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Abstract Recent detections of strong incoherent scatter radar echoes from the auroral F region, which
have been explained as the signature of naturally produced Langmuir turbulence, have motivated us to
revisit the topic of beam-generated Langmuir turbulence via simulation. Results from one-dimensional
Zakharov simulations are used to study the interaction of ionospheric electron beams with the background
plasma at the F region peak. A broad range of beam parameters extending by more than 2 orders of
magnitude in average energy and electron number density is considered. A range of wave interaction
processes, from a single parametric decay, to a cascade of parametric decays, to formation of stationary
density cavities in the condensate region, and to direct collapse at the initial stages of turbulence, is observed
as we increase the input energy to the system. The effect of suprathermal electrons, produced by collisional
interactions of auroral electrons with the neutral atmosphere, on the dynamics of Langmuir turbulence is also
investigated. It is seen that the enhanced Landau damping introduced by the suprathermal electrons
significantly weakens the turbulence and truncates the cascade of parametric decays.

1. Introduction

Over the past few years, strong nonthermal echoes from the F region auroral ionosphere have been detected
by various incoherent scatter radars (ISRs) [Akbari et al., 2012, 2013; Isham et al., 2012; Ekeberg et al., 2012;
Schlatter et al., 2013, 2014]. The echoes that are often characterized by simultaneous enhancement of the
received power in both the ion- and plasma-line channels_thus, indicating simultaneous intensification of
the ion-acoustic and Langmuir waves in the region of the ionosphere probed by the radar at wave vector
imposed by the radar frequency and geometry, have been considered as signatures of naturally produced
Langmuir turbulence. Furthermore, specific spectral features associated with the echoes, such as the pre-
sence of an additional peak at zero-Doppler in the ion-line spectra [Isham et al., 2012] and double-peaked
plasma-line spectra [Akbari et al., 2012], have led to the conclusion that the turbulence proceeds toward
the formation and collapse of cavitons. The observed features are similar to those detected during iono-
spheric modification (heating) experiments, where Langmuir turbulence is artificially generated in the iono-
sphere via injection of intense electromagnetic radiation by powerful high-frequency transmitters [DuBois
et al., 1990, 1993; Stubbe et al., 1992; Isham et al., 1999].

Correlating the ISR echoes with the optical measurements of aurora suggests that the auroral electron beams,
in particular those generated by the parallel electric field of inertial Alfvenic waves [Génot et al., 1999, 2004;
Bian and Kontar, 2011; Tsiklauri, 2011, 2012], provide the free energy for the natural turbulence via a bump-
on-tail instability. Beam-generated Langmuir turbulence has been the subject of experimental and simulation
studies in many space environments, including the solar wind [Nicholson et al., 1978], lower solar corona
[Goldman and Newman, 1994], planetary foreshocks [Gurnett et al., 1981; Robinson and Newman, 1991], and
the topside auroral ionosphere [Newman et al., 1994a, 1994b]. However, the development and dynamic of
Langmuir turbulence are known to depend strongly on parameters of the background plasma, such as the
level of background ion density perturbations, magnetic field, and kinetic effects such as damping rates
for ion-acoustic and Langmuir waves, as well as the parameters of the source electron beam [Newman
et al., 1994a, 1994b; Robinson et al., 1992; Robinson and Newman, 1989]. In the light of the ISR observations
therefore it is valuable to conduct simulations that are representative of the plasma environments at the F
region peak. Moreover, previous investigations of beam-generated Langmuir turbulence have all been based
upon in situ measurements of waves with instruments onboard sounding rockets and satellites. ISR detec-
tions are much different from in situ measurements in that they indicate enhanced wave activities at a spe-
cific spatial scale, determined by the ISR probing wave number. This, in turn, puts additional requirements on
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(for more context see Akbari et al. [2015]).

ISR observations of the echoes therefore
motivated us to revisit the topic of
beam-generated Langmuir turbulence in
the F region ionosphere with the goal of
reproducing the experimental observa-
tions and providing predictions of phe-
nomenology to be investigated in future
experiments. To this end we simulated
Langmuir turbulence generated by elec-
tron beams with different set of parameters
applicable to the F region ionosphere. The
Figure 1. The five regimes of linear parametric instabilities for a mono- ~ Studied parameter regime was extended
chromatic, plane Langmuir wave. The approximate boundaries are by more than 2 orders of magnitude in
derived for the plasma parameters considered in this work. The five average energy and electron number den-

regions are (I) parametric decay instability, () modulational instability, sity of the beams. The majority of the
() subsonic modulational instability, (IV) supersonic modulational

instability, and (V) modified decay instability.

presented results correspond to the case
where the bulk plasma distribution is con-
sidered Maxwellian. However, the effect of
suprathermal (secondary) electrons, produced by the collisional interactions of the auroral electrons with the
neutral atmosphere, and the associated enhanced Landau damping is also investigated through introducing
an energetic tail to the bulk Maxwellian electrons in the form of a Kappa distribution.

