)),
respectively, and the Galois group of Y (p°°, Np™)/Y acts on Dy, (To) and Dy, (Ty) via
its natural identification with the Iwahori subgroup of GLy(Zy).

Proof The above trivialisation of 7z, over Y (p*, Np>°) determines a homomorphism
from the étale fundamental group nlt(Y ) to the Iwahori subgroup Up(p) S GL2(Z,).
Since Dy, (To) is an inverse limit of finite right modules for Uy (p), and any finite right
nft(Y)—module defines an étale sheaf on Y, we obtain a pro-sheaf D&m(%’f)), and similarly
for DCL’Lm(T(;). These are sheaves of A;;-modules since the action of Uy(p) on the modules
Dy;,,(To) and D, (Tj) is Ay-linear. O
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Remark 4.4.4 Compare [1, §3.3]; the argument is given there for the Kummer étale site
on a log rigid space over Q, (with log structure given by the cusps), but the argument
works equally well in the much simpler case of affine modular curves over Q.

Proposition 4.4.5 For any k € U we have commutative diagrams of pro-sheaves on Y
A, (D)) — Dy He) —> D5, (H5)

[p]*{ ka
k

A(HA,) T+ TSym* ()

and
A(Hz, (D)) — Dy, () — DR,,(H)

[p]*J {pk
k

A(A,) TSym* ()

Here momX is as defined in [17].

Proof We have the diagram of Proposition 4.2.10, which we may interpret as a diagram of
constant pro-sheaves on Y (p*°, Np*°), and the morphisms in the diagram are all equivari-
ant for the action of the Iwahori subgroup, so they descend to morphisms of sheaves
onY. O

We can similarly construct Dy, (7)) and D&m(%’) as sheaves on Y (U), for any suffi-

o~

ciently small open compact subgroup U € GL2(Z) whose image in GL»(Z,) is contained
in the Iwahori subgroup. Moreover, if g € GL2(Q) N Xo(p), so there is a natural map

Y(U) — Y(glig™")
corresponding to z > gz on the upper half-plane, then the action of g on D, (/) gives
a map of sheaves on Y’

D) — & (Diym(H0)) 5
the same holds with .7 and X) in place of .7 and X.

Definition 4.4.6 We define
Mg, () = HYy (Y, DY, (HB)) (—ku),
M3y, (A) = Hyy (Y, DYy () (1)

We also make the same definitions for compactly supported and parabolic cohomology,
which we write as M &m(%)w M ‘L’Lm(j%)par (and similarly for J7)).

These are profinite topological Ay-modules, equipped with continuous actions of
Gal(Q/Q) unramified outside Npoo. As topological A;-modules (forgetting the Galois
actions) they are isomorphic to more familiar objects:

+ The space My, (70) is isomorphic to the group cohomology H' (T, D&m(To)),
where I' = I (N (p)) = I'(N) N Ip(p) (since Y1 (N (p))(C) has contractible universal
cover and its fundamental group is I'1(N) N I (p)).

Page 25 of 53
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+ The space My, (7). is isomorphic to the space of modular symbols

Hom - (Div®(By), Dy, (To))

The same statements hold with 7 and T} in place of % and Tj.

Notation 4.4.7 We shall refer to M&m(%’f)) and M &m(%/ ) as étale overconvergent coho-
mology (of weight U, tame level N and degree of overconvergence ).

We now state some properties of these modules:

Proposition 4.4.8 (1) (Compatibility with specialisation) Let wy be the ideal of Ay

(3)

(4)

corresponding to the character z > zX. For any integer k > 0 € U, there is an
isomorphism

M3, (A i = M3, (H5).

For compactly supported cohomology this is true for k > 1, while for k = 0 we have
an injective map

M (H)e /0 — Mg, (H0)e

whose cokernel has rank 1 over O, with the Hecke operator U, acting as multiplica-
tion by p. Similar statements hold for 7 in place of 7.
(Control theorem) For any integer k > 0, the map

My () 25 HE(Y, TSymK (2)(=k))[1/p]

is an isomorphism on the U, = « eigenspace, for any a of valuation < k + 1. The
same holds for compactly supported and parabolic cohomology, and for ¢ and UI’,
in place of 74 and U,

(Duality) There are Ay-bilinear, Gq,-equivariant pairings

My o) X Myl ) — Au,
M(L)Lm(%) X M(L)J,m(%/)c — Ay,
M&m(%)par X M&m(%/)par — Ay,

which we denote by {—, —}. For integers k > 0 we have

€V ({x, x/}) = {,Ok(x); pk(x/)}k

where evy is evaluation at k, and on the right-hand side {—, —} signifies the Poincaré
duality pairing.

There is an isomorphism W:M&m(%)? — M&m(%/)? (where ? € {Q, ¢, par}),
intertwining the action of the Hecke operators T, with the T,, (including n = p); this
is compatible via the maps pj with the Atkin—Lehner operator Wy, (but not with the
Galois action).

Proof For part (1), see [1, Lemma 3.18]. For compactly supported cohomology see [2,

Theorem 3.10]. (Bellaiche works with coefficients in an affinoid disc, rather than a wide

open disc as we do, but the argument is the same.)
Part (2) is the celebrated Stevens control theorem; see [1, Theorem 3.16] for H! and [28,
Theorem 1.1] for H..

Page 26 of 53
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For part (3), if we identify Z,(1) with Z, as sheaves on Y (p°°, Np™) via the section
given by the Weil pairing and our trivialisation of /%, then the Iwahori subgroup Uy(p)
acts on Z,(1) via the determinant character, and hence our pairing of Up(p)-modules
Dy, (F4) x D;’Lm(%’) — Ay gives a pairing of étale pro-sheaves on Y’

Duym(7%) x Dym(Hp) — Aulku)

where iy is the composite of the cyclotomic character with the canonical map Z; — A
Hence we have a cup-product pairing

H} (Y, Dym(54)(1) x H (Y, Dum(H) (1)) — HZ (Y, Au(2 + ku)),

and since there is a canonical isomorphism H 3(7, Z,(1)) = Z,, this gives a pairing into
Ay (1+«ky) as claimed. It is clear by construction that this is compatible with the Poincaré
duality pairings with TSymX coefficients for each k > 0.

Part (4) follows from the fact that the action of the matrix ( A(,)p _01) on H interchanges
To and Ty O

Remark 4.4.9 The pairing {—, —} (in any of its various incarnations) is far from perfect
(since its specialisation at a classical weight k > 0 factors through the maps py, so any
non-classical eigenclass of weight k must be in its kernel). Nonetheless, we shall see below
that it induces a perfect pairing on small slope parts.

4.5 Slope decompositions
As before, let U be a wide open disc contained in W,,,, for some m. Let By = Ay[1/p],
and let M be one of the By;-modules My, (74), for ? € {@, ¢, par}, and let A € Rx.

Definition 4.5.1 We say M has a slope < A decomposition if we can write it as a direct
sum of By;-modules

M = MESH @Mb)‘),
where the following conditions are satisfied:

+ the action of the Hecke operator U/, preserves the two summands;
+ the module M, 21@) is finitely generated over Bys;
+ therestrictions of U, to Méf)‘) and Mg)‘) have slope < A and slope > A, respectively.

Remark 4.5.2 There are several equivalent definitions of slope < A, see [1] for further
discussion. We shall use the following formulation: the endomorphism U, of Méf)‘) is
invertible, and the sequence of endomorphisms (pW‘J : (L[p)’”)n>0 is bounded in the
operator norm.

Note that the summands MS? and M®>* must be stable under the actions of the
prime-to-p Hecke operators, and of the Galois group Gq, since these commute with the
action of U,.

Theorem 4.5.3 ([1, Theorem 3.17]) Let k > 0 and 0 < A < k + 1. Then there exists an
open disc U > k in W, defined over E, such that the module M;0(74) has a slope < A
decomposition.

The same results hold mutatis mutandis for M = My,0(J), using the Hecke operator
LIIQ in place of Up; this follows directly from the previous statement using the isomor-
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phism between the two modules provided by the Atkin—Lehner involution. There are also
corresponding statements for compactly supported and parabolic cohomology.

4.6 Coleman families
A considerably finer statement is possible if we restrict to a “neighbourhood” of a classical
modular form. We make the following definition:

Definition 4.6.1 Let U/ € WV be an open disc such that the classical weights L/ N Z > are
dense in U. A Coleman family F over U (of tame level N) is a power series

F=> auFq" € Aullql)
n>1
with a1(F) = 1 and a,(F) invertible in By, such that for all but finitely many classical
weights k € U N Zxo, the series i = X", o) an(F)(k) € Ok[[q]] is the g-expansion of
a classical modular form of weight k + 2 and level I'1(N) N I'p(p) which is a normalised
eigenform for the Hecke operators.

