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RANKIN–EISENSTEIN CLASSES AND EXPLICIT RECIPROCITY LAWS

GUIDO KINGS, DAVID LOEFFLER, AND SARAH LIVIA ZERBES

Abstract. We construct three-variable p-adic families of Galois cohomology classes attached to Rankin
convolutions of modular forms, and prove an explicit reciprocity law relating these classes to critical
values of L-functions. As a consequence, we prove finiteness results for the Selmer group of an elliptic

curve twisted by a 2-dimensional odd irreducible Artin representation when the associated L-value does
not vanish.
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1. Introduction

1.1. Overview. One of the most basic questions in number theory is the study of the cohomology of
Galois representations, and in particular the relation between these groups and the values of L-functions.
In this paper, we are interested in one case of this: the L-function and the Galois representation associated
to the convolution of two modular forms.

Let f =
∑
an(f)qn and g =

∑
an(g)qn be two modular cusp forms, of levels Nf , Ng, characters

εf , εg, and weights k+ 2, k′ + 2, with k, k′ ≥ −1. We assume that f and g are eigenvectors for the Hecke
operators. We define the Rankin–Selberg L-function by

L(f, g, s) = L(NfNg)(εfεg, 2s− 2− k − k′) ·
∑

n≥1

an(f)an(g)n−s,

where L(NfNg)(εfεg, s) denotes the Dirichlet L-function with the Euler factors at the primes dividing
NfNg removed. Up to finitely many bad Euler factors at the primes dividing NfNg, this is the L-function
associated to the compatible family of Galois representations

MLP
(f ⊗ g) = MLP

(f)⊗MLP
(g),

where MLP
(f) and MLP

(g) are Deligne’s p-adic Galois representations attached to f and g (and to a
prime P of their common coefficient field L).

According to the Bloch–Kato conjecture, we expect that the values of the L-function L(f, g, s) for
integer values of s determine the behaviour of a Selmer group (a subgroup of the Galois cohomology
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determined by local conditions; we shall recall its definition in §11.2 below). Specifically, for j ∈ Z the
value L(f, g, 1 + j) should be related to the Bloch–Kato Selmer group H1

f (Q,MLP
(f ⊗ g)∗(−j)).

The main result of this paper is to show (under some technical hypotheses) that, for j in the critical
range min(k, k′) + 1 ≤ j ≤ max(k, k′), we have the implication

L(f, g, 1 + j) 6= 0 ⇒ H1
f (Q,MLP

(f ⊗ g)∗(−j)) is finite.

This statement has many interesting consequences. For instance, following a beautiful idea of Bertolini,
Darmon and Rotger, we see that it has powerful applications to the arithmetic of Artin twists of elliptic
curves: one can consider the special case where f is a weight 2 form corresponding to an elliptic curve
E, and g a weight 1 form corresponding to a two-dimensional odd Artin representation ρ with splitting
field F . Then

H1
f (Q,MLP

(f ⊗ g)∗) is finite ⇒ E(F )ρ and Xp∞(E/F )ρ are finite,

where E(F )ρ and Xp∞(E/F )ρ are the ρ-isotypic component.

Constructing an Euler system. In order to obtain the desired bounds for Selmer groups, we construct an
“Euler system” for the Galois representation MLP

(f ⊗ g)∗(−j): a collection of classes

cm ∈ H
1(Q(µm),MLP

(f ⊗ g)∗(−j))

over cyclotomic fields, satisfying norm-compatibility relations as m varies which mirror the Euler product
of the Rankin–Selberg L-function. By the work of Kolyvagin and Rubin, it is known that if a nontrivial
Euler system exists for some Galois representation T , it forces very strong bounds on the Selmer groups
of T .

We construct our Euler system using certain cohomology classes (étale Rankin–Eisenstein classes)
which were introduced and studied in [KLZ15]. In the simplest case (when r = r′ = 2 and j = 0)
these classes arise from modular units, via the push-forward under the diagonal embedding ∆ : Y1(N)→
Y1(N)× Y1(N); this weight 2 case was studied extensively in [LLZ14].

P-adic deformation. The Rankin–Eisenstein classes used to build our Euler system are constructed by
geometric techniques, and these geometric methods can only be used for a certain range of weights.
Specifically, the Rankin–Eisenstein class for (f, g, j) is only defined when 0 ≤ j ≤ min(k, k′). This has
no overlap with the critical range, which is min(k, k′) + 1 ≤ j ≤ max(k, k′). In order to access this
wider range of L-values, we use deformation in p-adic analytic families, constructing Euler systems in
the critical range as p-adic limits of Rankin–Eisenstein classes.

Explicit reciprocity laws. In order to use an Euler system to bound Selmer groups, one needs to know
that the Euler system concerned is not zero. Such non-vanishing results are typically obtained as a
consequence of an explicit reciprocity law, relating the cohomology classes in the Euler system to values
of L-functions.

In our case we prove an explicit reciprocity law relating our Euler system to the 3-variable p-adic
Rankin L-function introduced by Hida. In the critical range min(k, k′) < j ≤ max(k, k′), this p-adic
L-function coincides up to some explicit factors with L(f, g, 1 + j). Thus, when this L-value is non-zero,
one can put the Euler system machinery into action to get the desired finiteness results for Selmer groups.

In the next sections we describe in a little more detail how we shall carry out the programme sketched
above.

Note that parts of this programme have already been carried out by Bertolini, Darmon and Rotger
[BDR15a, BDR15b], and there is some overlap between our results and theirs. We shall describe later in
this introduction some of the similarities, and some of the differences, between their approach and ours.

1.2. Rankin–Eisenstein classes. The Euler system we are going to use is built out of the Rankin–
Eisenstein classes, which were studied in our previous paper [KLZ15].

These classes can be defined in multiple cohomology theories. The basic classes lie in motivic coho-
mology (a cohomology theory taking values in Q-vector spaces, closely related to algebraic K-theory).
Motivic cohomology has canonical maps to many other cohomology theories (such as étale cohomology),
and one obtains Rankin–Eisenstein classes in these cohomology theories as the images of the motivic
Rankin–Eisenstein classes.
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Motivic Rankin–Eisenstein classes were first introduced (although not under this name) by Beilinson
in the weight 2 case, and in general by Scholl (unpublished). They are classes in motivic cohomology

Eis
[k,k′,j]
mot,1,N ∈ H

3
mot

(
Y1(N)2,TSym[k,k′ ](HQ)(2− j)

)
,

for integers 0 ≤ j ≤ min(k, k′). Here Y1(N)2 is the product of Y1(N) with itself, HQ is the motivic sheaf

on Y1(N) associated to the first homology of the universal elliptic curve, TSymk denotes the symmetric

tensors of degree k (cf. §2.2 below), and TSym[k,k′]
HQ is the sheaf TSymk(HQ) ⊠ TSymk′ (HQ) on

Y1(N)2.
We point out that the condition on j, that 0 ≤ j ≤ min(k, k′), is precisely the range in which L(f, g, s)

is forced to vanish to order exactly 1 at s = 1 + j, due to the form of the archimedean Gamma factors1.
The construction of these classes is (perhaps surprisingly) fairly simple. Beilinson has defined a

canonical class (the motivic Eisenstein class)

Eiskmot,1,N ∈ H
1
mot

(
Y1(N),TSymk(HQ)(1)

)

for any integer k ≥ 0. (For k = 0, the motivic cohomology group is simply O(Y1(N))×⊗Q, and Eis0mot,1,N

is the Siegel unit g0,1/N .) The motivic Rankin–Eisenstein class is then defined by pushing forward the

class Eisk+k
′−2j

mot,1,N along the diagonal inclusion

∆ : Y1(N) →֒ Y1(N)× Y1(N).

The aim of Beilinson and Scholl was to compute the image of this class in Beilinson’s absolute Hodge
cohomology, a cohomology theory built up from real-analytic differential forms. They showed that, for
any two eigenforms f, g of levels dividing N , the cup-product of the Hodge Rankin–Eisenstein class with
a differential form coming from f and g computes the first derivative L′(f, g, j+1) of the Rankin–Selberg
L-function, as predicted by Beilinson’s conjecture. This result of Beilinson and Scholl relies crucially on

computations by Beilinson, who had expressed the image of Eisk+k
′−2j

mot,1,N in absolute Hodge cohomology
by explicit real-analytic Eisenstein series.

This beautiful and fundamental result was complemented in our earlier paper [KLZ15] by a cor-
responding computation for the image of the motivic Rankin–Eisenstein class in Besser’s p-adic rigid
syntomic cohomology (a cohomology theory built up from p-adic rigid-analytic differential forms), for a
prime p ∤ N , extending the case k = k′ = j = 0 treated in [BDR15a]. There, in a completely parallel
way, we find that pairing this syntomic Rankin–Eisenstein class with de Rham classes arising from f
and g gives the special value Lp(f, g, j+ 1) of Hida’s p-adic Rankin–Selberg L-function. In this syntomic
computation, the role of Beilinson’s formula for the Hodge Eisenstein class on Y1(N) is played by an
explicit formula for the syntomic Eisenstein class in terms of p-adic Eisenstein series, due to Bannai and
the first author [BK10]. The value Lp(f, g, 1 + j) lies outside the range of interpolation of Hida’s p-adic
L-function, and thus is not straightforwardly related to any complex L-value; however, our computation
shows that the non-critical complex L-value L(f, g, 1+j) and the non-critical p-adic L-value Lp(f, g, 1+j)
are linked by the fact that they appear as the complex and p-adic regulators, respectively, of the same
motivic cohomology class, confirming a conjecture of Perrin-Riou.

1.3. Statements of the main results. In the present paper we study the étale Rankin–Eisenstein class

Eis
[k,k′,j]
ét,1,N , defined as the image of the motivic Rankin–Eisenstein class Eis

[k,k′,j]
mot,1,N in étale cohomology. For

eigenforms f, g of weights k+2, k′+2 and levels dividing N , we may project this étale Rankin–Eisenstein
class into the (f, g)-isotypical component, giving a class

Eis
[f,g,j]
ét ∈ H1

ét

(
Z[1/Np],MLP

(f ⊗ g)∗(−j)
)
,

where MLP
(f ⊗ g)∗ denotes the tensor product of Galois representations associated to f and g (with

coefficients in LP, the completion of the coefficient field L at a prime P | p).

Our first aim is to interpolate Eis
[f,g,j]
ét in all three variables, i.e., to replace f and g by Hida families

and the twist j by the universal character j of the cyclotomic Iwasawa algebra ΛΓ. In slightly rough
terms, our first main result can be formulated as follows:

1More precisely, the order of vanishing is exactly 1 in this range except in one exceptional case, when k = k′ = j and f

and g are complex conjugates of each other; in this exceptional case the order of vanishing is 0.
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Theorem A (Theorem 8.1.3). Let f ,g be Hida families, and let M(f)∗, M(g)∗ be the associated Λ-adic
Galois representations. Then for each m ≥ 1 coprime to p, and each c > 1 coprime to 6pmN , there is a
Beilinson–Flach class

cBF
f ,g
m ∈ H1

ét

(
Z[µm,

1
mNp ],M(f)∗ ⊗M(g)∗ ⊗ ΛΓ(−j)

)
,

with the following properties: when m = 1, the specialisations of this class recover the Rankin–Eisenstein

classes Eis
[f,g,j]
ét for all classical specialisations f of f and g of g, and all integers j for which the Rankin–

Eisenstein class is defined; and the Beilinson–Flach classes satisfy compatibility relations of Euler system
type as m varies.

Remark 1.3.1. The dependence on the auxilliary parameter c is very minor: it appears in the factors
relating the Rankin–Eisenstein class to the specialisations of the Beilinson–Flach classes. Unfortunately,
it is not possible to remove this dependence entirely without introducing undesirable denominators. This
reflects the fact that Rankin L-functions can have simple poles at s = k+1 if the two forms are conjugates
of each other.

We note that the construction of the Beilinson–Flach classes cBF
f ,g
m , and their Euler system com-

patibility relations, were essentially already obtained in [LLZ14] using only weight 2 Rankin–Eisenstein

classes. The novel part of the above result is to show that the specialisations of the classes cBF
f ,g
m in

fact recover the Rankin–Eisenstein classes for all (k, k′, j). Very few results of this kind, relating coho-
mology classes arising from geometry in different weights, were previously known, and these have so far
always been proved as a consequence of an explicit reciprocity law, relating geometric classes to values
of L-functions (as in [Cas13] for Heegner cycles, and [DR16, Theorem 5.10] for diagonal cycles on triple
products of Kuga–Sato varieties2). In contrast, we prove Theorem A by an intrinsic geometric method,
and we shall in fact obtain a relation to L-values as a consequence of this theorem. See §1.4 below for
an outline of the proof of Theorem A.

Our second main theorem is to relate the classes cBF
f ,g
m to values of L-functions. This relation goes

via a map arising in p-adic Hodge theory: a generalisation of Perrin-Riou’s “big logarithm” map (due to
the second and third author [LZ14]). The second main result of this paper is then the following explicit
reciprocity law, again stated in a rather rough form:

Theorem B (Theorem 10.2.2). The image of cBF
f ,g
1 under Perrin-Riou’s big logarithm is Hida’s p-adic

Rankin–Selberg L-function (up to an explicit non-zero factor depending on c).

This theorem generalises a result [BDR15b] of Bertolini, Darmon and Rotger, which is concerned with
the special case j = 0 and f a fixed form of weight 2. We shall give an outline of the proof of Theorem
B in §1.5 below.

With these two theorems in hand, we can put the machinery of Euler systems to work. It is clear

from Theorem B that the non-vanishing of a specialization of cBF
f ,g
1 is completely controlled by the

non-vanishing of the corresponding specialization of the p-adic L-function, and in the critical range this
is simply the algebraic part of the classical L-value.

Our first application is based on a wonderful idea of Bertolini, Darmon and Rotger, which is to
specialise the Hida family g at a weight 1 modular form, corresponding to a 2-dimensional Artin repre-
sentation.

Corollary C (Theorem 11.7.4). Let E/Q be an elliptic curve without complex multiplication, and ρ a
2-dimensional odd irreducible Artin representation of GQ with splitting field F . Let p be prime at which
E is ordinary and which satisfies some further technical conditions. Then

L(E, ρ, 1) 6= 0⇒ E(F )ρ and Xp∞(E/F )ρ are finite.

The implication “L(E, ρ, 1) 6= 0 ⇒ E(F )ρ is finite” was obtained already by Bertolini, Darmon and
Rotger in [BDR15b]; the method of Euler systems allows us to extend this to obtain finiteness of the
p-part of X.

As a second application, we use the Euler system machinery to study the Iwasawa theory of our Galois
representation MLP

(f ⊗g)∗ over the p-adic cyclotomic tower. The results can be summarized as follows:

Corollary D (Theorem 11.6.4 and 11.6.6). Under some technical hypotheses, we obtain one divisibility
in the Iwasawa–Greenberg main conjecture for the Galois representation MLP

(f ⊗ g)∗ over Q(µp∞): the
characteristic ideal of a suitable dual Selmer group divides the p-adic L-function.

2In fact, Henri Darmon has recently informed us that he and his coauthors have used the methods introduced in this
paper to give a direct proof of this result, avoiding the use of explicit reciprocity laws.
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Further and much more detailed results can be found in section 11.

1.4. Outline of the proof of Theorem A. In this introduction, we suppose (for simplicity) that
Nf = Ng = N . Recall that the motivic Rankin–Eisenstein classes, which live in the (f, g)-isotypical
part of the motivic cohomology of the product Y1(N) × Y1(N), are defined using the pushforward of
Beilinson’s motivic Eisenstein class on a single modular curve Y1(N), along the diagonal inclusion

∆ : Y1(N) →֒ Y1(N)× Y1(N).

Hence, in order to p-adically interpolate the étale versions of the Rankin–Eisenstein classes, we shall
begin by solving the simpler problem of interpolating the classes on Y1(N) given by the étale realisation
of Beilinson’s Eisenstein class. We denote these classes by

Eiskét,N ∈ H
1
ét

(
Y1(N)Z[1/Np],TSymk(HZp)(1)

)
.

Here HZp is the étale Zp-sheaf on Y1(N) given by the Tate module of the universal elliptic curve

E/Y1(N), and TSymk
HZp is the sheaf of symmetric tensors of degree k over HZp , which is isomorphic

after inverting k! to the k-th symmetric power (we recall the definition in §2.2 below).
The interpolation of these classes is carried out using the formalism of Lambda-adic sheaves introduced

in [Kin15]. We consider the sheaf of Iwasawa modules Λ(HZp〈tN 〉) associated to HZp and its canonical
order N section tN , which is equipped with moment maps

momk : Λ(HZp〈tN 〉)→ TSymk
HZp

for all integers k ≥ 0. One of the main results of [Kin15] is that there is a class, the Eisenstein–Iwasawa
class,

cEIN ∈ H
1
ét

(
Y1(N)Z[1/Np],Λ(HZp〈tN 〉)(1)

)
,

for any integer c > 1 coprime to 6pN , such that

momk(cEIN ) =
(
c2 − c−k〈c〉

)
Eiskét,N

for all k ≥ 0. We remark that this interpolation property depends on a very careful study of the étale
realisation of the elliptic polylogarithm. Section 4 of this paper is devoted to recalling the construction
of these classes cEIN from [Kin15], and proving two (relatively straightforward) norm-compatibility
relations describing the pushforward of cEIN along degeneracy maps between modular curves of different
levels.

We then use this class cEIN on Y1(N) in order to construct the Beilinson–Flach class on Y1(N)×Y1(N),
as follows. A first approximation would be to use the comultiplication Λ(HZp〈tN 〉) → Λ(HZp〈tN 〉) ⊗

Λ(HZp〈tN 〉) and pushforward along the diagonal embedding Y1(N) →֒ Y1(N)2, mimicking the construc-
tion of the Rankin–Eisenstein classes; this gives a map

H1
ét

(
Y1(N)Z[1/Np],Λ(HZp〈tN 〉)(1)

)
→ H3

ét

(
Y1(N)2Z[1/Np],Λ(HZp〈tN 〉) ⊠ Λ(HZp〈tN 〉)(2)

)
,

and applying this map to cEIN gives a class which interpolates the étale Rankin–Eisenstein classes

Eis
[f,g,j]
ét for j = 0 and all f, g of level N and weights ≥ 2.
However, this will always give classes defined over Q (or indeed over Z[1/Np]), so in order to obtain

classes defined over cyclotomic fields, and thus to interpolate analytically in the j variable, this is
not sufficient. Hence we make a slight but crucial modification of this construction, following an idea
introduced in [LLZ14]: we work on a higher level modular curve Y (M,N), where M | N , and compose
the diagonal embedding with a suitable Hecke correspondence. This defines what we call the Rankin–
Iwasawa class (see Definition 5.1.5)

cRI
[0]
M,N,a ∈ H

3
ét

(
Y (M,N)2Z[1/MNp],Λ(HZp〈tN 〉)

⊠2(2)
)
,

for each a ∈ (Z/MZ)×. More generally, for any integer j ≥ 0 a variation of this construction gives a
class

cRI
[j]
M,N,a ∈ H

3
ét

(
Y (M,N)2Z[1/MNp],Λ(HZp〈tN 〉)

[j,j](2− j)
)
,

where Λ(HZp〈tN 〉)
[j,j] =

(
Λ(HZp〈tN 〉)⊗ TSymj

HZp

)
⊠2. The Rankin–Iwasawa class cRI

[j]
M,N,a can

be used to recover the Rankin–Eisenstein classes Eis
[f,g,j]
ét for all f, g of level N and weights ≥ j + 2.

Moreover, there is a natural map

Y (m,mN)2 → Y1(N)2 × SpecZ
[
µm,

1
mN

]
,
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and after pushing forward along this map, and projecting to the ordinary part, the Rankin–Iwasawa
classes for different j become compatible under cyclotomic twists (Theorem 6.3.4). This defines the
Beilinson–Flach class

cBFm,N,a ∈ (e′ord, e
′
ord) ·H3

ét

(
Y1(N)2Z[µm,1/mNp]

,Λ(HZp〈tN 〉)
⊠2 ⊗ ΛΓ(−j)

)
.

(The projection to the ordinary part is required in order to obtain analytic variation in the cyclotomic
variable j, an observation which also goes back to [LLZ14].)

Finally, to project to the Hida families one proceeds as follows. We use results of Ohta to show that
the Λ-adic representations M(f)∗, M(g)∗ can be realised as quotients of the étale cohomology groups

e′ord ·H
1
ét

(
Y1(N)Q,Λ(HZp〈tN 〉)(1)

)

for any N divisible by the p and by the tame levels of the two families. Then one uses the Hochschild–
Serre spectral sequence and the Künneth formula to get a map

H3
ét

(
Y1(N)2Z[µm,1/mNp]

,Λ(HZp〈tN 〉)
⊠2 ⊗ ΛΓ(−j)

)

→ H1
ét

(
Z
[
µm,

1
mNp

]
, H1

ét(Y1(N)Q,Λ(HZp〈tN 〉))
⊗2 ⊗ ΛΓ(−j)

)
.

After projection to the ordinary part one obtains the Beilinson–Flach classes for f and g,

cBF
f ,g
m ∈ H1

ét (Z [µm, 1/mNp] ,M(f)∗ ⊗M(g)∗ ⊗ ΛΓ(−j)) .

It is essentially clear from the construction that these classes interpolate the Rankin–Eisenstein classes,
which proves Theorem A.

1.5. Outline of the proof of Theorem B. The essential strategy of the proof of Theorem B is to
“analytically continue” the relation to p-adic L-values given by the syntomic regulator computations of
[KLZ15] along the 3-parameter family constructed in Theorem A.

Let us fix two Hida families f , g. For simplicity, we assume in this introduction that f and g are
non-Eisenstein modulo p, that the Hecke algebras associated to f and g are unramified over Λ = Zp[[T ]],
and that the prime-to-p part of the Nebentypus of g is trivial; for the full statements, see the main body
of the paper.

For every pair of classical specialisations f, g of f ,g respectively, with f, g newforms of levels coprime to
p and weights k+ 2, k′ + 2 ≥ 2, and each j such that 0 ≤ j ≤ min(k, k′), we have the Rankin–Eisenstein

class Eis
[f,g,j]
ét ∈ H1(Q,MLP

(f ⊗ g)∗(−j)). The localisation of this class at p lies in the Bloch–Kato
“finite” subspace

H1
f (Qp,MLP

(f ⊗ g)∗(−j)) ⊆ H1(Qp,MLP
(f ⊗ g)∗(−j)),

and the Bloch–Kato logarithm map of p-adic Hodge theory identifies this H1
f with the dual of a certain

subspace of the de Rham cohomology of Y1(N)2. The eigenforms f, g determine a vector ηf ⊗ωg in this
de Rham cohomology space, and the main result of [KLZ15] is a formula of the form

〈
log
(

Eis
[f,g,j]
ét

)
, ηf ⊗ ωg

〉
= (⋆) · Lp(f, g, 1 + j),

where (⋆) is an explicit ratio of Euler factors.
As f, g vary in the families f ,g, and j varies over the integers, we have p-adic interpolations of all

the objects appearing in the above formula. The interpolation of Eis
[f,g,j]
ét is provided by the Beilinson–

Flach class cBF
f ,g
1 . The Bloch–Kato logarithm maps log(. . . ) can be interpolated using Perrin-Riou’s

“big logarithm” map L (using an extension of Perrion-Riou’s construction due to the second and third
authors). Hida’s p-adic Rankin–Selberg L-function Lp(f, g, 1 + j) extends to a p-adic analytic function
of all three variables by construction.

The most difficult terms to deal with are the de Rham cohomology classes ηf and ωg, since their
definition involves the p-adic Eichler–Shimura isomorphism relating de Rham and étale cohomology. To
interpolate these as f and g vary in the families f ,g, we use the Λ-adic Eichler–Shimura isomorphism of
Ohta to construct interpolating classes ηf and ωg. Unfortunately, the interpolating property of Ohta’s
construction is not quite strong enough for our purposes, so a substantial part of this paper (§9) is
devoted to proving an additional interpolating property of ηf and ωg, by a somewhat indirect method
involving Kato’s explicit reciprocity law and the variation of Kato’s Euler system in Hida families. (We
also have a second, more direct proof of this compatibility using Faltings’ Hodge–Tate decomposition for
modular forms, which we plan to treat in a subsequent paper.)
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Once all these preparations are in place, the proof of the explicit reciprocity law is virtually trivial.
We know that both the p-adic L-function, and the value of the pairing

〈
L
(
cBF

f ,g
1

)
, ηf ⊗ ωg

〉
,

are p-adic analytic functions of the three variables (k, k′, j); and the main result of [KLZ15] shows that
these two analytic functions agree at all triples of integers (k, k′, j) satisfying the inequality 0 ≤ j ≤
min(k, k′). Since this set of triples is Zariski-dense, the two functions must agree everywhere, which is
Theorem B.

Comparison with the approach of [BDR15b]. As mentioned above, a “1-variable” analogue of this explicit
reciprocity law (with f fixed and j = 0, and only g varying in a family g) has been proved by Bertolini et
al. in [BDR15b]. Their approach also uses syntomic cohomology to obtain the result for many speciali-
sations of the family, and analytic continuation to obtain the result everywhere; but there is a significant
difference between their proof and ours, in that they analytically continue from specialisations of weight
2 and high p-power level, rather than high weight and prime-to-p level as in our approach. Thus their
strategy requires a delicate study of the special fibres of the modular curves X1(Npr) in characteristic p,
which is not needed in our approach; and our method is also amenable to generalisations to non-ordinary
Coleman families, as we shall show in a subsequent paper [LZ16].
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2. Setup and notation

2.1. Cohomology theories.

2.1.1. Étale cohomology. In this paper we work with continuous étale cohomology as defined by Jannsen
[Jan88]. More specifically, for a pro-system F := (Fr)r≥1 of étale sheaves on a scheme S, indexed by
integers r ≥ 1, we let Hi

ét(S,F ) be the i-th derived functor of F 7→ lim
←−r

H0
ét(S,Fr). We note for later

use that if Hi−1
ét (S,Fr) is finite for all r, then by [Jan88, Lemma 1.15, Equation (3.1)] one has

(2.1.1) Hi
ét(S,F ) ∼= lim

←−
r

Hi
ét(S,Fr).

This, in particular, includes the case of pro-systems (Fr)r≥1 where each Fr is constructible, and S is
of finite type over one of the following rings:

• an algebraically closed field of characteristic 0;
• a local field of characteristic 0;
• a ring of S-integers OK,S , where K is a number field and S is a finite set of places of K, including

all places that divide the order of Fr for any r.

This covers all the cases we shall use in this paper. (In practice, all our (Fr) will be inverse systems of
finite p-torsion sheaves for a prime p, so in the third case we need only assume that S contains all places
dividing p.)
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2.1.2. Pushforward maps. Let X , Y be schemes, both smooth of finite type over some base S as above,
and F , G constructible étale sheaves (or pro-systems of such sheaves) on X and Y respectively. Then
we define a “pushforward morphism (X,F ) → (Y,G )” to be the data of a morphism of S-schemes
f : X → Y , and a pair φ of morphisms

φ♭ : f!F → G , φ♯ : F → f !
G

of étale sheaves on Y (resp. X) which correspond to each other under the adjunction f! ⇆ f !. In general
this only makes sense at the level of derived categories, but we shall only use this construction when f is
finite étale, in which case f! and f ! agree with the usual direct and inverse image [AGV73, Exp. XVIII,
Prop. 3.1.8]. Thus we obtain maps

(f, φ)∗ : Hi
ét(X,F )→ Hi

ét(Y,G ),

which can be expressed either as

Hi
ét(X,F )

∼=
✲ Hi

ét(Y, f∗F )
φ♯
✲ Hi

ét(Y,G ) or

Hi
ét(X,F )

φ♭✲ Hi
ét(X, f

∗
G )

∼=
✲ Hi

ét(Y, f∗f
∗
G )

trf
✲ Hi

ét(Y,G ).

If the pair φ = (φ♯, φ♭) is clear from context we shall omit it from the notation and write simply f∗.
We will also need to consider the case where f : X →֒ Y is a closed immersion, in which case f !G

is isomorphic to f∗G (−c)[−2c] where c is the codimension of X in Y , by the relative purity theorem
[AGV73, Exp. XVI §3]; so we obtain pushforward maps

Hi
ét(X, f

∗
G )→ Hi+2c

ét (Y,G (c)).

2.1.3. De Rham cohomology. We shall also work with algebraic de Rham cohomology (for varieties over
fields of characteristic 0), with coefficients in locally free sheaves equipped with a filtration and an
integrable connection ∇.

In the case of a p-adic base field K, and constant coefficient sheaves, we will use frequently the
Faltings–Tsuji comparison isomorphism, which is a canonical isomorphism of graded K-vector spaces

compdR : Hi
dR(X/K) ∼= DdR

(
Hi

ét(XK ,Qp)
)

which is natural in X .

2.2. Multilinear algebra. If H is an abelian group, we define the modules TSymkH , k ≥ 0, of
symmetric tensors with values in H following [Kin15, §2.2]. By definition, TSymkH is the submodule

of Sk-invariant elements in the k-fold tensor product H ⊗ · · · ⊗H (while the more familiar SymkH is
the module of Sk-coinvariants).

The direct sum
⊕

k≥0 TSymkH is equipped with a ring structure via symmetrisation of the naive
tensor product, so for h ∈ H we have

(2.2.1) h⊗m · h⊗n =
(m+ n)!

m!n!
h⊗(m+n).

Remark 2.2.1. There is a natural ring homomorphism Sym•H → TSym•H , which becomes an isomor-
phism in degrees up to k after inverting k!. However, we will be interested in the case where H is a
Zp-module, for a fixed p, and k varying in a p-adic family, so we cannot use this fact without losing
control of the denominators involved; so we shall need to distinguish carefully between TSym and Sym.

Note that in general TSymk does not commute with base change and hence does not sheafify well.
In the cases where we consider TSymk(H), H is always a free module over the relevant coefficient ring
so that this functor coincides with Γk(H), the k-th divided power of H . This functor sheafifies (on an
arbitrary site), so that the above definitions and constructions carry over to sheaves of abelian groups.

In particular, for X a regular Z[1/p]-scheme, and F a locally constant étale sheaf of (Z/pnZ)-modules

on X , we can define étale sheaves TSymk
F for any k ≥ 0. Similarly, if X is a variety over a characteristic

0 field and F is a locally free sheaf on X , we can make sense of TSymk
F as a locally free sheaf on X ,

and if F is equipped with a filtration and a connection these naturally give rise to analogous structures
on TSymk

F . Thus TSymk(−) makes sense on the coefficient categories for both étale and de Rham
cohomology.
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2.3. Modular curves. We recall some notations for modular curves, following [Kat04, §§1–2]. For
integers N,M ≥ 1 with M + N ≥ 5 we define Y (M,N) to be the Z[1/MN ]-scheme representing the
functor

S 7→ {isomorphism classes (E, e1, e2)}

where S is a Z[1/MN ]-scheme, E/S is an elliptic curve, e1, e2 ∈ E(S) and β : (Z/MZ)× (Z/NZ)→ E,
(m,n) 7→ (me1 + ne2) an injection. When considering these curves we will always assume that M | N ;
then there is a left action of the group

{
g ∈ GL2(Z/NZ) : g ≡

(
∗ ∗
0 ∗

)
mod N

M

}

on the curve Y (M,N), cf. [LLZ14, §2.1]. We shall write Y1(N) for Y (1, N).
In order to define Hecke operators, we will also need the modular curves Y (M,N(A)) and Y (M(A), N),

for A ≥ 1, which were introduced by Kato [Kat04, §2.8]. These are Z[1/AMN ]-schemes; the scheme
Y (M,N(A)) represents the functor

S 7→ {isomorphism classes(E, e1, e2, C)}

where (E, e1, e2) ∈ Y (M,N)(S) and C is a cyclic subgroup of order AN such that C contains e2 and is
complementary to e1 (i.e. the map Z/MZ×C → E, (x, y) 7→ xe1+y is injective). Similarly, Y (M(A), N)
classifies (E, e1, e2, C) where C is a cyclic subgroup scheme of orderAM containing e1 and complementary
to e2.

We use the same analytic uniformisation of Y (M,N)(C) as in [Kat04, 1.8]. Let

Γ(M,N) = {g ∈ SL2(Z) : g = 1 mod (M M
N N )} ;

then we have

(Z/MZ)∗ × Γ(M,N)\H ∼= Y (M,N)(C), (a, τ) 7→
(

C
Zτ+Z

, aτM , 1
N

)

where H is the upper half plane. There are similar uniformisations of the curves Y (M(A), N) and
Y (M,N(A)).

Let Tate(q) be the Tate curve over Z((q)), with its canonical differential ωcan. Let ζN := e2πi/N and
qM := q1/M . Then we define a point of Y (M,N) over Z[ 1

N , ζN ]((q1/M )) by

∞ := (Tate(q), qM , ζN ) .

This is compatible with the Fourier series in the complex-analytic theory if one makes the usual identi-
fications qM = e2πiτ/M , ζN = e2πi/N . Note that even for M = 1, the uniformiser q = q1 at the cusp ∞
is only defined over Z[1/N, ζN ].

All the modular curves Y we consider correspond to representable moduli problems, and are hence
equipped with universal elliptic curves π : E → Y . We use this to construct coefficient sheaves on Y . In
the étale case, after inverting p if necessary we define

HZp =
(
R1π∗Zp

)∨
= R1π∗Zp(1),

which is a lisse étale Zp-sheaf of rank 2 on Y [1/p], and can be identified with the relative Tate module
Tp(E). We write HQp and Hr (r ≥ 1) for the corresponding sheaves with Qp or Z/prZ coefficients. In
the de Rham setting, after base-extension to Q we have a line bundle HdR, which is equipped with its
Hodge filtration and Gauss–Manin connection. Applying the multilinear algebra theory of §2.2 gives us
Zp-sheaves TSymk

HZp for each k ≥ 0, and similarly for Hr,HQp ,HdR.
After base-changing to Qp, the de Rham and étale cohomology groups are related by a comparison

isomorphism: there is a canonical isomorphism

(2.3.1) compdR : Hi
dR

(
YQp ,TSymk

HdR

) ∼=
✲ DdR

(
Hi

ét

(
YQp

,TSymk
HQp

))
.

For k = 0 this is simply the Faltings–Tsuji comparison map of §2.1 applied to Y . We extend this to
k > 0 by identifying both sides with direct summands of the cohomology of the variety Ek. See [KLZ15,
Remark 3.2.4].
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2.4. Degeneracy maps and Hecke operators.

Definition 2.4.1. For M,N,A integers with M +N ≥ 5, we consider the following maps:

(1) The maps pr1 and pr2 : Y (M,NA)→ Y (M,N) are defined by

pr1(E, e1, e2) = (E, e1, Ae2), pr2(E, e1, e2) = (E/〈Ae2〉, e1 mod Ae2, e2 mod Ae2).

(2) The maps p̂r1 and p̂r2 : Y (MA,N)→ Y (M,N) are defined by

p̂r1(E, e1, e2) = (E,Ae1, e2), p̂r2(E, e1, e2) = (E/〈Ae1〉, e1 mod Ae1, e2 mod Ae1).

Note that pr1 and p̂r1 correspond to the identity map on (Z/MZ)∗ ×H under the complex uniformi-
sation, while pr2 and p̂r2 correspond to (x, z) 7→ (x,Az) and (x,A−1z) respectively.

Definition 2.4.2. We write pr and pr′ for the natural degeneracy maps

Y (M,AN)
pr′
✲ Y (M,N(A)), Y (M,N(A))

pr
✲ Y (M,N)

whose composition is pr1, and similarly p̂r and p̂r′.

More subtly, there is an isomorphism

ϕA : Y (M,N(A))
∼=
✲ Y (M(A), N)

(E, e1, e2, C) ✲ (E′, e′1, e
′
2, C

′)

with E′ := E/NC, e′1 the image of e1, e′2 is the image of [A]−1(e2)∩C in E′ and C′ is the image of [A]−1Ze1
in E′. In the other direction, we have a similarly-defined map ϕA−1 : Y (M(A), N)→ Y (M,N(A)). These
maps ϕA and ϕA−1 correspond to multiplication by A (resp. A−1) on H, and we have

pr2 = p̂r ◦ ϕA ◦pr′, p̂r2 = pr ◦ϕ−1
A ◦ p̂r′.

Letting E1 and E2 denote the universal elliptic curves over Y (M,N(A)) and Y (M(A), N) respectively,
there are canonical isogenies

λ : E1 → ϕ∗
A(E2), λ′ : E2 → ϕ∗

A−1(E1)

which both have cyclic kernels of order A, and which are dual to each other (that is, the isogeny
ϕ∗
A(E2)→ E1 dual to λ is the pullback of λ′ via ϕA, and vice versa). Hence the compositions

Φ∗
A := λ∗ ◦ ϕ∗

A and (ΦA−1)∗ := (ϕA)∗ ◦ (λ′)∗

agree as morphisms Hi
ét

(
Y (M(ℓ), N),TSymk

HZp(j)
)
→ Hi

ét

(
Y (M,N(ℓ)),TSymk

HZp(j)
)

, for any

i, k ≥ 0 and j ∈ Z.

Definition 2.4.3. For ℓ prime, and any i, j, k, we define the Hecke operator T ′
ℓ (for ℓ ∤MN) or U ′

ℓ (for

ℓ |MN) acting on Hi
ét(Y (M,N),TSymk

HZp(j)) as the composite

T ′
ℓ = (pr)∗ ◦ (Φℓ)

∗ ◦ (p̂r)∗ = (pr)∗ ◦ (Φℓ−1)∗ ◦ (p̂r)∗.

We also have Hecke operators Tℓ = (p̂r)∗ ◦ (Φℓ−1)∗ ◦ (pr)∗ = (p̂r)∗ ◦ (Φℓ)∗ ◦ (pr)∗, which are the
transposes of the T ′

ℓ with respect to Poincaré duality; but we shall not use these so heavily in the present
paper. (Note, however, that it is the Tℓ rather than the T ′

ℓ that correspond to the familiar formulae for
the action on q-expansions.)

We will also need the following observation:

Lemma 2.4.4. Let ϕ : E → E′ be an isogeny between elliptic curves, and denote by 〈 , 〉E[pr ] and
〈 , 〉E′[pr] the Weil pairings on the pr-torsion points of E and E′, respectively. If P,Q ∈ E[pr], then

〈ϕ(P ), ϕ(Q)〉E′ [pr] =
(
〈P,Q〉E[pr ]

)deg(ϕ)
.

Hence the maps on
∧2

HZp
∼= Zp(1) induced by (ΦA)∗ and (ΦA−1)∗ are both equal to multiplication

by A.
We will need the following compatibility between pushforward maps and Hecke operators:

Proposition 2.4.5. As morphisms

H1(Y (M,Np),TSymk
HZp(j))→ H1(Y (M,N),TSymk

HZp(j)),
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for any k ≥ 0 and j ∈ Z, we have

(pr2)∗ ◦ U
′
p = pk+1(pr1)∗,

(pr1)∗ ◦ U
′
p = T ′

p ◦ (pr1)∗ −
(
p 0

0 p−1

)∗
◦ (pr2)∗.

Proof. Explicit calculation. �

2.5. Atkin–Lehner operators. We will also need to consider Atkin–Lehner operators. We first give
the definitions in classical terms, working with 2 × 2 matrices. Let N ≥ 1 and let Γ = Γ1(N), or
more generally any subgroup of the form Γ1(R(S)) = Γ1(R) ∩ Γ0(RS) with RS = N . We let Y be the
corresponding modular curve, so Y (C) = Γ\H.

Notation 2.5.1.

• We shall write G for the quotient NGL+
2 (Q)(Γ)/Γ.

• We use the notation Q ‖ N , for an integer Q ≥ 1, to mean that Q | N and (Q, NQ ) = 1.

• If Q ‖ N and x ∈ (Z/QZ)×, then we write 〈x〉Q for the class in G of any element of SL2(Z) of

the form
(
a b
Nc d

)
with d = x mod Q and d = 1 mod N

Q .

Definition 2.5.2. For N ≥ 1 and Q ‖ N , and we define WQ to be the class in G of any matrix
(
Qx y
Nz Qw

)
,

where x, y, z, w are integers such that Qxw − N
Q yz = 1, Qx = 1 mod N

Q and y = −1 mod Q.

One verifies easily that in the group G one has the relations

• W 2
Q =

(
Q 0
0 Q

)
· 〈Q〉N/Q · 〈−1〉Q.

• 〈d〉Q · 〈d
′〉N/Q ·WQ = WQ · 〈d

−1〉Q · 〈d
′〉N/Q for any d ∈ (Z/QZ)× and d′ ∈ (Z/NQZ)×.

• If Q and Q′ are integers such that Q ‖ N and Q′ ‖ N
Q , then we have WQQ′ = 〈Q′〉Q ·WQ ·WQ′

(cf. [AL78, Prop. 1.4]).

Remark 2.5.3. Note that our conventions differ somewhat from [AL78], where the convention chosen is
y = 1 mod Q and x = 1 mod N

Q . Thus the matrix WAL
Q considered by Atkin and Li is WQ · 〈−1〉Q ·

〈Q−1〉N/Q in our notation.

The action of GL+
2 (Q) on the upper half-plane H descends to an action of the quotient group G on

Y (C) = Γ\H. We can extend this action to the universal elliptic curve E/Y (where this is defined) via
the identification

E(C) = Γ1(N)\ (H×C/ ∼)

where ∼ is the equivalence relation given by (τ, z) ∼ (τ, z+m+nτ) for all m,n ∈ Z (cf. [FK12, §1.5.9]).
The submonoid G+ of G consisting of matrices of integer determinant acts on H×C/ ∼ via

(
a b
c d

)
· (τ, z) =

(
aτ + b

cτ + d
,

(ad− bc)z

cτ + d

)
,

and this induces an action of the Atkin–Lehner operators WQ on E(C), acting as a cyclic isogeny of
degree Q on the fibres.

These operators have an algebraic interpretation in terms of moduli spaces. For simplicity we restrict
to Γ = Γ1(N) here; the more general case of modular curves of the form Y1(R(S)) with RS = N may
be deduced by passage to the quotient. For each Q ‖ N , we may clearly identify Y1(N) with the moduli
space of triples (E,PN/Q, PQ) where PN/Q and PQ have exact order N/Q and Q respectively.

Definition 2.5.4. The Atkin–Lehner map WQ is the automorphism of the scheme Y1(N) ×Z[1/N ]

Z
[
1
N , ζQ

]
given by

(E,PN/Q, PQ) 7→
(
E/〈PQ〉, PN/Q mod 〈PQ〉, P

′
Q

)
,

where P ′
Q ∈ E[Q]/〈PQ〉 is the unique class such that 〈PQ, P

′
Q〉E[Q] = ζQ.

This extends in a natural way to the universal elliptic curve E , and on base-extension to C it coincides
with the complex-analytic description given above.
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2.6. Modular forms. For N ≥ 1, we write Mk(N,C) for the space of modular forms of weight k and
level Γ1(N); and we write Mk(N,Z) for the subspace consisting of modular forms whose q-expansions
have integer coefficients. More generally, we write Mk(N,R) = Mk(N,Z)⊗R for any commutative ring
R. We write Sk ⊆Mk for the cusp forms.

For any k ≥ 0 there is a canonical isomorphism

Mk+2(N,C) ∼= Fil1H1
dR

(
Y1(N)C, Symk

H
∨
dR

)
,

which maps f ∈Mk+2(N,C) to the class of the (Symk
H ∨

dR)-valued differential (with logarithmic growth
at the cusps) given by

ωf := (2πi)k+1f(τ)(dz)kdτ.

Remark 2.6.1. With our conventions, Mk+2(N,Q) does not map to de Rham cohomology of Y1(N)Q,
because in our model the cusp ∞ is not defined over Q. Rather, the de Rham cohomology of Y1(N)Q
corresponds to the elements of Mk+2(N,Q(ζN )) which satisfy the Galois-equivariance property

fσ = 〈χ(σ)〉f

for all σ ∈ Gal(Q(ζN )/Q), where χ denotes the mod N cyclotomic character. The Atkin–Lehner operator
WN interchanges this space with Mk+2(N,Q).

2.7. Rankin L-functions. Let f , g be cuspidal eigenforms of weights r, r′ ≥ 1, levels Nf , Ng and
characters εf , εg. We define the Rankin L-function

L(f, g, s) := L(NfNg)(εfεg, 2s+ 2− r − r′) ·
∑

n≥1

an(f)an(g)n−s,

where L(NfNg)(εfεg, s) denotes the Dirichlet L-function with the Euler factors at the primes dividing
NfNg removed. This Dirichlet series differs by finitely many Euler factors from the L-function of the
automorphic representation πf ⊗ πg of GL2×GL2 associated to f and g. In particular, it has mero-
morphic continuation to all of C. It is holomorphic on C unless 〈f̄ , g〉 6= 0, in which case it has a pole
at s = r.

More generally, for a primitive Dirichlet character χ of conductor Nχ we define

L(f, g, χ, s) := L(NfNgNχ)(χ
2εfεg, 2s+ 2− r − r′)

∑

n≥1
(n,Nχ)=1

χ(n)an(f)an(g)n−s.

Remark 2.7.1. If f and g are normalised newforms and the three integersNf , Ng, Nχ are pairwise coprime,
then L(f, g, s) = L(πf ⊗ πg ⊗ χ, s).

Theorem 2.7.2 (Shimura, see [Shi77, Theorem 4]). If f and g are normalised newforms, with q-
expansion coefficients in a number field L, and χ takes values in L, then for integer values of s in
the range r′ ≤ s ≤ r − 1, the ratio

L(f, g, χ, s)

(2πi)2s+1−r′G(χ)2G(εf )G(εg)i1−r〈f, f〉

lies in L, and depends Galois-equivariantly on (f, g, χ).

Here the Gauss sum of a character χ is defined by

G(χ) :=
∑

a∈(Z/CZ)×

χ(a)e2πia/C

where C is the conductor of χ; and 〈f, f〉Nf
is the norm of f with respect to the Petersson inner product

defined by

〈f1, f2〉N :=

∫

Γ1(N)\H

f1(τ)f2(τ)yr−2 dxdy,

where τ = x+ iy. The proof of this statement uses the Rankin–Selberg integral formula

L(f, g, s) =
N r+r′−2s−2π2s+1−r′(−i)r−r

′

22s+r−r
′

Γ(s)Γ(s− r′ + 1)

〈
f∗, gE

(r−r′)
1/N (τ, s− r + 1)

〉
N

where N ≥ 1 is some integer divisible by Nf and Ng and with the same prime factors as NfNg, and

E
(r−r′)
1/N (τ, s−r+1) is a certain real-analytic Eisenstein series (cf. [LLZ14, Definition 4.2.1]), whose values

for s in this range are nearly-holomorphic modular forms with q-expansions in Q(ζN ).
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Notation 2.7.3. If p is a prime not dividing Nf , let αf and βf be the roots of the “Hecke polynomial”
X2 − ap(f)X + pk+1εf (p) (and similarly for g).

Theorem 2.7.4 (Hida, Panchishkin). Let p ≥ 5 be prime with p ∤ NfNg, and let P be a prime of L
above p at which f is ordinary. Suppose αf is the unit root of the Hecke polynomial. Then there is a
p-adic L-function

Lp(f, g) ∈ Q(µN )⊗Q LP ⊗Zp Zp[[Z
×
p ]]

with the following interpolation property: for s an integer in the range r′ ≤ s ≤ r − 1, and χ a Dirichlet
character of p-power conductor, we have

Lp(f, g, s+ χ) =
E(f, g, s+ χ)

E(f)E∗(f)
·

Γ(s)Γ(s− r′ + 1)

π2s+1−r′(−i)r−r′22s+r−r′〈f, f〉Nf

· L(f, g, χ−1, s),

where the Euler factors are defined by

E(f) =

(
1−

βf
pαf

)
, E∗(f) =

(
1−

βf
αf

)
,

E(f, g, s+ χ) =





(
1− ps−1

αfαg

)(
1− ps−1

αfβg

)(
1−

βfαg

ps

)(
1−

βfβg

ps

)
if χ is trivial,

G(χ)2 ·
(

p2s−2

α2
fαgβg

)t
if χ has conductor pt > 1.

Here we write “s+ χ” for the character of Z×
p defined by z 7→ zsχ(z). In the above statement we are

taking f and g to be fixed, but in fact Hida has shown that Lp(f, g, s) varies analytically as f and g vary
through Hida families; see Theorem 7.7.2 below for a precise statement.

Remark 2.7.5.

(1) The L-function Lp(f, g, s) above is N r+r′−2s−2Dp(f̆ , ğ, 1/N, s) in the notation of [LLZ14, §5],

where f̆ and ğ are the pullbacks of f, g to level N . We include the power of N in the definition
because it makes Lp(f, g, s) independent of the choice of N .

(2) The interpolating property of Lp(f, g, s) only makes sense if r > r′, but one can define Lp(f, g, s)
for any f, g using interpolation in a Hida family.

(3) The complex L-function L(f, g, s) is symmetric in f and g, i.e. we have L(f, g, s) = L(g, f, s);
but this is not true of Lp(f, g, s).

(4) One can check from Shimura’s theorem that the quotient
Lp(f,g,s)
G(εf )G(εg)

lies in LP ⊗Zp Zp[[Γ]], and

depends Galois-equivariantly on f and g.
(5) The construction of Lp(f, g, s) has recently been extended to the non-ordinary case by Urban

[Urb14], who has constructed a three-parameter p-adic L-function with f , g varying over the
Coleman–Mazur eigencurve; but we shall only consider the case of ordinary f, g in this paper.

For applications to the Iwasawa main conjecture, we shall need the following non-vanishing result:

Proposition 2.7.6. If r − r′ ≥ 2, then the p-adic L-function Lp(f, g) is not a zero divisor in the ring
Q(µN )⊗Q LP ⊗Zp Zp[[Z

×
p ]].

Proof. Let us first assume r− r′ ≥ 3. Then the Euler product for the L-function L(πf ⊗ πg, s) converges

for ℜ(s) > r+r′

2 , and in this range, no term in this product is zero; hence the L-value does not vanish.

In particular, it is non-vanishing at s = r − 1. The same holds if πf × πg is replaced by πf ⊗ πg ⊗ χ
−1

for any Dirichlet character χ of p-power conductor.
If χ is ramified at p, the ratio Lp(f, g)(r−1+χ)/L(πf⊗πg⊗χ

−1, r−1) is a product of factorials, Gauss
sums, powers of non-zero algebraic numbers, and rational functions in the quantities χ(q) for q | NfNg.
For all but finitely many characters χ of p-power conductor, these factors are non-zero; hence Lp(f, g) is
non-vanishing at at least one character in each component of SpecZp[[Z

×
p ]], so it is not a zero-divisor.

When r − r′ = 2, then the point s = r − 1 lies on the abcissa of convergence, so the Euler product
does not necessarily converge there; however, we can deduce the non-vanishing of L(πf ⊗πg⊗χ

−1, r−1)
from a general non-vanishing theorem due to Shahidi [Sha81, Theorem 5.2], and the argument proceeds
as before. Compare [LLZ14, Theorem 4.4.1]. �

2.8. Galois representations. Let f be a normalised cuspidal Hecke eigenform of some weight k+2 ≥ 2
and level Nf , and let L be a number field containing the q-expansion coefficients of f . Note that we do
not necessarily require that f be a newform.
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Definition 2.8.1. For each prime P | p of L, we write MLP
(f) for the maximal subspace of

H1
ét,c

(
Y1(Nf )Q, Symk

H
∨
Qp

)
⊗Qp LP

on which the Hecke operators Tℓ, for primes ℓ ∤ Nf , and Uℓ, for primes ℓ | Nf , act as multiplication by
aℓ(f).

This is a 2-dimensional LP-vector space with a continuous action of Gal(Q/Q), unramified outside
S ∪ {∞}, where S is the finite set of primes dividing pNf . (Equivalently, MLP

(f) is an étale Qp-sheaf
on SpecZ[1/S].)

Dually, we write MLP
(f)∗ for the maximal quotient of the non-compactly supported cohomology

H1
ét

(
Y1(Nf )Q,TSymk(HQp)(1)

)
⊗Qp LP on which the dual Hecke operators T ′

ℓ and U ′
ℓ act as aℓ(f). We

write prf for the projection onto this quotient. The twist by 1 implies that the Poincaré duality pairing

MLP
(f)×MLP

(f)∗ → LP

is well-defined (and perfect), justifying the notation. If f is a newform, then its conjugate f∗ is also a
newform, and the natural map MLP

(f∗)(1)→MLP
(f)∗ is an isomorphism of LP-vector spaces, although

we shall rarely use this.
We write OP for the ring of integers of LP, and we write MOP

(f)∗ for the OP-lattice in MLP
(f)∗

generated by the image of the integral étale cohomology H1
ét

(
Y1(Nf )Q,TSymk(HZp)(1)

)
⊗Zp OP.

Remark 2.8.2. For f of weight 2, the representations MLP
(f), MLP

(f)∗ and MOP
(f)∗ appear in [LLZ14,

§6.3] under the names VLP
(f), VLP

(f)∗ and TOP
(f)∗. We have adopted different notations here to

emphasise that these coincide with the LP-realisations of the Grothendieck motive M(f) over L attached
to f by Scholl [Sch90].

We define similarly a 2-dimensional L-vector space of de Rham cohomology

MdR,L(f) ⊆ H1
dR,c

(
Y1(Nf )Q, Symk

H
∨
dR

)
⊗Q L

and its dual MdR,L(f)∗. Writing MdR,LP
(f) for the base-extension to LP, the comparison isomorphism

(2.3.1) restricts to an isomorphism

MdR,LP
(f) ∼= DdR(MLP

(f))

and similarly for the dual.
If f , g are two eigenforms (of some levels Nf , Ng and weights k+2, k′+2 ≥ 2) with coefficients in L, we

write MLP
(f ⊗ g) for the tensor product MLP

(f)⊗LP
MLP

(g), and similarly for the dual MLP
(f ⊗ g)∗.

We define similarly de Rham cohomology groups MdR,L(f ⊗ g) etc.
Via the Künneth formula, we may regard MLP

(f ⊗ g)∗ as a quotient of the étale cohomology of
Y1(Nf ) × Y1(Ng). Moreover, if N is any common multiple of Nf and Ng, there is a natural degeneracy
morphism Y1(N)2 → Y1(Nf )×Y1(Ng). Pushforward along this degeneracy morphism defines a projection
map

(2.8.1) prf,g : H2
ét

(
Y1(N)2

Q
,TSymk

HQp ⊠ TSymk′
HQp(2)

)
⊗ LP →MLP

(f ⊗ g)∗.

3. Eisenstein and Rankin–Eisenstein classes

In this section we recall some of the results of [KLZ15] concerning the étale Eisenstein classes on
Y1(N), and the étale Rankin–Eisenstein classes on the product Y1(N)× Y1(N).

3.1. Eisenstein classes. Let N ≥ 4 and b ∈ Z/NZ be nonzero. For k ≥ 0, denote by

Eiskmot,b,N ∈ H
1
mot(Y1(N),TSymk

HQ(1))

the motivic Eisenstein class as defined in [BL94, §6.4], with the normalisation from [KLZ15, Theorem
4.1.1]); it satisfies the residue formula

res∞(Eiskmot,b,N ) = −Nkζ(−1− k).

We are mostly interested in the case b = 1, and we write this class simply as Eiskmot,N ; however, we
shall occasionally need to consider general values of b in order to state and prove our norm-compatibility
relations.

14



Remark 3.1.1. See [KLZ15] for the definition of the motivic cohomology groupH1
mot(Y1(N),TSymk

HQ(1)).

For k = 0, it is isomorphic to O(Y1(N))× ⊗Q, and the Eisenstein class Eiskmot,b,N is simply the Siegel
unit g0,b/N , in the notation of [Kat04].

We define Eisenstein classes in étale cohomology as the images of the motivic Eisenstein classes under
the regulator map, as in [KLZ15, §4.2]; this gives an étale Eisenstein class

Eiskét,b,N ∈ H
1
ét

(
Y1(N)Z[1/Np],TSymk

HQp(1)
)
.

3.2. Cohomology of product varieties and the Clebsch–Gordan map. Let E → S be an elliptic
curve over a base S, and suppose it is a T -scheme for some other scheme T . Assume p is invertible on
T . We can then define a lisse étale Qp-sheaf on S ×T S by

TSym[k,k′ ]
HQp

:= π∗
1

(
TSymk

HQp

)
⊗Qp π

∗
2

(
TSymk′

HQp

)
,

where π1 and π2 are the first and second projections S ×T S → S.
We write ∆ for the diagonal inclusion S →֒ S ×T S. Then

∆∗(TSym[k,k′ ]
HQp) = TSymk

HQp ⊗ TSymk′
HQp

as sheaves on S; thus, if S is smooth of relative dimension d over T , we have a pushforward map

∆∗ : Hi
ét(S,TSymk

HQp ⊗ TSymk′
HQp(j))→ Hi+2d

ét (S ×T S,TSym[k,k′ ]
HQp(j + d)).

Now let k, k′, j be integers satisfying

(3.2.1) k ≥ 0, k′ ≥ 0, 0 ≤ j ≤ min(k, k′).

Then there is a map of sheaves on S (the Clebsch–Gordan map)

CG[k,k′,j] : TSymk+k′−2j
HQp → TSymk

HQp ⊗ TSymk′
HQp(−j).

defined as in [KLZ15, §5.1]. Composing with the pushforward map one has

∆∗ ◦ CG
[k,k′,j] : H1

ét

(
Y1(N)[1/p],TSymk+k′−2j

HQp(1)
)
→ H3

ét

(
Y1(N)2,TSym[k,k′]

HQp(2 − j)
)
.

One can also carry out the same construction with coefficients in Zp, or in Z/prZ.

3.3. Rankin–Eisenstein classes. We now come to the case which interests us: we consider the scheme
S = Y1(N) over T = SpecZ[1/Np].

Definition 3.3.1. For k, k′, j satisfying the inequalities (3.2.1), we define the étale Rankin–Eisenstein
class by

Eis
[k,k′,j]
ét,b,N := (∆∗ ◦ CG

[k,k′,j])
(

Eisk+k
′−2j

ét,b,N

)
∈ H3

ét

(
Y1(N)2,TSym[k,k′ ]

HQp(2− j)
)
.

(As before, if b = 1 we shall write this class simply as Eis
[k,k′,j]
ét,N .)

The Hochschild–Serre spectral sequence (and the vanishing of H3
ét for affine surfaces over an alge-

braically closed field) allows us to regard Eis
[k,k′,j]
ét,b,N as an element of the group

H1
(
Z[1/Np], H2

ét

(
Y1(N)2

Q
,TSym[k,k′]

HQp(2 − j)
))

.

Definition 3.3.2. For f, g eigenforms of weights (k + 2, k′ + 2) and levels dividing N , we set

Eis
[f,g,j]
ét,b,N = prf,g

(
Eis

[k,k′,j]
ét,b,N

)
∈ H1

(
Z[1/Np],MLP

(f ⊗ g)∗(−j)
)

where prf,g is as in (2.8.1) above. (If k = k′ = j = 0 and b = 1 this agrees with the class denoted z
(f,g,N)
1

in [LLZ14, Definition 6.4.4].)

We record for later use a key local property of these Galois cohomology classes. It is clear that they
are unramified at all primes not dividing Np; but they also satisfy a more subtle condition at the prime p.
Recall that for a de Rham representation V of GQp , the Bloch–Kato subspace H1

g (Qp, V ) ⊆ H1(Qp, V )

is the kernel of the map H1(Qp, V )→ H1(Qp, V ⊗BdR), where BdR is Fontaine’s period ring.
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Proposition 3.3.3. The localisation of the Rankin–Eisenstein class at p, considered as an element of
the space

H1
(
Qp, H

2
ét

(
Y1(N)2

Q
,TSym[k,k′ ]

HQp(2 − j)
))

,

lies in the Bloch–Kato subspace H1
g .

Proof. This follows from a very general theorem of Nekovǎŕ and Nizio l [NN16, Theorem B], which implies
that the images of motivic cohomology classes for varieties over p-adic fields automatically land in H1

g . �

We assume for the rest of this section that p ∤ N , and that f is a newform. Then a much more precise
description of the localisation of the Rankin–Eisenstein class at p is given by one of the main results of

[KLZ15], which we now recall. It follows from [KLZ15, Proposition 5.4.1] that the localisation of Eis
[f,g,j]
ét,b,N

at p lies in the image of the Bloch–Kato exponential map (the subspace H1
e ), so we can consider

log
(

Eis
[f,g,j]
ét,b,N

)
∈
MdR,LP

(f ⊗ g)∗(−j)

Fil0
,

where we use the Faltings–Tsuji comparison isomorphism compdR of Equation (2.3.1) to give an identi-
fication of filtered ϕ-modules

DdR

(
MLP

(f ⊗ g)∗
)
∼= MdR,LP

(f ⊗ g)∗.

As in §6.1 of op.cit. we have canonical vectors

ωg ∈ Fil1MdR,LP
(g)⊗Q Q(µN )

and

ηαf ∈MdR,LP
(f)⊗Q Q(µN ),

the latter depending on a choice of root αf of the Hecke polynomial of f . By definition, ωg is the class
of the differential form defined by g, as in §2.6 above; and ηαf is the unique class which lies in the αf -
eigenspace for the Frobenius endomorphism and pairs to 1 with ωf∗ , where f∗ is the eigenform conjugate

to f . The tensor product ηαf ⊗ ωg thus lies in Fil1MdR,LP
(f ⊗ g)⊗Q Q(µN ).

Theorem 3.3.4. Suppose that f is ordinary, and let αf be the unit root of its Hecke polynomial. Suppose
also that E(f, g, 1 + j) 6= 0. Then we have

〈
log
(

Eis
[f,g,j]
ét,b,N

)
, ηαf ⊗ ωg

〉
= (−1)k

′−j+1(k′)!

(
k

j

)
E(f)E∗(f)

E(f, g, 1 + j)
Lp(f, g, 1 + j),

where Lp(f, g, s) is Hida’s p-adic L-function and the factors E(f), E∗(f) and E(f, g, 1 + j) are as defined
in Theorem 2.7.4.

Proof. In Theorem 6.5.9 of [KLZ15] we showed an identical formula with the étale Eisenstein class
replaced by the Eisenstein class in syntomic cohomology. However, the compatibility between syntomic
and étale cohomology via the Bloch–Kato exponential (Proposition 5.4.1 of op.cit.) shows that this is
equivalent to the formula above. �

4. Eisenstein–Iwasawa classes

In this section, we define certain cohomology classes (“Eisenstein–Iwasawa classes”)

cEIb,N ∈ H
1
ét

(
Y1(N),Λ(HZp〈tN 〉)(1)

)
,

which can be regarded as “p-adic interpolations” of the étale Eisenstein classes described in §3.1 above.
Here Λ(HZp〈tN 〉) is a sheaf of Iwasawa modules whose definition we recall below. These classes appeared
(although not under this name) in an earlier paper of the first author [Kin15], and we recall below one
of the main results of that paper, which asserts that the image of cEIb,N under the k-th moment map,
for any k ≥ 0, coincides with Beilinson’s weight k étale Eisenstein class. We also prove two distribution
relations describing how the classes cEIb,N behave under pushforward maps, which will be used in the
construction of the Euler system in the following sections.
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4.1. Definition of Eisenstein–Iwasawa classes. In this subsection we review the definition and the
properties of the Eisenstein–Iwasawa classes. The starting point of the construction is the following
result, which is Proposition 1.3 of [Kat04]:

Theorem 4.1.1 (Kato). Let π : E → S be an elliptic curve and c > 1 be an integer prime to 6. Then
there is a unique element cθE ∈ O(E \ E [c])× such that:

(1) Div(cθE) = c2(0)− E [c],
(2) For each isogeny ϕ : E → E ′ with degϕ prime to c one has ϕ∗(cθE) = cθE′ .
(3) The cθE are compatible with base change.
(4) If d is another integer coprime to 6, then

(dθE)c
2

[c]∗(dθE)−1 = (cθE)d
2

[d]∗(cθE)−1.

Now fix a prime number p, and assume p is invertible on S. For r ≥ 0, let Er := E , considered as a
covering of E via [pr] : Er → E , and consider the pro-system of étale lisse sheaves on E given by

L :=
(

[pr]∗(Z/prZ)
)
r≥1

where the transition maps [pr+1]∗(Z/pr+1Z)→ [pr]∗(Z/prZ) are the composition of the trace map with
the reduction modulo pr. The Leray spectral sequence provides us with an isomorphism

H1
ét(E \ E [c], [pr]∗(Z/prZ)(1)) ∼= H1

ét(Er \ Er[p
rc],Z/prZ(1))

and if we combine this with (2.1.1) we get

H1
ét(E \ E [c],L (1)) ∼= lim

←−
r

H1
ét(Er \ Er[p

rc],Z/prZ(1)).

Denote by

∂r : O(Er \ Er[p
rc])× → H1

ét(Er \ E [prc],Z/prZ(1))

the Kummer map, i.e., the connecting homomorphism for the exact sequence

0→ µpr → Gm → Gm → 0.

We assume henceforth that p ∤ c. Then Theorem 4.1.1 implies that the elements ∂r(cθEr ) are compatible
with the trace maps.

Definition 4.1.2. For c > 1 coprime to 6p, let

cΘE := lim
←−
r

∂r(cθEr) ∈ H1
ét(E \ E [c],L (1)).

The elements cΘE inherit all of the important properties of cθE . To formulate them precisely, observe
that for each isogeny ϕ : E → E ′ with degree coprime to c one has a morphism

ϕ∗ : H1
ét(E \ E [c],L (1))→ H1

ét(E
′ \ E ′[c],L ′(1))

defined to be the inverse limit of the natural trace maps

ϕ∗ : H1
ét(Er \ Er[p

rc],Z/prZ(1))→ H1
ét(E

′
r \ E

′
r[p

rc],Z/prZ(1)).