Remark 4.6.2 This definition is somewhat crude, since for a more satisfying theory one
should also consider more general classical weights of the form z > zX x (z) for x of finite
order and allow families indexed by a finite flat rigid-analytic cover of U rather than by
U itself. This leads to the construction of the eigencurve. However, the above definition
will suffice for our purposes, since we are only interested in small neighbourhoods in the
eigencurve around a classical point.

Definition 4.6.3 A noble eigenform of tame level N is a normalised cuspidal Hecke eigen-
form f, of level I'1(N) N I'v(p) and some weight k + 2 > 2, with coefficients in E, having
U,-eigenvalue o = a,(f), such that:

+ foisap-stabilisation of a newformf of level N whose Hecke polynomial X% —a, ()X +
P ‘Hsf (p) has distinct roots (“p-regularity”);

+ ifv,(a) = k + 1, then the Galois representation Mg (f)|GQp is not a direct sum of two
characters (“non-criticality”).

Theorem 4.6.4 Suppose f is a noble eigenform of weight ko + 2. Then there exists a disc
U > ko in W, and a unique Coleman family F over U, such that Fy, = f.

Proof This follows from the fact that the Coleman—Mazur—Buzzard eigencurve €' (N) of
tame level N is étale over WV (and, in particular, smooth) at the point corresponding to a
noble eigenform f,. See [2].

Remark 4.6.5 As remarked in [14], the condition that the Hecke polynomial of f has
distinct roots is conjectured to be redundant, and known to be so when f has weight 2,
and it is also conjectured that the only newforms f of weight >2 such that Mg(f )|GQ_,,
splits as a direct sum are those which are of CM type with p split in the CM field.

Theorem 4.6.6 Let f, be a noble eigenform, and F the Coleman family passing through
Jo. If the disc U > ko is sufficiently small, then:
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o The module
Mu(F) i= Muo(H5)| T = an(F) ¥n > 1]

is a direct summand of Myo(5%) as a By-module, free of rank 2 over By, and lifts
canonically to Myo(74)c.
o The same is true of the module

My(F)* = Mu,o(ffg)[f,; = ay(F)Vn > 1].
¢ The pairing {—, —} induces an isomorphism of By [Gq,]-modules
My(F)* = Homp,, (Mg (F), By).

o Foreachk > 0 € U, the form Fy is a classical eigenform, and we have isomorphisms

of E-linear Gq,-representations
My(F)/oMu(F) = Me(Fy)  and  Myu(F)* [oiMu(F)* = Me(Fi)™

Proof The finite-slope parts of all the various overconvergent cohomology groups can
be glued into coherent sheaves on the eigencurve €’ (N). In a neighbourhood of a noble
point, the eigencurve is étale over weight space and these sheaves are all locally free of
rank 2, and the map from H/ to H! is an isomorphism at the noble point, so it must be an
isomorphism on some neighbourhood of it. See [14, Proposition 2.3.5] for further details.

O

4.7 Weight one forms

If f is a cuspidal newform of level N and weight 1, and f; is a p-stabilisation of f, then it is
always the case that v,(a) = ko +1 = 0 and Mg (f)|GQp splits as a direct sum (since Mg(f)
is an Artin representation). Nonetheless, analogues of Theorems 4.6.4 and 4.6.6 do hold
for these forms.

Notation 4.7.1 We say that f has real multiplication by a real quadratic field K if there is
a Hecke character ¢ of K such that Mg(f) = Indgg(lﬁ).

Theorem 4.7.2 Let fy be a p-stabilisation of a p-regular weight 1 eigenform.

(1) There is an open disc U > —1 in W, a finite flat rigid-analytic covering I —— U
unramified away from —1 and totally ramified at —1, and a family of eigenforms
F e Byllql), whose specialisation at k ~Y(=1) is fo,. We may take U = U if (and only
if) f does not have real multiplication by a quadratic field in which p is split.

(2) The module

My(F) = (k*Myo(H0)) [T = an(F)Vn > 1]

is a direct summand of k* Mo (), free of rank 2 as a By-module, and lifts canoni-
cally to k*Myo(F)..
(3) The same is true of

My(F)* = (*Myo(H)) [Ty = an(F)V¥n > 1],

and the pairing {—, —} induces an isomorphism My (F)* = Homp (M (F), By).
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Proof Part (1) is exactly the statement that the eigencurve is smooth at the point corre-
sponding to fy, and is étale over weight space except in the real-multiplication setting, see
[3].

Part (2) for compactly supported cohomology is an instance of [2, Proposition 4.3].
However, the kernel and cokernel of the map My;o(5%). — Myo(74) are supported on
the Eisenstein component of the eigencurve, and since f; is a smooth point on the cuspidal
eigencurve €°(N) C ¢ (N), it does not lie on the Eisenstein component. Hence the kernel
and cokernel localise to 0 at fy, implying that for small enough U the F-eigenspaces of
My (). and My (F4) coincide.

For part (3) we use the fact that the Ohta pairings induce perfect dualities on the ordinary
parts of the modules M/ (), and My (A7) (cf. [26]). O

Remark 4.7.3 Parts (1) and (2) of Theorem 4.7.2 also hold for non-noble points of weight
>2 corresponding to the critical p-stabilisations of ordinary CM forms, by [2, Proposi-
tion 4.5]. However, we do not know if part (3) holds in this situation.

5 Rankin-Eisenstein classes in Coleman families
5.1 Coefficient modules
Let H be a group isomorphic to le, (but not necessarily canonically so), for p an odd prime.
Then we can regard the modules TSym” H as representations of Aut(H) ~ GL3(Z,).
In this section, we shall show that the Clebsch—Gordan decompositions of the groups
TSym” H @ TSym® H can themselves be interpolated as r varies (for fixed s), after passing
to a suitable completion.

In this section we shall refer to morphisms as natural if they are functorial with respect

to automorphisms of H.

Proposition 5.1.1 For A an open compact subset of H such that A N\ pH = &, and any
r > 1, there is a short exact sequence

0 — C(A)® Sym/ 1 (HY) ® A2(HY) —*+ C(A) ® Sym/ HY 2+ C(4) —» 0

where C(A) is the space of continuous Op-valued functions on A. This short exact sequence

is natural, and split (but not naturally split).

Proof Let us begin by defining the maps. The map 8, which is the simpler of the two, is
given by interpreting Sym/ H" as a subspace of C(A) (consisting of functions which are the
restrictions to A of homogenous polynomial functions on H of degree j) and composing
with the multiplication map C(A) ® C(A) — C(A).

The map « is more intricate: it is given by including A*(H") in HY ® H", and grouping
the terms as

(CA) ®HY)® (Sym/ " {(HY) @ HY).

As above, we have a canonical multiplication map C(4) ® HY — H", and multiplication
in the symmetric algebra Sym®(H") gives a map Sym/ "' (HY) @ HY — Sym/ H", and
this gives the first map in the sequence. The composite 8 o « is clearly 0, since it factors
through the map A2HY — Sym? H".
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Having defined the maps intrinsically, we may check the exactness of the sequence
after fixing a basis of H. Let x, y be the corresponding coordinate functions, so that
&, 671y, ...,y is a basis of Sym/ HY and x ® y — y ® « is a basis of A2H". With these
identifications we can write the sequence as

0 —> CA)Y — CW)®H) —s C(4) — 0

with the maps being (fo, . .., fi—1) = (=yfo, %o — ¥f1, .. ., fi—1) and (fo, . .., f;) > ¥/fo +
R j/ﬁ The injectivity of « is now clear, since multiplication by x (or by y) is injective
in C(A).

To show that the map 8 is surjective, we write down a (non-canonical) section. We can
decompose A as a union A; LI Ay where x is invertible on A; and y is invertible on Ay. We
define 8(f) = (x7£0,...,0) on C(A1) and () = (0, ..., 0,y /f) on the C(A,) factor; then
B o é is clearly the identity, so f is surjective.

Finally, let (fo, . .., f;) € ker(8). Choosing A = A; LI A; as before, we may assume either
x or y is invertible on A. We treat the first case, the second being similar. We define
y(fu...f) = (g ..., g—1) where gi_1 = x71f, g2 = x_z(xﬁ_l + yf;), etc., down to
g0 =x7 Wi+ +y 7). But then (« o ¥) + (B 0 §) = id, so we have exactness at
the middle term. O

Now let C'2(4) denote the space of locally analytic E-valued functions on A; exactly the
same argument shows that we have an exact sequence analogous to (5.1.1),

0 — CR(A) @ Sym L (HY) @ AXHY) > C(A) ® Sym/ HY —E+ C(4) — 0.

Proposition 5.1.2 Let§: C2(A) - CR(4A) ® Sym/ H be the morphism defined in a basis
by

_ l ] 8}.]{ Sit
80 =5 > (S) oy 057" (5.1.1)

s+t=j

Then § is natural, and the composite B o 8 is the endomorphism of C(A) given by
jl! Hg;é(v — i), where V is given by

d
(V)h) = - f (th)

t=1

Proof The morphism § is simply /l' times the jth power of the total derivative map
Ch(4) - CR(4) ® Tan(A)*, combined with the identification Tan(4) = Tan(H) = H.
From this description the naturality is clear, and a computation shows that it agrees with
the more concrete description above. The identity for 8 0§ is easily seen by induction on .