Proposition 4.1.3. The elements cΘE satisfy the following compatibilities:

(1) Let ϕ : E → E ′ be an isogeny of degree coprime to c. Then

ϕ∗(cΘE) = cΘE′ .

In particular, if a is an integer coprime to c one has [a]∗(cΘE) = cΘE .

(2) If f : T → S is a morphism, ET := E ×S T , and f̃ : ET → E is the base change morphism, one
has

f̃∗(cΘE) = cΘET .

(3) In H1
ét(E \ E [cd],L (1)) one has the equality

d2cΘE − [d]∗(cΘE) = c2dΘE − [c]∗(dΘE)

for any integer d coprime to 6p.
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Proof. The compatibility with isogenies follows from the commutative diagram

O(Er \ Er[p
rc])∗

∂r
✲ H1

ét(Er \ Er[p
rc],Z/prZ(1))

O(E ′r \ E
′
r[p

rc])∗

ϕ∗

❄
∂r
✲ H1

ét(E
′
r \ E

′
r[p

rc],Z/prZ(1))

ϕ∗

❄

and the isogeny-compatibility relation ϕ∗(cθE) = cθE′ . The compatibility with base change follows from

O(Er \ Er[p
rc])∗

∂r
✲ H1

ét(Er \ Er[p
rc],Z/prZ(1))

O(ET,r \ ET,r[p
rc])∗

f̃∗

❄
∂r
✲ H1

ét(ET,r \ ET,r[p
rc],Z/prZ(1))

f̃∗

❄

and Theorem 4.1.1. The final statement is immediate from the corresponding compatibility of cθE and

dθE . �

Definition 4.1.4. Let ιD : D →֒ E be a subscheme finite étale over S and write pD := π ◦ ιD : D → S.
Define E [pr]〈D〉 by the Cartesian diagram

E [pr]〈D〉 ⊂ ✲ E

D

pr,D
❄

⊂
ιD
✲ E

[pr]
❄

and let

Λr(Hr〈D〉) := pD∗ι
∗
D[pr]∗Z/p

rZ ∼= pD∗pr,D,∗Z/p
rZ.

Then pD∗ι
∗
DL is the sheaf defined by the pro-system (Λr(Hr〈D〉))r≥1. We denote it by Λ(HZp〈D〉).

In the special case where D = S and ι = t : S → E is a section, we write

Λr(Hr〈t〉) = t∗[pr]∗Z/p
rZ and Λ(HZp〈t〉) = t∗L ,

which are the sheaves defined and studied in [Kin15]. These sheaves can and should be viewed as sheaves
of modules under the sheaf of Iwasawa algebras Λ(HZp) := Λ(HZp〈0〉). For more details on this we refer
again to [Kin15].

In the special case where D splits over S into a disjoint union of copies of S, we get

(4.1.1) Λr(Hr〈D〉) ∼=
⊕

t∈D(S)

Λr(Hr〈t〉).

For any isogeny ϕ : E → E ′ and subschemes ιD : D → E , ιD′ : D′ → E ′ with ϕ(D) ⊂ D′ the trace map
with respect to ϕ induces a map

ϕ∗ : Λr(Hr〈D〉)→ Λr(H
′
r 〈D

′〉).

In the special case where D is split and D′ is a section, the map

ϕ∗ :
⊕

t∈D(S),ϕ(t)=t′

Λr(Hr〈t〉)→ Λr(H
′
r 〈t

′〉)

is just the sum of the trace maps ϕ∗ : Λr(Hr〈t〉)→ Λr(H
′
r 〈t

′〉).
To define the Eisenstein–Iwasawa classes note that one has an isomorphism

H1
ét(D, ι

∗
DL (1)) ∼= H1

ét(S,Λ(HZp〈D〉)(1)).

Definition 4.1.5. Let E be an elliptic curve, ιD : D → E \ E [c] be a subscheme finite étale over S and
pD = π ◦ ιD : D → S the structure map. The Eisenstein–Iwasawa classes are the classes

cEID := ι∗D(cΘE) ∈ H1
ét(S,Λ(HZp〈D〉)(1)).

In the case where D corresponds to a section t, we simply write cEIt.
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4.2. Properties of the Eisenstein–Iwasawa classes. The Eisenstein–Iwasawa classes share the prop-
erties of cΘE . In particular, they behave well under base-change and norm maps.

Proposition 4.2.1. Let π : E → S be an elliptic curve, and ιD : D → E \ E [c] be a subscheme finite
étale over S.

(1) Let f : T → S be a morphism, and define E ′ = E ×S T and similarly D′. Then

f∗ (cEID) = cEID′ .

(2) Let ϕ : E → E ′ be an isogeny of degree coprime to c, D′ ⊂ E ′ finite étale over S, and D = ϕ−1(D′).
Then

ϕ∗ (cEID) = cEID′ .

In particular, if D′ corresponds to a section t′ and D = ϕ−1(t′) splits over S into a disjoint
union of copies of S, one has

cEIt′ =
∑

t∈E(S),ϕ(t)=t′

ϕ∗(cEIt).

(3) If c, d > 1 are both coprime to 6p and D ⊂ E \ E [cd], then the class

d2cEID − ([d]∗)−1
cEI [d]D ∈ H

1
ét

(
S,Λ(HZp〈D〉)(1)

)

is symmetric in c and d.

Proof.

(1) As before, let f̃ : E ′ := E ×S T → E be the base change map. Then by Proposition 4.1.3 we have

f̃∗(cΘE) = cΘE′ and hence cEID′ = (ι∗D′ ◦ f̃∗)(cΘE) = (f∗ ◦ ι∗D)(cΘE) = f∗
cEID.

(2) As

D
ιD
✲ E

D′

ϕ
❄

ιD′
✲ E ′

ϕ
❄

is Cartesian, we have ϕ∗cEID = ϕ∗ι
∗
DcΘE = ι∗D′ϕ∗cΘE = ι∗D′cΘE′ = cEID′ by Proposition 4.1.3.

(3) The multiplication map [d] gives an isomorphism E [pr]〈D〉 ∼= E [pr]〈[d] ◦ D〉. This induces an
isomorphism [d]∗ : Λr(Hr〈D〉) ∼= Λr(Hr〈[d] ◦D〉) with inverse [d]∗. The commutative diagram

H1
ét(E \ E [c],L (1))

[d]∗
✲ H1

ét(E \ E [cd],L (1))

H1
ét

(
S,Λ(HZp〈[d]D〉)(1)

)
(ι[d]D)∗

❄
[d]∗
✲ H1

ét

(
S,Λ(HZp〈D〉)(1)

)
ι∗D
❄

shows that ι∗D[d]∗(cΘE) = [d]∗(ι[d]D)∗(cΘE). Hence, from property 4.1.3(3), the expression

ι∗D
(
d2cΘE − [d]∗cΘE

)
= d2cEID − [d]∗cEI [d]D

is symmetric in c and d as required. �

We now consider a particular special case, which will be used below to prove the Euler system norm
relations. Let E/S be an elliptic curve, c > 1 coprime to 6p, t : S →֒ E \ E [c] an order N section, and E ′

a second elliptic curve over S equipped with an isogeny λ : E ′ → E whose degree is invertible on S and
coprime to c. Then the subscheme λ−1t ⊂ E ′ \ E ′[c] is finite étale over S.

We define S′ to be the fibre product of t : S → E with the isogeny λ; so S′ is a variety equipped with
a finite étale covering map π : S′ → S and a closed embedding t′ : S′ → E ′ such that λ ◦ t′ = t ◦ π, and
(S′, π, t′) is universal among such data. We interpret t′ as a section of E ′ ×S S

′ in the natural way; then
for each r ≥ 1 we have the equality

(E ′ ×S S
′)[pr]〈t′〉 = E ′[pr]〈λ−1t〉.

Hence we have an equality of pro-étale sheaves on S

π∗

(
Λ(H ′

Zp
〈t′〉)

)
= Λ(H ′

Zp
〈λ−1t〉),
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and it is clear that π∗ (cEIt′) = cEIλ−1t. The isogeny λ gives a map λ∗ : Λ(H ′
Zp
〈λ−1t〉) → Λ(HZp〈t〉),

and by part (2) of the preceding proposition, we have λ∗ (cEIλ−1t) = cEIt. Combining these two
statements, we see that

(4.2.1) λ∗π∗ (cEIt′) = cEIt.

4.3. Modular curves and pushforward relations. We are particularly interested in the case where
S is the modular curve Y1(N) for some N ≥ 4 (viewed as a scheme over Z[1/Np]), E is the universal
elliptic curve over Y1(N), and t = tN the canonical order N section. For c > 1 coprime to 6Np and
b ∈ Z/NZ \ {0} we write

cEIb,N := cEIbtN ∈ H
1
ét

(
Y1(N),Λ(HZp〈btN 〉)(1)

)
.

As with the motivic classes of the previous section, we shall abbreviate cEI1,N simply as cEIN .

Remark 4.3.1. Note that since N is invertible on Y1(N) and (c,N) = 1, the image of btN is automatically
contained in E \ E [c].

More generally, for any M,N with M +N ≥ 5, we may define classes cEIb,N on Y (M,N) in the same
way. If N ≥ 4 then the class cEIb,N is the pullback of the corresponding class on Y1(N), but the latter
does not exist for N ≤ 3 as the moduli problem corresponding to Y1(N) is not representable.

We now study the compatibility of the Eisenstein–Iwasawa classes under pushforward maps between
modular curves. For the remainder of this subsection, M,N will be integers ≥ 1 with M + N ≥ 5
and M | N , and ℓ will be any prime. Note that we allow ℓ = p. We have a natural degeneracy map
pr1 : Y (M, ℓN)→ Y (M,N), and (pr1)∗(tN ) = ℓ · tNℓ, so the ℓ-multiplication gives a map

[ℓ]∗ : (pr1)∗
(
Λ(HZp〈btNℓ〉)

)
→ Λ(HZp〈btN 〉)

of sheaves on Y (M,N).

Definition 4.3.2. We consider (pr1, [ℓ]∗) as a pushforward map
(
Y (M, ℓN),Λ(HZp〈btNℓ〉)

)
→
(
Y (M,N),Λ(HZp〈btN 〉)

)

in the sense of §2.1.2 (and we denote this map simply by pr1).

Theorem 4.3.3. Let M,N ≥ 1 with M | N and M + N ≥ 5, and let ℓ be a prime. Then for any
b ∈ (Z/NℓZ)×, the map (pr1)∗ sends cEIb,Nℓ to{

cEIb,N if ℓ | N ,

cEIb,N − [ℓ]∗cEIℓ−1b,N if ℓ ∤ N ,

where in the latter case “ℓ−1” signifies the inverse of ℓ modulo N .

Proof. We will deduce the theorem from the isogeny-compatibility formula of equation (4.2.1) applied
with λ equal to the multiplication-by-ℓ isogeny [ℓ] : E → E , where E is the universal elliptic curve over
S = Y (M,N).

If ℓ | N , then the triple (Y (M,Nℓ), pr1, tNℓ) evidently satisfies the same universal property as the
covering (S′, π, t′) defined in the previous section (since any [ℓ]-preimage of a point of exact order N has
exact order Nℓ). Thus Equation (4.2.1) in this case is exactly the statement that (pr1)∗ (cEIb,Nℓ) =

cEIb,N .
In the case ℓ ∤ N , we must be slightly more careful, since S′ classifies arbitrary preimages of tN , while

Y (M,Nℓ) classifies only those having exact order Nℓ. Hence we have S′ = Y (M,N) ⊔ Y (M,Nℓ), with
the restriction of t′ to Y (M,N) being the order N section ℓ−1tN . Thus Equation (4.2.1) becomes

(pr1)∗ (cEIb,Nℓ) + [ℓ]∗
(
cEIℓ−1b,N

)
= cEIb,N

as required. �

We also give a second pushforward relation refining the above. As in §2.4 above, we factor pr1 as the
composite of the natural degeneracy maps

Y (M,Nℓ)
pr′
✲ Y (M,N(ℓ))

pr
✲ Y (M,N).

The image of the section tNℓ under pr′ has the following description. Recall that we have an iso-
morphism ϕℓ : Y (M,N(ℓ)) → Y (M(ℓ), N), and the cyclic ℓ-isogeny λ : E → E ′ of elliptic curves over
Y (M,N(ℓ)), where E ′ = ϕ∗

ℓ (E); then it follows easily from the definitions that we have

pr′(tNℓ) ⊆ λ
−1t′N ,
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where t′N = ϕ∗
ℓ (tN ) is the standard order N section of E ′. On the other hand, the dual isogeny λ̂ : E ′ → E

maps t′N to tN , which is naturally the pullback of a section over Y (M,N) via pr. Thus we have
pushforward maps

pr′ := (pr′, λ∗) :
(
Y (M,Nℓ),Λ(HZp〈btNℓ〉)

)
→

(
Y (M,N(ℓ)), ϕ∗

ℓΛ(HZp〈btN 〉)
)

pr := (pr, λ̂∗) :
(
Y (M,N(ℓ)), ϕ∗

ℓΛ(HZp〈btN 〉)
)
→

(
Y (M,N),Λ(HZp〈btN 〉)

)

whose composite is pr1.

Theorem 4.3.4.

(1) Let b ∈ (Z/NℓZ)×. As elements of H1(Y (M,N(ℓ)), ϕ∗
ℓΛ(HZp〈btN 〉)), we have

(pr′)∗(cEIb,Nℓ) =

{
ϕ∗
ℓ (cEIb,N ) if ℓ | N,

ϕ∗
ℓ (cEIb,N )− λ∗(cEIℓ−1b,N ) if ℓ ∤ N .

(2) Let b ∈ (Z/NZ)×. Then we have

pr∗ (ϕ∗
ℓ cEIb,N) =

{
cEIb,N if ℓ | N

cEIb,N + ℓ[ℓ]∗cEIℓ−1b,N if ℓ ∤ N

Proof. Let us first prove (1). We shall deduce this from Equation (4.2.1) applied to the isogeny λ : E → E ′

over S = Y (M,N(ℓ)). If ℓ | N , then the covering of Y (M,N(ℓ)) classifying points of E such that
λ(s) = bt′N is exactly Y (M,Nℓ) with the canonical section btNℓ, so Equation (4.2.1) tells us that

(pr′)∗ (cEIb,Nℓ) = ϕ∗
ℓ (cEIb,N )

as claimed.
If ℓ ∤ N , then this fibre product is slightly larger than Y (M,Nℓ), since not all preimages of btN under

λ have exact order ℓN . Exactly as in the proof of Theorem 4.3.3, we find that the required fibre product
is the disjoint union of Y (M,Nℓ) and a copy of Y (M,N(ℓ)) with the section ℓ−1btN , and the same
argument as before gives

(pr′)∗ (cEIb,Nℓ) + λ∗
(
cEIℓ−1b,N

)
= ϕ∗

ℓ (cEIb,N ) .

We now deduce part (2) by comparing the above with Theorem 4.3.3 (after choosing an arbitrary
lifting of b to (Z/ℓNZ)×). This gives the result immediately in the case ℓ | N . For ℓ ∤ N , we note that

the image of λ∗cEIℓ−1b,N on under λ̂∗ is just [ℓ]cEIℓ−1b,N , which is the pullback via pr of its namesake
on Y (M,N); so applying pr∗ to it simply multiplies it by the degree of the map pr, which is ℓ+ 1. Thus

pr∗ (ϕ∗
ℓ cEIb,N ) = (pr1)∗ (cEIb,ℓN) + pr∗

(
λ∗cEIℓ−1b,N

)

=
(
cEIb,N − [ℓ]∗cEIℓ−1b,N

)
+ (ℓ + 1)[ℓ]∗cEIℓ−1b,N

= cEIb,N + ℓ[ℓ]∗cEIℓ−1b,N . �

Remark 4.3.5. Note that pr∗ ϕ
∗
ℓ (cEIb,N ) is the image of cEIb,N under the Hecke operator T ′

ℓ (if ℓ ∤ N) or
U ′
ℓ (if ℓ | N), so we can interpret Theorem 4.3.4(2) as the statement that for ℓ | N we have U ′

ℓ (cEIb,N ) =

cEIb,N , and for ℓ ∤ N we have T ′
ℓ (cEIb,N ) = cEIb,N + ℓ[ℓ]∗cEIℓ−1b,N .

Corollary 4.3.6. If we consider pr2 as a pushforward map
(
Y (M,Nℓ),HZp〈tNℓ〉

)
→
(
Y (M,N),HZp〈tN 〉

)

using the ℓ-isogeny λ : E → pr∗2 E (which maps tNℓ to tN ), then we have

(pr2)∗ (cEIb,Nℓ) =

{
ℓcEIb,N if ℓ | N ,

ℓcEIb,N − ℓ[ℓ]∗cEIℓ−1b,N if ℓ ∤ N.

Proof. This follows easily from part (1) of the previous theorem. �

4.4. Moment maps and the relation to Eisenstein classes. The sheaves of algebras Λ(HZp) are
sheafifications of Iwasawa algebras, and can be handled in much the same way. In particular, one has
moment maps, corresponding to the natural maps of sheaves of sets Hr → TSymk

Hr , x 7→ x[k]:

Proposition 4.4.1 ([Kin15] 2.5.2, 2.5.3). Let Λr(Hr) := Λr(Hr〈0〉). Then there are moment maps for
all r ≥ 1,

momk
r : Λr(Hr)→ TSymk

Hr,

which assemble into a morphism of pro-sheaves

momk : Λ(HZp)→ TSymk
HZp .
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We recall some functoriality properties of the maps momk
r .

Lemma 4.4.2. Let π : E → S be an elliptic curve.

(1) (Base-change compatibility) Let f : T → S be a map and E ′ be the pullback of E. Then for each
r ≥ 1 there is a commutative diagram of sheaves on T

f∗ (Λr(Hr))
f∗(momk

r )✲ f∗(TSymk
Hr)

Λr(H
′
r )

∼=
❄

momk
r ✲ TSymk

H
′
r .

∼=
❄

(2) (Pushforward via isogenies) Let ϕ : E → E ′ be an isogeny. Denote by ϕ∗ : Hr → H ′
r the

corresponding trace map. Then for each r ≥ 1 there is a commutative diagram of sheaves

Λr(Hr)
momk

r✲ TSymk
Hr

Λr(H
′
r )

ϕ∗

❄
momk

r✲ TSymk
H

′
r .

TSymk ϕ∗
❄

In the case where ϕ = [A] is the A-multiplication, the map TSymk[A]∗ is multiplication by Ak.

Proof. These compatibilities are clear from the construction of the moment map, cf. [Kin15, Prop.
2.2.2]. �

Notation 4.4.3. If t is an N -torsion section, we denote the composite

Λ(HZp〈t〉)
[N ]∗
✲ Λ(HZp)

momk

✲ TSymk
HZp

by momk
〈t〉,N . (We will omit the subscripts if N and t are clear from context.)

The following theorem, which is a slight restatement of one of the main results of [Kin15], is funda-
mental for the entire paper:

Theorem 4.4.4. As elements of H1
(
Y1(N),TSymk

HQp(1)
)
, we have

momk
〈btN 〉,N (cEIb,N ) = c2 Eiskét,b,N −c

−k Eiskét,cb,N ,

where the classes on the right-hand side are the étale Eisenstein classes of §3.1 above.

Proof. See [Kin15, Theorem 4.7.1]. �

Remark 4.4.5. Note that the statement in op.cit. includes a factor of −N that does not appear here,
which is the motivation for our slightly different normalisation for the Eisenstein class in the present
paper compared to [Kin15].

Remark 4.4.6. Note that the moment maps commute with (pr1)∗: more precisely, we have a commutative
diagram

H1
(
Y1(Nℓ),Λ(HZp〈btNℓ〉)(1)

) momk
〈btNℓ〉,Nℓ

✲ H1
(
Y1(Nℓ),TSymk

HZp(1)
)

H1
(
Y1(N),Λ(HZp〈btN 〉)(1)

)
(pr1)∗

❄
momk

〈btN 〉,N
✲ H1

(
Y1(N),TSymk

HZp(1)
)
.

(pr1)∗❄

Thus one can immediately deduce a pushforward compatibility for the étale Eisenstein classes from
Theorems 4.3.3 and 4.4.4. However, the analogous diagram for pr2 does not commute; instead, we have

(pr2)∗ ◦momk
〈btNℓ〉,Nℓ

= ℓk momk
〈btN 〉,N ◦(pr2)∗,

so the analogue of Corollary 4.3.6 for the étale Eisenstein classes includes an additional factor of ℓk.
These pushforward relations for the étale Eisenstein classes can also be obtained as a consequence of

corresponding statements for the motivic Eisenstein classes Eiskmot,b,N , although we shall not use this
here. (The case k = 0 of this motivic compatibility is [LLZ14, Theorem 2.2.4]. The general case has
been treated by Scholl [Sch98, §A.2], although Scholl’s normalisations are a little different from ours.)
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4.5. Relation to Ohta’s twisting map. We now describe a relation between the above moment maps
and a construction of Ohta (cf. [Oht99]); this is also closely related to the twisting map considered by
Kato (cf. [Kat04, §8.4.3]).

Theorem 4.5.1. Let M be an integer dividing N . Suppose p | N , and let tN be the canonical order N
section of the universal elliptic curve E over Y (M,N).

(1) There is an isomorphism

H1
ét

(
Y (M,N),Λ(HZp〈tN 〉)(1)

)
∼= lim
←−
r≥0

H1
ét(Y (M,Npr),Zp(1)),

where the inverse limit is with respect to the pushforward maps (pr1)∗; and this isomorphism
maps the Eisenstein–Iwasawa class cEItN to

(
∂(cg0,1/Npr)

)
r≥0

, where cg0,1/Npr ∈ O(Y1(Npr))×

is the Kato–Siegel unit.
(2) The morphism

momk
〈tN 〉,N : H1

ét(Y (M,N),Λ(HZp〈tN 〉)(1))→ H1
ét(Y (M,N),TSymk

HZp(1))

coincides with the morphism

lim
←−
r≥0

H1
ét(Y (M,Npr),Zp(1)) ∼= lim

←−
r≥0

H1
ét(Y (M,Npr),Z/prZ(1))

→ lim
←−
r≥0

H1
ét(Y (M,Npr),TSymk

Hr(1))

→ H1
ét(Y (M,N),TSymk

HZp(1)),

where the second map is given by cup-product with (N · tNpr )⊗k ∈ H0(Y (M,Npr),TSymk
Hr).

In particular, the image of the inverse system
(
∂(cg0,1/Npr )

)
r≥0

is momk
〈tN 〉,N (cEI1,N ) = c2 Eiskét,1,N −c

−k Eiskét,c,N .

Remark 4.5.2. Compare [Oht95, §1.3]; Ohta uses the notation Sk(Zp) for what we would call TSymk(Z2
p),

considered as a left GL2(Zp)-module via the multiplication action of GL2(Zp) on column vectors.

Proof. It suffices to consider the case M = 1, since the case of general M | N follows by pullback.
We claim that there is an isomorphism of varieties

Y1(Npr) ∼= E [pr]〈tN 〉

which intertwines the map pr,t : E [pr]〈tN 〉 → Y1(N) and the canonical projection pr1 : Y1(Npr)→ Y1(N).
To prove this claim, we use the moduli-space interpretation of Y1(N): a point of Y1(N) is given by a pair
(E,P ) where P has exact order N . Similarly, a point of Y1(Npr) is (E,Q) where Q has order Npr; and
by definition a point of E [pr]〈t〉 over (E,P ) ∈ Y1(N) is given by a point Q such that prQ = P . So we
may define our isomorphism by mapping the point

(
(E,P ), Q

)
of E [pr]〈tN 〉 to (E,Q) ∈ Y1(Npr). The

reverse bijection is given by (E,Q) 7→
(
(E, prQ), Q

)
. Thus we have

H1
ét(E [pr]〈tN 〉,Zp(1)) ∼= H1

ét(Y1(Npr),Zp(1))

for all r ≥ 0, and passing to the inverse limit over r gives the required isomorphism. Moreover, the
inclusion E [pr]〈tN 〉 ⊆ E corresponds to the canonical section tNpr over Y1(Npr), so the Siegel unit

cg0,1/Npr on Y1(Npr) is just the restriction of cθE ∈ O(E \ E [c]×) to E [pr]〈tN 〉. Applying the Kummer
map to each side gives cEI1,N = (∂(cg0,1/Npr))r≥0.

We now prove (2). We know that the moment map coincides with the Soulé twisting map [Kin15,
§2.6]. Thus it suffices to check that the section τr,tN ∈ H

0(E [pr]〈tN 〉, p
∗
r,tN Hr) defined in (2.5.1) of op.cit.

corresponds under the above isomorphism to N · tNpr , which is clear by construction. �

Remark 4.5.3. This statement is, of course, not true for p ∤ N without some minor modifications, since

cg0,1/N is not the image under the norm map of cg0,1/Np if p ∤ N .

It is worth noting that the moment map lim
←−r

H1
ét(Y (M,Npr),Zp(1))→ lim

←−r
H1

ét(Y (M,Npr),TSymk
HZp(1))

commutes with the Hecke operators T ′
ℓ for ℓ ∤ N , U ′

ℓ for ℓ | N , and ( a 0
0 1 ) for a ∈ (Z/MZ)×, but intertwines

( 1 0
0 b ), for b ∈ lim

←−r
(Z/NprZ)×, with b−k ( 1 0

0 b ).
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5. Rankin–Iwasawa classes and norm relations

In this section, we shall define classes cRI
[j]
M,N,a, which are étale cohomology classes on the products

Y (M,N)2 (for M | N) with coefficients in a Λ-adic sheaf. The role of these classes is to interpolate the

étale Eisenstein classes Eis
[k,k′,j]
ét,1,N (for a fixed integer j ≥ 0, and varying k, k′ ≥ j). The construction is

somewhat messy for general j, but very much simpler when j = 0, so the reader may wish to keep the
case j = 0 in mind on a first reading.

5.1. An Iwasawa-theoretic Clebsch–Gordan map. We now define a morphism on the sheaves
Λ(HZp), whose images under the moment maps will correspond to the étale Clebsch–Gordan maps
defined in §3.2 considered above.

Recall that for an elliptic curve E/S and a section t ∈ E [S], we have defined

Λr(Hr〈t〉) = (pr,t)∗(Z/prZ),

where pr,t is the structure map E [pr]〈t〉 → S. There is a morphism of sheaves

Λr(Hr〈t〉)→ Λr(Hr〈t〉)⊗ Λr(Hr〈t〉)

given by the diagonal inclusion of E [pr]〈t〉 into E [pr]〈t〉 ×S E [pr]〈t〉. These morphisms are compatible as
r varies and assemble into a morphism

(5.1.1) Λ(HZp〈t〉)→ Λ(HZp〈t〉) ⊗̂Λ(HZp〈t〉).

We also have a morphism of sheaves Zp → (TSymj
HZp)⊗2(−j) for any j ≥ 0, which is the special

case k = k′ = j of the Clebsch–Gordan map.

Definition 5.1.1. For j ≥ 0, let us write

Λ(HZp〈t〉)
[j] = Λ(HZp〈t〉) ⊗ TSymj

HZp .

We define a morphism

CG[j] : Λ(HZp〈t〉)→
(

Λ(HZp〈t〉)
[j] ⊗̂Λ(HZp)[j]

)
(−j)

as the tensor product of the two morphisms we have just defined.

For integers k ≥ j we can define a moment map

momk−j · id : Λ(HZp〈t〉)
[j] → TSymk

HZp

as the composition

Λ(HZp〈t〉)⊗ TSymj
HZp

momk−j ⊗ id
✲ TSymk−j

HZp ⊗ TSymj
HZp

×
✲ TSymk

HZp

where “id” denotes the identity on TSymj
H , and the second arrow is the product in the ring TSym•

HZp

(the symmetrisation of the naive tensor product).

Proposition 5.1.2. For integers 0 ≤ j ≤ k, k′ there is a commutative diagram of pro-sheaves on S

Λ(HZp〈t〉)
CG[j]

✲

(
Λ(HZp〈t〉)

[j] ⊗̂Λ(HZp〈t〉)
[j]
)

(−j)

TSymk+k′−2j
HZp

momk+k′−2j

❄

CG[k,k′,j]

✲

(
TSymk

HZp ⊗ TSymk′
HZp

)
(−j).

(momk−j · id)⊗(momk′−j · id)

❄

Proof. Clear from the construction of the maps CG[j] and CG[k,k′,j]. �

Let us temporarily write Y for Y (M,N)[1/p] and Y 2 for its self-product over Z
[
1
N , µM

]
.

Notation 5.1.3. Given sheaves A,B on Y we write A⊠B for the sheaf on Y 2 given by π∗
1A⊗π

∗
2B, where

π1, π2 are the first and second projections from Y 2 → Y .
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To shorten the notation, we write Λ(HZp〈tN 〉)
[j,j] for the sheaf Λ(HZp〈tN 〉)

[j]
⊠Λ(HZp〈tN 〉)

[j] on Y 2,
where tN is the canonical order N section.

Since ∆ has relative dimension 1, we obtain pushforward maps

∆∗ : H1
ét

(
Y,Λ(HZp〈tN 〉)

[j] ⊗ Λ(HZp〈tN 〉)
[j](1− j)

)
→ H3

ét

(
Y 2,Λ(HZp〈tN 〉)

[j,j](2− j)
)
.

We also have an action of Z/MZ on Y (M,N) via

a · (E, e1, e2) =
(
E, e1 + a NM e2, e2

)
.

Notation 5.1.4. Let ua be the automorphism of Y 2 that is the identity in the first factor and the action
of a in the second factor.

The sheaf Λ(HZp〈tN 〉)
[j,j] is canonically isomorphic to its pullback by ua, so ua acts on its cohomology.

This leads to the following definition:

Definition 5.1.5. We define the Rankin–Iwasawa class

cRI
[j]
M,N,a = ((ua)∗ ◦∆∗ ◦ CG

[j])(cEI1,N ) ∈ H3
ét

(
Y 2,Λ(HZp〈tN 〉)

[j,j](2 − j)
)
.

5.2. First properties of the Rankin–Iwasawa class.

Notation 5.2.1. We use the following notations. We assume that M |N .

(1) For d ∈ Z, let [d]∗ denote the morphism of sheaves on Y (M,N)2,

Λ(HZp〈tN 〉)
[j] → Λ(HZp〈dtN 〉)

[j]

given by the tensor product of pushforward by the d-multiplication on the factor Λ(HZp), and

the trivial map on TSymj
HZp .

(2) For x ∈ (Z/NZ)∗, let 〈x〉 denote the automorphism of Y (M,N) over Z[1/N, µM ] given by
(E, e1, e2) → (E, x−1e1, xe2); and let σx, for x ∈ (Z/MZ)∗, be the automorphism (E, e1, e2) →
(E, xe1, e2).

(3) Denote the automorphism (σx, σx) of Y (M,N)2 simply as σx.

Remark 5.2.2. The utility of the (slightly curious) definition of [d]∗ is that it interacts well with the
Clebsch–Gordan map: we have CG[j] ◦ [d]∗ = ([d]∗, [d]∗) ◦CG[j], as is clear from the construction of the
map CG[j].

Proposition 5.2.3. The elements cRI
[j]
M,N,a have the following properties:

(1) We have

ρ∗
(
cRI

[j]
M,N,a

)
= (−1)jcRI

[j]
M,N,−a,

where ρ is the involution of Y 2 which interchanges the two factors.
(2) For c, d > 1 coprime to 6Np, the element

[
d2 −

(
[d]−1

∗ 〈d〉, [d]−1
∗ 〈d〉

)
σ2
d

]
cRI

[j]
M,N,a

is symmetric in c and d.
(3) For any integers (k, k′) such that (k, k′, j) satisfies the inequality 0 ≤ j ≤ min(k, k′) of (3.2.1),

we have
(

(momk−j · id) ⊠ (momk′−j · id)
)(

cRI
[j]
M,N,a

)
=
[
c2 − c2j−k−k

′(
〈c〉, 〈c〉

)
σ2
c

]
(ua)∗

(
Eis

[k,k′,j]
ét,1,N

)
.

In particular, the image of cRI
[j]
M,N,a under this moment map is the image of a motivic coho-

mology class, for all such k, k′.
(4) We have

σb · cRI
[j]
M,N,a = cRI

[j]
M,N,b−1a

for any b ∈ (Z/MZ)×.

Proof. The proofs of these statements are exactly the same as in the case of Siegel units, which is
Proposition 2.6.2 of [LLZ14]. �
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5.3. The first norm relation. We now give a norm relation for the classes cRI
[j]
M,N,a as N varies,

generalizing Theorem 3.1.1 of [LLZ14]. As in Definition 4.3.2 above, we consider pr1 as a map
(
Y (M,Nℓ),Λ(HZp〈tNℓ〉)

[j]
)
→
(
Y (M,N),Λ(HZp〈tN 〉)

[j]
)

by composing with the map [ℓ]∗ of Notation 5.2.1.