O

It will be convenient to adopt the notation (7) for the endomorphism ]l, H’l:;(l)(v — ).
We may regard this as an element of the space Dla(Z;) of locally analytic distributions
onZ,;.

Proposition 5.1.3 For any k > j, the restriction of § to the space Sym* H" of homogenous
polynomials of degree k lands in the subspace

Sym 7 HY @ Sym/ HY c C*(A) ® Syn/ H",
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and the resulting map Sym* HY — Sym*~ HY ® Sym/ H" is the dual of the symmetrised
tensor product map TSymk_j H® TSyn/ H — TSymk H.
Ifk < j, then the restriction of § to Sym* H is the zero map.

Proof It is obvious that Sym* HY embeds naturally into C!2(4), and its image under &
is contained in Sym*~ HY ® Sym/ H. A straightforward computation in coordinates

shows that this map sends x%y” to > =) (‘:) (lt’) (x“_syh L xty ), which coincides with

the dual of the symmetrised tensor product.
On the other hand it is obvious from Eq. (5.1.1) that § vanishes on any polynomial of
total degree < j. |

Corollary 5.1.4 There are natural maps
§*: D*(A) ® TSyn/(H) — D™(A)
and
B*:D(A) — D*(A) ® TSym/ (H),
where * is given on group elements by [h] — [h] ® K, and s* satisfies
§* o B* = (V)
J
Moreover, for any k > 0 we have

0 ifk <j,
mom*~7 .1 ifk >},

momX o §* =

where momX~ -1 denotes the composition

momX~/

D"(A) ® TSy (H) 2 TSym* 7 H ® TSym/ H —» TSym* H
(where the second map is the symmetrised tensor product).

Proof This follows by dualising the previous proposition. ]

We now consider varying j, for which it is convenient to re-label the maps g*, §* above
as ﬁ;‘ and 6;‘.

Lemma 5.1.5 Leth > j > 0. Then the composition

la oy Pie® h—j '
D*(A) ® TSy/(H) ——— D?*(A) ® TSym" 7 H ® TSym?/ H
—+ D®(A) @ TSym" H

8;; Dla (A)

where the unlabelled arrow is given by the symmetrised tensor product, is given by

V—j
87
()

Proof Explicit computation. O
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5.2 Nearly overconvergent étale cohomology

Wealso have an analogue of the Clebsch—Gordan map for the distribution spaces D7, , ()
introduced above, which are completions of Dla(T(’)). The rigid space W has a group
structure, so we can make sense of U — j for any integer j.

Proposition 5.2.1 There are natural maps

B} DYy, (T4) — D

t—jm(To) ® TSym/ H

and

8:DY_,(To) ® TSym/ H — Diyyy(Ty),

—jm

commuting with the action of Xo(p), such that 8;‘ o ,31?" is multiplication by (]V) € Ayll/pl.

Proof We simply transport the constructions of Sect. 5.1 to the present setting (taking
A = T{). The naturality of these constructions precisely translates into the assertion
that the resulting maps commute with the Xy(p)-action. Since the functions in Ay, are
homogenous of weight «; (the canonical character ZpX — Ai}), we have %f (th)|=1 =
V - f(h) for all f € Ay, where on the right-hand side V is regarded as an element of
Ay[1/p); that is, the two actions of V on Ay, as a differential operator and as an element
of the coefficient ring, coincide. ]

Remark 5.2.2 Note that 5]?* takes values in Dy, = Dj;,,[1/p], not in Df, itself; the
denominator arises from the fact that the map §; on A7, does not preserve the A -lattice
A7, but rather maps A7, to ﬂpﬁAam. Note also that if I C W, and U contains none

of the integers {0, . ..,j — 1}, then (7) is invertible in Ay [1/p].

The maps of spaces ﬁj* and 8]* induce maps of étale sheaves on Y = Y7(N(p)) (for any
N), Dy, () — Dy, (H))Q@TSym! A and D5, . (H)@TSymd S — Dyym(H)),
which we denote by the same symbols.

—jm —jm

Definition 5.2.3 We shall refer to the cohomology groups H, e,*t(?, Dy—jm(F) ®
TSynY ) as nearly overconvergent étale cohomology, and the map

87, (Y, Dujun( ) @ TSy ) — Hi, (¥, DumlH5)
as the overconvergent projector.

Remark 5.2.4 The motivation for this terminology is that the sheaves Dy (7)) ®
TSyn/ %, and the maps ﬁj* and 81?* relating them to the overconvergent cohomology
sheaves Dy, (), are an étale analogue of the coherent sheaves appearing in the theory
of nearly overconvergent p-adic modular forms (see [32]).

Recall from Corollary 5.1.4 that the composite of 8;‘ with the moment map py is zero
if 0 < k < j, which is somewhat undesirable. We can rectify this issue as follows. Recall
that we have defined My (J¢)) = Hélt(Y, Dym(H5)(1)).

Proposition 5.2.5 Let U be an open disc contained in Wy, and F a Coleman family
defined over U. Suppose the following condition is satisfied: for any integer weight k > 0 in
U, the projection map My () — My (F)* factors through py.
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Then, for any j > 0, the composite map

*

HY Y, Dy () @ TSym/ (A)(1)) —> My () =5 My(F)*
takes values in V(V — 1) ...(V —j + )My (F)*, and hence the map

1 3 / j *

pr) = ol pryo8’:H' (Y, Du-y(45) @ TSym! (#)(1)) — Mu(F)
j

is well defined.

Proof Note that V, regarded as a rigid-analytic function on W, takes the value k at an
integer weight k. So the only points in W, at which V(V — 1)...(V —j + 1) fails to be
invertible are the positive integers {0, ...,j — 1}, and it has simple zeroes at all of these
points.

If k is one of these integers, then we have My (7)) /(V — k)My(H]) = My ().
Hence it suffices to show that pr - o8 ]fk is zero on My (J77), but this is immediate since the
specialisation of pr - at k factors through pg, and pi o 8]?“ is zero for 0 < k < j.

This shows that pr - 06 ;‘ lands in the stated submodule. Since My (F)* isa free Ay [1/p]-
module (and Ay[1/p] is an integral domain), the map prZJ is therefore well defined. 0O
Remark 5.2.6 This proposition can be interpreted as follows: we can renormalise 8]* to be
an inverse to ,3;“, as long as we avoid points on the eigencurve which are non-classical but
have classical weights.

By construction, the map pr[]]

H'(Y, Du(A45)(1)

has the property that the following diagram commutes:

B &

HYY, Dy—j(3) ® TSym/ () (1)) —= My(F)*.

pry

More generally, if 0 < j < /4, then (as in Lemma 5.1.5) we can consider ,Bh -id as a map
Duy—j(45) ® TSymV () — Dy_(A5) ® TSym" (),

and from Lemma 5.1.5 one computes that
I .
priyl o (Bj_; - id) = (}) pr[,’c]‘ (5.2.1)

5.3 Two-parameter families of Beilinson-Flach elements
Let Nj, Ny be integers such that p t N; and pNj, pNy > 4. We also choose two wide open
discs U7 and U5 in W, and consider the sheaf

(t, 1) = i, () B Dy, ()
on the affine surface Y7 (N1(p)) x Y1(Na(p)).

Definition 5.3.1 Let N be any integer divisible by N; and N; and with the same prime
factors as N1Ny. For anyj > 0 and m > 1, we define the element

BFIEN € 1, (N () x YiNa(p) X 15,0 Digy 1y — 1)) [1/2]
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as the image of the class

SBFY

M\ € HE (V1N x 125, (A(£(C)) @ TSym! 722 - ),

under pushforward along Y1(Np)?> — Y1(Ni(p)) x Y1(Na(p)), composed with the map
induced by the morphisms of sheaves

AA(C)) @ TSym! A — Dy _(#) @ TSym/ A

—+ Dy ()1/p]

for i = 1,2. Here, the first map is given by the natural maps A(JZ(C)) — D5, for
U = U; — j, and the second map is the overconvergent projector § ]f" of Proposition 5.2.1.

Remark 5.3.2 We are using implicitly here the fact that the Beilinson—Flach elements can
be lifted canonically to classes with coefficients in the sheaves A(77Z, (D). Cf. Remark
3.3.6 above.

The Hochschild—Serre spectral sequence and the Kiinneth formula give a canonical
surjection

H, (V0 0) x Vi) X 1 Dy )2 =) [1/7)

= H (Z[1/mNi\Nop, ], Muy, & Mu, (=)
and we (abusively) denote the image of .BF [mu]l\,fllz\/z] , under this map by the same symbol.
Proposition 5.3.3 For any integer weights ky € Uy and ky € Uy with min(ky, ko) > j, the
map

Piy B iy Drug, i) — TSymkl H R TSymk2 H

sends BF Eg ]1\[51]2\/2] ,, to the pushforward of BF

0 < ko < j, then the image of [BF Ei[ Il\li[?\[]z] o, under pp, X py, is zero.

[k ,j1

mNpa: O the other hand, if 0 < ky < jor

Proof This follows from the last statement of 5.1.4, since ;[BF L’;f\;] . is by definition the
image OfCBqu],Np,u under the map (momf~7 - id) X (momK 7 - id). O

Now let us choose newforms f, g, of levels Nj, N and weights k; + 2, ko + 2 > 2, and
roots a7y, oy of their Hecke polynomials, such that the p-stabilisations f;,, both satisfy
the hypotheses of Theorem 4.6.6. The theorem then gives us families of overconvergent
eigenforms Fi, F; passing through the p-stabilisations of f and g, defined over some discs
Ul > kl, UZ > kz.

Proposition 5.3.4 If the discs U; are sufficiently small, then there exist classes
f’ )' A .
BELE € HY (2 [t sty | Mus () & Mun G (—)
such that

Uy, Uy \% Vi Gj
o 0 (0) ()

where V; denotes the image of V in Ay, [1/p].



Loeffler and Zerbes Res Math Sci(2016)3:29 Page 36 of 53

Proof After shrinking the discs U; if necessary so that all integer-weight specialisations of

Fand G are classmal so that Proposition 5.2.5 applies, we can simply define (BF EZ: ;,g’j Vas
the image of . BFY ma Under prg- X prg] ]

5.4 Interpolationinj
Now let F, G be Coleman families over open discs U, Uy, satisfying the conditions of
Proposition 5.3.4.

Proposition 5.4.1 For any h > 0, and any a, there is a constant C independent of r such
that the elements (BF 7.6/l for0 <j < handr 2 1, satisfy the following norm bound:

mp",a ’

h
S (-1 (i’) Rest, ( - Bfﬁ,;g;]> <o
j=0

Proof We shall deduce this from Theorem 3.3.5 (and Remark 3.3.6). This theorem gives
a bound for the classes

n
> d" (k- i1 ® mom”7)E2 Res),” ( BFpy, Npa)
j=0

We apply to this the map pr[}h-] X pr[gh]. This maps (1® mom”~)®2_ BFU to ( ) B]—'[}- 5]

mp’,a ’

by (5.2.1). So the image of the expression of Theorem 3.3.5 is
h n 2
> d - j)!( ) Resh,” (BF oyt ).
= j
j
which is exactly @” 4! times the quantity in the proposition. We may ignore the factor a”/!,

since it is nonzero and independent of r. O

We now choose affinoid discs V; contained in the U; (so the My, (F;)* become Banach
spaces).

Theorem 5.4.2 There is a element
BFLI € H' (QUum), Day 12, (T, My, (F)* & My, (G)Y))

which enjoys the following interpolating property: for any integers (ki, kz, j) with k; € V;
and 0 < j < min(k, k'), the image ofCBanfgzg] at (ky, ka, j) is

fkl Gy

(1_ p/ ) B]:
m&m@»em@%)

Proof We choose an integer i1 > |11 + A2 ], and apply Proposition 2.3.3 with K = Q(us,),
S the set of primes dividing pmN1N2, A = O(Vq x Vi), M = My, (F)* & My,(G)*,
A= A1 + Ay, and

[F.G)/]
Knj = (ap(Fay(G)) ™" =2
nj = \dp P ( )1]|
for 0 < j < hand n > 1. These x,; are norm-compatible for » > 1, and we obtain

norm- compatlble elements for all # > 0 by defining

P\ B
0; 1= coresquu/q (1) = \ 1= o ey ) =
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Moreover, the bound we have just established in Proposition 5.4.1 shows that
_ h i(h

HP nh Z]':o(_ly (l')xn,/

sition 2.3.3. It is not difficult to see that H%(Quo, My, (F)* ® My, (G)*) = 0, so we obtain

a class

x[h] € H' (Q(um), Dy 1, (I, My, (F)* & My, (G)"))

< Cp", which is exactly the growth bound required for Propo-

interpolating the classes x;,; for all #» > O and allj € {0, ..., 4}. However, if we have two
integers /' > h > |A1 + Ay), then the element x[/'] satisfies an interpolating property
strictly stronger than that of x[/], so we deduce that x[/] is in fact independent of s and
interpolates x,,; for all j > 0. We define (BF Lnf f] to be this element. The interpolat-
ing property is now immediate from the interpolating property of the 2-variable classes
BF Lf ;zg’j ] at integers k1, ko > j. O

6 Phi-Gamma modules and triangulations

6.1 Phi-Gamma modules in families

Let # denote? the Robba ring (of Q,), which is the ring of formal Laurent series over Q,
in a variable 7, convergent on some annulus of the form {x:0 < v,(x) < &} C Arlig, and let
Z+ € Qp[[n]] be its subring of elements that are analytic on the whole disc {x: v, (x) > 0}.
We endow these with their usual actions of Frobenius ¢ and the group I = Z,. We define

a left inverse ¥ of ¢ by putting

voufim = 3 fcr+1 -1

o1
for any f(7) € Z7.

Asiswell known, there is a functor D:rig

modules over Z (finitely generated free Z-modules with commuting % -semilinear oper-

mapping p-adic representations of Gq, to (¢, I')-

ators ¢ and I"), and this is a fully faithful functor whose essential image is the subcategory
of (¢, I')-modules of slope 0.

Remark 6.1.1 Strictly speaking, the definition of the functor D;rig depends on the auxiliary
choice of a compatible system of p-power roots of unity ({7)n>0 in Q,,. We shall fix, once
and for all, such a choice, and in applications to global problems we shall often assume
that ¢,» corresponds to il e C.

Now let A be a reduced affinoid algebra over Q,, and write Z4 = #Z ® A and simi-
larly for %X. We define an A-representation of Gq, to be a finitely generated locally free
A-module endowed with an A-linear action of Gq, (continuous with respect to the canon-
ical Banach topology of M).

Theorem 6.1.2 (Berger—Colmez [4]) For any A-representation M of Gq,, we may define
a finite locally free %4 -module Diig(V'), endowed with semilinear continuous actions of ¢
and U, such that

(Va) = DL_(V)/m,

.1.
D rig

rig

for every x € Max(A).

>The rings # and Z* are often also denoted by BIngp and B:qng, respectively; this notation is used in several earlier
works of the present authors.
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Definition 6.1.3 If D is a (¢, I')-module over %4, we define cohomology groups
H'(Qp, D) as the cohomology of the “Herr complex”

¢o—1
Cgy)(D) =D () pep = p

and analytic Iwasawa cohomology wa(Qp,oo, D) as the cohomology of the complex
Cy(D):=0— D YLD

These groups are compatible with the usual Galois cohomology in the sense that if M

is a A-representation of Gq,, then we have Hi(Qp, Djig(M)) = Hi(QP, V) and

H! (Qp00, DI (M) = DR(I, > | limH(Q,,, T) |,
£4(Qpo0, DY (M) = D%( Qp)Do(ng)(%n Q, >)

where T is the unit ball for any Gq,-invariant Banach module norm on M, by [16, Corol-
lary 4.4.11].

Corollary 6.1.4 For M an A-representation of Gq,, we have a canonical isomorphism

Hi (Qpoos D)) = H' (Q, DR (I, M)
In particular there is a canonical map
H'(Qp, Di(T", M) — Hi\, (D)
compatible with the natural maps to H' (Qp, M(n)) for every character n of I

Proof Let us choose an increasing sequence of affinoid discs X;, € W whose union is W.
Since we have D?(T, Q) = O0W) = l(ilqn O(X,), we can regard D(I", M) as a locally
free sheaf of GQp -representations on ¥V x MaxA, and we deduce that

H'(Qp, DP(I", M) = lim H'(Qp, O(X,)) & M),

n

by [29, Theorem 1.7]. For each 1, X;, x MaxA is an affinoid space, so we obtain

H'(Qp O(X,) & M) = H' (Qy D} (0) &),

by [29, Proposition 2.7]. Finally, the inverse limit of the modules Djig((’)(X,,) ® M) is the
module Dfm(D:rig(M)) considered in [16, Theorem 4.4.8], where it is shown that

H'(Qp, Dfm(D)) = H},,(Qp,00) D)
for any (¢, I')-module D over %Z4. O

Finally, if the base A is a finite field extension of Q,, then the functors Dis(—) and
Dgr(—) can be extended from A-linear representations of Gq, to the larger category of
(¢, I')-modules over Z4, and one has the following fact:

Theorem 6.1.5 (Nakamura, see [24]) IfA is a finite extension of Q, there exist Bloch—Kato
exponential and dual-exponential maps

expq,p : Dar(D) — HY(Qp D)
and

expapyD*(l) :Hl(Qp, D) — Dgr(D)
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for de Rham (p, I')-modules D over %4, which are functorial in D and are compatible with

the usual definitions when D = A

rig(V) for a de Rham representation V.