Theorem 5.3.1. Let M,N be integers with M | N and M +N ≥ 5, and ℓ a prime. Then

(pr1× pr1)∗

(
cRI

[j]
M,ℓN,a

)
=

{
cRI

[j]
M,N,a, if ℓ | N ,[

1−
(
[ℓ]∗〈ℓ

−1〉, [ℓ]∗〈ℓ
−1〉
)
σ−2
ℓ

]
cRI

[j]
M,N,a, if ℓ ∤ N .

Proof. This follows immediately from Theorem 4.3.3 and the commutativity of the diagram

Y (M,Nℓ) ✲ Y (M,Nℓ)2

Y (M,N)
❄

✲ Y (M,N)2.

❄

�

5.4. The second norm relation. Our next result is a version of Theorem 3.3.1 of [LLZ14]. We fix
integers M,N and a prime ℓ with M + N ≥ 5 and Mℓ | N . Recall the degeneracy maps p̂r1 and
p̂r2 : Y (Mℓ,N)→ Y (M,N) introduced in §2.4 above.

Theorem 5.4.1. Suppose a ∈ Z/MℓZ is not divisible by ℓ. Then we have

(p̂r2 × p̂r2)∗

(
cRI

[j]
Mℓ,N,a

)
=

{
(U ′

ℓ, U
′
ℓ) · cRI

[j]
M,N,a if ℓ |M,[

(U ′
ℓ, U

′
ℓ)− ℓ

jσℓ
]
· cRI

[j]
M,N,a if ℓ ∤M .

Before embarking on the proof, we need some preparatory lemmas. For a ∈ Z/MZ, we write ιM,N,a

for the map ua ◦∆ : Y (M,N)→ Y (M,N)2, and similarly ιMℓ,N,a for a ∈ Z/MℓZ.

Lemma 5.4.2. Let a ∈ Z/MℓZ be not divisible by ℓ. Then the composition

ιM(ℓ),N,a : Y (Mℓ,N)
ιMℓ,N,a

✲ Y (Mℓ,N)2
p̂r′×p̂r′

✲ Y (M(ℓ), N)2,

where the second arrow is the natural degeneracy map, is a closed embedding. If moreover ℓ | M , then
the diagram

Y (Mℓ,N)
ιM(ℓ),N,a

✲ Y (M(ℓ), N)2

Y (M,N)

p̂r1
❄

ιM,N,a
✲ Y (M,N)2

p̂r×p̂r
❄

is Cartesian, where the vertical maps are the natural projections.

Proof. We show first that ιM(ℓ),N,a is a closed embedding. Its image is clearly closed, so it suffices to
show that it is injective. This we may check on C-points.

So it suffices to show that the preimage of U(M(ℓ), N) × U(M(ℓ), N) under the map GL2(AQ) →

(GL2×GL1
GL2)(AQ) given by x 7→

(
x, ( 1 a

0 1 )x ( 1 a
0 1 )

−1
)

is U(Mℓ,N). This is a completely elementary

calculation: if x = ( r st u ) ∈ U(M(ℓ), N), then ( 1 a
0 1 )x ( 1 a

0 1 )
−1

is congruent to

(
1 a(1− r)
0 1

)
modulo

(
M Mℓ
N N

)
; and a /∈ ℓẐ, so if this is to lie in U(M(ℓ), N), then we must have r = 1 mod Mℓ, i.e.

x ∈ U(Mℓ,N).
Let us now show the ensuing square is Cartesian. Since both horizontal arrows are closed immersions

and the vertical ones are surjective, it suffices to show that the vertical maps have the same degree.
However, since ℓ |M the degree of Y (Mℓ,N) over Y (M,N) is ℓ2, which is also the degree of Y (M(ℓ), N)2

over Y (M,N)2. �

If ℓ ∤ M then we need to use a slightly modified version of the above statement. Let ã be the unique
lifting of a ∈ Z/MZ to an element of Z/ℓMZ divisible by ℓ.

Notation 5.4.3. Denote by γ the map Y (M(ℓ), N)→ Y (M(ℓ), N)2 given by uã ◦∆ (which is an embed-
ding, by the same matrix calculation as before).
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Lemma 5.4.4. In the above setting, the following diagram is Cartesian:

Y (Mℓ,N) ⊔ Y (M(ℓ), N)
(ιM(ℓ),N,a, γ)

✲ Y (M(ℓ), N)2

Y (M,N)
❄ ιM,N,a

✲ Y (M,N)2
❄

where the vertical arrows are the natural projection maps.

Proof of Theorem 5.4.1. We factor the map p̂r2 as the composite

Y (Mℓ,N)
p̂r′
✲ Y (M(ℓ), N)

ϕℓ−1

∼=
✲ Y (M,N(ℓ))

pr
✲ Y (M,N),

and for brevity we write p̃r = pr ◦ϕℓ−1 .
Consider first the case ℓ | M . The Cartesianness of the diagram of Lemma 5.4.2, together with the

commutativity of pushforward and pullback in Cartesian diagrams (cf. Remark 2.4.6 of [LLZ14]) now
implies that

(p̂r′ × p̂r′)∗

(
cRI

[j]
Mℓ,N,a

)
= (p̂r× p̂r)∗

(
cRI

[j]
M,N,a

)

as elements of H3
ét(Y (M(ℓ), N),Λ[j,j](2− j)). Applying the map (p̃r× p̃r)∗ to both sides of this formula,

and noting that p̃r∗ ◦ p̂r∗ = (pr)∗ ◦ (ϕℓ−1)∗ ◦ p̂r∗ is the definition of the Hecke operator U ′
ℓ, we obtain the

result.
The case ℓ ∤M is similar, although slightly more elaborate. The same argument as before tells us that

(U ′
ℓ, U

′
ℓ) · cRI

[j]
M,N,a = (p̂r1 × p̂r1)∗

(
cRI

[j]
Mℓ,N,a

)
+ A

where

A := (p̃r × p̃r)∗

(
γ∗ ◦ CG

[j]
) (

cEI1,N
)
.

There is a commutative diagram

Y (M(ℓ), N)
γ

✲ Y (M(ℓ), N)2

Y (M,N)

p̃r
❄ ιM,N,ℓ−1a

✲ Y (M,N)2,

p̃r× p̃r
❄

so we have

A =
(

(ιM,N,ℓ−1a)∗ ◦ p̃r∗ ◦ CG
[j]
)

(cEI1,N) .

Since p̃r∗ (cEI1,N ) = cEI1,N by Theorem 4.3.4(2), it suffices to show that

(p̃r)∗ ◦ CG
[j] = ℓjCG[j] ◦ (p̃r)∗.

Recall that CG[j] is defined using the j-th tensor power of the identification det HZp
∼= Zp(1) given by

the Weil pairing. Now, by definition, the map p̃r∗ = pr∗ ◦(ϕℓ−1)∗ acts on HZp via λ′∗, where λ′ is the
isogeny E → (ϕℓ−1)∗E defined in Section 2.4. Since λ′ has degree ℓ, we deduce from Lemma 2.4.4 that

(ϕℓ−1)∗ ◦ CG
[j] = ℓjCG[j] ◦ (ϕℓ−1)∗,

as required. �

5.5. The third norm relation. The last relation we shall need is the following. Recall that pr2 denotes
the “twisted” degeneracy map Y (M,Nℓ)→ Y (M,N), corresponding to z 7→ ℓz on the upper half-plane,
and we extend this to a map on our coefficient sheaves using the isogeny λ : E → ϕ∗

ℓ (E) of elliptic curves
over Y (M,N(ℓ)).

Theorem 5.5.1. The map (pr1× pr2)∗ sends cRI
[j]
M,ℓN,a to

{
(U ′

ℓ, 1) · cRI
[j]
M,N,ℓa if ℓ | N,[

(T ′
ℓ , 1)σ−1

ℓ − ([ℓ]∗〈ℓ
−1〉, T ′

ℓ)σ
−2
ℓ

]
· cRI

[j]
M,N,a if ℓ ∤ N .

The proof of this statement closely follows that of Lemma A.2.1 of [LLZ15], and we leave it to the
reader to make the necessary modifications for the Λ-adic case.
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Corollary 5.5.2. We have

(pr2× pr1)∗

(
cRI

[j]
M,ℓN,a

)
=

{
(1, U ′

ℓ) · cRI
[j]
M,N,ℓa if ℓ | N,[

(1, T ′
ℓ)σ

−1
ℓ − (T ′

ℓ, [ℓ]∗〈ℓ
−1〉)σ−2

ℓ

]
· cRI

[j]
M,N,a if ℓ ∤ N .

and

(pr2× pr2)∗cRI
[j]
M,ℓN,a =

{
ℓj+1

cRI
[j]
M,N,ℓa if ℓ | N ,

ℓj+1σ−1
ℓ

(
1− ([ℓ]∗〈ℓ

−1〉, [ℓ]∗〈ℓ
−1〉)σ−2

ℓ )
)
cRI

[j]
M,N,a if ℓ ∤ N .

Proof. The first statement follows from the previous theorem by symmetry. The second follows by writing

(pr2× pr2)∗

(
cRI

[j]
M,Nℓ,a

)
= (pr2× pr2)∗(pr1× pr1)∗

(
cRI

[j]
M,Nℓ2,a

)

= (pr2× pr1)∗(pr1× pr2)∗

(
cRI

[j]
M,Nℓ2,a

)

= (pr2× pr1)∗

[
(U ′

ℓ, 1)cRI
[j]
M,Nℓ,ℓa

]
.

On the sheaf Λ(HZp〈tNℓ〉)
[j] we have the relation

pr2 ◦U
′
ℓ = ℓj+1 pr1,

so this gives

(pr2× pr2)∗

(
cRI

[j]
M,Nℓ,ℓa

)
= ℓj+1(pr1× pr1)∗

(
cRI

[j]
M,Nℓ,ℓa

)

and we are done by Theorem 5.3.1. �

5.6. The Euler system distribution relation. From the three basic norm relations above – Theorems
5.3.1, 5.4.1 and 5.5.1 – we can derive all the other relations we shall need between Rankin–Iwasawa classes
as corollaries, using only elementary relations in the Hecke algebra.

The first of these corollaries is the following relation, which will be the key to the Euler system
arguments of §11:

Proposition 5.6.1. Let ℓ be a prime with ℓ ∤ Np, and let a ∈ Z/ℓMZ with ℓ ∤ a. Then for any c > 1
coprime to 6ℓMNp, pushforward along the map

Y (ℓM, ℓN)2
p̂r2×p̂r2✲ Y (M, ℓN)2

pr1 × pr1✲ Y (M,N)2,

maps the class cRI
[j]
ℓM,ℓN,a to the following class:

(
− ℓjσℓ + (T ′

ℓ, T
′
ℓ) +

(
(ℓ + 1)ℓj(〈ℓ〉−1[ℓ]∗, 〈ℓ〉

−1[ℓ]∗)− (〈ℓ〉−1[ℓ]∗, T
′2
ℓ )− (T ′2

ℓ , 〈ℓ〉
−1[ℓ]∗)

)
σ−1
ℓ

+ (〈ℓ−1〉[ℓ]∗T
′
ℓ, 〈ℓ

−1〉[ℓ]∗T
′
ℓ)σ

−2
ℓ − ℓ

1+j([ℓ2]∗〈ℓ
−2〉, [ℓ2]∗〈ℓ

−2〉)σ−3
ℓ

)
cRI

[j]
M,N,a.

Proof. By the second norm relation (Theorem 5.4.1), pushforward along p̂r2 × p̂r2 : Y (ℓM, ℓN)2 →

Y (M, ℓN)2 maps the class cRI
[j]
ℓM,ℓN,a to

((U ′
ℓ, U

′
ℓ)− ℓ

jσℓ)cRI
[j]
M,ℓN,a.

So we must compute the pushforward of this element along the natural degeneracy map pr1× pr1 :
Y (M, ℓN)2 → Y (M,N)2.

With our present conventions, as maps
(
Y (M,Nℓ),Λ(HZp〈tNℓ〉)

[j]
)
→
(
Y (M,N),Λ(HZp〈tN 〉)

[j]
)

we
have the relations

(5.6.1a) (pr1)∗ ◦ U
′
ℓ = T ′

ℓ ◦ (pr1)∗ − [ℓ]∗〈ℓ
−1〉 ◦ (pr2)∗

and

(5.6.1b) (pr2)∗ ◦ U
′
ℓ = ℓ1+j · (pr1)∗,
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which are the Λ-adic versions of Proposition 2.4.5. Applying the first relation to both factors of the
product Y (M, ℓN)2, we have
(

(pr1× pr1)∗ ◦ ((U ′
ℓ, U

′
ℓ)− ℓ

jσℓ)
)(

cRI
[j]
M,ℓN,a

)

=
(

((T ′
ℓ, T

′
ℓ)− ℓ

jσℓ)(pr1× pr1)∗

− (T ′
ℓ, [ℓ]∗〈ℓ

−1〉)(pr1× pr2)∗ − ([ℓ]∗〈ℓ
−1〉, T ′

ℓ)(pr2× pr1)∗

+ ([ℓ]∗〈ℓ
−1〉, [ℓ]∗〈ℓ

−1〉)(pr2× pr2)∗

)(
cRI

[j]
M,ℓN,a

)
.

We have formulae for the images of cRI
[j]
M,ℓN,a under each of the four maps

{
(pr1× pr1)∗, (pr1× pr2)∗, (pr2× pr1)∗, (pr2× pr2)∗

}

as the image of cRI
[j]
M,N,a under a Hecke operator (by Theorem 5.3.1, Theorem 5.5.1, and the two cases

of Corollary 5.5.2 respectively). Combining these gives the stated formula. �

Remark 5.6.2. Compare Theorem 3.4.1 of [LLZ14], which is essentially the above theorem with trivial
coefficients. (In fact the above result is slightly stronger, cf. Remark 3.4.2 of op.cit..)

5.7. The ℓ-stabilisation relation. Our second application of the three basic norm relations is to prove
a theorem relating Rankin–Eisenstein classes at levels prime to ℓ with those at level divisible by ℓ. We
will use this later for ℓ = p, in order to relate Hida theory (which requires the level to be divisible by p)
with the syntomic regulator (which requires the level to be coprime to p).

The “abstract” ℓ-stabilisation relation. The following construction is adapted from that used in [LLZ15,
Theorem 4.2.8], which we learned from the work of Wiles (cf. p490 of [Wil95]). Let ℓ be a prime not
dividing N , and j ≥ 0 an integer.

Definition 5.7.1. We define a map

(Pr×Pr)∗ : H3
ét

(
Y (M,Nℓ)2,Λ(HZp〈tNℓ〉)

[j,j](2 − j)
)
→ H3

ét

(
Y (M,N)2,Λ(HZp〈tN 〉)

[j,j](2 − j)
)⊕4

via the formula

(Pr×Pr)∗ :=




(pr1× pr1)∗
(pr2× pr1)∗
(pr1× pr2)∗
(pr2× pr2)∗


 .

The map (Pr×Pr)∗ commutes with the Hecke operators T ′
q, for q ∤ Nℓ. (It is evidently induced by a

correspondence from Y (M,Nℓ)2 to the disjoint union of four copies of Y (M,N)2, but we shall not use
this interpretation directly.)

Definition 5.7.2. On the module H3
ét

(
Y (M,N)2,H [k,k′ ](2 − j)

)⊕4

, we define endomorphisms (A′
ℓ, 1)

and (1, A′
ℓ) via left-multiplication by the matrices

(A′
ℓ, 1) =




(T ′
ℓ , 1) −([ℓ]∗〈ℓ

−1〉, 1) 0 0
ℓj+1 0 0 0

0 0 (T ′
ℓ , 1) −([ℓ]∗〈ℓ

−1〉, 1)
0 0 ℓj+1 0


 .

and

(1, A′
ℓ) =




(1, T ′
ℓ) 0 −(1, [ℓ]∗〈ℓ

−1〉) 0
0 (1, T ′

ℓ) 0 −(1, [ℓ]∗〈ℓ
−1〉)

ℓ1+j 0 0 0
0 ℓ1+j 0 0




We define (B′
ℓ, 1) = (T ′

ℓ , 1)− (A′
ℓ, 1), and similarly for (1, B′

ℓ)

Note that these four matrices all commute with each other. They are chosen in order to give the
following compatibility:

Lemma 5.7.3. These operators satisfy the relations

(A′
ℓ, 1) ◦ (Pr×Pr)∗ = (Pr×Pr)∗ ◦ (U ′

ℓ, 1) and (1, A′
ℓ) ◦ (Pr×Pr)∗ = (Pr×Pr)∗ ◦ (1, U ′

ℓ).
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Proof. This is simply a restatement of the formulae (5.6.1a) and (5.6.1b) for (pr1)∗◦U
′
ℓ and (pr2)∗◦U

′
ℓ. �

Theorem 5.7.4. For a ∈ (Z/MZ)×, we have

(Pr×Pr)∗

(
cRI

[j]
M,Nℓ,a

)
=

(
1−

(A′
ℓ, B

′
ℓ)

ℓ1+j

)(
1−

(B′
ℓ, A

′
ℓ)

ℓ1+j

)(
1−

(B′
ℓ, B

′
ℓ)

ℓ1+j

)



cRI
[j]
M,N,a

0
0
0


 .

Proof. Multiplying out the various 4 × 4 matrices 3 one finds that the product of the three brackets on
the right-hand side is given by a matrix whose first column is




1− ([ℓ]∗〈ℓ
−1〉, [ℓ]∗〈ℓ

−1〉)σ−2
ℓ

(1, T ′
ℓ)σ

−1
ℓ − (T ′

ℓ, [ℓ]∗〈ℓ
−1〉)σ−2

ℓ

(T ′
ℓ , 1)σ−1

ℓ − ([ℓ]∗〈ℓ
−1〉, T ′

ℓ)σ
−2
ℓ

ℓ1+jσ−1
ℓ

(
1− ([ℓ]∗〈ℓ

−1〉, [ℓ]∗〈ℓ
−1〉)σ−2

ℓ

)


 .

Comparing this with Theorem 5.3.1, Theorem 5.5.1 and Corollary 5.5.2, these four Hecke operators are

exactly the ones whose actions on cRI
[j]
M,N,a give the four components of (Pr×Pr)∗

(
cRI

[j]
M,Nℓ,a

)
. �

Application to eigenform projections. We now give the motivating application of the above construction.
Let f0, g0 be two Hecke eigenforms of weights (k + 2, k′ + 2) and levels Nf , Ng (with Hecke eigenvalues
in some number field L). We choose a prime P | p of L. Let S be a finite set of primes containing all
those dividing pNfNg.

Letting N denote any integer divisible by Nf and Ng, and with the same prime factors as NfNg, we

have an étale Eisenstein class Eis
[f0,g0,j]
ét,1,N ∈ H1(Z[1/S],MLP

(f0 ⊗ g0)∗(−j)) for each 0 ≤ j ≤ min(k, k′).
It follows immediately from Theorem 5.3.1 that this is independent of N , so we shall denote it simply

by Eis
[f0,g0,j]
ét .

As before, we let ℓ be a prime not dividing Nf or Ng (and we assume ℓ ∈ S without loss of generality).
Extending L if necessary, we choose a root αf ∈ L of the Hecke polynomial X2 − aℓ(f0)X + ℓk+1εf(ℓ)
of f0, and we let βf = aℓ(f) − αf be the complementary root. The choice of αf determines a Hecke
eigenform f of level ℓNf , with Uℓ-eigenvalue αf (and the same Hecke eigenvalues as f0 at all other
primes). We also choose αg and an eigenform g of level ℓNg similarly. Our goal is to compare the classes

Eis
[f,g,j]
ét ∈ H1(Z[1/S],MLP

(f ⊗ g)∗(−j)) and Eis
[f0,g0,j]
ét ∈ H1(Z[1/S],MLP

(f0 ⊗ g0)∗(−j)).

Definition 5.7.5. We let (Prα×Prα)∗ denote the map

H2
ét

(
Y1(ℓN)2

Q
,H [k,k′ ](2− j)

)
→ H2

ét

(
Y1(N)2

Q
,H [k,k′](2 − j)

)
,

where H [k,k′] denotes the coefficient sheaf TSymk
HZp ⊠ TSymk′

HZp , defined by

(pr1× pr1)∗ −
βf
ℓk+1

(pr2× pr1)∗ −
βg
ℓk′+1

(pr1× pr2)∗ +
βfβg
ℓk+k′+2

(pr2× pr2)∗.

Using Proposition 2.4.5 one sees that the composite prf0,g0 ◦(Prα×Prα)∗ factors throughMLP
(f⊗g)∗,

and defines an isomorphism

MLP
(f ⊗ g)∗ →MLP

(f0 ⊗ g0)∗,

which we denote by the same symbol (Prα×Prα)∗.

Theorem 5.7.6. With the above notations we have

(Prα×Prα)∗

(
Eis

[f,g,j]
ét

)
=

(
1−

αfβg
ℓ1+j

)(
1−

βfαg
ℓ1+j

)(
1−

βfβg
ℓ1+j

)
Eis

[f0,g0,j]
ét .

3This is messy but can be done easily using a computer algebra system such as Sage, working in a polynomial ring with
six formal variables corresponding to the operators (T ′

ℓ , 1), (1, T ′

ℓ), ([ℓ]∗〈ℓ−1〉, 1), (1, [ℓ]∗〈ℓ−1〉), ℓ1+j , and σ−1

ℓ .
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Proof. Let us write momf,g for the composite prf,g ◦
[
(momk−j ·id) ⊠ (momk′−j ·id)

]
. Then the following

diagram is commutative:

H3
ét(Y1(Nℓ)2,Λ(HZp〈tNℓ〉)

[j,j](2− j))
(Pr×Pr)∗

✲ H3
ét(Y1(N)2,Λ(HZp〈tN 〉)

[j,j](2− j))⊕4

H1(Z[1/S],MLP
(f0 ⊗ g0)∗(−j))⊕4

(momf0,g0)⊕4

❄

H1(Z[1/S],MLP
(f ⊗ g)∗(−j))

momf,g

❄
(Prα×Prα)∗

✲ H1(Z[1/S],MLP
(f0 ⊗ g0)∗(−j))

σ
❄

Here the map σ is defined by
(
x
y
z
w

)
7→
(

1,−
βf

ℓ1+j ,−
βg

ℓ1+j ,
βfβg

ℓ2+2j

)
·

(
x
y
z
w

)
.

(Note that the powers of ℓ in the denominators here differ slightly from those in the definition of
(Prα×Prα)∗, since the failure of the moment map momk−j ·id to commute with pr2 induces a factor of
ℓk−j .)

The 4 × 4 matrix of Hecke operators (A′
ℓ, 1) introduced above acts on the space

(
MLP

(f0 ⊗ g0)∗
)⊕4

by the matrix


aℓ(f0) −ℓk−jεℓ(f) 0 0

ℓ1+j 0 0 0
0 0 aℓ(f0) −ℓk−jεℓ(f)

0 0 ℓ1+j 0


 =



αf+βf −ℓ−1−jαfβf 0 0

ℓ1+j 0 0 0
0 0 αf+βf −ℓ−1−jαfβf

0 0 ℓ1+j 0


 .

and since
(

1,−
βf

ℓ1+j ,−
βg

ℓ1+j ,
βfβg

ℓ2+2j

)
is an eigenvector for right-multiplication by this matrix, with eigen-

value αf , we have σ ((A′
ℓ, 1)x) = αf σ(x). Similarly, (B′

ℓ, 1) corresponds via σ to multiplication by βf ,
and (1, A′

ℓ) and (1, B′
ℓ) to αg and βg.

We now follow what the maps in the diagram do to the class cRI
[j]
1,Nℓ,1. By the interpolating property

of cRI, the image of this class under momf,g is (c2 − c2j−k−k
′

εf (c)−1εg(c)
−1) Eis

[f,g,j]
ét ; while the image

under (Pr×Pr)∗ was computed in Theorem 5.7.4, and this maps under (momf0,g0)⊕4 to

(c2 − c2j−k−k
′

εf (c)−1εg(c)
−1)

(
1−

(A′
ℓ, B

′
ℓ)

ℓ1+j

)(
1−

(B′
ℓ, A

′
ℓ)

ℓ1+j

)(
1−

(B′
ℓ, B

′
ℓ)

ℓ1+j

)(
Eis

[f0,g0,j]
ét
0
0
0

)
.

Applying σ to this, and cancelling the c factor (which is non-zero, since 2j − k − k′ ≤ 0), we find that

(Prα×Prα)∗

(
Eis

[f,g,j]
ét

)
=

(
1−

αfβg
p1+j

)(
1−

βfαg
p1+j

)(
1−

βfβg
p1+j

)
Eis

[f0,g0,j]
ét . �

Remark 5.7.7. Compare Corollary 6.7.8 of [LLZ14]. Our present result is somewhat stronger even in the
case k = k′ = j = 0 considered in op.cit., since we do not need to impose the additional hypothesis that
was Assumption 6.7.4 of [LLZ14].

One can prove, by exactly the same method, two results refining the above, which correspond to
the “asymmetric” norm relations of [LLZ15, Theorem 3.5.1]. The map (Prα×Prα)∗ is naturally the
composition of two maps

(Prα× id)∗ : MLP
(f ⊗ g)∗ →MLP

(f0 ⊗ g)∗

(id×Prα)∗ : MLP
(f0 ⊗ g)∗ →MLP

(f0 ⊗ g0)∗,

whose composition is (Prα×Prα)∗; and we obtain the formulae

(Prα× id)∗

(
Eis

[f,g,j]
ét

)
=

(
1−

βfαg
ℓ1+j

)
Eis

[f0,g,j]
ét ,

(id×Prα)∗

(
Eis

[f0,g,j]
ét

)
=

(
1−

αfβg
ℓ1+j

)(
1−

βfβg
ℓ1+j

)
Eis

[f0,g0,j]
ét .
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6. Projection to Y1(N) and cyclotomic twists

6.1. Projection to Y1(N). Let M,N be integers with N ≥ 4, and let µ◦
M be the scheme of primitive

M -th roots of unity, so that µ◦
M = SpecZ[ζM ]. Then there is a canonical map

sM : Y (M,MN)→ Y1(N)× µ◦
M

given in terms of moduli spaces by

(E, e1, e2) 7→
((
E/〈e1〉, e2 mod 〈e1〉

)
, 〈e1, Ne2〉E[M ]

)
.

(This is the map denoted by tM in [LLZ14], but this notation unfortunately conflicts with the notation
tN for the canonical order N section inherited from [Kin15]; so we have adopted the alternative notation
sM here.) For any prime ℓ we have a commutative diagram

Y (Mℓ,MNℓ)
p̂r2✲ Y (M,MNℓ)

pr1✲ Y (M,MN)

Y1(N)× µ◦
Mℓ

sMℓ

❄

✲ Y1(N)× µ◦
M

sM

❄

where the bottom horizontal map is given by ζ → ζℓ on µ◦
Mℓ (and is the identity on Y1(N)). Moreover,

the maps sM for different values of N are compatible with the maps pr1.

Definition 6.1.1. Extend the map sM to a map on sheaves (which we also denote by sM)
(
Y (M,MN),HZp〈tMN 〉

)
✲
(
Y1(N)× µ◦

M ,HZp〈tN 〉
)

by defining (sM )♭ ∈ HomSheaves(Y (M,MN)ét)(HZp〈tMN 〉, s
∗
MHZp〈tN 〉) as the composite

HZp〈tMN 〉
[M ]∗
✲ HZp〈M · tMN 〉 ✲ s∗MHZp〈tN 〉,

where the first map is the M -multiplication, and the latter is pushforward by the natural M -isogeny
E → s∗ME (which maps M · tMN to s∗M tN ).

Definition 6.1.2. The (Λ-adic) Beilinson–Flach element

cBF
[j]
M,N,a ∈ H

3
ét

(
Y1(N)2 × µ◦

M ,Λ(HZp〈tN 〉)
[j,j](2− j)

)

is defined to be the image of cRI
[j]
M,MN,a under (sM × sM )∗.

Note that for M = 1, sM is the identity, so we have

cBF
[j]
1,N,1 = cRI

[j]
1,N,1 = (∆∗ ◦ CG

[j])(cEI1,N).

6.2. Compatibility with cyclotomic twists. We now set M = mpr, where m is coprime to p and
r ≥ 1, and we work over the pr-torsion sheaves Hr and Λr(Hr〈t〉). It is clear that sM induces a map on
the torsion sheaves Hr.

Notation 6.2.1. We also write sM for the induced maps
(
Y (M,MN),TSymk

Hr

)
✲
(
Y1(N)× µM ,TSymk

Hr

)

and (
Y (M,MN),Λr(Hr〈tprN 〉)

)
✲
(
Y1(N)× µM ,Λr(Hr〈tN 〉)

)
.

Remark 6.2.2. Over Y (M,MN) the sheaf Hr becomes isomorphic to the constant sheaf (Z/prZ)⊕2,
spanned by the sections x : (E,P,Q) 7→ mP and y : (E,P,Q) 7→ mNQ (so that y = mN · tMN ). On the

sections H0(Y (M,MN)2,TSymk
Hr⊠TSymk′

Hr), the map (ua)∗ = (u−a)∗ sends x[i]y[k−i] ⊠x[l]y[k
′−l]

to x[i]y[k−i] ⊠ (x− ay)[l]y[k
′−l].

Notation 6.2.3. To simplify the notation, in the following diagram we write Λr for Λr(Hr〈t?〉), where ?
denotes the level of the relevant modular curve.
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Theorem 6.2.4. The following diagram commutes:

H1
ét

(
Y (M,MN),Λ[0,0]

r (1)
) ∪(y[j] ⊗ y[j])

✲ H1
ét

(
Y (M,MN),Λ[j,j](1)

)

H1
ét

(
Y (M,MN),Λ[j,j]

r (1− j)
)

CG[j]

❄

H1
ét

(
Y (M,MN),Λ[j,j]

r (1)
)

(−a)jj!

❄

H3
ét

(
Y1(M,MN)2,Λ[j,j]

r (2− j)
)

∆∗

❄

H3
ét

(
Y1(M,MN)2,Λ[j,j]

r (2)
)

∆∗

❄

H3
ét

(
Y1(M,MN)2,Λ[j,j]

r (2− j)
)

(ua)∗

❄

H3
ét

(
Y1(M,MN)2,Λ[j,j]

r (2)
)

(ua)∗

❄

H3
ét

(
Y1(N)2 × µ◦

M ,Λ
[j,j]
r (2− j)

)

(spr )∗

❄
∪(ζpr )⊗j

✲ H3
ét

(
Y1(N)2 × µ◦

M ,Λ
[j,j]
r (2)

)
.

(spr )∗

❄

Proof. We start with the following observations:

(1) the map CG[j] is defined by the cup-product with the element

j∑

i=0

(−1)ii!(j − i)!(x[i]y[j−i] ⊗ y[i]x[j−i])⊗ ζ⊗−j
pr ∈ H0(Y (M,MN), (TSymj

Hr ⊗ TSymj
Hr)(−j));

(2) this is the pullback under ∆ of the element

j∑

i=0

(−1)ii!(j − i)!(x[i]y[j−i] ⊠ y[i]x[j−i])⊗ ζ⊗−j
pr ∈ H0(Y (M,MN)2, (TSymj

Hr ⊠ TSymj
Hr)(−j)),

and the cup-product satisfies the projection formula ∆∗(u ∪∆∗v) = ∆∗(u) ∪ v;
(3) the automorphism (ua)∗ = (u−a)∗ of

H0(Y (M,MN)2, (TSymj
Hr ⊠ TSymj

Hr)(−j))

sends x[i]y[j−i] ⊠ y[i]x[j−i] to

x[i]y[j−i] ⊠ y[i](x− ay)[j−i]

(and acts trivially on ζpr );
(4) ua is an automorphism, so (ua)∗ = (u−a)

∗ distributes over cup products.

With these preliminaries out of the way, we proceed to the proof. Let z ∈ H1
ét

(
Y (M,MN),Λ

[0,0]
r (1)

)
.

Then (2) and (3) above imply that

((ua)∗ ◦∆∗)
(
z ∪ (y[j] ⊗ y[j])

)
= ((ua)∗ ◦∆∗)(z) ∪ (y[j] ⊠ y[j]),

so by (1) and (4) we have

((ua)∗ ◦∆∗◦CG
[j])(z)

= [(ua)∗∆∗(z)] ∪

j∑

i=0

[
(−1)ii!(j − i)!× x[i]y[j−i] ⊠ y[i](x− ay)[j−i]

]
⊗ ζ⊗−j

pr .

Modulo the subsheaf generated by x⊠ 1 and 1 ⊠ x, which is in the kernel of (sM ⊠ sM )♭, the only term
that is nonzero is the term for i = 0, which is

[(ua)∗∆∗(z)] ∪ (−a)jj!(y[j] ⊠ y[j]) ∪ ζ⊗−j
pr . �
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6.3. Cyclotomic twists of the Beilinson–Flach elements. We shall now use the commutative di-

agram of the previous section to relate the Beilinson–Flach elements cBF
[j]
mpr ,N,a for general j to those

for j = 0. We first introduce the necessary maps.