6.2 Perrin-Riou logarithms in families
Throughout this section, A denotes a reduced affinoid algebra, with supremum norm || - ||,
ando € A*.

Definition 6.2.1 We write Z4(a~!) for the free rank 1 (¢, I')-module over %, with
basis vector e such that ¢(e) = « “leand ye = eforall y € I'. We write %j{ (1) for the
submodule %X e of Ba(a™1).

Lemma 6.2.2 Suppose ||«|| < 1 and a — 1 is not a zero-divisor in A. Then
Bala ™= € ZF @),
Proof This follows from Lemma 1.11 of [12]. Cf. [14, §4.1]. O

We use this lemma to define a Perrin-Riou big logarithm map for %4 (a~!) when o — 1
is not a zero-divisor, following closely the construction in [14, §4.2], as the composition

Lo @1 Hiy(Quoo Zale ™) = Zala )= — 25 («1)V=!
2% (@Y= (6.2.1)
2L AdomW)
where the third arrow is the base extension to A of the Mellin transform (and W is

weight space). Note that our assumption that o — 1 is not a zero-divisor in A implies that
Ra(@~1)?=! = 0, and hence that Lo, (@) is injective.

6.3 Triangulations
Definition 6.3.1 Let D be a (¢, I")-module over % &® A which is locally free of rank 2. A
triangulation of D is a short exact sequence of (¢, I')-modules over # ®A,

0—-."™D—-D— .27 D0,
where the modules .# =D are locally free of rank 1 over Z & A.

Theorem 6.3.2 (Ruochuan Liu, [21]) Let (f, ) be as in Theorem 4.6.6. Then one can find
an affinoid disc V. C W containing k such that the (¢, I')-module

Dy(F)* = D} (My (F)")

over O(V) admits a canonical triangulation, with F Dy (F)* = %A(a?) and
FTDy(F)* = Ralor - ex(p) DA+ ky).

6.4 Eichler-Shimura isomorphisms
The last technical ingredient needed to proceed to the proof of our explicit reciprocity
law is the following:

Theorem 6.4.1 (Eichler—Shimura relation in families) In the setting of Theorem 6.3.2,
after possibly shrinking V, there is a canonical O(V')-basis vector

r=1
wF € (ﬁ_DV(}')(l +ky + e(]{f)))
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such that for every integer weight t > 0 in V, the specialisation of wx at t coincides with
the image of the differential form wy, attached to the normalised eigenform f;.

This is a minor modification of results of Ruochuan Liu (in preparation); we outline the
proof below. The starting point is the following theorem:

Theorem 6.4.2 (Andreatta—lovita—Stevens, [1]) Forany integerko > 0, andreal ). < ko+
1, we can find an open disc V. C W containing ko and a Hecke-equivariant isomorphism

HOX (), o) 2% (A (4D, (1) & G,

)
interpolating Faltings’ Hodge—Tate comparison isomorphisms for each k € V. Here X (w)
is a rigid-analytic neighbourhood of the component of oo in the ordinary locus of the
compactification X of Y, and w&wﬂ is a certain sheaf of O(V)-modules on X(w), whose
specialisation at any integer k > 0 € V is the (k 4 2)th power of the Hodge bundle for every

keV.

Proof of Theorem 6.4.1 We translate the statement of the above theorem into the language
of (¢, I')-modules. For any family of Gq,-representations M over an affinoid algebra A,
we have a canonical isomorphism

Gop
(M ® Cp) = DSen(M)F,
Q

where Dge, (M) is defined in terms of the (¢, I")-module Djig(M ).
Moreover, Dgen (?*Dv(]—')(l + Kv))r is zero. Hence, by composing comp, with the

projection to .# —, we have an isomorphism
HO(X(w), & ) F] —=> Dsen (Z Dy (F)1 +x1))" .

The left-hand side is free of rank 1, spanned by t - F where 7 is the Gauss sum of 8(}-p). On
the other hand, since the (¢, I")-module D~ = .% ~ Dy (F)(1 + kv) is unramified, we have
DSen(D_)F = (D_)r‘ o

Corollary 6.4.3 Under the same hypotheses as Theorem 6.4.1, possibly after shrinking V'
further, there is a O(V')-basis vector
r=1
1r € (7 Dy ()
with the property that for every classical specialisation F; of F, the specialisation of nr at
¢ is the unique vector whose cup-product with the differential w7 attached to the complex
conjugate F of Fy is given by
1

AN (F) - (1 - g) (1 - ﬁ)’

po

where o« and B are the roots of the Hecke polynomial of Fy, and A (Fy) is its Atkin—Lehner
pseudo-eigenvalue.

Proof This follows by dualising w# using the Ohta pairing {—, —}; the computations are
exactly the same as in the ordinary case, for which see [19, Proposition 10.1.2]. ]
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7 The explicit reciprocity law

7.1 Regulator maps for Rankin convolutions

Now let us choose two newforms f, g and p-stabilisations (e, o) satisfying the hypotheses
of Theorem 4.6.4.

Notation 7.1.1 We write
F "Dy, (F ® G) = F Dy, (F)'®F Dy, (G)%,

and similarly for Z~, . ZT~ and Z1T. We also define .#Z °Dy,x1,(F ® G)* =
F~ Dy, (F)*&Dv, (G)".

Theorem 7.1.2 If V1 and V5 are sufficiently small, then (for any m coprime to p) the image
of BFL under projection to the module HY, (Q(im) ® Qpo0r F ~ Dy, x vy (F ® G)*) is
zero.

Proof By taking the V; sufficiently small, we may assume that .Z "Dy, xv,(F ® G)*
is actually isomorphic to Z4(a~!), where & = arag and A = O(V; x V3), and that
la~l|| < p'*" and o — 1 is not a zero-divisor. It suffices, therefore, to show that Lo @)
maps the image ochFL,f;lg] to zero.

However, for each pair of integers (¢, £') € Vi x Vo with £, ¢ > 1 + 2k and such that
Fe¢ and Gy are not twists of each other, we know that the image of Ly, ,-1)(:BF LZ: ;lg])
vanishes when restricted to (¢, £') x W € Max(A) x W, by Proposition 3.5.11. Since such
pairs (¢, ¢') are Zariski-dense in Max(A), the result follows. O

Remark 7.1.3 Cf.[19,Lemma 8.1.5], which is an analogous (but rather stronger) statement
in the ordinary case.

Hence the projection of (BF Ef :9) to .7~ is in the image of the injection

Hi (Qpo0 F Dy, x5 (F @ G)*) = Hiy(Qpoor F °Dyyx1, (F @ G)¥).

Since .7 T Dy, (G)* is isomorphic to an unramified module twisted by an A -valued char-
acter of the cyclotomic Galois group I, we may define a Perrin-Riou logarithm map for
F ’*Dvl <V, (F ® G)* by reparametrising the corresponding map for its unramified twist,
exactly as in Theorem 8.2.8 of [19]. That is, if we define

r=1

D(Z TMF®G)") = (FTDFRG*(~-1—ky)
which is free of rank 1 over O(V7 x V3), then we obtain the following theorem:
Theorem 7.1.4 There is an injective morphism of O(V1 x Vo x W)-modules
L:Hyy Qo0 7~ Dvix1,(F ® G)F) — D(F~TM(F © §)) @ O(W),

with the following property: for all classical specialisations f, g of F, G, and all characters
of I' of the form t = j+ n with n of finite order and j € Z, we have a commutative diagram

HL, (Qpoor 7~ Dyyxrs(F ® G)%) 5 D(Z~M(F ® 6)) & OOW)

HY(Qp Z7D(f ® 9)*(—j — 1)) — F~ Daris(M(f ® g)*(—¢gp))
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in which the bottom horizontal map is given by

_ L _ afﬁs’ -1 . _ K o
(1 afﬂg)< p1+f) fr=01 |5t log ifj <K,
7Y Gey1 ; j— K = 1)lexp* ifj> K,
(27) 6@ ir=o| |0 b i)

where exp* and log are the Bloch—-Kato dual-exponential and logarithm maps, € is
the finite-order character ggp - n=' of I', r > 0 is the conductor of &, and G(c) =
2 acz)pz)~ €@)Sy: is the Gauss sum.

Proof The construction of the map £ is immediate from (6.2.1). The content of the
theorem is that the map L recovers the maps exp* and log for the specialisations of F and
G; this follows from Nakamura’s construction of exp* and log for (¢, I")-modules. m|

Theorem 7.1.5 (Explicit reciprocity law) If the V; are sufficiently small, then we have
<£ (CB‘F[L};Q]) Y NFE® a)g>
= (& = CH Do) g () N=D Tan(F) T Lp(F, G, 1 +).

Here, Lp(]-", G, 1 +j) denotes Urban’s 3-variable p-adic L-function as constructed in [32],
and er and eg are the characters by which the prime-to-p diamond operators act on F

and G.

Proof The two sides of the desired formula agree at every (k, k', j) with k € V1, k' € V;
and 0 < j < min(k, k), by [18, Theorem 6.5.9]. These points are manifestly Zariski-dense,
and the result follows. O

Remark 7.1.6 The construction of wg and the proof of the explicit reciprocity law are also
valid if G is a Coleman family passing through a p-stabilisation g, of a p-regular weight 1
form, as in Theorem 4.7.2; the only difference is that one may need to replace V5 with a
finite flat covering V5. In this setting, g, is automatically ordinary, so G is in fact a Hida
family, and one can use the construction of wg given in [19, Proposition 10.12.2].

8 Bounding Selmer groups

8.1 Notation and hypotheses

Let f; g be cuspidal modular newforms of weights k + 2, k" 4 2, respectively, and levels
N, Ny prime to p. We do permit here the case kK’ = —1. We suppose, however, thatk > &/,
so in particular k > 0, and we choose an integer j such that K’ +1 < j < k. Ifj = /%k/ +1,
then we assume that &r¢, is not trivial, where &7 and &g are the characters of f and g.

As usual, we let E be a finite extension of Q, with ring of integers O, containing the
coefficients of f and g. Our goal will be to bound the Selmer group associated with the
Galois representation Mo (f ®g)(14), in terms of the L-value L(f, g 1+/); our hypotheses
on (k, k', j) are precisely those required to ensure that this L-value is a critical value.

It will be convenient to impose the following local assumptions at p:

+ (p-regularity) We have oy # By and ay # B¢, where oy, By are the roots of the Hecke
polynomial of f at p, and similarly for g.
« (no local zero) None of the pairwise products

{“f ag, of B, Brag, By ﬁg}
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is equal to p/ or p'1/, so the Euler factor of L(f g s) at p does not vanish at s = j or
s=1+4j.

+ (nobility of fy) If f is ordinary, then either o is the unit root of the Hecke polynomial,
or Mg(f )|GQp is not the direct sum of two characters (so the eigenform f, is noble in
the sense of 4.6.3).

+ (nobility of g, and gg) If k' > 0, then ME(g)ngp does not split as a direct sum of
characters, so both p-stabilisations g, and gg are noble.

Remark 8.1.1 (1) In our arguments we will use both p-stabilisations g, and gg of g, but
only the one p-stabilisation f, of f; in particular, we do not require that the other
p-stabilisation fg be noble.

(2) Note that the “no local zero” hypothesis is automatic, for weight reasons, unless k +k’
iseven andj = /%k/ orj= /%k/ + 1 (so the L-value L(f, g 1 + /) is a “near-central”
value).

The p-regularity hypothesis implies that we have direct sum decompositions
Dcris(ME(f)*) = Dcris(ME(f)*)af @ Dcris(ME(f)*)ﬁf

where ¢ acts on the two direct summands as multiplication by af_l, ,Bf_ 1 respectively,
and similarly for g. This induces a decomposition of D¢is(Mg(f ® g)*) into four direct
summands Deyis(ME(f ® g)*)% etc.

Definition 8.1.2 We write
Deris (Me(f ® £)*)° = Deris (ME(f ® £)*)™ @ Deris (ME(f ®g)*)afﬁg
= Deris(ME(f)*)¥ ®F Deris (ME(Q)*) -
We write pr,, for the projection
Deris(ME(f ® g)*) — Deris(ME(f ® )*)*°
with Deris(ME(f ® g)*)ﬁf ° as kernel.
Proposition 8.1.3 If W denotes the Galois representation Mg(f ® g)*(—j), then:

. Hl(Qp, W) is 4-dimensional (as an E-vector space), and HO(Qp, W) = H2(Qp, W)
o we have

He (Qp W) = H{ (Qp W) = Hg (Qp W),

and this space has dimension 2;

o the dual-exponential map gives an isomorphism

H—I(Qp’ w) =+ Fl® Des(W);
H}Qp W)

« the projection

Fnlo . prmf . afo
il” Derig(W) —> Deris(W)

is an isomorphism.

Page 43 of 53
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Proof This is an elementary exercise using local Tate duality, Tate’s local Euler charac-
teristic formula, and the “no local zero” hypothesis. O

Theorem 8.1.4 Fix some ¢ > 1 coprime to 6pNyN,. For each m > 1 coprime to pc, we
obtain two classes

e e € HYQun), Me(f @ ) (),
with the following properties:
(i) for every prime v 1 p of Q(itm), we have
loc, (cf,{ag) € H{ (Qum)w ME(f ® )*(—))) 5
(i) there is a constant R (independent of m) such that
Rel, Rei™ € HY Q) Moy (f ® 9)* (=) torsion),

where Mo, (f @ g)* is the lattice in Mg(f @ g)* which is the image of the étale coho-
mology with Ofg-coefficients;
(iii) for € { mNgNg, we have

14 g —-1—j -1 &fdg
norm,,” (sz ):Pg(ﬂ Jo, ) cm s

where Py(X) is the local Euler factor of L(f, g s) at £, and similarly for c?{nﬁg ;

(iv) the images of ¢y, ¢ and % under the map
HY Q) ® Qo Me(f ® ) (=) =+ Qlum) ®q Fil’ Deris (ME(f ® ¢)*(—))

pry
—% QUm) ®Q Daris(ME(f @ £))°
lie in the subspaces Dyis(ME(f)*)* Pe and Deris(ME(f)*)% %, respectively;
(v) for m = 1, the projections pr,, | exp* 7 and pr,, (exp* ¢! Pe are nonzero (for
p ] p o p 1 p o p 1
some suitable choice of ¢) if and only if L(f ® g 1 +j) # 0.

Proof We define the class ¢*¢ as follows. Using the p-stabilisations f, of f and g, of g,
Theorem 5.4.2 gives rise to elements

BFTI € HYQum), D (I Myyxy(F ® G))

where F and G are Coleman families through f;, and g, (which exist, since f; is noble, and
gy is either noble of weight > 2 or p-regular of weight 1). Specialising these at (fy, gu’ /),
and identifying Mg (fy ® g,)* with Mg (f ® ¢)* via the maps Pr® and Pr®¢, we obtain classes
zi ¢ € HYQ(m) Me(f ® £)*(—)).

These classes satisfy (i), by Proposition 2.4.4. They also satisfy (ii), by Proposi-
tion 2.4.7 (using the fact that f and g have differing weights, by hypothesis, so we have
HO(Q™, ME(fo ® ga)*) = 0).

The classes z,,) ¢ do not satisfy (iii); instead, they satisfy the a slightly more compli-
cated norm-compatibility relation normfn’" (ch:g ) = Q17 a[l)cf,{ag where Qy(X) €
X~1O[[X] is a polynomial congruent to —X ~'P;(X) modulo £ — 1. However, the “cor-
rect” Euler system relation can be obtained by modifying each class z0 ¢ by an appropriate
element of O [(Z/mZ)*], as in [20, §7.3]. This gives classes cf‘,j,[ag satisfying (i)—(iv).
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It remains to verify (iv) and (v). It suffices to prove these for the un-modified classes z(:nfag.

For (iv), let K denote the completion of Q(i4,,) at a prime above p, and Koo = K(1px).
Then we have a diagram

DP(I", Q) ®py(r,q,) Hiw Koo V) — H}\ (Koo, D)

Y

H' (K, W) HYK, 7~ D)
* *
eXPr w1 EXPr(#--D)*(1)
Y Y
Dcris,K(W) Dcris,l( (ﬁiiD)'

Here W denotes the Galois representation Me(f ® g)*(—j), as above, D denotes Djig(\/),
and . ~ 7D is the quotient of D (in the category of (¢, I')-modules) determined by the
triangulations of Mg (fy)* and Mg(fg)*. Note that this quotient depends on the choice of
or and &y, although the Galois representation W does not.

The horizontal arrows in the diagram are induced by the morphism of (¢, I")-modules
D — %~ 7D. We know that the image of CB}"%’Ig‘X] in HIIW(KOO, ZF~ D) is zero, by The-
orem 7.1.2, so its image in the bottom right-hand corner is zero. However, the projection
D1is(V) = Deris(-# ~~ D) factors through projection to the eigenspace Dyis (V)% % and is
an isomorphism on this eigenspace, so we recover the statement that exp*(cfnfag) projects
to zero in D5 (V)% %, as required.

Finally, we prove (v). For this, we use an analogous commutative diagram with .# ~° in

place of #~~:

D(I, Q) @04(1,y) Hiw(@pocr V) — Hi\(Qur 77°D) += H}\(Quocr 7 D)

Y Y

HY (Qp V)

H'(Qy #°D) ~— H'(Q, 7 *D)
expy v eXPE [ g—ors exp’ .
Q V() Qu,(F°D)*(1) Q (F—+D)*(1)
Y Y
Deis(V) Daiis(F °D) «—— Dqyis(F ~1D).