Notation 6.3.1. We write id⊗momj for the map of sheaves on Y1(N) defined by

Λ(HZp〈tN 〉)
u
✲ Λ(HZp〈tN 〉)⊗ Λ(HZp〈tN 〉)

id⊗momj

✲ Λ(HZp〈tN 〉)⊗ TSymj
HZp = Λ(HZp〈tN 〉)

[j],

where u is the map of (5.1.1) (induced by the diagonal embedding E →֒ E × E).

As in §5.1, for any integer k ≥ j we also have a map momk−j
r · id : Λ

[j]
r → TSymk

Hr.

Lemma 6.3.2. For all 0 ≤ j ≤ k, we have the following identity of moment maps:

(momk−j · id) ◦ (1⊗momj) =
(
k
j

)
momk .

Proof. We have a commutative diagram

Λr
u
✲ Λr ⊗ Λr

id⊗momj
r ✲ Λ[j]

r

TSymk−j
Hr ⊗ TSymj

Hr

momk−j
r ⊗ id

❄

mom k−jr ⊗mom j
r

✲

We deduce that

(momk−j
r · id) ◦ (1⊗momj

r) ◦ u = momk−j
r ·momj

r

=
(
k
j

)
momk

r ,

where the last equality follows from (2.2.1). �

Notation 6.3.3. If S is a Z[1/p]-scheme, define a pro-étale sheaf ΛΓ(−j) on S as the inverse limit of the
sheaves (pr)∗(Z/prZ) for r ≥ 1, where pr is the map S × µ◦

pr → S.

The stalk of ΛΓ(−j) at a geometric point x is isomorphic to the Iwasawa algebra of the group Γ =
Gal(Q(µp∞)/Q), with Γ acting via the inverse of the canonical character j : Γ→ Λ×

Γ , hence the notation.
This is a simple case of the Λ-adic sheaf theory of [Kin15], and it is equipped with moment maps

ΛΓ(−j)→ Zp(−j) for any j ∈ Z, which we write as momj
Γ (to distinguish them from the moment maps

for the sheaves HZp).
Then it is well-known (see e.g. [Col98, Proposition II.1.1]) that for any set Σ of primes with p ∈ Σ,

and any profinite Zp[GQ,Σ]-module A, we have a canonical isomorphism

H1(Z[1/Σ], A⊗ ΛΓ(−j)) = lim
←−
r

H1(Z[1/Σ, ζpr ], A).

We may sum up the computations of this section (and the preceding two) in the form of the following
theorem. Let e′ord = limn→∞(U ′

p)
n! be the ordinary idempotent attached to U ′

p.

Theorem 6.3.4. For any prime p ≥ 3, N ≥ 4 divisible by p, m ≥ 1 coprime to p, and c > 1 coprime to
6mNp, there is a class

cBFm,N,a ∈ (e′ord, e
′
ord)H3

(
Y1(N)2 × µ◦

m,Λ(HZp〈tN 〉)
⊠2 ⊗ ΛΓ(2− j)

)

such that for any integers k, k′, j satisfying the condition (3.2.1) that 0 ≤ j ≤ min(k, k′), we have

(momk
⊠momk′ ⊗momj

Γ) (cBFm,N,a) =

(
1− pj(U ′

p, U
′
p)

−1σp
) (
c2 − c2j−k−k

′

σ2
c (〈c〉, 〈c〉)

)
(e′ord, e

′
ord)(sm × sm)∗

(ua)∗ Eis
[k,k′,j]
1,mN,ét

(−a)jj!
(
k
j

)(
k′

j

)

where σc is the arithmetic Frobenius at c in Gal(Q(µm)/Q).

Write cBF
[j]
mpr,N,a,r for the image of this element under reduction modulo pr, as an element of

H3
ét(Y1(N)2 × µ◦

mpr ,Λr(Hr〈tN 〉)
[j,j](2 − j)).
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Proof. The operator (U ′
p, U

′
p) is invertible on the image of the idempotent (e′ord, e

′
ord), and the classes

(U ′
p, U

′
p)

−r(e′ord, e
′
ord)cBF

[0]
mpr ,N,a

are compatible under corestriction for r ≥ 1, by Theorem 5.4.1. They thus define an element of the
inverse limit

lim
←−
r

H3
(
Y1(N)2 × µ◦

mpr ,Λ(HZp〈tN 〉)
⊠2(2)

)
= H3

(
Y1(N)2 × µ◦

m,Λ(HZp〈tN 〉)
⊠2 ⊗ ΛΓ(2− j)

)
,

and we define cBFm,N,a to be this class.

For any j ≥ 0, the maps momj
Γ : ΛΓ(−j) → Zp(−j) and id⊗momj : Λ(HZp〈tN 〉) → Λ(HZp〈tN 〉)

[j]

combine into a map of sheaves Λ(HZp〈tN 〉)
⊠2×ΛΓ(−j)→ Λ(HZp〈tN 〉)

[j,j](−j). We claim that this map

sends (−a)jj!cBFm,N,a to the element
(
1− pj(U ′

p, U
′
p)

−1σp
)

(e′ord, e
′
ord)cBF

[j]
m,N,a.

Unwinding the definition of the moment maps, the image of (−a)jj!cBFm,N,a is given by the limit of
the inverse system

(⋆) (−a)jj! normmpr

m

[
(U ′

p, U
′
p)

−r(e′ord, e
′
ord)(id⊗momj

r)
⊠2
(
cBF

[0]
mpr ,N,a,r

)
∪ ζ

⊗(−j)
pr

]

over integers r ≥ 1, where cBF
[j]
mpr,N,a,r denotes the mod pr reduction of the Beilinson–Flach class. We

have seen in Theorem 6.2.4 that

(−a)jj! (id⊗momj
r)

⊠2
(
cBF

[0]
mpr ,N,a,r

)
= cBF

[j]
mpr,N,a,r ⊗ ζ

⊗j
pr .

So (⋆) is the mod pr reduction of the element

normmpr

m

[
(U ′

p, U
′
p)

−r(e′ord, e
′
ord)cBF

[j]
mpr,N,a

]
,

which is independent of r ≥ 1 by the ℓ | M case of Theorem 5.4.1. We conclude that (−a)jj!cBFm,N,a
maps to

normmp
m

[
(U ′

p, U
′
p)

−1(e′ord, e
′
ord)cBF

[j]
mp,N,a

]
.

But this is just (U ′
p, U

′
p)

−1(e′ord, e
′
ord)

(
(U ′

p, U
′
p)− p

jσp
)
cBF

[j]
m,N,a by the ℓ ∤ M case of Theorem 5.4.1,

completing the proof of the claim.
Taking (momk−j · id) ⊠ (momk′−j · id) of both sides, and using Lemma 6.3.2, we conclude that

(momk
⊠momk′ ⊗momj

Γ) (cBFm,N,a)

=

(
1− pj(U ′

p, U
′
p)

−1σp
)

(−a)jj!
(
k
j

)(
k′

j

) (e′ord, e
′
ord)

[
(momk−j · id) ⊠ (momk′−j · id)

]
(cBF

[j]
m,N,a).

However, we know that
[
(momk−j · id) ⊠ (momk′−j · id)

]
(cBF

[j]
m,N,a) =

(
c2 − c2j−k−k

′

σ2
c (〈c〉, 〈c〉)

)
◦(sm×sm)∗(ua)∗

(
Eis

[k,k′,j]
1,mN,ét

)
,

by Proposition 5.2.3(3),which completes the proof of the theorem. �

7. Hida theory: background

In this short section (which contains no substantial original results) we shall recall the fundamental
theorems on ordinary p-adic families of modular forms, due to Hida, Wiles, and Ohta.

7.1. Notation. In this section, we shall need to consider numerous modules over the ring Λ = Zp[[Z
×
p ]].

It will be convenient to use the notation xk, for x ∈ Z×
p , for the image of x under the canonical character

Z×
p → Zp[[Z

×
p ]]. We shall interpret k as a “coordinate” on the weight space Spf Λ parametrizing charac-

ters of Z×
p , and we shall speak of “specialising at k = τ” for a character τ to refer to the homomorphism

ΛD → Qp given by evaluation at τ .
We interpret both the integers, and the Dirichlet characters of p-power conductor, as subsets of the

characters of Z×
p ; and we shall write characters additively, so by “specialising at k = 3 + η” (where η is

a Dirichlet character) we mean the homomorphism z 7→ z3η(z).
Since we are interested in Rankin convolutions of pairs of modular forms, and we also have a character

twist, we will work over the ring Λ ⊗̂Zp Λ ⊗̂Zp Λ. We shall write k, k′, and j for the canonical characters
of each factor, with k and k′ reserved for weights of families of modular forms, and j for cyclotomic
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twists. Although they are isomorphic algebras, we distinguish between them by writing the first two
factors as ΛD, the D signifying diamond operators, and the third as ΛΓ, where Γ signifies the cyclotomic
Galois group Gal(Q(µp∞)/Q).

We shall fix an algebraic closure Q of Q, and embeddings Q →֒ C and Q →֒ Qp. For m ≥ 1, let

ζm ∈ Q be the primitive root of unity corresponding to e2πi/m ∈ C.

7.2. Hida families and associated Galois modules. We recall the following result (due to Ohta,
[Oht99, Oht00]) describing the ordinary parts of inverse limits of cohomology groups. We assume, for
the remainder of this paper, that p ≥ 5.

Proposition 7.2.1. Let N be coprime to p. Then:

(1) The module

H1
ord(Np∞) := e′ord · lim←−

r

H1
ét

(
Y1(Npr)Q, Zp(1)

)

∼= e′ord ·H
1
ét

(
Y1(Np)Q, Λ(HZp〈tNp〉)(1)

)
(cf. Theorem 4.5.1)

is finitely-generated and projective over the algebra ΛD = Zp[[Z
×
p ]] (acting via the inverse di-

amond operators at p, so u ∈ Z×
p acts on the r-th layer in the inverse limit as the diamond

operator 〈u−1〉pr ).
(2) The module H1

ord(Np∞) has ΛD-linear actions of the group GQ,S , where S is the set of primes
dividing Np, and of the Hecke operators T ′

n for n ≥ 1; and these actions commute with each
other.

(3) The module H1
ord(Np∞) has ΛD-linear actions of the operators WQ for integers Q ‖ N (which

do not commute with either the Hecke operators or the Galois action).
(4) We have the following “perfect control” theorem: if k ≥ 0, r ≥ 1 and Ik,r is the ideal of ΛD

generated by [1 + pr] − (1 + pr)k, then the moment map momk induces an isomorphism of Zp-
modules

H1
ord(Np∞)/Ik,r ∼= e′ordH

1
ét

(
Y1(Npr)Q,TSymk(HZp)(1)

)

compatible with the actions of GQ,S and the operators T ′
n and WQ. It is an isomorphism of

ΛD-modules if we let u ∈ Z×
p act on the right-hand side as uk〈u−1〉pr .

Similar statements hold for the submodule H1
ord,par(Np

∞) defined with X1(Npr) in place of Y1(Npr).

Remark 7.2.2. The action of Atkin–Lehner operators away from p is not explicitly mentioned in Ohta’s
work, but it is easy to see that WQ is compatible with the maps in the inverse limit, and that it commutes
with the moment maps momk. For part (4) of the theorem, we use the fact that Ohta’s “specialisation”
maps spr,k coincide with our moment maps momk, which is the content of Theorem 4.5.1(4).

We write TNp∞ for the Hecke algebra acting on H1
ord(Np∞) (generated by the operators T ′

n for all
n ≥ 1), and TNp∞,par for the quotient acting on the parabolic cohomology H1

ord,par(Np
∞). These are

finite projective ΛD-algebras.

Theorem 7.2.3 (Ohta, [Oht00]). There are short exact sequences of TNp∞ [GQp ]-modules

0 ✲ F
+H1

ord,par(Np
∞) ✲ H1

ord,par(Np
∞) ✲ F

−H1
ord,par(Np

∞) ✲ 0

0 ✲ F
+H1

ord(Np∞)

wwwwwwwww
✲ H1

ord(Np∞)

❄

∩

✲ F
−H1

ord(Np∞)

❄

∩

✲ 0

with the following properties:

(i) All the modules F±H1
ord(Np∞) and F±H1

ord,par(Np
∞) are projective of finite rank over ΛD.

(ii) There is a non-canonical isomorphism of TNp∞-modules

F
−H1

ord,par(Np
∞) ∼= HomΛD (TNp∞,par,ΛD).

(iii) The quotient F−H1
ord(Np∞) is unramified as a GQp -module, with arithmetic Frobenius acting via

the Hecke operator U ′
p ∈ TNp∞ .

(iv) The group GQp acts on the submodule F+H1
ord(Np∞) via the TNp∞-valued character given by

the product of the unramified character mapping arithmetic Frobenius to 〈p−1〉N · (U
′
p)

−1 with the
(1 + k)-th power of the p-adic cyclotomic character.
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(v) There is a canonical perfect pairing of ΛD-modules

H1
ord,par(Np

∞)×H1
ord,par(Np

∞)→ ΛD

with respect to which the TNp∞ -action is selfadjoint, and the modules F± are orthogonal comple-
ments. Hence F+H1

ord,par(Np
∞) = F+H1

ord(Np∞) is free of rank 1 as a TNp∞,par-module.

Proof. This is equivalent to Corollary 1.3.8 and Corollary 2.3.6 of [Oht00]; our modules F+H1
ord(Np∞),

F−H1
ord,par(Np

∞) and F−H1
ord(Np∞) are the modules A∗

∞, B∗
∞ and B̃∗

∞ in Ohta’s notation.

However, the Galois actions above are somewhat different, as we use a different model of Y1(N) from
Ohta: Ohta uses the notation Y1(N) for the modular curve classifying elliptic curves with an embedding
of µN , rather than a point of order N . We also take cohomology with Zp(1) coefficients, rather than Zp.
Thus our modules coincide (as ΛD[GQ]-modules) with Ohta’s modules twisted by the character 1+k+εN ,
where εN is the composite of the mod N cyclotomic character with the map d 7→ 〈d−1〉N ∈ TNp∞ . This
gives the statements above. (Compare §1.7.16 of [FK12].) �

The Hecke algebra TNp∞,par is a finite projective ΛD-algebra, and is thus isomorphic to the direct
product of its localisations at its finitely many maximal ideals. We refer to these maximal ideals as Hida
families.

Remark 7.2.4. There are multiple conventions in the literature as to what exactly is meant by “Hida
family”. Our conventions follow those of [EPW06], for example; but other authors use the term “family”
for what we call a “branch” (see below).

Definition 7.2.5. If f is a Hida family, we define

M(f)∗ = H1
ord(Np∞)f ,

and we write Λf for the corresponding localisation of the Hecke algebra TNp∞ , which is a local ΛD-
algebra, finite and projective as a ΛD-module. We write M(f)∗par for the image of H1

ord,par(Np
∞) in

M(f)∗, and Λf ,par for the corresponding quotient of Λf .

Definition 7.2.6. We say that f is non-Eisenstein modulo p if the residual Galois representation ρf :
GQ,S → GL2(F) associated to f (where F is the residue field of Λf ) is irreducible. If f is non-Eisenstein,
then M(f)∗par = M(f)∗.

We say f is p-distinguished if the semisimplification of ρf |GQp
is the direct sum of two distinct

characters.

Remark 7.2.7. Note that f is automatically p-distinguished if the weight of f mod p−1 (i.e. the mod p−1
congruence class of the weight of any classical specialisation of f of level prime to p) is not congruent to
1, by the same argument as in [LLZ15, Proposition 4.3.6].

Theorem 7.2.8 (Wiles). If f is non-Eisenstein mod p, and p-distinguished, then Λf is a Gorenstein
ring, and the modules M(f)∗ and F±M(f)∗ are free over Λf .

Proof. This follows, using the control theorem, from Wiles’ results on the freeness of Hecke modules at
level Np [Wil95]; cf. [LLZ15, Theorem 4.3.4] or [EPW06, Proposition 3.3.1]. �

7.3. Specialisations of Hida families. We define an arithmetic prime of ΛD or Λf to be a prime ideal
of height 1 lying over the ideal Ik,r , for some k ≥ 0 and r ≥ 1. From the control theorem, we see that
each arithmetic prime of Λf above Ik,r corresponds to an eigenform f of weight k+ 2 ≥ 2 and level Npr

(together with a choice of prime P | p of the coefficient field L = Q(f) at which f is ordinary). In this
setting we say that f is a specialiation of the family f .

For each specialisation f of f , we have a specialisation-at-f isomorphism

spf : M(f)∗ ⊗Λf
OL,P

∼=
✲ MOL,P

(f)∗,

which fits into a commutative diagram

H1
ord(Np∞) ✲ M(f)∗

H1
ét

(
Y1(Npr)Q,TSymk

HZp(1)
)

momk
❄

✲ MOL,P
(f)∗.

spf
❄
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We shall be primarily interested in the case where r = 1 and f is the ordinary p-stabilisation of an
ordinary newform f0 of level N , with the Up-eigenvalue of f being the unit root α of the Hecke polynomial
of f0 at p. In this case, we may identify MLP

(f)∗ with MLP
(f0)∗ via the map

(Prα)∗ : OL,P ⊗Zp H
1
(
Y1(Np)Q,TSymk

HZp(1)
)
→ OL,P ⊗Zp H

1
(
Y1(N)Q,TSymk

HZp(1)
)

given by (Prα)∗ := (pr1)∗−
β

pk+1 (pr2)∗, where β = ap(f)−α is the non-unit root of the Hecke polynomial.

This map clearly sends the integral lattice MOL,P
(f)∗ to a sublattice of finite index in MOL,P

(f0)∗.

Proposition 7.3.1. Suppose at least one of the following conditions holds:

• k > 0;
• the family f is non-Eisenstein modulo p;
• β

p 6= α mod P.

Then the map (Prα)∗ is an isomorphism of OL,P-modules

MOL,P
(f)∗

∼=
✲ MOL,P

(f0)∗.

Proof. This was proved in [LLZ15, Proposition 4.3.6] assuming k = 0 and f non-Eisenstein mod p (using
Ihara’s lemma). We give an alternative argument that covers the remaining cases.

We consider the map
MOL,P

(f0)∗ →MOL,P
(f0)∗

given by the composition of (Prα)∗ with the degeneracy map pr∗2. The composition (pr1)∗ ◦ (pr2)∗ is
the Hecke operator T ′

p, and the composition (pr2)∗ ◦ (pr2)∗ acts as multiplication by pk(p + 1). So the

composition of these two maps is given by multiplication by α− β
p . Our hypotheses imply that this is a

p-adic unit. Hence this composition is an isomorphism, so (Prα)∗ must be surjective. �

7.4. Lambda-adic modular forms. Recall from §2.6 above that, for anyN ≥ 1, we writeMk+2(N,Qp)
for the space of modular forms with q-expansions in Qp[[q]].

Let M ′
k+2(N,Qp) denote the modular forms of weight k + 2 which are defined over Qp as classes in

the de Rham cohomology of Y1(N), so that we have

M ′
k+2(N,Qp) = Fil0H1

dR(Y1(N)Qp ,TSymk
HdR).

Then there is a canonical isomorphism

Q(µN )⊗Q M ′
k+2(N,Qp) = Q(µN )⊗Q Mk+2(N,Qp),

as we saw in §2.6; but this does not generally descend to Q. Rather, the spaces Mk+2(N,Qp) and
M ′
k+2(N,Qp) are two distinct Qp-subspaces of Q(µN )⊗Q Mk+2(N,Qp), which are interchanged by the

Atkin–Lehner operator WN .
Now suppose N is coprime to p, and r ≥ 1. For any k ≥ −1, we define (following [Oht99, Definition

2.2.2])

M ′
k+2(Npr,Zp) =

{
f ∈M ′

k+2(Npr,Qp) : an

(
W−1
Nprf

)
∈ Zp ∀n ≥ 0

}
,

M′
k+2(N,Zp) = lim

←−
r≥1

M ′
k+2(Npr,Zp).

Here the inverse limit is with respect to the pushforward maps (pr1)∗.

Remark 7.4.1. Ohta’s normalisations are slightly different from ours, but Ohta’s operator τr is our W−1
Npr

up to signs, so the above definition is equivalent to Ohta’s.

Lemma 7.4.2 (Ohta). Let k ≥ 0 and let (fr)r≥1 ∈M′
k+2(N,Zp). Then there is a unique power series

F ∈ ΛD[[q]] whose specialisation at k = k + ε, for every finite-order character ε, is equal to the modular
form ∑

α∈(Z/prZ)×

ε(α)−1 ·
(
〈α〉p ◦ U

r
p ◦W

−1
Npr

)
(fr)

for any r ≥ 1 such that ε is trivial on 1 + prZp. Moreover, the image of the resulting map

Wk : e′ordM
′
k+2(N,Zp) →֒ ΛD[[q]]

is independent of k.

Proof. See [Oht99, Theorem 2.2.3, Theorem 2.4.5]. �
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The image of Wk is called the module of Λ-adic modular forms (of tame level N), and we shall denote
it by Mord

k+2(N,ΛD). (It can be interpreted as the space of ordinary Katz p-adic modular forms with
coefficients in ΛD and weight k+ 2, where k is the universal character.) For each arithmetic prime ideal
ν of ΛD, with Z×

p acting on O = ΛD/ν via a character z 7→ zkω(z) with k ≥ 0 and ω of finite order, the
natural map ΛD[[q]]→ O[[q]] induces an isomorphism

Mord
k+2(N,ΛD)⊗ΛD O

∼= eordMk+2(Npr,O)[ω]

where (. . . )[ω] indicates the ω-eigenspace for the diamond operators. (Here r is the smallest integer ≥ 1
ssch that ω is trivial on 1 + prZp.) Similar statements hold mutatis mutandis for the space Sord

k+2(N,ΛD)
of Λ-adic cusp forms.

7.5. Branches. For each Hida family f , the algebra Λf has finitely many minimal primes, and we call
these the branches of the Hida family f . They biject with the simple direct summands of the Artinian
ring Λf ⊗ΛD Frac ΛD. If a is a branch of f , then Λf/a is an integral domain, and its field of fractions is
a finite extension of FracZp[[1 + pZp]]. We let Λa be the normalisation of Λf/a (the integral closure of
Λf/a in its field of fractions), which is a normal integral domain, finite and projective as a module over
ΛD [Hid88, Lemma 3.1].

Definition 7.5.1. We say the branch a is cuspidal if the natural map M(f)∗par → M(f)∗ becomes an
isomorphism after tensoring with Λa.

A branch a is cuspidal if one, or equivalently every, arithmetic prime of Λf above a corresponds to a
cuspidal modular form. If the family f is non-Eisenstein mod p, then every branch of f is cuspidal (and
the above map is even an isomorphism with Λf -coefficients). Associated to each cuspidal branch a we
have a Λ-adic eigenform

F =
∑

n≥1

Tnq
n ∈ Sord

k+2(N,ΛD)⊗ΛD Λa.

We say a is new if it is cuspidal and one, or equivalently every, arithmetic prime of Λf above a

corresponds to an eigenform which is new away from p.

7.6. Specialisations in weight 1. If F ∈ Sord
k+2(N,ΛD), then it is not necessarily the case that the

specialization of F at k = −1 is a weight 1 modular form. Nonetheless, one has the following fact:

Theorem 7.6.1 ([Wil88, Theorem 3]). Let g0 ∈ S1(N, ε) be a normalised newform of level prime to p,
and let g ∈ Sord

1 (Np, ε) be a p-stabilisation of g0. Then there is a Λ-adic eigenform G (with coefficients
in some finite integral extension of ΛD) whose specialisation in weight 1 is g.

We shall assume in the applications below that the roots of the Hecke polynomial X2−ap(g0)X+εf(p)
are distinct, and remain distinct modulo P. In this case, the form g0 has two distinct ordinary p-
stabilisations gα, gβ , and they belong to different Hida families, both of which are p-distinguished. Let
g be the Hida family corresponding to gα.

If g is also non-Eisenstein modulo p, then we conclude from Theorem 7.2.8 that M(g)∗ is free of rank
2 over Λg. Hence the space

MOL,P
(gα)∗ := M(g)∗ ⊗Λg

OL,P

is free of rank 2 over OL,P. This gives a canonical realisation of the 2-dimensional odd Artin represen-
tation associated to g0.

7.7. Congruence ideals and 3-variable Rankin L-functions.

Notation 7.7.1. If f is a Hida family, and a is a new, cuspidal branch of f , we let Ia be the congruence
ideal of a, which is a fractional Λa-ideal Ia ⊂ Frac Λa characterised by the existence of a Λa-linear,
Hecke-equivariant map

Mord
k+2(N,Λa)→ Ia

mapping the normalised Λ-adic eigenform associated to a to 1.

See [Hid88, §4] for further details. It follows from Theorem 4.2 of op.cit. that the fractional ideal Ia is
contained in the localisation of Λa at any arithmetic prime ideal, so elements of Ia define meromorphic
functions on Spec Λa which are regular at any arithmetic point.
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Theorem 7.7.2. Let f , g be two Hida families (of some tame levels Nf , Ng), and let a be a new,
cuspidal branch of f . Then there is an element

Lp(a,g) ∈
(
Ia ⊗̂Λg ⊗̂ΛΓ

)
⊗Z Z[µN ]

where N is the lowest common multiple of Nf and Ng, with the following interpolation property: if f ,
g are specialisations of f , g respectively, with f lying on the branch a, and f , g are p-stabilisations of
eigenforms f0, g0 of levels Nf , Ng, then the image of Lp(f ,g) under spf ⊗ spg is the p-adic L-function
Lp(f0, g0) of Theorem 2.7.4.

It is this 3-variable p-adic L-function which will appear in our explicit reciprocity law (Theorem
B). The interpolating property extends also to weight 1 specialisations of g, as long as the specialised
eigenform is classical.

8. Euler systems in Hida families

We now use the theory developed in the earlier parts of this paper to construct cohomology classes in
the tensor product of the Galois representations attached to two Hida families.

8.1. Beilinson–Flach classes in Hida families. Let f ,g be Hida families of tame levels Nf , Ng. We
write

M(f ⊗ g)∗ = M(f)∗ ⊗̂
Zp

M(g)∗

which is a Λf ⊗̂Λg-module, finite and projective over ΛD ⊗̂ΛD. Let N be any integer coprime to p and
divisible by Nf and Ng; then, via pusforward along the degeneracy map

(pr1× pr1)∗ : Y1(Np)2 → Y1(Nfp)× Y1(Ngp)

and the Künneth formula, we obtain a Galois-equivariant projection map

prf ,g : H2
ét

(
Y1(Np)2

Q
,Λ(HZp〈tNp〉)

⊠2(2)
)
→M(f ⊗ g)∗.

This is the Hida-family analogue of the map prf,g of (2.8.1) above, and it is compatible with these maps
for the specialisations of f and g: for all specialisations f of f and g of g, we have a commutative diagram

H2
ét

(
Y1(Np)2

Q
,Λ(HZp〈tNp〉)

⊠2(2)
) prf ,g

✲ M(f ⊗ g)∗

H2
ét

(
Y1(Npr)2

Q
,TSym[k,k′](HZp)(2)

)

momk
⊠momk′

❄

prf,g
✲ MLP

(f ⊗ g)∗

spf ⊗ spg

❄

for any r large enough that f and g have level Npr.

Definition 8.1.1. For f , g Hida families of tame levels Nf , Ng, m ≥ 1 coprime to p, and c > 1 coprime
to 6mNfNgp, we define

cBF
f ,g
m ∈ H1

(
Z
[

1
mpNfNg

, µm

]
,M(f ⊗ g)∗ ⊗ ΛΓ(−j)

)

to be the image of the class cBFm,pN,1 of Theorem 6.3.4 above, for any N ≥ 1 divisible by Nf , Ng and

with the same prime factors as NfNg, under the map prf ,g. We write cBF
f ,g for cBF

f ,g
1 .

Remark 8.1.2. The class cBF
f ,g
m is the image under the map Y1(pN)2 → Y1(pNf )× Y1(pNg) of the class

denoted by cz
f ,g,N
m in [LLZ14, Theorem 6.9.5]. It is independent of the choice of N , because the classes

cBFm,pN,1 for different choices of N are compatible under pushforward via (pr1× pr1)∗ (by the first case
of Theorem 5.3.1).

Theorem 8.1.3 (Theorem A).

(a) For ℓ a prime not dividing cmNfNgp, we have the norm-compatibility relation

normℓm
m

(
cBF

f ,g
ℓm

)
= Qℓ(ℓ

−jσ−1
ℓ ) · cBF

f ,g
m ,
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where σℓ ∈ Gal(Q(µm)/Q) is the arithmetic Frobenius, and Qℓ ∈ (Λf ⊗̂Λg)[X,X−1] is given by

−X−1 + aℓ(f)aℓ(g) +
(

(ℓ+ 1)ℓk+k′

εf (ℓ)εg(ℓ)− ℓkεf (ℓ)aℓ(g)2 − ℓk
′

εg(ℓ)aℓ(f)
2
)
X

+ ℓk+k′

aℓ(f)aℓ(g)εf (ℓ)εg(ℓ)X2 − ℓ1+2k+2k′

εf (ℓ)
2εg(ℓ)2X3.

Here εf denotes the prime-to-p part of the Nebentypus of f (which is a character (Z/NfZ)× → Λ×
f )

and similarly for εg.
(b) If f, g are any specialisations of f , g respectively, of weights k + 2, k′ + 2, and j is an integer with

0 ≤ j ≤ min(k, k′), the image cBF
f ,g(f, g, j) of cBF

f ,g under the map

spf ⊗ spg ⊗momj
Γ : M(f ⊗ g)∗(−j)→MLP

(f ⊗ g)∗(−j)

is given by

cBF
f ,g(f, g, j) =

(
1− pj

αfαg

)(
c2 − c2j−k−k

′

εf(c)−1εg(c)
−1
)

(−1)jj!
(
k
j

)(
k′

j

) Eis
[f,g,j]
ét .

If f, g are p-stabilisations of ordinary newforms f0, g0 of levels Nf , Ng, and we identify MLP
(f ⊗ g)∗

with MLP
(f0 ⊗ g0)∗ via (Prα×Prα)∗ as in §5.7, then

cBF
f ,g(f, g, j) =

(
1− pj

αfαg

)(
1−

αfβg

p1+j

)(
1−

βfαg

p1+j

)(
1−

βfβg

p1+j

)(
c2 − c2j−k−k

′

εf (c)−1εg(c)
−1
)

(−1)jj!
(
k
j

)(
k′

j

) Eis
[f0,g0,j]
ét .

Remark 8.1.4. Note that the factor Qℓ appearing in part (a) can be written as

Qℓ(X) = X−1((ℓ − 1)(1− ℓk+k′+2εf (ℓ)εg(ℓ)X
2)− ℓPℓ(X))

where Pℓ(X) is the Euler factor of M(f⊗g)(1) at ℓ. In particular, we have Qℓ(X) = −X−1Pℓ(X) modulo
ℓ − 1. See §8.2 of [LLZ14] for a conceptual interpretation of this factor Qℓ, in terms of a conjectural
rank-two Euler system.

Proof. Part (a) of the theorem is immediate from the definition of the classes cBF
f ,g
m and Proposition

5.6.1. Let us prove part (b).

Firstly, by the definition of cBF
f ,g, we have

cBF
f ,g(f, g, j) = prf,g

(
(momk

⊠momk′ ⊗momj
Γ)cBF1,Np,1

)
,

and Theorem 6.3.4 allows us to rewrite this as

prf,g

(
(1− pj(U ′

p, U
′
p)

−1)(c2 − c2j−k−k
′

(〈c〉, 〈c〉))

(−1)jj!
(
k
j

)(
k′

j

) (e′ord, e
′
ord) Eis

[k,k′,j]
ét,1,Np

)

=

(
1− pj

αfαg

)(
c2 − c2j−k−k

′

εf(c)−1εg(c)
−1
)

(−1)jj!
(
k
j

)(
k′

j

)
(

Eis
[f,g,j]
ét

)

(since prf,g factors through the ordinary projector).
In the setting where f, g are p-stabilisations of eigenforms f0, g0 of prime-to-p level, we can use

Theorem 5.7.6 (for ℓ = p) to rewrite this in terms of Eis
[f0,g0,j]
ét multiplied by three extra Euler factors,

which gives the second form of the theorem. �

We now study the interaction between the localisation of these classes cBF
f ,g
m and the filtration on

the Galois representations M(f)∗ and M(g)∗ at p. We begin with a local lemma:

Lemma 8.1.5. Let K be a finite unramified extension of Qp, and T a finite-rank free Zp-module with
a continuous, unramified action of GK . Let V = T [1/p], and let z ∈ H1(K,T ⊗ ΛΓ(−j)).

If the image of z in H1(K,V (χ)) lies in the Bloch–Kato H1
g subspace, for all finite-order characters

K of Γ, then we must have z = 0.

Proof. Let us write ϕK for the arithmetic Frobenius element of Gal(Knr/K). We note first that the
ΛΓ-torsion submodule of H1(K,T ⊗ ΛΓ(−j)) is isomorphic to TϕK=1, by [PR92, Proposition 2.1.6]. In
particular, it is p-torsion-free; so it suffices to check that z = 0 as an element of H1(K,V ⊗ ΛΓ(−j)).

We compute readily that H1
g (K,V (χ)) = 0 for any non-trivial finite-order character χ of Γ, while

H1
g (K,V ) coincides with the unramified cohomology H1(Knr/K, V ) ∼= V/(1−ϕK)V . Consequently, if z
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is as above, the image of z in H1(K,V (χ)) must be zero for all non-trivial finite-order χ. If Pχ denotes the
ideal of ΛΓ[1/p] generated by the elements γ−χ(γ) for γ ∈ Γ, this shows that z ∈ Pχ ·H

1(K,V ⊗ΛΓ(−j)).
Since ΛΓ[1/p] is a finite direct product of principal ideal domains, and the Pχ for non-trivial finite-order
χ are Zariski dense in Spec ΛΓ[1/p], it follows that z must be torsion.

On the other hand, the composite map

V ϕK=1 ∼= H1(K,T ⊗ ΛΓ(−j))tors ⊂ ✲ H1(K,V )

is given by cup-product with the class in H1(K,Qp) mapping a topological generator of Γ to 1; so its
image has zero intersection with H1

g . So we may conclude that z = 0 as required. �

Notation 8.1.6. Let us write

F
++M(f ⊗ g)∗ = F

+M(f)∗ ⊗̂F
+M(g)∗

and similarly for F+−,F−+,F−−. We also use the notation F+◦ = F+M(f)∗ ⊗̂Zp M(g)∗.

Proposition 8.1.7. The inclusion F+M(g)∗ →֒M(g)∗ induces an injection

H1
(
Qp,F

−+M(f ⊗ g)∗ ⊗ ΛΓ(−j)
)
→֒ H1

(
Qp,F

−◦M(f ⊗ g)∗ ⊗ ΛΓ(−j)
)
,

and the image of cBF
f ,g in the module H1 (Qp,F

−◦M(f ⊗ g)∗ ⊗ ΛΓ(−j)) lies in the image of this
injection.

Proof. The obstruction to injectivity comes from the module

H0
(
Qp,F

−−M(f ⊗ g)∗ ⊗ ΛΓ(−j)
)
,

which is clearly zero (because Iwasawa cohomology over Zp-extensions always vanishes in degree 0). So

it suffices to check that the image of cBF
f ,g in the module H1 (Qp,F

−−M(f ⊗ g)∗ ⊗ ΛΓ(−j)) is zero.
By definition, the modules M(f)∗ and M(g)∗ are equal to the inverse limits of the corresponding

modules M(f)∗r , M(g)∗r at finite level Npr, r ≥ 1 (the localisations at f and g of the cohomology of

Y1(Nfpr) × Y1(Ngpr) with coefficients in Zp(1)). Moreover, all the modules concerned are compact, so
inverse limits are exact and commute with Galois cohomology. So it suffices to prove that the image of

cBF
f ,g in the module

H1
(
Qp,F

−−M(f ⊗ g)∗r ⊗ ΛΓ(−j)
)

is zero for every r ≥ 1. Note that the module F−−M(f ⊗g)∗r is finitely-generated and free over Zp, with
an unramified Galois action.

However, for every finite-order character the image of cBF
f ,g in H1 (Qp,F

−−M(f ⊗ g)∗r ⊗Qp(χ))
lies in the Bloch–Kato H1

g subspace, by Proposition 3.3.3. By Lemma 8.1.5, this shows that the image

of cBF
f ,g in H1 (Qp,F

−−M(f ⊗ g)∗r ⊗ ΛΓ(−j)) is zero as required. �

8.2. The Perrin–Riou big logarithm.

Definition 8.2.1. If M is a unramified, p-adically complete Zp[GQp ]-module, we define

D(M) =

(
M ⊗̂

Zp

Ẑnr
p

)GQp

.

We write ϕ for the operator on D(M) arising from the arithmetic Frobenius on Ẑnr
p .

Remark 8.2.2. If M is free of finite rank as a Zp-module, then D(M) is a lattice in Dcris(M ⊗Qp).

Theorem 8.2.3. Suppose M is an unramified, profinite Zp[GQp ]-module. Then there is a map

LM : H1(Qp,M ⊗̂ΛΓ(−j))→ D(M) ⊗̂ I−1ΛΓ,

where I is the ideal of ΛΓ that is the kernel of specialisation at j = −1, with the following properties:

• The construction of LM is functorial in M , and in particular LM commutes with the action of
EndZp[GQp ]

(M) on both sides.

• IfM is finitely-generated and free, then LM is Perrin-Riou’s big logarithm map for the unramified
Galois representation V = M [1/p].

• The kernel of LM is isomorphic to H0(Qp,M).

• The image of LM in D(M) ⊗ I−1ΛΓ

ΛΓ

∼= D(M) is contained in the submodule D(M)ϕ=1 ∼=

H0(Qp,M).
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Proof. This is an easy consequence of Coleman and Perrin-Riou’s theory of big logarithm4 maps, as
extended by the second and third authors in [LZ14].

We consider the module N(M) defined as D(M)[[π]], where π is a formal variable. This rather brutal
definition of N(M) coincides with the usual Wach module functor when M is finite free over Zp. For
any M , the module N(M) admits a Frobenius ϕ defined as the tensor product of the Frobenius map
on D(M) and the map π 7→ (1 + π)p − 1 on Zp[[π]]; and a left inverse ψ of ϕ, defined by tensoring the
inverse Frobenius of D(M) with the usual trace operator ψ : Zp[[π]]→ Zp[[π]] of (ϕ,Γ)-module theory.

Then 1− ϕ gives an exact sequence

0 ✲ D(M)ϕ=1 ✲ N(M)ψ=1 1−ϕ
✲ N(M)ψ=0 ✲

D(M)

(1− ϕ)D(M)
✲ 0,

where the last map is given by evaluation at π = 0. Moreover, we have the Fontaine isomorphism

H1(Qp,M ⊗ ΛΓ(−j)) ∼=
(
π−1N(M)

)ψ=1
.

(Since both sides commute with inverse limits, it suffices to prove this for M finite, and this follows by
exactly the same argument as in [Ber03, Appendix A].) This isomorphism depends on identifying the
formal variable π with the element of the same name in Fontaine’s ring A+

Qp
, whose definition depends

on a choice of compatible system of p-power roots of unity (ζpr )r≥0 in Qp; we have already fixed roots

of unity ζm for all m ≥ 1 in Q, and an embedding Q →֒ Qp, so this choice is already made.

Since ϕ is invertible on D(M), we have N(M)ϕ=0 = D(M) ⊗̂Zp[[π]]ψ=0 ∼= D(M) ⊗̂ΛΓ. This gives a
map

N(M)ψ=1 → D(M) ⊗̂ΛΓ,

and since the ideal I annihilates the quotient π−1N(M)/N(M), and this gives the required map. The
functoriality of the construction is obvious, and for the last statement we note that since ψ(π−1) = π−1

we have (
π−1N(M)

)ψ=1
= π−1D(M)ϕ=1 + N(M)ψ=1,

so that the image of LM is contained in

D(M)ϕ=1 ⊗̂ I−1 + D(M) ⊗̂Λ(Γ). �

Remark 8.2.4. The cokernel of LM as a map into D(M)ϕ=1 ⊗̂ I−1 + D(M) ⊗̂Λ(Γ) is isomorphic to
M/(1− ϕ)M , with trivial Γ-action.

Remark 8.2.5. When M = T ⊗ ΛU (u−1), for U a p-adic Lie quotient of Gal(Qnr
p /Q) with Galois acting

on ΛU = Zp[[U ]] via the inverse of the canonical character u, and T finitely-generated over Zp, this
coincides with the construction of [LZ14]. In this case, the module N(M) above is the N∞(T ) of op.cit..

In [LZ14] one can allow T to be any lattice in a crystalline GQp -representation, not necessarily unram-
ified; and it seems reasonable to envisage a common generalisation of the above theorem and the results
of [LZ14], where M is allowed to be any inverse limit of lattices in crystalline GQp -representations with
Hodge–Tate weights in some specified range. We do not know how to prove this at present.

We are interested in the case of the module M = F−+M(f ⊗ g)∗, where f and g are Hida families
as before. This is not unramified, but the module M(−1− k′) is unramified, where we write k′ for the
canonical character Γ → Λ×

D → Λ×
g (to distinguish it from the corresponding construction for Λf ). So

the module D(M(−1− k′)) is well-defined.

Lemma 8.2.6. We have H0 (Qp,F
−+M(f ⊗ g)∗(−1− k′)) = 0, for any two Hida families f and g.

Proof. This is similar to the proof of Proposition 8.1.7, but with the important difference that the
Eisenstein series do not contribute to the plus filtration step F+M(g)∗. We choose integers k, k′ ≥ 0
and write

M(f)∗ = lim
←−
r≥1

M(f)∗/Ik,r, M(g)∗ = lim
←−
r≥1

M(g)∗/Ik′,r

where Ik,r is the ideal of ΛD appearing in Proposition 7.2.1. Note that M(f)∗/Ik,r is isomorphic, by

the control theorem, to the localisation of H1(Y1(Npr)Q,TSymk(HZp)(1)) at f ; in particular, it is a

finitely-generated free Zp-module. If we assume k, k′ > 0 (so no specialisations of f or g in weights
k, k′ can be classical p-new forms), then every eigenvalue of Frobenius on F+M(g)∗(−1 − k′)/Ik′,r

4This map has a confusing variety of names. Perrin-Riou refers to it as the “p-adic regulator”, but it is perhaps best to
avoid this notation here to avoid confusion with the use of “regulator” for the natural maps from motivic cohomology to
other cohomology theories. The term “big dual exponential” is also used in some sources.
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is a Weil number of weight −1 − k′, and every eigenvalue of Frobenius on F−M(f)∗/Ik,r has weight
either 0 or 1 + k. So if we also assume k 6= k′, it follows that no Frobenius eigenvalue on the module
F−M(f)∗k,r⊗F+M(g)∗k′,r(−1−k′) can be equal to 1, and passing to the limit over r gives the result. �

Definition 8.2.7. We shall write D(F−+M(f ⊗ g)∗) for the module D(F−+M(f ⊗ g)∗(−1 − k′)),
equipped with the non-trivial action of Γ given by the character 1 + k′.

This slightly contrived definition implies that the specialization of D(F−+M(f⊗g)∗) ⊗̂ΛΓ at a triple
(k,k′, j) = (k, k′, j) of integers is exactly Dcris of the corresponding specialization of M .

Theorem 8.2.8. There is an injective morphism of (Λf ⊗̂Λg ⊗̂ΛΓ)-modules

L : H1
(
Qp,F

−+M(f ⊗ g)∗ ⊗̂ΛΓ(−j)
)
→ D(F−+M(f ⊗ g)∗) ⊗̂ΛΓ

with the following property: for all classical specialisations f, g of f ,g, and all characters of Γ of the
form τ = j + η with η of finite order and j ∈ Z, we have a commutative diagram

H1
(
Qp,F

−+M(f ⊗ g)∗ ⊗̂ΛΓ(−j)
) L

✲ D(F−+M(f ⊗ g)∗) ⊗̂ΛΓ

H1(Qp,F
−+M(f ⊗ g)∗(−j − η))

❄

✲ Dcris(F
−+M(f ⊗ g)∗(−εg,p))

❄

in which the bottom horizontal map is given by




(
1− pj

αfβg

)(
1−

αfβg

p1+j

)−1

if r = 0(
p1+j

αfβg

)r
G(ε)−1 if r > 0



 ·

{
(−1)k

′−j

(k′−j)! log if j ≤ k′,

(j − k′ − 1)! exp∗ if j > k′.

Here exp∗ and log are the Bloch–Kato dual-exponential and logarithm maps, ε is the finite-order character
εg,p · η

−1 of Γ, r ≥ 0 is the conductor of ε, and G(ε) =
∑
a∈(Z/prZ)× ε(a)ζapr is the Gauss sum.

Remark 8.2.9. Here βg is defined by αgβg = p1+k
′

εg,N (p), where εg,N is the prime-to-p part of the
nebentypus of g; this definition makes sense even when g has level divisible by p, and the arithmetic
Frobenius acts on F+M(g)∗(−1− k′ − εg,p) as multiplication by p−1−k′βg. In the proof of the explicit
reciprocity law, we shall only use the interpolating property in the simplest case, when f and g have
level prime to p and τ(z) = zj, but we have given the general formula as this may be required in some
applications of this work.

In the case r = 0, we assume αfβg/p
1+j 6= 1 for simplicity (although a precise formula for the

interpolating property of L can be given without this assumption, cf. [LVZ15, Theorem 3.1.2]).

Proof. We apply Theorem 8.2.3 to the unramified module M(−1 − k′). By Lemma 8.2.6 the result-
ing big logarithm map L is injective and has no poles, and by functoriality it is compatible with the
(Λf ⊗̂Λg ⊗̂ΛΓ)-module structure.

We now pull back by the automorphism of this ring given by mapping [d] ∈ ΛΓ to d−1−k′

[d]. The
pullback of M(−1 − k′) ⊗̂ΛΓ(−j) is then M ⊗̂ΛΓ(−j); and the pullback of D(M(−1 − k)) ⊗̂ΛΓ is the
module D(M) ⊗̂ΛΓ defined above. The interpolating property is now an elementary exercise from the
standard formulae for the Perrin-Riou logarithm, cf. [LZ14, Appendix B]. �

Via Proposition 8.1.7, we can map cBF
f ,g into H1(Qp,F

−+M(f ⊗ g)∗ ⊗̂ΛΓ(−j)), and hence we can

define L
(
cBF

f ,g
)
∈ D(F−+M(f ⊗ g)∗) ⊗ ΛΓ. The goal of the next two sections of this paper will be

Theorem B, which interprets this object as a p-adic L-function.

9. Comparison of Eichler–Shimura isomorphisms

We now fill in a crucial technical ingredient required for the proof of the explicit reciprocity law (The-
orem B of the introduction): a compatibility between the de Rham comparison isomorphisms compdR

of (2.3.1) for cusp forms of different weights in Hida families.
While this can be proved directly, by purely geometric methods, we give an alternative argument based

on Kato’s explicit reciprocity law for his GL2 Euler system, as this is more in keeping with the flavour
of the present paper and involves less translation between different normalisations. This argument is
closely based on work of Daniel Delbourgo [Del08], in particular Theorem 6.4 of op.cit..
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9.1. Kato’s GL2 Euler system. We now invoke Kato’s Euler system theory. All references here are
to [Kat04].

Let N,m ≥ 1, k ≥ 0, and r ∈ Z. Let A ≥ 1 and a ∈ Z/AZ. Choose auxiliary integers (c, d) > 1 such
that (c, 6pmA) = (d, 6pmAN) = 1. Following the constructions in §8.1.2, 8.9 of op.cit. we construct
cohomology classes

c,dz
(p)
1,N,m(k + 2, r, a(A), S) ∈ H2

(
Y1(N)× µ◦

m,TSymk(HZp)(2 − r)
)
,

which are compatible with norm maps in both N and m (8.7). We shall always assume m is a power of
p.

Remark 9.1.1. Kato defines slightly more general classes c,dz
(p)
1,N,m(k + 2, r, r′, a(A), S); we have chosen

r′ = 1 and S the set of prime factors of mpA, and suppressed it from the notation.

Kato shows the following explicit reciprocity law (Theorem 9.6) describing the image of this class
under the dual exponential map, for r = k + 1:

Theorem 9.1.2 (Kato’s explicit reciprocity law). For r = k + 1 we have

compdR

(
exp∗

(
c,dz

(p)
1,N,m(k + 2, k + 1, a(A))

))
= R · c,dz1,N,m(k + 2, k + 1, a(A))

where c,dz1,N,m(k + 2, k + 1, a(A)) is a certain modular form of weight k + 2, built from holomorphic
Eisenstein series (5.2); compdR is the Faltings–Tsuji comparison isomorphism (11.3.6, or 2.3.1 in the
present paper); and R is an Euler factor (5.3 (2)) given by

R =





1 if p | mA,

1− p−1−kU ′
pσ

−1
p if p ∤ mA and p | N ,

1− p−1−kT ′
pσ

−1
p + p−1−k〈p〉−1σ−2

p if p ∤ mAN .

We shall use this theorem to show that the maps compdR must interpolate in families, since the terms

exp∗
(
c,dz

(p)
1,N,m(k + 2, k + 1, a(A))

)
and c,dz1,N,m(k+2, k+1, a(A)) both interpolate, and the submodule

that they span is large.

9.2. Interpolation.

Proposition 9.2.1. There is a “Beilinson–Kato class”

c,dBKN (a(A)) ∈ H2
ét

(
Y1(N),Λ(HZp × Z×

p (1))(2)
)

whose image under the moment map

momk,−j : Λ(HZp × Z×
p (1))→ TSymk(HZp)⊗ Zp(−j),

for any k ≥ 0 and j ∈ Z, is the class c,dz
(p)
1,N,m(k + 2, j, a(A)).

Proof. For a(A) = 0(1) this is clear from the construction of the classes c,dz
(p)
1,N,m(k, r), see (8.4.3). For

A > 1 we need to check that the moment map commutes with the pushforward along the map tm,a(A)

used to define z
(p)
1,N,m(k, r, a(A)); but this is clear from the definitions. �

We shall relate this class to modular forms using the Perrin-Riou big logarithm, as in the GL2×GL2

theory of the previous sections. Using the Hochschild–Serre spectral sequence, we can and do interpret

c,dBKN (a(A)) as an element of the module

H1
(
Z[1/Np], H1

ord(Np∞) ⊗̂ΛΓ(1− j)
)
.

The Perrin-Riou logarithm in this context is a map of (ΛD ⊗̂ΛΓ)-modules

L : H1
(
Qp,F

−H1
ord(Np∞) ⊗̂ΛΓ(1− j)

)
✲ D

(
F

−H1
ord(Np∞)

)
⊗̂ I−1ΛΓ,

where I is the fractional ideal of ΛΓ as in §8.2 above, with the following interpolation property: for
any k ≥ 0, any r ≥ 1, any j ≥ 1 and any Dirichlet character χ of p-power conductor ps, there is a
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commutative diagram

H1
(
Qp,F

−H1
ord(Np∞) ⊗̂ΛΓ(1− j)

) L
✲ D

(
F

−H1
ord(Np∞)

)
⊗̂ I−1ΛΓ

H1
(
Qp,F

−Vk,r(1− j − χ)
)

prk,r ⊗ evj=j+χ

❄
S · exp∗

✲ D
(
F

−Vk,r
)

prk,r ⊗ evj=j+χ

❄

where Vk,r = e′ordH
1
ét

(
Y1(Npr)Qp

,TSymk(HZp)(1)
)

, which acquires from the control theorem a two-

step filtration such that F−Vk,r is unramified, and prk,r is the natual map H1
ord(Np∞)→ Vk,r given by

the control theorem. The factor S is given by

S = (j − 1)!

{
(1− pj−1(U ′

p)
−1)(1− p−jU ′

p)
−1 if s = 0,

G(χ−1)−1psj(U ′
p)
s if s ≥ 1.

Here G(χ−1) =
∑

a∈(Z/psZ)× χ
−1(a)ζaps is the Gauss sum, as usual. We will apply this with s ≥ 1 and

j = k + 1, so that the factor S is given by k!p(k+1)s

G(χ−1)(U ′
p)

s .

9.3. Atkin–Lehner operators on Kato’s Eisenstein series. Let N ≥ 1 be coprime to p. For χ1, χ2

primitive Dirichlet characters of p-power conductor (possibly trivial), and t ∈ Z/NZ, let us introduce
the notations

ζ (t(N), χ1, s) :=
∑

n≥1
n=t mod N

χ1(n)n−s,

σk−1 (t(N), χ1, χ2, n) :=
∑

uv=n
u=t mod N

χ1(u)χ2(v)vk−1.

As usual, we understand χ(n) = 0 if n is not coprime to the conductor of χ.

Proposition 9.3.1. Let k ≥ 1 and write ± = (−1)kχ1(−1)χ2(−1). Suppose that either k = 1, or χ1

and χ2 are both nontrivial. Then the series

G(k) (t(N), χ1, χ2) := a0 +
∑

n≥1

qn
(
σk−1(t(N), χ1, χ2, n)± σk−1(−t(N), χ1, χ2, n)

)

is a modular form of weight k and level N cond(χ1) cond(χ2), where the constant term is given by

a0 =

{
0 if χ1 and χ2 are both nontrivial,
1
2 (ζ (t(N), χ1, 0)± ζ (−t(N), χ1, 0)) if k = 1 and χ2 is trivial.

Proof. This is standard. (The restriction on k, χ1, χ2 can be relaxed, of course, but this covers all the
cases we shall use.) �

Theorem 9.3.2. Suppose L ≥ 1 with p ∤ L, and let r, s, t be integers with s, t ≥ 1 and r ≥ s+ t.
Let χ, ν and ε be Dirichlet characters modulo ps, pt, and pr respectively, with χ primitive, satisfying

the sign condition χ(−1)ν(−1) = (−1)k+1. Then we have

∑

α∈(Z/prZ)×

ε(α)−1(〈α〉p ◦ U
r
p ◦W

−1
Npr )




∑

a∈(Z/ptZ)×

b∈(Z/psZ)×

ν(a)−1χ(b)−1σb · c,dz1,Npr,ps(k + 2, k + 1, a(pt))




=
G(χ−1)Us+tp

k!p(k+1)sν(N)−1
·
[
(c2 − ck+1χ(c)ν(c))G(k+1)(0(N), ν−1, χ)

]
·

[
d2G(1)

(
1(N), ενχ−1, id

)
− d ενχ−1(d−1)G(1)

(
d(N), ενχ−1, id

)]

Proof. This can be shown via a lengthy explicit calculation from the formulae for the modular form

c,dz1,N,m(k + 2, k + 1, a(A)) given in [Kat04, Proposition 5.8]. �

We now fix a finite extension E/Qp containing the values of the character ν.
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Proposition 9.3.3. There are p-adic modular forms cG(0(N), ν−1, j) and dG(1(N), 2 + ν + k − j, id)
with coefficients in ΛD ⊗̂ΛΓ ⊗ OE and weight-characters −ν + j and 2 + ν + k − j respectively, whose
images under evaluation at k = k+ ε, j = k+ 1 + χ, for any k ≥ 0 and Dirichlet characters χ, ε, are the
two factors in square brackets on the right-hand side of Theorem 9.3.2.

Proof. We write

G(0(N), ν−1, j) := 2
∑

n≥1
p∤n

qn


 ∑

uv=n
u=0 mod N

ν−1(u)vj−1


 ,

and cG(0(N), ν−1, j) = (c2 − cjν(c))G(0(N), ν−1, j). Then evaluating at j = k + 1 + χ maps this to the
first Eisenstein series (c2 − ck+1χ(c)ν(c))G(k+1)(0(N), ν−1, χ) appearing in Theorem 9.3.2.

For the second factor, for n ≥ 1 the coefficient of qn in G(1)
(
t(N), ενχ−1, id

)
is the image of




∑

uv=n
u=t mod N

p∤u

ν(u)u1+k−j + (−1)k−jν(−1)
∑

uv=n
u=−t mod N

p∤u

ν(u)u1+k−j


 ∈ ΛD ⊗̂ΛΓ

under evaluation at j = k + 1 + χ, k = k + ε; so it suffices to treat the constant term. A standard com-
putation using Bernoulli polynomials shows that the values ζ(t(N), η, 0) for p-power Dirichlet characters
η are the values at j = η of an element ζp(t(N), j) ∈ Frac ΛΓ, with a pole at the character j = −1; and
that for d > 1 coprime to 6pN the element

dζp(t(N), j) := d2ζp(t(N), j)− d1−jζp(dt(N), j)

is in ΛΓ. The constant term of dG(1(N), 2 + ν + k− j, id) is then given by

1
2

[
dζp(t(N), 1 + ν + k− j) + (−1)k−jν(−1) dζp(−t(N), 1 + ν + k− j)

]
.

�

Corollary 9.3.4. Let k ≥ 0, and let

c,dhk,r,ν ∈ e
′
ordM

′
k+2(Npr, E)⊗ I−1ΛΓ

be the unique modular form such that

(prF− ◦ compdR)(c,dhk,r,ν) =
∑

a∈(Z/ptZ)×

ν(a)−1 prk,r L(c,dBK(a(A))).

Then, for each non-trivial Dirichlet character ε modulo Npr, the image of c,dhk,r,ν under the operator
∑

α∈(Z/prZ)×

ε(α)−1
(
〈α〉p ◦ U

r
p ◦W

−1
Npr

)

is the specialisation at k = k + ε of the p-adic modular form

U tp ν(N)−1 eord

[
cG(0(N), ν−1, j) · dG(1(N), 2 + ν + k− j, id)

]
∈Mord

k+2(N,ΛD) ⊗̂ΛΓ ⊗OE .

Proof. Let us write Vk,r = e′ordH
1
ét

(
Y1(Npr)Qp

,TSymk(HZp)(1)
)

as before. By weak admissibility, for

each r ≥ 1 the natural map

prF− ◦ compdR : e′ordM
′
k+2(Npr,Qp)→ D(F−Vk,r)⊗Qp

is an isomorphism, so there exists a unique form

c,dhk,r,ν ∈ e
′
ordM

′
k+2(Npr, E)⊗ I−1ΛΓ

mapping to the image of the Beilinson–Kato element as in the statement of the proposition.

To check that its image under
∑

α∈(Z/prZ)× ε(α)−1
(
〈α〉p ◦ U

r
p ◦W

−1
Npr

)
coincides with the stated p-

adic modular form, it suffices to check that they agree on specialising j to a Zariski-dense set of characters
of Γ. We choose the characters of the form j = k + 1 + χ with χ a nontrivial Dirichlet character. If
the conductor s of χ satisfies s+ t ≤ r, then this follows from Kato’s explicit reciprocity law (Theorem
9.1.2) together with Theorem 9.3.2, since the since the factor relating the Perrin-Riou logarithm to the

dual exponential map for H1
ord(Np∞)(−k) is given by k!p(k+1)s

G(χ−1)(U ′
p)

s , which cancels out most of the factors

on the right-hand side of Theorem 9.3.2.
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If r < s+ t, then we use the fact that the hk,r,ν are norm-compatible in r (by definition) to replace r
with some r′ > r such that r′ ≥ s+ t, and the argument proceeds as before. �

Remark 9.3.5. Crucially, the p-adic modular form appearing in the corollary is independent of the integer
k, even though its defining property involves the comparison isomorphism compdR (which is defined using
a Kuga–Sato variety whose dimension depends on the weight k).

9.4. Special values. The modular form c,dz1,N,m(k + 2, k + 1, a(A)) appearing in Kato’s explicit reci-
procity law is related to the L-values L(f, χ, k + 1)L(f, ν, 1), for characters χ modulo m and ν modulo
A, and newforms f ∈ Sk+2(N).

Proposition 9.4.1. Let χ and ν be primitive Dirichlet characters modulo A and m respectively such
that χ(−1)ν(−1) = (−1)k+1. Then there is a nonzero constant C, depending on k, ν, χ, such that for
every f ∈ Sk+2(Γ1(N),C) we have

∑

a∈(Z/AZ)×

b∈(Z/mZ)×

ν(a)−1χ(b)−1

∫

Γ1(N)\H

f(−τ̄) c,dz1,N,m(k + 2, k + 1, a(A))(τ) Im(τ)kdz ∧ dz̄

=
[
(c2 − ck+1χ(c)ν(c))(d2 − dν(d)−1χ(d)〈d−1〉)Z1,N (k + 2, χ−1, k + 1)Z1,N(k + 2, ν−1, 1)f

]
1
,

where the notation [g]1 signifies the coefficient of q in the q-expansion of f , and Z1,N(k + 2, χ−1, s) is
the Dirichlet series with values in EndCMk+2(Γ1(N),C) defined by

∑

(n,m)=1

χ(n)−1Tnn
−s.

Proof. This can be extracted from the last formula in Kato’s Theorem 5.6 (2), using the fact that the
Betti cohomology classes δ1,N(k+2, 1, a(A)) are given by integration along the path from a/A to∞, and
thus the class

∑
a ν(a)−1δ1,N (k + 2, 1, a(A)) paired with f computes the value at s = 1 of the L-series∑

n≥1 ν(a)−1an(f)n−s =
[
Z1,N (k + 2, ν−1, 1)f

]
1
. �

Lemma 9.4.2. For any k ≥ 0, N ≥ 1, and prime p, we may find Dirichlet characters χ, ν of p-power
conductor such that the Hecke operator

(c2 − ck+1χ(c)ν(c))(d2 − dν(d)−1χ(d)〈d−1〉)Z1,N (k + 2, χ−1, k + 1)Z1,N (k + 2, ν−1, 1)

is invertible on Sk+2(Γ1(N),C).

Proof. It suffices to prove the result on each eigenspace Sk+2(Γ1(N),C)[f ], for f a newform of level
dividing N , since the space Sk+2(Γ1(N),C) is equal to the direct sum of these eigenspaces and each is
stable under the Hecke operators.

We can easily arrange that the factors (c2 − ck+1χ(c)ν(c)) and (d2 − dν(d)−1χ(d)〈d−1〉) are non-zero
(indeed this is automatic unless k = 1, in which case we need only assume that χ(c)ν(c) 6= 1).

The term Z1,N (k+2, χ−1, k+1) has an Euler product, convergent for ℜ(s)≫ 0; so it can in particular
be written as a product of terms at primes ℓ | mN and ℓ ∤ mN . The “tame” part of the series acts as a
constant on each direct summand Sk+2(Γ1(N),C)[f ]; these constants are the L-values L{mN}(f, χ−1, k+

1). These differ by finitely many Euler factors from the full L-series L(f, χ−1, k + 1); we can arrange
that the missing Euler factors are non-zero by avoiding a finite set of bad characters χ, and the L-values
L(f, χ−1, k + 1) are non-zero for almost all χ by Theorem 13.5 (indeed for all χ if k > 0).

This leaves only the “wild” part of Z1,N(k + 2, χ−1, k + 1), which is the product of the finitely many
Euler factors at primes ℓ 6= p dividing mN . Each such factor is equal to a nonzero polynomial with
coefficients in the Hecke algebra, evaluated at χ(ℓ); for all but finitely many χ of p-power conductor this
polynomial will not vanish.

A similar analysis applies to the factor Z1,N (k + 2, ν−1, 1), using the functional equation of the
completed L-function relating values at s = 1 and s = k + 1. �

Corollary 9.4.3. For any k ≥ 0, N ≥ 1, and prime p, the subspace of Mk+2(Γ1(N),C) spanned by the
modular forms c,dz1,N,m(k + 2, k + 1, a(A)), for p-power values of m and A, and their translates under
the Hecke operators T ′

n, contains the subspace Sk+2(Γ1(N),C) of cusp forms.
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9.5. The compatibility. We now put the pieces together. Our starting point is the following theorem:

Theorem 9.5.1 (Ohta, [Oht00, Theorem 2.1.11]). For any N ≥ 1, there is an isomorphism

Oh : e′ordM
′
2(N,Zp) ✲ D(F−H1

ord(Np∞))

such that for each r ≥ 1 the following diagram commutes:

e′ordM
′
2(N,Zp)

Oh
∼=

✲ D(F−H1
ord(Np∞))

M ′
2(Npr,Zp)

❄ prF− ◦ compdR

∼=
✲ D

(
F

−e′ordH
1(Y1(Npr)Qp

,Zp(1))
)❄

where the vertical arrows are the projections to the r-th level of the inverse limits, and the bottom
horizontal arrow is given by the comparison isomorphism compdR and projection to F−.

Our goal is to extend this interpolating property of the map Oh to higher weights. Note that for any
k ≥ 0, we have an isomorphism

(9.5.1) e′ordM
′
2(N,Zp) ∼= e′ordM

′
k+2(N,Zp)

for every k ≥ 0, characterised by the compatibility with the isomorphism between both sides and
Mord

k+2(N,ΛD) via the maps W0, Wk of 7.4.2.

Theorem 9.5.2. For every k ≥ 0 and r ≥ 1, the diagram

e′ordM
′
2(N,Zp)

Oh
∼=

✲ D(F−H1
ord(Np∞))

M ′
k+2(Npr,Zp)

❄ prF− ◦ compdR

∼=
✲ D

(
F

−e′ordH
1(Y1(Npr)Qp

,TSymk(HZp)(1))
)❄

commutes modulo the Eisenstein subspace of M ′
k+2(Npr,Zp). Here the right-hand vertical arrow is given

by the moment map momk, and the left-hand vertical arrow is given by the isomorphism (9.5.1) and
projection to the r-th term in the inverse limit.