The projection Deyis(V) = Deris(-# ~°D) induces an isomorphism
Dv:ris(v)o{fo — Dcris(ﬁioD)'

Theorem 7.1.2 implies that the image of .BF Ef"’g’l] in H}, (Qp,00, V) lies in the image of
Hllw(Qp,oo, F~tD), and the explicit reciprocity law shows that the image of this class

in Deis(:Z ~D) is nonzero if and only if (¢* — czj—k—k/ef(c)eg(c))L(ﬁg, 1+/) # 0. Our

hypothesis that ¢¢(c)eg(c) be non-trivial if j = /%k/ + 1 shows that we can choose ¢ such

that the first factor is nonzero. So, for a suitable choice of ¢, the projection of z‘le * to
Deis(V)%# is nonzero if and only if L(f g 1 + j) # 0.

of g
m

This completes the construction of classes ¢ with the required properties. The con-

struction of cf,{ﬂg is identical, using the p-stabilisation gg in place of g . ]
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8.2 Bounding the Bloch-Kato Selmer group
Recall that if V is a geometric p-adic representation of Gal(Q/Q), then we define

Hfl(Q, V)= {x e HY(Q, V):loce(x) € Hfl(Qg, V) for all finite primes Z},

Theorem 8.2.1 Suppose the assumptions of Theorem 8.1.4 are satisfied, and in addition
the following hypothesis is satisfied:

o (big image) There exists an element t € Gal(G/Q(upoo)) such that V/(t — 1)V is
1-dimensional, where V.= Mg(f @ g)(1 + ).

IfL(f, g 1+j) # O, then the Bloch—Kato Selmer group Hfl(Q, V) is zero.

Remark 8.2.2 1t is shown in [22] that, under fairly mild hypotheses on f and g, the “big
image” hypothesis is satisfied for all but finitely many primes ‘33 of the coefficient field.

Proof Let strlct(Q’ V') denote the strict Selmer group, which is the kernel of the localisa-

tion map
loc, : HH(Q, V) — H}(Qp, V).

Let T be a lattice in V, and let A = V/T. By Theorem 8.1.4, for some nonzero scalar
R, the classes R - c(,x,{ag form a nonzero Euler system for 7%#(1) in the sense of [31, Defini-
tion 2.1.1], if we replace condition (ii) in the definition by the alternative condition (ii’)(b)
of §9.1 of op.cit..

By [31, Theorem 2.2.3], the existence of any nonzero Euler system for V*(1), together
with the “big image” hypothesis, implies that the p-torsion Selmer group

H'(Qq, A)
et (Q A) = ker (Hl(Q,A) - Y
S e @ Hsltrict (QK’ A)
is finite, where H, mct(Qg, A) is defined as the image of the map

Hf (Qﬁ» V) g H (QZ;A)

for¢ # p,and H, trlct(QP A) = 0. However, the image of H, trlct(Q’ V)in HY(Q, A) is clearly
contained in Hslmct(Q, A), so we conclude that H mct(Q, ) is zero.

In order to refine this, we use Poitou—Tate duality. Let H relaxe 4(Q V*(1)) (the “relaxed
Selmer group”) denote the classes in H'(Q, V*(1)) whose localisation lies in Hf1 for all

¢ # p (but may be arbitrary at p). Then we have two exact sequences

0 — Hiyiet(Qp V) — H{ (Qp v) % H{ (Qp V)

and
0— Hfl(Qp’ V*(l)) - Hrelaxed(QP V*(l)) 1’ Hl QP V*(l))

where HS1 (Qp V*(1) = % (the “singular quotient”). Local Tate duality identi-
fies Hsl(Qp, V*(1)) with the dual of Hfl(Qp, V), and the Poitou—Tate global duality exact
sequence implies that the images of locif, and locj, are orthogonal complements of each
other; compare [31, Theorem 1.7.3].

We have constructed two classes in H !
HY(QpV*(1)
HIQ,, V*(1)
eigenspaces). So locS is surjective, and consequently loc; is the zero map. As we have
(Qp, V) = 0, this shows that Hfl(Qp, V) is zero. O

(07 o,
L oxed(Qp V*(1)), namely c‘ff ¢ and leﬂg, whose
imagesin are linearly independent (since their images under exp* span distinct

already shown that H

strlct
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Remark 8.2.3 The above argument is an adaptation of the ideas of [13, §6.2], in which
Poitou-Tate duality is used to bound the image of the map loclf, for a Galois representation
arising from the product of three cusp forms. In our setting, since we have a full Euler

of g ar By

system rather than just the two classes ¢c;” ° and ¢;” °, we can also bound the kernel of

this map.

8.3 Corollaries
From Theorem 8.2.1 one obtains a rather precise description of the global cohomology
groups. We continue to write V = Mg(f ® g)(1 + /).

Let S be any finite set of places of Q, containing oo and all primes dividing pNyN,. Then
the action of Gal(Q/Q) on V factors through Gal(Q®%/Q), the Galois group of the maximal
extension of Q unramified outside S. Since the Bloch—Kato local condition coincides with

the unramified condition for £ ¢ S, we have

HYQ V) = [x € H(Q%/Q, V): locy(x) € H}(Qp, V) forall £ € S}‘

Remark 8.3.1 Since Gal(Q®%/Q) is the étale fundamental group of Z[1/S], we may inter-
pret any continuous Q,-linear representation of Gal(Q5/Q) as a p-adic étale sheaf on
SpecZ[1/S§], and the continuous cohomology groups H {(Q%/Q, —) coincide with the étale
cohomology groups H €f;t(Z[l /S], —). The latter language is used in [19] for instance, but in
the present work we have found it easier to use the language of group cohomology, since
this makes the arguments of Sect. 2 easier to state.

Corollary 8.3.2 If the hypotheses of Theorem 8.2.1 hold, then:
(1) The localisation maps

H*(Q%/Q V) @HZ Qe V) and

LeS

HYQ%/Q V*(1)) —» P H* Qe V*(1))
teS
are isomorphisms.
(2) The space Hl(Q, V*(1)) is zero.
(3) The space H, elaxed(Q’ V*(1)) is 2-dimensional, and c1 % and c ¢ are a basis.

Proof Again by Poitou—Tate global duality, we have an exact sequence

0 — HHQ V*(1)) — H'(Q%/Q V*(1) — D H(Qw V*(1)

Les

— H{Q V)" — H*(QY/Q V*(1)) — EPH*(Q V*(1)) — 0.

leS

In the situation of the theorem, we have Hfl(Q, V) = 0, so the localisation map for
H%(Q%/Q, V*(1)) is an isomorphism.

Now let ¢, = dimH%(Qq, V*(1)). Using Tate’s local Euler characteristic formula,
for any £ € S\{p} we have dim H'(Qq, V*(1)) = c¢; while for £ = p we have
¢, = 0 and dimHsl(Qp, V*(1)) = 2. Thus dim @, Hsl(Q[, V1) = 24 D¢ =
2 + dim H%(Q%/Q, V*(1)). However, Tate’s global Euler characteristic formula gives
dim H1(Q%/Q, V*(1)) = 2 4+ dim H2(Q%/Q, V*(1)).
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Thus the map H1(Q%/Q, V*(1)) —» Dics H(Q, V*(1)) is a surjection between finite-
dimensional vector spaces of the same dimension, so it is injective and we conclude that
Hfl(Q, V*(1)) = 0. Repeating the duality argument with V*(1) in place of V we now
deduce that the localisation map for H2(Q%/Q, V) is an isomorphism.

Finally, since Hfl(Q, V*(1)) = 0, we deduce that Hrlelax q(Q V*(1)) maps isomorphically
to itsimage in H} (Qp, V*(1)), but the images ofciéfag and c?fﬁg areabasis of H! (Qp V*(1)),
so these two classes must be a basis Oerlelaxed(Q’ V*(1)). O

Corollary 8.3.3 LetLs(f g s) = st Py(£5)~! be the L-function without its local factors
at places in S. If the hypotheses of Theorem 8.2.1 are satisfied and Ls(f, g 1 4 j) # O, then

H*(Q%/Q ME(f ® ¢)*(=j) = 0.
Proof For primes £ € S, £ # p, let us set
Pe(X) = det (1 — XFrob; \: Mg(f @ g)’@),
and
PY(X) = det (1 — XFrob, \: Me(f) ® ME(g)ff) .
We define P,(X) = PI(,)(X) = det (1 — X¢: Deris(ME(f ® 2))). Then we have

Ls(f g s) = Ly @ g, 5) [ | Pele™)
Les

=L(fgs) [ [ PLe™)
LeS
where L(rf ® g, s) (the “primitive” Rankin—Selberg L-function) and L(f, g s) (the “imprim-
itive” Rankin—Selberg L-function) are both holomorphic on the whole complex plane. So if
Ls(f, g 1+j) is nonzero, then we must have Py(£~17/) # Oforall£ € S,and L(f, g 1+/) # O.
From the definition of Py(X), the fact that Py(¢~17/) # 0 implies that H*(Q, Mz (f ®
2)(1+j) =0forall £ € S. Thus H*(Qg, Me(f ® g)*(—j)) = 0 for all £ € S, and since the
global H? injects into the direct product of these groups, it must also vanish. O

Remark 8.3.4 One can check that the only values of s at which the Euler factors Py (£~°)
may vanish for some £ € S are

[k+k/ k+kK+1 k+K+2

> >

2 2 2
Note that the centre of the functional equation, with our normalisations, is at s = %43
8.4 Application to elliptic curves
Theorem 8.2.1 above allows us to strengthen one of the results of [19] to cover elliptic

curves which are not necessarily ordinary at p:

Theorem 8.4.1 Let E/Q be an elliptic curve without complex multiplication, and p a 2-
dimensional odd irreducible Artin representation of Gq (with values in some finite exten-
sion L/Q). Let p be a prime. Suppose that the following hypotheses are satisfied:

(i) The conductors Ng and N, are coprime;
(i) p=5
(iii) ptNeN,;
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(vi) the map Gq — Autzp(TpE) is surjective;
(v) p(Froby) has distinct eigenvalues.