Remark 9.5.3. It is clear from Ohta’s work that the map Oh induces some isomorphism between the
spaces in the bottom row of the above diagram, at least after restricting to cuspidal parts; this is parts
(a) and (a*) of the Corollary on p51 of [Oht95]. The novel content of the above theorem is that if k > 0
then this map coincides with a second, very differently defined isomorphism between these two spaces
after inverting p: the one given by the comparison isomorphism compdR, which is defined by applying
the Faltings–Tsuji comparison isomorphism to the (k+ 1)-dimensional Kuga–Sato variety over Y1(Npr).
This second map does not appear in Ohta’s work (which uses only the theory of p-divisible groups, rather
than more general results in p-adic Hodge theory).

Proof. We are trying to show commutativity of the diagram

Mord
k+2(N,ΛD)

W−1
0

∼=
✲ M′

2(N,Zp)
Oh

✲ D(F−H1
ord(Np∞))

M ′
k+2(Npr,Zp)

❄ prF− ◦ compdR✲

pr
r ◦W −1k ✲

D(F−e′ordH
1(Y1(Npr),TSymk(HZp)(1)))

prk,r

❄

modulo the Eisenstein subspace. We shall in fact show commutativity of the diagram after taking the
completed tensor product over Zp with the module I−1ΛΓ ⊗ OE , for a finite extension E/Qp. This is
clearly sufficient.

Let ν be a nontrivial Dirichlet character of p-power conductor, and write

zν =
∑

a

ν(a)−1
c,dBKN (a(A)).
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Theorem 9.3.2 in the case k = 0 shows that

L (zν) = (Oh ◦ W−1
0 )(c,dFN,ν)

where c,dFN,ν ∈M
ord
k+2(N,ΛD) ⊗̂ΛΓ⊗OE is the Λ-adic modular form from Corollary 9.3.4. On the other

hand, the case k > 0 of Theorem 9.3.2 shows that

prk,r L(zν) = (prF− ◦ compdR) (c,dhk,r,ν)

=
(
prF− ◦ compdR ◦ prr ◦W

−1
k

)
(c,dFN,ν)

for the same Λ-adic modular form c,dFN,ν. This shows that the morphisms

prF− ◦ compdR ◦ prr ◦W
−1
k

and

prk,r ◦Oh ◦W−1
0

agree on the submodule of Mord(N,ΛD)
Ik,rMord(N,ΛD) ⊗̂Frac ΛΓ

∼= Mord
k+2(Npr,Zp) ⊗̂Frac ΛΓ generated by the image

of the form c,dFN,ν, for every Dirichlet character ν. Since both maps are Hecke-equivariant, this implies
that they agree on the subspace spanned by the image of c,dFN,ν under all Hecke operators. However,
we can always choose ν such that this span contains all ordinary cusp forms, by Corollary 9.4.3 above.
This completes the proof. �

10. Proof of Theorem B

10.1. Lambda-adic differentials attached to Hida families. We now give a reformulation of Theo-
rem 9.5.2 which is more convenient for our present purposes. Recall that if f is a normalised newform of
some level N , then its image under the Atkin–Lehner operator WN is a scalar multiple of the conjugate
eigenform f∗, and we define the Atkin–Lehner pseudo-eigenvalue λN (f) by WN (f) = λN (f)f∗.

Proposition 10.1.1. Let f be a Hida family of tame level N .

(1) There is a canonical isomorphism of Λf -modules

ωf : D
(
F

+M(f)∗(−1− k− εf )
)
→ Λcusp

f ,

where Λcusp
f is the quotient of Λf acting faithfully on cuspidal Λ-adic modular forms, with the

following interpolation property: for every cuspidal specialisation f of f , of some weight k+2 ≥ 2
and level Npr (r ≥ 1), the map

D
(
F

+MLP
(f)∗(−1− k − εf )

)
→ LP

obtained by specialising ωf coincides with that given by pairing with the differential

ωf ∈ Fil1MdR(f)⊗Q Q(µNpr )

attached to the normalised eigenform f . If r = 1 and f is the ordinary p-stabilisation of
an eigenform f0 of level N , then ωf = (Prα)∗(ωf0), where (Prα)∗ denotes the isomorphism

MdR(f0)→MdR(f) given by pr∗1−
β

pk+1 pr∗2 (the dual of the map (Prα)∗ appearing in §7.3 above)

(2) Let a be a new, cuspidal branch of f , and let Ia be the associated congruence ideal. Then there
is a morphism of Λa-modules

ηa : D
(
F

−M(f)∗
)
⊗Λf

Λa
✲ Ia,

with the following interpolation property: for every arithmetic prime π of Λf above a, correspond-
ing to an eigenform f of some level Npr (r ≥ 1), then Ia ⊆ (Λa)π and we have a commutative
diagram

D
(
F

−M(f)∗
)
⊗Λf

Λa

ηa
✲ Ia

Fil0MdR,LP
(f)∗

❄

✲ LP

❄

where the vertical arrows are given by reduction modulo π, and the bottom horizontal arrow is as
follows.
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(a) If f is new of level Npr, then the bottom horizontal arrow is given by pairing with the class

αr

λNpr (f)
· ηf ,

where α is the Up-eigenvalue of f , λNpr (f) is its Atkin–Lehner pseudo-eigenvalue, and

ηf ∈
MdR(f)
Fil1

⊗Q Q(µNpr ) is the unique class which pairs to 1 with ωf∗.
(b) If r = 1 and f is the ordinary p-stabilisation of a newform f0 of level N , then this arrow is

given by pairing with the class

1

λN (f0)E(f0)E∗(f0)
· (Prα)∗(ηf0),

where ηf0 ∈
MdR(f0)

Fil1
⊗Q Q(µN ) again denotes the unique class pairing to 1 with ωf∗

0
, and

E(f0) =
(

1− β
pα

)
, E∗(f0) =

(
1− β

α

)
(as in Theorem 2.7.4).

Proof. To construct ωf , we use the fact (shown in [Oht00]) that Ohta’s isomorphism Oh restricts to an
isomorphism

D
(
F

−M cusp(f)∗
)
→ Sord(N,ΛD)f

where Sord(N,ΛD) ⊆ Mord(N,ΛD) is the submodule of ΛD-adic cusp forms, and M cusp(f)∗ is the
analogue of M(f)∗ formed using the cohomology of the curves X1(Npr) rather than Y1(Npr).

We now apply the functor HomΛD (−,ΛD) to both sides. On the one hand, HomΛD (Sord(N,ΛD)f ,ΛD)
is canonically isomorphic to Λcusp

f , via the usual pairing (T,F)→ a1(T · F). On the other hand, Ohta’s
pairing (Theorem 7.2.3(v)) gives us an isomorphism

HomΛD

(
F

−M cusp(f)∗,ΛD
)
∼= F

+M(f)∗(−1− k− εf ),

where εf is the prime-to-p part of the character of f .
After unravelling the definitions (using the fact that the duality pairing involves the same factor

W−1
Npr ◦ (U ′

p)
r that appears in the construction of the Ohta isomorphism Oh), we find that the claimed

interpolating property of ωf is exactly Theorem 9.5.2. In the case where f is a p-stabilisation, the relation
ωf = (Prα)∗(ωf0) is clear from a q-expansion computation, since pr∗1 acts as the identity on q-expansions,
while pr∗2 sends

∑
anq

n to pk+1
∑
anq

np.
We now construct ηa. The construction is virtually immediate: the Ohta isomorphism shows that

D (F−M(f)∗) is isomorphic to a space of ΛD-adic cusp forms, and after tensoring with Frac Λa, the
eigenspace corresponding to the eigenform

∑
Tnq

n ∈ Λa[[q]] splits off as a direct summand, so there is
a unique map to Frac Λa which sends this eigenform to 1.

It remains to check the interpolating property. From Theorem 9.5.2, the map ηa is compatible with
the map MdR,L(f)∗ → L given by the composition

Fil0MdR,L(f)∗
Ur

p◦W
−1
Npr
✲ Sk+2(N,L)→ L

where the last map sends the normalised eigenform f to 1.
If f is new of level Npr, r ≥ 1, then f∗ is a generator of Fil0MdR,L(f)∗, and since we have WNpr (f) =

λNpr (f)f∗, we obtain the above formula.

If r = 1 and f is the p-stabilisation of f0, then Fil0MdR,L(f)∗ is generated as an L-vector space by

WNp(f). This is obviously sent to αf by the map Up ◦W
−1
Np , so its image under the map obtained by

specialising ηa is α; on the other hand, we have

[(Prα)∗ ◦WNp] (f) = [(Prα)∗ ◦WNp ◦ (Prα)∗] (f0),

and a computation using the identities

WNp ◦ pr∗1 = pr∗2 ◦WN ,

WNp ◦ pr∗2 = pk pr∗1 ◦WN

shows that (Prα)∗ ◦WNp ◦ (Prα)∗ acts on the f0-eigenspace as multiplication by

α
(

1− β
α

)(
1− β

pα

)
λN (f0).

Comparing these gives the interpolating property in (b). �

The presence of the Atkin–Lehner pseudo-eigenvalues λN (f0) in the last case of the theorem is not a
problem for us, since they can be interpolated p-adically:
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Proposition 10.1.2. There is a ΛD[ζN ]-linear operator WN on Mord(N,ΛD[ζN ]), with the property
that for every arithmetic prime ideal ν = (k, ω) of ΛD, the resulting operator on the space

Mord(N,ΛD[ζN ])⊗Λ,ν O ∼= eordMk+2(Npr, ω,O[ζN ])

is the usual Atkin–Lehner operator WN .

(See Note 5.4.1 of [LLZ14], but note that the field extension to ζN was inadvertently omitted there.)
It follows that for each new, cuspidal branch a of f , there is a Λ-adic pseudo-eigenvalue λN (a) ∈

(Λa ⊗Q Q(µN ))
×

, satisfying λN (a)2 = (−N)k, whose image under specialisation at any p-stabilised
eigenform f is equal to λN (f0).

10.2. Proof of the theorem. We now have all the necessary ingredients to complete the proof of
Theorem B.

Let f , g be two Hida families of tame levels Nf , Ng | N , and recall the space D(F−+M(f ⊗̂ g)∗) ⊗̂ΛΓ

of §8.2 above. Choose a new, cuspidal branch a of f . Then pairing with ηa ⊗ ωg gives a map of(
Λf ⊗̂Λa ⊗̂ΛΓ

)
-modules

〈−, ηa ⊗ ωg〉 : D(F−+M(f ⊗̂g)∗) ⊗̂ΛΓ
✲
(
Ia ⊗̂Λcusp

g ⊗̂ΛΓ

)
⊗Zp Zp[µN ].

Remark 10.2.1. The Zp[µN ] factor appears because ωg is a linear functional on D(F+M(g)∗(−1− k−
εg)), while it is M(g)∗(−1− k) appearing in the definition of D∞(M). Since εg has conductor dividing
N , we have D(Zp(εg)) ⊆ Zp[µN ].

Recall our convention that k and k′ denote the canonical characters into the two ΛD factors of the
ring ΛD ⊗̂ΛD ⊗̂ΛΓ; we shall write j for the canonical character into the ΛΓ factor.

Theorem 10.2.2 (Theorem B). We have

(10.2.1)
〈
L
(
cBF

f ,g
)
, ηa ⊗ ωg

〉
= λN (a)−1(−1)1+j

(
c2 − c−(k+k′−2j)εf (c)

−1εg(c)−1
)
Lp(a,g, 1 + j).

Proof. Since the module Ia ⊗̂Λcusp
g ⊗̂ΛΓ is a torsion-free module over Λa ⊗̂Λcusp

g ⊗̂ΛΓ, it suffices to prove
that the two sides of (10.2.1) agree modulo Q for a Zariski-dense set of primes Q of this ring. We choose
the set of primes Q corresponding to triples (f, g, j), where j ∈ Z, and f and g are p-stabilizations of
cusp forms f0, g0 of levels Nf , Ng coprime to p, and any weights k+2, k′+2, such that 0 ≤ j ≤ min(k, k′)
and we do not have j = k = k′. It is clear that this set Q is indeed Zariski-dense in Spec

(
Λa ⊗̂Λg ⊗̂ΛΓ

)
.

So, let P = (f, g, j) be such a point. To save ink, let us write νc for the factor (c2−c2j−k−k
′

εf (c)−1εg(c)
−1),

and λf for the Atkin–Lehner pseudo-eigenvalue λNf
(f0). Then the value of the right-hand side of (10.2.1)

at (f, g, j) (i.e. its image in the residue field of P ) is

(†) (−1)1+jλ−1
f νc · Lp(f0, g0, 1 + j)

by the interpolating property of the 3-variable Rankin–Selberg L-function Lp(a,g) (Theorem 7.7.2).
We now compute the value of the left-hand side of (10.2.1) at P . By Proposition 10.1.1, the image of

the pairing
〈
L
(
cBF

f ,g
)
, ηa ⊗ ωg

〉
under evaluation at P is given by

1

λfE(f)E∗(f)

〈
L
(
cBF

f ,g
)

mod P, (Prα×Prα)∗
(
ηαf0 ⊗ ωg0

)〉
.

(Note that this step is far from being purely formal, despite its near-tautological appearance; for (k, k′) 6=
(0, 0) it relies crucially on the extension of Ohta’s results developed in §9 above.)

Theorem 8.2.8 tells us that

L
(
cBF

f ,g
)

mod P =
(−1)k

′−j

(k′ − j)!
·

(
1− pj

αfβg

)

(
1−

αfβg

pj+1

) · log
(
cBF

f ,g mod P
)
,

and Theorem 8.1.3 gives

cBF
f ,g mod P =

(
1− pj

αfαg

)
νc

(−1)jj!
(
k
j

)(
k′

j

) Eis
[f,g,j]
ét .
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Combining the last three steps, we obtain the formula

〈
L
(
cBF

f ,g
)
, ηa ⊗ ωg

〉
mod P =

(−1)k
′

νc

(
1− pj

αfαg

)(
1− pj

αfβg

)

k′!
(
k
j

)
λfE(f)E∗(f)

(
1−

αfβg

pj+1

)

×
〈

log
(

Eis
[f,g,j]
ét

)
, (Prα×Prα)∗

(
ηαf0 ⊗ ωg0

)〉
.

By definition, the map (Prα×Prα)∗ is the transpose of the map (Prα×Prα)∗, and the comparison
isomorphism compdR commutes with the action of correspondences; so we may write the last term as
〈

(Prα×Prα)∗

(
log Eis

[f,g,j]
ét

)
, ηαf0 ⊗ ωg0

〉
=
〈

log
(

(Prα×Prα)∗ Eis
[f,g,j]
ét

)
, ηαf0 ⊗ ωg0

〉

=
(

1−
αfβg

pj+1

)(
1−

βfαg

pj+1

)(
1−

βfβg

pj+1

)〈
log Eis

[f0,g0,j]
ét , ηαf0 ⊗ ωg0

〉
,

using Theorem 5.7.6. Thus we have shown that
〈
L
(
cBF

f ,g
)
, ηa ⊗ ωg

〉
mod P =

(−1)k
′

νc E(f0, g0, 1 + j)

k′!
(
k
j

)
λfE(f0)E∗(f0)

〈
log Eis

[f0,g0,j]
ét , ηαf0 ⊗ ωg0

〉
,

where E(f0, g0, 1 + j) is as in Theorem 2.7.4.
Comparing the last formula with (†), we see that the left and right sides of (10.2.1) agree modulo P

if and only if

〈
log Eis

[f0,g0,j]
ét , ηαf0 ⊗ ωg0

〉
=

(−1)k
′−j+1

(
k
j

)
k′!E(f0)E∗(f0)

E(f0, g0, 1 + j)
Lp(f0, g0, 1 + j).

This is exactly the formula of Theorem 3.3.4, so we are done. �

Remark 10.2.3. A special case of this theorem (for g varying in a one-variable family, with f a fixed
weight 2 form and j = 0) has been proved by Bertolini, Darmon and Rotger [BDR15b]. Their method is
rather different from ours, involving analytic continuation from highly ramified weight 2 points, rather
than crystalline points of high weight as in the above argument. (In place of Theorem 3.3.4, they use a
formula for syntomic regulators of weight 2 Rankin–Eisenstein classes on modular curves of high p-power
level, based on work of Amnon Besser and two of the present authors [BLZ16].)

11. Arithmetic applications: Bounding Selmer groups

11.1. Hypotheses. In order to bound the Selmer groups of Rankin convolutions, we shall need to impose
a number of technical hypotheses. The aim of this section is to introduce and define these.

In this section, f and g are newforms (of some levels Nf , Ng, and any weights r, r′ ≥ 1), L is a number
field containing the coefficients of f and g, and P is a prime of L above the rational prime p.

The following hypothesis will be assumed throughout section 11:

Hypothesis 11.1.1.

• The weights r and r′ are not both equal to 1.
• The prime p is ≥ 5, and p ∤ NfNg.
• The forms f and g are ordinary at P, non-Eisenstein modulo P, and p-distinguished.

We write αf , αg for the unit roots (in LP) of the Hecke polynomials of f and g. These are uniquely
determined if r, r′ ≥ 2; in the weight 1 case both roots are units, and we choose one arbitrarily and
denote it by αf or αg respectively. Then there are p-stabilisations of f and g with Up-eigenvalues αf
and αg, and these are specialisations of some Hida families f and g.

We write O = OL,P, and we define T = MO(f)∗ ⊗O MO(g)∗, which is a free O-module of rank 4.
Using the map (Prα×Prα)∗ introduced in §5.7, we can identify T with a specialisation of the Λ-adic
module M(f ⊗ g)∗, so it inherits filtration subspaces F++T etc.

As well as these running hypotheses, we also state some other hypotheses which are needed in the
Euler system argument. These will not be assumed implicitly, but rather will be stated explicitly when
needed.

Hypothesis 11.1.2 (Hyp(BI), for “big image”).

(i) T/PT is irreducible as a Gal(Q/Q(µp∞))-module.

(ii) There exists an element τ ∈ Gal(Q/Q(µp∞)) such that T/(τ − 1)T is free of rank one over O.

(iii) There exists an element σ ∈ Gal(Q/Q(µp∞)) which acts on T as multiplication by −1.
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Parts (i) and (ii) of Hyp(BI) are the hypothesis Hyp(K∞, T ) of [Rub00]. The role of (iii) is to kill off
the “error terms” nW and n∗W appearing in Theorem 2.2.2 of op.cit..

Remark 11.1.3. It is shown in the paper [Loe17] that Hypothesis Hyp(BI) can only be satisfied when
εfεg is nontrivial, but it is often satisfied if this occurs. In particular, in any of the following situations,
Hyp(BI) is satisfied for all but finitely many primes P of the coefficient field:

• if (Nf , Ng) = 1, f and g both have weight ≥ 2, neither is of CM type, and g has odd weight;
• if (Nf , Ng) = 1, f and g both have weight ≥ 2, f is not of CM type, g is of CM type, and εg is

not either 1 or the quadratic character attached to the CM field;
• if (Nf , Ng) = 1, f has weight ≥ 2 and is not of CM type, and g has weight 1.

(The existence of the element σ is not mentioned explicitly in [Loe17]; but the arguments of op.cit.
show that in each of the above cases the image of Gal(Q/Q(µp∞)) acting on MO(f)⊕MO(g) contains a
conjugate of SL2(Zp)×{1}, and we simply take σ to be any element acting as −1 on MO(f) and trivially
on MO(g).)

We also define the following purely local hypothesis:

Hypothesis 11.1.4 (Hyp(NEZ), for “no exceptional zero”). Neither αfβg nor βfαg is a power of p.

Note that Hyp(NEZ) is automatic if r 6= r′, since in this case αfβg and βfαg have different P-adic
valuations from their complex conjugates and hence cannot be in Q. The same reasoning also shows
that αfαg and βfβg are never powers of p.

11.2. Generalities on Selmer complexes. We now recall some ideas from Nekovǎŕ’s theory of Selmer
complexes. Let R be a commutative Noetherian complete local ring, with finite residue field of charac-
teristic p 6= 2; let K be a number field; and let S be a finite set of primes of K including all places above
p.

We write GK,S for the Galois group of the maximal extension of K unramified outside S and the
infinite places (equivalently, the étale fundamental group of the S-integer ring OK,S). For any finitely-
generated R-module M with a continuous action of GK,S , we write RΓ(OK,S ,M) for the class in the
derived category of the complex C•(GK,S ,M) of continuous M -valued cochains on GK,S . Similarly we
have local cohomology complexes RΓ(Kv,M) for v ∈ S.

Proposition 11.2.1 (Fukaya–Kato, see [FK06, Proposition 1.6.5]). The complex RΓ(OK,S ,M) is per-
fect, and it commutes with derived base-change, in the sense that if f : R → R′ is a morphism of local
rings, then we have

RΓ(OK,S , R
′ ×RM) = R′ ⊗L

R RΓ(OK,S ,M),

where the ⊗L
R denotes the derived tensor product. The same holds for the local cohomology complexes

RΓ(Kv,M).

Definition 11.2.2. A local condition for M at v consists of the data of a complex U+
v of R-modules

and a homomorphism i+v : U+
v → C•(Kv,M). A Selmer structure for M is a collection ∆ = (∆v)v∈S,

where ∆v is a local condition.

Local conditions of particular interest are

• the strict local condition U+
v = 0;

• the relaxed local condition U+
v = C•(Kv,M);

• the unramified local condition, given by

C•(Fv,M
Iv)→ C•(Kv,M);

• and the Greenberg local condition, given by

C•(Kv,M
+
v )→ C•(Kv,M)

for M+
v a submodule of M stable under the decomposition group at v.

(The strict and relaxed local conditions are, of course, examples of Greenberg local conditions, by taking
Mv = 0 and Mv = M respectively.)

Many, but not all, interesting local conditions are of the following form (cf. [Nek06, §6.1.4]):

Definition 11.2.3. We will say a local condition is simple if the map i+v : Hi(U+
v )→ Hi(Kv,M) is an

isomorphism for i = 0, injective for i = 1, and zero for i = 2. We say a Selmer structure ∆ is simple if
the local condition ∆v is simple for all v.
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A simple local condition ∆v is thus determined (up to quasi-isomorphism) by the subspace

H1
∆v

(Kv,M) := ι+v (H1(U+
v )) ⊆ H1(Kv,M).

The unramified local condition is simple (while the strict and relaxed local conditions usually are not).
Another important example of a simple local condition is the Bloch–Kato local condition. To define this
we must assume that R is the ring of integers of a finite extension of Qp, and if v | p then also that
M [1/p] is de Rham at v. Then the Bloch–Kato local condition is the simple local condition attached
to the Bloch–Kato subspace H1

f (Kv,M). (Recall that H1
f (Kv,M) is the saturation of H1(Fv,M

Iv) in
H1(Kv,M) if v ∤ p, and the crystalline classes if v | p).

Definition 11.2.4. If ∆ is a Selmer structure for M , we define a Selmer complex R̃Γ(OK,S ,M ; ∆) as
in [Nek06, §6.1.2], as the mapping fibre of

[
RΓ(OK,S ,M)⊕

⊕

v∈S

U+
v

locv −i+v✲
⊕

v∈S

RΓ(Kv,M)

]
.

If ∆→ ∆′ is a morphism of Selmer structures (i.e. a collection of morphisms U+
v → (U ′

v)+ commuting
with the morphism to C•(Kv,M)), then we have an exact triangle

(11.2.1) R̃Γ(OK,S ,M ; ∆)→ R̃Γ(OK,S ,M ; ∆′)→
⊕

v

Qv → . . .

where Qv is the mapping fibre of U+
v → (U ′

v)+. The strict local condition and the relaxed local condition
are respectively the initial and terminal objects in the category of local conditions, so we obtain as special
cases the exact triangles

R̃Γ(OK,S ,M ; ∆)→ RΓ(OK,S ,M)→
⊕

v∈S

U−
v → . . . ,(11.2.2a)

RΓc(OK,S ,M)→ R̃Γ(OK,S ,M ; ∆)→
⊕

v∈S

U+
v → . . .(11.2.2b)

where RΓc(OK,S ,M) denotes the compactly–supported cohomology (the Selmer complex with the strict

local conditions at all v ∈ S) and U−
v is the mapping cone of U+

v

−i+v✲ C•(Kv,M).
The formation of the Selmer complexes is compatible with change of the coefficient ring R, in the

following sense. For R→ R′ a homomorphism of rings satisfying our conditions above, we can write M ′

for the tensor product R′ ⊗RM ; and via derived tensor product we obtain local conditions ∆′ for M ′.
It is then clear that

R̃Γ(OK,S ,M
′; ∆′) = R′ ⊗L

R R̃Γ(OK,S ,M ; ∆).

Remark 11.2.5. In the above setting, if ∆v is the unramified local condition for M at some place v,
then it does not necessarily follow that ∆′

v is the unramified local condition for M ′. We have ∆′
v =

RΓ(Fv, R
′⊗RM

Iv ), and the natural map R′⊗RM
Iv → (R′⊗RM)Iv is not necessarily an isomorphism.

We now consider duality for Selmer complexes. Let us denote byM∨ the Pontryagin dual Hom(M,Qp/Zp)
of M .

Definition 11.2.6. We say two local conditions ∆v for M and ∆∨
v for M∨(1) are orthogonal comple-

ments if local Tate duality gives a quasi-isomorphism

U±
v
∼= RHom

(
(U∨

v )∓,Qp/Zp
)

[2].

Note that the unramified local condition for M∨(1) is the orthogonal complement of the unramified
local condition for M ; orthogonal complements of simple local conditions are simple; and the Greenberg
local condition for a submodule M+

v ⊆M is the orthogonal complement of the Greenberg condition for
(M/M+

v )∨(1) ⊆M∨(1). We then have the following global duality result:

Theorem 11.2.7 ([Nek06, Theorem 6.3.4]). If ∆ and ∆∨ are Selmer structures on M and M∨(1)
respectively which are orthogonal complements in the sense above, then we have an isomorphism in the
derived category

R̃Γ(OK,S ,M
∨(1); ∆∨) = RHom

(
R̃Γ(OK,S ,M ; ∆),Qp/Zp

)
[3].

We will be particularly interested in a consequence of this:
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Proposition 11.2.8. The kernel of H̃2(OK,S ,M ; ∆) →
⊕

v H
2(U+

v ) is isomorphic to the Pontryagin
dual of the kernel of

H1(OK,S ,M
∨(1)) ✲

⊕

v∈S

H1((U∨
v )−).

If the Selmer structure ∆ is simple, then using the long exact sequence associated to (11.2.2a) and
the previous proposition, one has a complete description of the cohomology of the Selmer complex:

Proposition 11.2.9. If ∆ is a simple Selmer structure, determined by subspaces H1
∆v

(Kv,M) ⊆

H1(Kv,M) for v ∈ S, we have

H̃i(OK,S ,M ; ∆) =





H0(OK,S ,M) if i = 0,

ker

(
H1(OK,S ,M)→

⊕
v∈S

H1(Kv,M)

H1
∆v

(Kv,M)

)
if i = 1,

ker

(
H1(OK,S ,M

∨(1))→
⊕

v∈S

H1(Kv,M
∨(1))

H1
∆∨

v
(Kv,M∨(1))

)∨

if i = 2.

Here H1
∆∨

v
(Kv,M

∨(1)) is the orthogonal complement of H1
∆v

(Kv,M) under local Tate duality.

Thus we recover the classical notion of a Selmer group, as a subspace of H1(OK,S ,M) cut out by local
conditions.

Remark 11.2.10. One of the key insights of [Nek06] is that – even if one is ultimately only interested
in classical Selmer groups – the more general theory of Selmer complexes is much more convenient and
flexible to work with, since Selmer complexes are well-behaved under operations such as base-change and
duality.

11.3. Definition of the local conditions. We now return to the case at hand: we let f, g be two
newforms with coefficients in some number field L as in §11.1 above. For any place P of L above p,
we have a four-dimensional O-linear Galois representation T = MO(f)∗ ⊗MO(g)∗. Let S be the set of
primes dividing pNfNg∞, so that T is unramified outside S.

Definition 11.3.1. We define Selmer structures ∆(?) on T , for ? ∈ {f, g,∅}, as follows:

• for v ∈ S \ {p} (and any ?), we let ∆
(?)
v be the unramified local condition;

• for v = p, we let ∆
(?)
v be the Greenberg local condition

C•(Qp, T
(?))→ C•(Qp, T )

where the M (?) are the GQp-invariant submodules of M given as follows:

T (f) = F
+◦T = F

+MO(f)∗ ⊗O MO(g)∗;

T (g) = F
◦+T = MO(f)∗ ⊗O F

+MO(g)∗;

T (∅) = T (f) + T (g).

We can also define, similarly, Selmer structures on T (τ−1), for any O-valued character τ of the group
Γ = Gal(Q(µp∞)/Q); or on the “universal twist” T ⊗Zp ΛΓ(−j), where as before j denotes the canonical

character GQ → Γ→ Λ×
Γ .

Proposition 11.3.2. If ∆ is any of the above Selmer structures, then for any O-valued character τ of
Γ, we have

R̃Γ(Z[1/S], T (τ−1); ∆) = O ⊗L
ΛΓ,τ R̃Γ(Z[1/S], T ⊗ ΛΓ(−j); ∆).

Proof. It suffices to check that the formation of the local conditions ∆(?) commutes with derived base-
change, which is clear since the canonical character is unramified outside p. �

11.4. Main conjectures “without p-adic zeta-functions”. Let us write cBF
f,g
m ∈ H1(Z[1/S, µm], T⊗

ΛΓ(−j)) for the image in T of the Beilinson–Flach class cBF
f ,g
m .

Theorem 11.4.1. Fix an integer c > 1 coprime to 6pNfNg. Then there exists a collection of elements

cm ∈ H
1 (Z[1/S, µm], T ⊗ ΛΓ(−j))
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for all m ≥ 1 coprime to pcNfNg, with c1 = cBF
f,g
1 , such that we have the Euler system compatibility

relation

normℓm
m (cℓm) =

{
Pℓ(ℓ

−1σ−1
ℓ ) · cm if ℓ ∤ pm,

cm if ℓ | pm.

Here Pℓ is the Euler factor of MLP
(f ⊗ g) at ℓ. Furthermore, the localisation locp(cm) lies in the image

of the natural injection

H1
(
Q(µm)⊗Qp, T

(∅) ⊗ ΛΓ(−j)
)
→֒ H1 (Q(µm)⊗Qp, T ⊗ ΛΓ(−j)) .

Proof. We know from the first part of Theorem 8.1.3 that the elements cBF
f,g
ℓm satisfy an “almost Euler

system” compatibility relation

normℓm
m

(
cBF

f,g
ℓm

)
= −σℓ ·Qℓ(σ

−1
ℓ ) · cBF

f,g
m ,

where Qℓ is some polynomial congruent to Pℓ modulo ℓ−1. As explained in [LLZ14, §7.3], using [Rub00,
Lemma 9.6.1], we can modify these classes by appropriate elements of Zp[Gal(Q(µmp∞)/Q)]× in such
a way as to obtain the “correct” Euler system relation. This gives the classes cm. Moreover, the class

cBF
f,g
m vanishes after localisation at p and projection to F−−, exactly as in the case m = 1 considered

in Proposition 8.1.7; hence the same is true of the modified element cm. �

If Hyp(BI) holds, which we will assume from this point onwards, then we may get rid of the factor c:
the hypothesis forces εfεg to be non-trivial modulo P, so by [LLZ14, Remark 6.8.11] there exist classes

BFf,gm such that cBF
f,g
m = (c2 − c2j−k−k

′

εf (c)εg(c))BF
f,g
m .

Let K be the maximal abelian extension of Q unramified at the primes dividing cNfNg. If K is a
finite extension of Q contained in K, we define a class cK ∈ H1(OK,S , T ) as the image of cm under
the corestriction map, for a suitable integer m such that K ⊆ Q(µmp∞) and every prime dividing m
is ramified in K. Then the collection c = (cK) is an Euler system for (T,K, cNfNgp) in the sense of
[Rub00, Definition 2.1.1].

Remark 11.4.2. The definition of an Euler system in [MR04] is actually slightly different from this, as
the Euler factors are Pℓ(σ

−1
ℓ ) rather than Pℓ(ℓ

−1σ−1
ℓ ). As noted in Remark 3.2.3 of op.cit. the theory

of §9.6 of [Rub00] allows one to easily switch back and forth between the two normalisations, and in
practice one is interested in primes ℓ which are highly congruent to 1 modulo p anyway.

For a character η of the finite group Γtors, let eη be the corresponding idempotent in ΛΓ.

Theorem 11.4.3 (Main Conjecture without zeta-functions). Suppose Hyp(BI) holds, and η is a char-

acter of Γtors such that eη · BF
f,g
1 is non-zero. Then:

(i) eη · H̃
2(Z[1/S], T ⊗ ΛΓ(−j); ∆(∅)) is a torsion Λ-module;

(ii) eη · H̃
1(Z[1/S], T ⊗ ΛΓ(−j); ∆(∅)) is torsion-free of rank 1;

(iii) the characteristic ideal charΛΓ eηH̃
2(Z[1/S], T ⊗ ΛΓ(−j); ∆(∅)) divides

charΛΓ

(
eη · H̃

1(Z[1/S], T ⊗ ΛΓ(−j); ∆(∅))

eηΛΓ · BF
f,g
1

)
· charΛΓ eηH

2(Qp, T
(∅) ⊗ ΛΓ(−j)).