IfL(E, p, 1) # O, then the group

Homg,(Gal(r/qQ)) (0> Selp= (E/F))

(where F is the splitting field of p) is finite. In particular,

Homgz, Gal(r/qQ)) (0, Ly (E/F))
is finite.

Proof This is exactly Theorem 8.2.1 applied with f = fg, the weight 2 form attached to
E, and g = g,, the weight 1 form attached to p. Compare Theorem 11.7.4 of [19], which
is exactly the same theorem under the additional hypotheses that E is ordinary at p and
p(Froby) has distinct eigenvalues modulo a prime of L above p. O

9 Addendum: remarks on the proof of the reciprocity law
In order to formulate the explicit reciprocity law of Theorem 7.1.5, one needs to invoke the
main theorem of [32]: the construction of a 3-variable p-adic Rankin—Selberg L-function
as a rigid-analytic function on Vi x Vo x W, where V; are small discs in the Coleman—
Mazur eigencurve surrounding classical p-stabilised eigenforms, and }V is weight space.
Unfortunately, since the present paper was submitted, it has emerged that there are some
unresolved technical issues in the paper [32], so the existence of this p-adic L-function is
not at present on a firm footing. We hope that this issue will be resolved in the near future,
but as a temporary expedient we explain here an unconditional proof of a weaker form of
explicit reciprocity law which suffices for the arithmetic applications in the present paper.

9.1 A three-variable geometric p-adic L-function

We place ourselves in the situation of Sect. 7.1, so fu, g, are noble eigenforms, obtained as
p-stabilisations of newforms f, g of weights ko + 2, k|, + 2 and levels prime to p, and V1, V>
are small enough affinoid discs in weight space around ko and &, over which there are
Coleman families F, G passing through f, g. We also allow the possibility that ky = —1, ¢
is a p-regular weight 1 newform, and g does not have real multiplication by a field in which
p splits. (The exceptional real-multiplication case can be handled similarly by replacing
V5 with a ramified covering; we leave the details to the reader.)

For notational simplicity, we shall suppose that ereg is non-trivial and is not of
p-power order. Thus there is a ¢ > 1 coprime to 6pN;N, for which the factor
c? — czj_k—k/e;c(c)_lgg(c)_1 is a unit in O(V; x V5 x W), and we may define B}"[L};’g]
(without ¢) by dividing out by this factor.

We shall begin by turning Theorem C on its head and defining a p-adic L-function to
be the output of this theorem:

Definition 9.1.1 We define L3™*"(F, G) € O(V1 x V, x W) by
LN F 0 = 0P (£ (BFT ) nr © ).

Our goal is now to show that this geometrically defined p-adic L-function is related to
critical values of complex L-functions.
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9.2 Values in the geometric range

By construction, for integer points of V; x V5 x W in the “geometric range”—that is, the
points (k, K/, j) with 0 < j < min(k, k’)—the geometric p-adic L-function interpolates the
syntomic regulators of the Rankin—Eisenstein classes. From the computations of [18], we
have the following explicit formula for these syntomic regulators.

Let fi o, be the p-stabilised eigenform that is the specialisation of F in weight k 4 2, and
let Az , be the unique linear functional on the space S, (Ny, E) of overconvergent cusp
forms that factors through projection to the f ,-isotypical subspace and sends f;, to 1.
We view Az as alinear functional on SP%, (N, E), where N = lem(Ny, Ny ), by composing

k42
with the trace map from level N to level N;.

Theorem 9.2.1 ([18, Theorem 6.5.9]) For (k, k', j) in the geometric range, with j > %‘ -1,

we have
LE™(F, Gk K ) = N g [ (g B o) |-

Here F,E’i] KK —j1 is a nearly overconvergent p-adic Eisenstein series of weight k — k’
and degree of near-overconvergence < k — j, whose p-adic g-expansion (image under the
unit-root splitting) is given by

an defj(d/)jflfk/ (sz/ i (_l)kfk’é.]\f[d/)‘

pin dln

Note that we have
[p] —_ pk=j (£lP]

Ew—jp =0 ! (EZj—k—k/)’
where 6§ = q% and E,E” ], for k € W, denotes the weight « overconvergent Eisenstein
series

S S (e 0.

pin d|n

Since E¥) is overconvergent of weight 7, it follows that gz, - 0¥~/ (Eg?]_ k—k’) lies in the

n—oc,k—j
space S;_,
near-overconvergence k — j. The condition j > % — 1 implies that k + 2 > 2(k — j), so

Urban’s overconvergent projector I1°¢ is defined on S,:gc’kij (N) [32, §3.3.3]. Thus the

right-hand side of the formula in the theorem is defined.

(N) of nearly overconvergent cusp forms of weight k + 2 and degree of

9.3 Two-variable analytic L-functions

Let us now pick an integer ¢ > 0, and set j = k — ¢ in the above formulae. Then, for
varying k and k’ (but ¢ fixed), the forms gy, - 6* (E,Ep_] k/—2t) interpolate to a 2-parameter
family of nearly overconvergent cusp forms over Vi x V; (of weight k + 2 and degree ¢,
where k is the universal weight of V7). Hence we may make sense of

LOF,G) = N* ¥ [ (0t (B, )]
as a meromorphic rigid-analytic function on V7 x V3, analytic except possibly for simple
poles along V1 N {0, ..., 2t — 2} [32, §3.3.4].

Remark 9.3.1 The important point here is that the power of the differential operator
appearing is constant in the family; this circumvents the technical issues in [32], which
concern interpolation of families where the degree of near-overconvergence is unbounded.
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We have the following special sets of integer points (k, k') € V1 x Va:

(i) If &k > max(s 2t — 1) and K’ > k — ¢, then the “geometric” interpolating property
above applies, showing that for these values of (k, k') we have

LO(F, )k k) = L™ (F, @)k k', k — t).

Since such (k, k') are manifestly Zariski-dense in V; x V5, this relation must in fact
hold for all points (x, k') € V1 x V5.

(ii) If K" > 0and k — k' > 2¢ + 1, then both gy, and E,[ﬂk,_% are classical modular
forms (since, after possibly shrinking V,, we may arrange that the specialisations of
the family G at classical weights are classical). Thus the product gy, - 6° (E ,Ep_] 2 t)
is a classical nearly holomorphic form, and on such forms Urban’s overconvergent
projector coincides with the holomorphic projector IT"°!, This shows that the values
of Ll(f)(}', G)(k k') for (k, k') in this range are algebraic, and they compute the values
of the Rankin—Selberg L-function in the usual way. This also holds for ¥’ = —1, as
long as we assume that the weight 1 specialisation gy , is classical (which is no longer
automatic).

Combining these two statements, we deduce the following version of an explicit reci-
procity law:

Theorem 9.3.2 Let (k, k', j) be an integer point of V1 x Vo x Wwithk > 0, k' > —1, and
% < j < k, and suppose fio and gy o are p-stabilisations of classical forms fi, gi.
Then we have
Efogi1+)) G — k' —1)!

EWIE*(fr) j.[2j—k’+1(_l)kfk’22j+2+k—k’ (fk:fk)Nf

L(fi, gk 1+ ),

LE™(F, G)(k K, j) =

where the local Euler factors are given by

£() = (1—’3—f), £4(f) = (1—5—;),

poy
O YA A YN LAY
cweren=(-57) (=37) (3%) (3%)

This suffices to prove Theorem C of the introduction when j > %/H The remaining
k+k'+1
2

cases of Theorem C, when k' +1 <j < , are easily reduced to these cases using

the functional equation.

Remark 9.3.3 It is important to be clear about what this argument does not prove: we
obtain no information at all about the values of the geometric p-adic L-function at points
of the form (k, k’,j + x) for a non-trivial finite-order character x. In particular, we can-
not determine by this method whether the specialisation of our 3-variable geometric L-
function to {ko} x {k;} x W coincides with other existing constructions of a single-variable
p-adic Rankin—Selberg L-function (cf. [30]).
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