If Hyp(NEZ) holds, then the final factor charΛΓ eηH
2(Qp, T

(∅) ⊗ ΛΓ(−j)) is a unit.

Proof. This follows by an “Euler system argument” adapted to take into account the local condition at p;
parts (i)–(iii) are exactly Corollary 12.3.5 in the appendix, applied to T (η−1), the submodule T (∅)(η−1),
and the generalised Kolyvagin system κ constructed from c using Proposition 12.2.3.

We briefly check the hypotheses of these statements. We take the set of primes P to be the primes

ℓ ∤ pcNfNg for which T/(σℓ − 1)T is cyclic as an O-module. Any prime ℓ ∈ P has the property that σp
k

ℓ

is injective on T for every k ≥ 1, since the eigenvalues of σℓ are ℓ-Weil numbers of weight r+ r′ − 2 > 0.
We have seen that the Euler system c respects the local condition given by T (∅); so Proposition 12.2.3
applies, and we obtain a Kolyvagin system satisfying the local condition.

The Mazur–Rubin hypotheses (H.0)–(H.4) needed to apply Corollary 12.3.5 are clear from Hyp(BI),
using the existence of the element σ acting as −1 to give (H.3). Our set of primes P contains all but
finitely many primes in the set P1 of Mazur–Rubin, so (H.5) is satisfied as well. The additional “no local
zero” hypothesis that H0(Qp,∞,F

−−T (η−1)) = 0 follows from the fact that αfαg cannot be 1. Hence
we may apply Corollary 12.3.5 to give the stated divisibility.
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It remains to check the final statement regarding the characteristic ideal of the local H2 term. The
module H2(Qp, T

(∅)⊗ΛΓ(−j)) is finite unless H0(Q(µp∞), T (∅)) 6= 0, which can only occur if one of the

eigenvalues of crystalline Frobenius on Dcris(T
(∅)) is a power of p. These eigenvalues are the inverses

of {αfβg, βfαg, βfβg}. It is clear that βfβg cannot be a power of p, and the others are covered by
Hyp(NEZ). �

11.5. Finiteness of Selmer groups at finite level.

Theorem 11.5.1. Suppose Hyp(BI) and Hyp(NEZ) hold. Let τ be a O-valued character of Γ, and

suppose that the image of BFf,g1 in H1(Z[1/S], T (τ−1)) is non-zero.

Then H̃2(Z[1/S], T (τ−1); ∆(∅)) is finite, H̃1(Z[1/S], T (τ−1); ∆(∅)) is free of rank 1 over O, and we
have the bound

#H̃2(Z[1/S], T (τ−1); ∆(∅)) ≤ #

(
H̃1(Z[1/S], T (τ−1); ∆(∅))

O · τ(BFf,g1 )

)
.

Proof. We will deduce this from Theorem 11.4.3 using a descent argument, which is essentially an
elaboration of §14.14 of [Kat04].

It is easy to check using Tor spectral sequences that if C• is a perfect complex of Λ-modules supported
in degrees {0, 1, 2}, H0(C) and H1(C) are torsion, and we are given an element z ∈ H1(C) such that
H1(C)/z is torsion, then the formation of the fractional ideal

charΛ(H1(C)/z)

charΛH0(C) charΛH2(C)

commutes with base-change in Λ, in the sense that if τ : Λ→ O is a homomorphism whose kernel is not
in the support of any of the modules H0(C), H2(C), or H1(C)/z, then the image of this ideal under τ
is the fractional ideal

charO(H1(C′)/τ(z))

charOH0(C′) charOH2(C′)

where C′ = O ⊗Λ,τ C.

We apply this with C = R̃Γ(Z[1/S], T⊗Λ(−j); ∆(∅)) (or, more accurately, a complex representing this
object in the derived category). The quotient of Λ-characteristic ideals is contained in Λ, by Theorem
11.4.3; hence any prime not in the support of H1(C)/z is also not in the support of H2 (or, vacuously,
of H0(C) = 0). This gives the above theorem. �

11.6. Iwasawa Main Conjectures “with p-adic zeta functions”. We shall now explain how the
bounds obtained above for the Selmer complex of ∆(∅) translate into bounds for the Selmer complexes
of ∆(f) and ∆(g) in terms of p-adic L-functions. Recall that we have T (∅)/T (f) = F−+MO(f ⊗ g)∗.

In this section we shall assume Hyp(NEZ).

Definition 11.6.1. Let Col(f) be the Coleman map

Col(f) : H1

(
Qp,

T (∅)

T (f)
⊗ ΛΓ(−j)

)
✲ ΛΓ ⊗Zp LP(µN )

given by 〈L(∼), ηf ⊗ ωg〉.

Proposition 11.6.2. We have

Col(f)
(
BFf,g1

)
= Lp(f, g, 1 + j),

where Lp(f, g) is the Rankin–Selberg p-adic L-function.

Proof. This is a special case of the explicit reciprocity law of Theorem 10.2.2. �

It will be convenient to renormalise to remove the possible denominators, which arise from the fact
that ηαf may fail to be in the natural integral lattice.

Definition 11.6.3. We let ξ be any generator of the free rank 1 O-module

HomO(F−+MO(f ⊗ g)∗,O).
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Note that ξ is an LP-multiple of G(ε−1
f )G(ε−1

g ) · ηf ⊗ ωg. It is not necessarily a O-multiple; in fact,
the ratio

ξ

G(ε−1
f )G(ε−1

g ) · ηf ⊗ ωg

generates the congruence ideal IP(f) of f at P. The choice of ξ determines an “integral” Coleman map

Col(f,ξ) : H1(Qp, (T
(∅)/T (f))⊗ ΛΓ(−j))→ ΛΓ,

which differs from Col(f) by a non-zero scalar Ω, so that

Col(f,ξ)
(
BFf,g1

)
=
Lp(f, g, 1 + j)

Ω
.

The map Colf,ξ is injective, and its cokernel is pseudo-null, because of Hyp(NEZ).

Theorem 11.6.4. Assume that Hyp(NEZ) and Hyp(BI) are satisfied, and that η is a character of
Γtors such that eη · Lp(f, g, 1 + j) 6= 0. Then

(i) H̃1(Z[1/S], T ⊗ ΛΓ(−j); ∆(f)) = 0,

(ii) H̃2(Z[1/S], T ⊗ ΛΓ(−j),∆(f)) is torsion,
(iii) we have the divisibility

charΛ eηH̃
2
(
Z[1/S], T ⊗ ΛΓ(−j); ∆(f)

)
| eη ·

Lp(f, g)(1 + j)

Ω
.

Moreover, equality holds if and only if equality holds in Theorem 11.4.3.

Proof. Let us write T = T ⊗ ΛΓ(−j), and similarly for the submodules T(?). We have an exact triangle

R̃Γ(Z[1/S],T; ∆(f))→ R̃Γ(Z[1/S],T; ∆(∅))→ RΓ(Qp,T
(∅)/T(f))→ . . . .

The module eηH̃
1(Z[1/S],T; ∆(f)) injects into eηH̃

1(Z[1/S],T; ∆(∅)); but the hypotheses imply that

the latter is torsion-free of rank 1, and contains an element whose image in eηH
1(Qp,T

(∅)/T(f)) is

non-torsion. Hence eηH̃
1(Z[1/S],T; ∆(f)) = 0, which is (i).

The exact triangle therefore gives us a four-term exact sequence

0 ✲
eηH̃

1(Z[1/S],T; ∆(∅))

eηΛΓ · BF
f,g

✲
eηH

1(Qp,T
(∅)/T(f))

eηΛΓ · BF
f,g

✲ H̃2(Z[1/S],T; ∆(f)) ✲ H̃2(Z[1/S],T; ∆(∅))

in which the cokernel of the last map is pseudo-null (being a submodule of eηH
2(Qp,T

(∅)/T(f)), which
is finite by Hyp(NEZ)). On the other hand, we have an exact sequence

0→
eηH

1(Qp,T
(∅)/T(f))

eηΛΓ · BF
f,g

→
eηΛΓ

eη Col(f,ξ)(BFf,g)
→ eη coker(Col(f,ξ))→ 0

in which the last term is again pseudo-null. Taking characteristic ideals we see that the desired divisibility
is equivalent to Theorem 11.4.3. �

Remark 11.6.5. Note that if r− r′ ≥ 2 then the assumption that eη · Lp(f, g, 1 + j) 6= 0 is automatically
satisfied (for all η), because of Proposition 2.7.6.

As before, we also obtain a result at “finite level”.

Theorem 11.6.6. Suppose Hyp(NEZ) and Hyp(BI) hold, and that τ is an O-valued character of Γ.

(i) We have

rankO H̃
1(Z[1/S], T (τ−1); ∆(f)) = rankO H̃

2(Z[1/S], T (τ−1); ∆(f)) ≤ ordj=τLp(f, g, 1 + j).

(ii) If Lp(f, g, 1 + τ) 6= 0, then we have H̃1(Z[1/S], T (τ−1); ∆(f)) = 0, and H̃2(Z[1/S], T (τ−1); ∆(f))
is a finite O-module, whose length is bounded above by

vP

(
Lp(f, g, 1 + τ)

Ω

)
.
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Proof. We will derive this from 11.6.4 via descent. An Euler characteristic computation (together with

the vanishing of H̃0 by Hyp(BI)) shows that H̃1(Z[1/S], T (τ−1); ∆(f)) and H̃2(Z[1/S], T (τ−1); ∆(f))
have the same rank, and Hyp(BI) and Hyp(NEZ) together also imply that H1(Z[1/S], T (τ−1)) is a free

O-module and H̃1(Z[1/S], T (τ−1); ∆(f)) injects into it.
Let η be the restriction of τ to Γtors. If eηLp(f, g, 1 + j) = 0, then the order of vanishing on the

right-hand side of (i) is infinite, and there is nothing to prove. Otherwise, Theorem 11.6.4 and the

compatibility of Selmer complexes with derived base-change combine to show that H̃1 and H̃2 are,

respectively, the maximal submodule and maximal quotient of the torsion module H̃2(Z[1/S], T⊗ΛΓ(−j))
on which Γ acts via τ . So the O-ranks of these modules are both equal to the order of vanishing of

charΛ eηH̃
2(Z[1/S], T ⊗ ΛΓ(−j)) at j = τ , and this characteristic ideal divides eηLp(f, g, 1 + j).

This gives (i) immediately, and (ii) follows from the compatibility of the ratio of characteristic ideals
with derived base-change, as in Theorem 11.5.1. �

11.7. Bounds for Bloch–Kato Selmer groups. In order to link this with more classical results, we

need to show that the H̃2 groups appearing in Theorem 11.6.6 are related to the Bloch–Kato Selmer
groups.

We assume (without loss of generality) that the weights r, r′ of f and g satisfy r > r′. (In fact the
results of this section will be vacuous if r = r′, and the case r < r′ follows by interchanging the roles of
f and g.) Thus Hyp(NEZ) is automatically satisfied.

Definition 11.7.1. We shall say a character τ is critical if it is of the form j + χ (i.e., z 7→ zjχ(z)),
where j is an integer with r′ − 1 ≤ j ≤ r − 2 and χ is of finite order.

These are exactly the characters for which T (τ−1) is the étale realisation of a critical motive. If τ
is critical, then T (τ−1) is de Rham at p, so we may consider the Bloch–Kato Selmer structure ∆BK on
T (τ−1).

Proposition 11.7.2. If τ is critical, and Hyp(BI) holds, there are natural maps

H̃i(Z[1/S], T (τ−1); ∆(f))→ H̃i(Z[1/S], T (τ−1); ∆BK)

for i = 1, 2, and these maps have finite kernels and cokernels.

Proof. Via the exact triangle (11.2.1), it suffices to check that there are morphisms of complexes

(U
(f)
v )+ → (UBK

v )+ for each prime v, and the induced maps on Hi have finite kernels and cokernels
for i = 0, 1, 2.

The map on H0 is trivially an isomorphism as its source and target are both zero. This is also true
for H2 except for v = p, in which case the target is zero and the source is H2(Qp, T

(f)), which is finite.
This leaves the case i = 1. For v 6= p this map is the inclusion of the unramified cohomology in its
saturation, so it is injective with finite cokernel.

It remains to prove that the image of the injection H1(Qp, T
(f)) →֒ H1(Qp, T ) is a finite-index

submodule of H1
f (Qp, T ), or equivalently that H1(Qp, V

(f)) = H1
f (Qp, V ) where V = T [1/p]. Since we

have H0(Qp, V/V
(f)) = H2(Qp, V

(f)) = 0, and V (f) has Hodge–Tate weights ≥ 1 while V/V (f) has
Hodge–Tate weights ≤ 0, this holds by [FK06, Lemma 4.1.7]. �

Theorem 11.7.3. Let τ be a critical character, and suppose that Hyp(BI) holds. If L(f, g, χ−1, 1 + j)
is non-zero, then the group

H̃2(OK,S ,MO(f ⊗ g)(τ−1); ∆BK)

is finite.

Proof. The preceding proposition shows that H̃2(OK,S ,MO(f ⊗ g)(τ−1); ∆BK) is finite if and only if

H̃2(OK,S ,MO(f ⊗ g)(τ−1); ∆(f)) is finite, and the interpolating property of the L-function in Theorem
2.7.4 (together with Hyp(NEZ), which is automatic, as we have noted) shows that the p-adic L-value
Lp(f, g, 1 + τ) is L(f, g, χ−1, 1 + j) multiplied by a non-zero factor. So this statement follows directly
from Theorem 11.6.6. �

A special case of this statement is the following theorem, which extends results by Bertolini–Darmon–
Rotger [BDR15b].

Theorem 11.7.4. Let E/Q be an elliptic curve without complex multiplication, and ρ a 2-dimensional
odd irreducible Artin representation of GQ (with values in some finite extension L/Q). Let P be a prime
of L above some rational prime p. Suppose that the following technical hypotheses are satisfied:
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(i) The conductors NE and Nρ are coprime;
(ii) p ≥ 5;
(iii) p ∤ NENρ;
(iv) the map GQ → AutZp(TpE) is surjective;
(v) E is ordinary at p;
(vi) ρ(Frobp) has distinct eigenvalues modulo P.

If L(E, ρ, 1) 6= 0, then the group

HomZp[Gal(F/Q)](ρ, Selp∞(E/F ))

(where F is the splitting field of ρ) is finite.

Proof. It is a standard result that

Selp∞(E/F ) = H̃1
(
OF,S , Ep∞ ; (∆BK)∨

)

where (∆BK)∨ is the orthogonal complement of the Bloch–Kato Selmer structure for Tp(E). So, if ρ∗

is the contragredient of ρ, and H = Gal(F/Q), we can interpret HomZp[H](ρ, Selp∞(E/F )) as the H-

invariant classes in H̃1(OF,S , Ep∞ ; (∆BK)∨) ⊗ ρ∗ = H̃1(OF,S , Ep∞ ⊗ ρ
∗; (∆BK)∨). Since H is finite, the

restriction map

H̃1(Z[1/S], Ep∞ ⊗ ρ
∗; (∆BK)∨)→ H̃1(OF,S , Ep∞ ⊗ ρ

∗; (∆BK)∨)H

has finite kernel and cokernel (in fact the kernel is even trivial, because of the “big image” hypothesis
(iv)). So it suffices to show that the former group is finite.

One knows that both E and ρ∗ are modular, associated to modular forms f of weight 2 ([BCDT01])
and g of weight 1 ([KW09]). Then we have an isomorphism of GQ-representations Ep∞ ⊗ ρ

∗ ∼= T∨(1),
where T = MO(f ⊗ g)∗.

By Nekovǎŕ duality, we have

H̃1(Z[1/S], T∨(1); (∆BK)∨) = H̃2(Z[1/S], T ; ∆BK)∨.

The hypotheses we have imposed imply that the preceding theorem applies to f and g; the hypotheses (i)
and (iv) are sufficient to imply Hyp(BI) (by the results of [Loe17]) and the final hypothesis (vi) implies

that gρ is p-distinguished. So H̃2(Z[1/S], T ; ∆BK) is finite, as required. �

Remark 11.7.5.

(i) Because of the fundamental exact sequence

0 ✲ E(F )⊗Qp/Zp ✲ Selp∞(E/F ) ✲ Xp∞(E/F ) ✲ 0,

where Xp∞(E/F ) is the p-part of the Tate–Shafarevich group, HomH(ρ, Selp∞(E/F )) is finite if
and only if the same is true of the ρ-parts of both E(F ) and Xp∞(E/F ). The finiteness of the ρ-
part of E(F ) in this setting has been shown by Bertolini–Darmon–Rotger [BDR15b]. Our theorem
extends this to obtain a finiteness result of the ρ-part of the Tate–Shafarevich group for a large set
of primes p.

(ii) Although we do not give the details here, one can check that if the hypotheses of the theorem
are satisfied, then after possibly throwing away an additional density-0 set of “anomalous” primes
(those at which the Euler factor E(f, g, 1) fails to be a p-adic unit), the ρ-part of Selp∞(E/F ) is
not only finite but trivial.

(iii) A result of this type is already known if ρ is one-dimensional (using Kato’s Euler system, [Kat04,
Corollary 14.3]); or if ρ is induced from a ring class character of an imaginary quadratic field (using
an Euler system constructed from Heegner points, [LV10, Theorem 1.2], building on earlier work
of Bertolini–Darmon [BD05]).

(iv) Since the image of ρ is finite, for all but finitely many P the assumption (vi) is equivalent to
requiring that ρ(Frobp) is non-scalar, or equivalently that p does not split in the Galois extension
of Q cut out by the projective representation ρ̄. The ordinary primes for E have density 1, and
the other hypotheses each rule out only finitely many primes p; so the set of primes p to which the
theorem applies has density 1− 1

N , where N is the size of the image of ρ̄.

12. Appendix: Kolyvagin systems with Greenberg local conditions

In this section we extend some of the results of [MR04] to study Euler systems and Kolyvagin systems
with a non-trivial local condition at p.
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12.1. Setup. In this section, we fix a prime p ≥ 5, a finite extension E/Qp with ring of integers O and
residue field F, and a finite-rank free O-module T with a continuous action of GQ, unramified outside
some finite set S (which we shall assume contains p and ∞). We assume the following condition:

Hypothesis 12.1.1 (“Greenberg condition”). There exists a saturated O-submodule T+ ⊆ T which is
stable under the action of GQp .

We fix such a submodule T+, and write T− = T/T+. Let T = T ⊗O Λ(−j), where Λ = O[[Γ1]] and j

is the canonical character, and similarly for T+ and T−. Let m be the maximal ideal of Λ.

Definition 12.1.2. Let ∆+ be the Selmer structure on T for which ∆+
v is the unramified local condition

for v 6= p, and is the Greenberg local condition associated to T+ →֒ T for v = p.

We use the same symbol also for the corresponding local condition for T rather than T, or for T over
any finite extension of Q.

For technical reasons we will also need the following alternative Selmer structures. Recall that a
simple Selmer structure on a module M (over Q) is determined by the data of a subspace H1

∆(Qv,M) ⊆
H1(Qv,M) for every v ∈ S.

Definition 12.1.3. Let I be any ideal of Λ. We define simple Selmer structures ∆Λ and ∆+
Λ on T/IT

(over Q) as follows.

• For v 6= p, the local condition at v is given by the image of H1(Qv,T)→ H1(Qv,T/IT).
• The local condition at p is given by the image of H1(Qv,T)→ H1(Qv,T/IT) for ∆Λ, and the

image of H1(Qv,T
+)→ H1(Qv,T/IT) for ∆+

Λ .

Remark 12.1.4. Note that our notion of a “simple Selmer structure” coincides with the non-derived
approach to Selmer structures followed in [MR04], and ∆Λ is exactly the Selmer structure denoted FΛ

in §5.3 of op.cit..

12.2. Euler systems and Kolyvagin systems. As in Definition 3.2.2 of [MR04], let P be a set of
primes with S ∩ P = ∅, and K an abelian extension of Q containing the maximal abelian p-extension
unramified outside P ∪ {p}. (Thus, in particular, K contains the cyclotomic Zp-extension Q∞ of Q.)

Definition 12.2.1. An Euler system with local condition T+ is an Euler system c = {cF : Q ⊆f F ⊂ K}
for (T,K,P) with the property that for every K we have

cF ∈ image
(
H̃1(OF,S , T ; ∆+)→ H1(OF,S , T )

)
.

We denote the module of such systems by ES(T,K,P ; ∆+).

Remark 12.2.2. The map H̃1(OF,S , T ; ∆+)→ H1(OF,S , T ) may not be injective, but the map

lim
←−
n

H̃1(OFn,S , T ; ∆+)→ lim
←−
n

H1(OFn,S , T )

is always injective, where Fn is the n-th layer of the cyclotomic Zp-extension FQ∞/F . Thus for each

F we have a distinguished lifting c̃F of cF to H̃1(OF,S , T ; ∆+), and these c̃F satisfy the Euler system
compatibility relation.

We also have the notion of a Kolyvagin system. We shall not define a Kolyvagin system for T as such,
but rather an element of the module of generalised Kolyvagin systems (cf. Definition 3.1.6 of [MR04]),

KS(T,∆Λ,P) := lim
←−
k

lim
−→
j

KS(T/mkT,∆Λ,P ∩ Pj),

where the Pj are certain sets of primes defined as in op.cit.. An element of this module is a collection of
classes

κ = (κn,k) ∈ H̃1(Q,T/mkT; ∆Λ)⊗Gn,

where n is a square-free product of primes lying in the set subset P ∩ Pj(k) (with j(k) ≥ k an integer

depending on k), and Gn =
⊗

ℓ|nF
×
ℓ .

Proposition 12.2.3. Suppose that the hypotheses of Appendix A of [MR04] are satisfied. Then the
canonical homomorphism

ES(T,K,P)→ KS(T,∆Λ,P)

defined in Theorem 5.3.3 of op.cit. restricts to a map

ES(T, T+,K,P)→ KS(T,∆+
Λ ,P).

62



Proof. Let us recall how κn,k is defined. One first constructs an auxilliary collection of classes κ′n,k which

are a “weak Kolyvagin system”. These are constructed as follows. In Chapter 4 of [Rub00], one defines
a collection of classes κ[F,n,M ] ∈ H

1(F, T/MT )⊗Gn, for each power M of p, each finite extension F/Q
contained in the cyclotomic Zp-extension, and each square-free product n of primes in some set RF,M .

As shown in Appendix A of [MR04], for each k, one may find a field F , and a power M of p, such
that Λ/mkΛ is a quotient of (O/MO)[Gal(F/Q)], so we obtain a natural map

H1(OF,S , T/MT ) = H1
(
Z[1/S],T⊗Λ (O/MO)[Gal(F/Q)]

)
→ H1(Z[1/S],T/mkT).

For sufficiently large j we have Pj ⊆ RF,M , and one then defines κ′n,k to be the image of κ[F,n,M ].
We claim that the class locp κ[F,n,M ] lies in the image of

H1(F ⊗Qp, T
+/MT+)⊗Gn → H1(F ⊗Qp, T/MT )⊗Gn.

If we impose the assumption that H0(Qp, T
−⊗F) = 0, where F is the residue field of O, then this is

exactly the result of [LLZ15, Theorem B.1.4]. In order to prove this result in the general case, we must
delve further into the details of Rubin’s construction of the classes κ[F,n,M ]. We adopt the notation of
Chapter 4 of [Rub00].

As in Proposition 6.4.8 of op.cit., the fact that locp cF (n) lies in H1(F (n)⊗Qp, T
+), for every finite

extension F/Q contained in the cyclotomic Zp-extension Q∞, implies that there is a system of maps

d+
F,p : XF (n) →W+

M/ IndDW
+
M

lifting c, where XF (n) is the “universal Euler system”, W+
M = T+/MT+, etc; and the collection of maps

d+
F,p for varying F are determined uniquely up to an element of HomO[GQ](XF (n),W

+
M ). Exactly as in

the proof of Theorem 4.5.1 of op.cit., we deduce a compatibility between d+
F,p and the corresponding

global maps dF , from which it follows that κ[F,n,M ] lies in the image of H1(F ⊗Qp,W
+
M )⊗Gn.

Using the compatibility of cohomology with inverse limits, and the fact that T/mkT is finite, it follows
that if we choose M and F sufficiently large, the image of H1(F ⊗Qp, T

+/MT+) in H1(Qp,T/m
kT)

coincides with the image of H1(Qp,T
+). Hence the classes κ′n,k lie in the image of this module, whenever

n is a square-free product of primes in Pj for some sufficiently large j. This shows that

κ′n,k ∈ H̃
1(Z[1/S],T/mkT; ∆+

Λ ).

Having constructed the “weak Kolyvagin system” κ′n,k, the classes κn,k are defined as a Λ-linear

combination of the classes κ′d,k for integers d | n, and since H̃1(Z[1/S],T/mkT; ∆+
Λ ) is a Λ-submodule

of H1(Z[1/S],T/mkT), it follows that the modified classes still lie in this submodule. �

Remark 12.2.4. The fact that locp κ[F,n,M ] lies in the image of the cohomology of T+ implies that there is

a lifting of κ[F,n,M ] to H̃1(OF,S , T/MT ; ∆+). Although this lifting is not generally unique, one can always

find a larger field F ⊆f F
′ ⊂ Q∞ such that the kernel of H̃1(OF ′,S , T/MT ; ∆+)→ H1(OF ′,S, T/MT ) is

annihilated by the corestriction map for F ′/F . So, after possibly increasing the bound k(j), we obtain

a canonical lifting of each κn,j to H̃1(Z[1/S],T/mkT; ∆+).
We do not know at present how to use this extra information, but it may be relevant in the study of

exceptional-zero phenomena. Cf. the remarks in [Nek06, §0.19.3].

12.3. Descent lemmas. We now show that the existence of a Kolyvagin system implies a bound for a
Selmer group over Λ. In this section we impose a further local assumption:

Hypothesis 12.3.1 (“no local zero”). We have H0(Qp,∞, T
−) = 0.

Let Q be a height-1 prime ideal of Λ. For convenience, we assume that SQ = Λ/QΛ is integrally closed;
then SQ is a discrete valuation ring. (It is either a finite integral extension of O, or it is isomorphic to a
power series ring F[[X ]] where F is the residue field of O). We define a simple Selmer structure ∆+

can on
T ⊗SQ by taking the Bloch–Kato local condition for every v 6= p, and at v = p the local condition given
by the submodule

ker
(
H1(Qp, T ⊗ SQ)→ H1(Qp, T

− ⊗ FracSQ)
)
.

(This is a modification of the Selmer structure Fcan of [MR04, §5.3], and reduces to it when T+ = T .)
There is a natural morphism ∆+

Λ → ∆+
can of Selmer structures on T ⊗ SQ.

Definition 12.3.2 (cf. [MR04, Definition 5.3.12]). We define an exceptional set ΣΛ of height-1 prime
ideals Q of Λ as the set of Q such that one or more of the following holds:

63



• H2(Z[1/S],T)[Q] is infinite;
• H2(Qp,T

+)[Q] is infinite;
• Q = ̟Λ, where ̟ is a uniformiser of O.

Lemma 12.3.3 (cf. [MR04, Lemma 5.3.13]). For Q a height-1 prime ideal, not in ΣΛ, such that Λ/Q
is integrally closed, the cokernel of the natural injection

H1
∆+

Λ
(Qp, T ⊗ SQ) →֒ H1

∆+
can

(Qp, T ⊗ SQ)

is finite, with order bounded above by a constant depending only on T and the O-rank d of SQ.
If Q = Qk is the specific prime (Xk+̟)Λ, where X = γ−1 for γ a generator of Γ1, then the cokernel

is bounded independently of k.

Proof. Let us write “O(1)” for a module whose order is bounded independently of Q.
We consider the composition

H1(Qp,T
+)/Q ⊂ ✲ H1(Qp, T

+ ⊗ SQ) ✲ H1(Qp, T ⊗ SQ).

By definition, the space H1
∆+

Λ

(Qp, T ⊗ SQ) is the image of the composite of these two maps. The first

map is easily seen to be injective, and its cokernel is O(1), bounded above by the order of the largest
finite submodule of H2(Qp, T

+) (which is a finitely-generated O-module). So it suffices to show that the
cokernel of the map

H1(Qp,T
+ ⊗ SQ)→ H1

∆+
can

(Qp,T⊗ SQ)

is bounded. This cokernel is precisely the torsion submodule of H1(Qp, T
−⊗SQ), which can be identified

with H0(Qp, T
− ⊗ Frac(SQ)/SQ) (modulo its divisible part, but this is zero by assumption).

The module H0(Qp,∞, T
−⊗OE/O) is a finite O-module, so there is some n such that ̟n annihilates

this module. Hence H0(Qp, T
− ⊗ Frac(SQ)/SQ) has order bounded above by a constant multiple of

(SQ/̟
nSQ)Γ, where n is independent of Q, which is clearly bounded above by some function of rankO SQ.

In the case Q = Qk, we can explicitly write down the action of X on SQ/̟
nSQ

∼= (O/̟nO)k; from
this description it is clear that the cokernel is isomorphic to O/̟O, for any k and n, so it is bounded
independently of k. �

For κ ∈ KS(T,∆+
Λ ,P), let Ind(κ) be the index of divisibility of κ1 in H1(Z[1/S],T), as in Definition

5.3.8 of op.cit..

Theorem 12.3.4. Suppose that the hypotheses (H.0)–(H.5) of [MR04, §3.5] hold. If κ ∈ KS(T,∆+
Λ ,P)

satisfies κ1 6= 0, then H̃2(Z[1/S],T; ∆+) is a torsion Λ-module, and we have the divisibility

charΛ

(
ker H̃2(Z[1/S],T; ∆+)→ H2(Qp,T

+)
)
| Ind(κ).

Proof. Since the Selmer structure ∆+
Λ on T is just the truncation of ∆+ in degree ≤ 1, and all the

modules U+
v for the Selmer structure ∆+ are zero unless v = p, we have

H̃2(Z[1/S],T; ∆+
Λ) = ker

(
H̃2(Z[1/S],T; ∆+)→ H2(Qp,T

+)
)
.

Moreover, H̃2(Z[1/S],T; ∆+
Λ) is identified with the Pontryagin dual of H̃1 for T∨(1) by Proposition

11.2.8. So we must bound the latter in terms of Ind(κ).
This follows by exactly the same argument as in Theorems 5.3.6 and 5.3.10 of op.cit.. The Selmer

structure ∆+
can satisfies the hypotheses of Theorem 5.2.2 of op.cit., so we may use that theorem to bound

the Selmer group

H̃2(Z[1/S], T ⊗ SQ; ∆+
can) =

[
H̃1(Z[1/S], (T ⊗ SQ)∨(1); (∆+

can)∨)
]∨
.

(This last isomorphism is a consequence of Nekovǎŕ’s duality theorem, cf. Proposition 11.2.8, using the
fact that the spaces H2(U+

v ) are defined to be zero for a simple local condition.) Our bounds on the
kernel and cokernel of the descent map, while fractionally weaker than those obtained in Lemma 5.3.13
of op.cit., are sufficient to show that if Q 6= ̟Λ is a prime of Λ such that Λ/Q is integrally closed, we
have the requisite inequality of orders of vanishing at Q. However, our Selmer complexes commute with
flat base-extension in O, so this gives the result for all Q 6= ̟Λ. For Q = ̟Λ the argument proceeds by
considering the primes Qk = Xk +̟, which we considered above as a special case. �
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A slightly different formulation of this will be useful above. A simple computation from Tate’s local
and global Euler characteristic formulae shows that

rankΛ H̃
1(Z[1/S],T; ∆+)− rankΛ H̃

2(Z[1/S],T; ∆+) = rankO T
(c=−1) − rankO T

−,

where c is complex conjugation; and we define χ(T,∆+) to be this value. Then χ(T,∆+) is also the
“core rank” of (T ⊗ SQ,∆

+
can) in the sense of Definition 5.2.4 of op.cit., for any Q /∈ ΣΛ.

Corollary 12.3.5. If χ(T,∆+) = 1 and κ ∈ KS(T,∆+
Λ ,P) satisfies κ1 6= 0, then H̃1(Z[1/S],T; ∆+) is

torsion-free of rank 1, and we have a divisibility of characteristic ideals

charΛ

(
ker H̃2(Z[1/S],T; ∆+)→ H2(Qp,T

+)
)
| charΛ

(
H̃1(Z[1/S],T; ∆+)

Λ · κ1

)
.

(Cf. [Kat04, Theorem 13.4].)

Proof. Since the quotient H1(Z[1/S],T)/H̃1(Z[1/S],T; ∆+) injects into H1(Qp,T
−), whose Λ-torsion

subgroup is pseudo-null by assumption, we deduce that if χ(T,∆+) = 1 and κ1 6= 0, then the quotient

H̃1(Z[1/S],T; ∆+)/Λκ1 is torsion and its characteristic ideal is equal to Ind(κ). �
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