2. Langmuir Turbulence

Langmuir turbulence occurs as a result of nonlinear interactions between Langmuir waves and ion density
perturbations. In plasmas, the refractive index varies with plasma density, with lower density corresponding
to higher refractive index. In the presence of Langmuir waves, an existing density depression therefore tends
to refract the Langmuir energy inside. On the other hand, the electric field of Langmuir waves affects the low-
frequency quasi-neutral plasma density perturbations through its ponderomotive force, which tends to push
the plasma out of the regions of high electric field intensity. As a result of this positive feedback, instabilities
emerge that lead to strong responses in the electric field and the density perturbations. Such interactions of
Langmuir waves and plasma density perturbations are known to exist in a variety of natural and laboratory
plasmas with vastly different parameters (over 23 orders of magnitude of plasma density, 4 orders of magni-
tude in electron temperature, and over 15 orders of magnitude in electric field amplitude [Robinson, 1997]).

Such interactions of Langmuir waves and ion density perturbations include the phenomena of linear para-
metric instabilities, as well as the completely nonlinear phenomenon of caviton formation and wave collapse.
It was originally shown by Zakharov et al. [1985] that parametric instabilities of a monochromatic Langmuir
wave in an isotropic and conservative plasma, i.e., neglecting collisional effects, are of five different types,
each with their own thresholds, growth rates, and operating regimes on the intensity-wave number space.
The five instabilities are (1) the parametric decay instability (PDI), (2) the modulational instability (Ml), (3)
the subsonic modulational instability, (4) the supersonic modulational instability, and (5) the modified decay

eolE[®
4nokgT,

(where E is the envelope of electric field, g is the permittivity of free space, ng is the electron density, kg is the
Boltzmann constant, and T, is the electron temperature) is the ratio of the electrostatic energy to the plasma
thermal energy. For detailed discussion of the instability regimes readers are referred to Robinson [1997]
(a review paper).

instability. The applicability regimes of each of these instabilities are shown in Figure 1.In Figure 1,W =

As will be seen in section 3, for the background ionospheric plasma and beam parameters considered in this
work, the initially enhanced Langmuir waves (due to the bump-on-tail instability) generally fall into the first
region where the PDl is the dominant process. The parametric decay instability is a three-wave process during
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which an initial intense Langmuir wave L+(w, 1, k;) decays into a pair of product waves, including a secondary
Langmuir wave Ly(w; 2, k;2) and an ion-acoustic wave S(ws, ks). With the dispersion relations of Langmuir and
ion-acoustic waves, satisfying the frequency and wave number matching conditions—namely, w;; = w;5 + w;
and k; 1 =k >+ k—results in the following relations in one dimension: k;, =k* — k;; and ks~ 2k;; — k* [e.g.,

1

Forme, 1993; Diaz et al., 2010]. Here k is the wave number, k* = 3= (;1 %)Z n= % and m,, m;, Ap, and

T; are the electron mass, ion mass, Debye length, and ion temperature, respectively. When k; ; > k*, the above
conditions imply that the product Langmuir wave propagates in the opposite direction of the initial wave
(backscatter) and has a slightly smaller wave number. Provided that there is enough input energy to the sys-
tem, the product Langmuir wave may grow to high intensities, decay, and create its own set of product waves
in a similar fashion to the initial PDI. The process may further proceed in the form of a cascade of PDIs, trans-
ferring the energy to smaller wave numbers at each step, until the last produced Langmuir waves enter other
regions of Figure 1 where modulational instabilities are the dominant process.

Modulational Instabilities are four-wave processes during which two Langmuir waves Lq(w;,k;1) and Ly
(wr2 =1, ki =k 1) give rise to a pair of product Langmuir waves Lz(w;3, ki3 =kp1 — k) and La(w;4, kia=ki4
+ k) via participation of an ion density perturbation S(w, ks;). Depending on the regime of the instability, i.e.,
M, subsonic MI, or supersonic Ml: (1) the ion density perturbation can be an ion-acoustic wave or a strongly
damped ion-acoustic quasi-mode and (2) ks can be much larger or smaller than k;, i.e,, Langmuir energy can
transfer to higher or lower wave numbers [Robinson, 1997]. Modulational instabilities lead to the modulation
of an initially uniform Langmuir wave and its break up into wave packets with scales Nkj [Robinson, 1997,
and references therein], corresponding to the participating ion density perturbation. This breakup may some-
times be followed by a highly nonlinear stage where the wave packets progressively intensify and the density
perturbations narrow and deepen (i.e,, collapse to small scales) under the action of the ponderomotive force,
forming localized density cavities with intense Langmuir energy trapped inside, i.e., cavitons.

In this report we intend to investigate the five instability regimes summarized in Figure 1 as well as formation
of cavitons and revisit the topic of beam-generated Langmuir turbulence for the lower auroral ionosphere in
the light of the new experimental data. In the next section we present the mathematical framework that is
commonly used to simulate the Langmuir turbulence.

3. Zakharov Equations

Plasma at the peak of auroral F region, with electron cyclotron frequency of f,~ 1.5 MHz and plasma to cyclo-
tron frequency ratio of ;—‘C’z4, is weakly magnetized. Langmuir turbulence in such a plasma can be modeled by
the electrostatic Zakharov equations [DuBois et al., 1990; Newman et al., 1994b].

Although, some aspects of Langmuir turbulence can only be truly captured in three-dimensional simulations
[Robinson, 1997, and references therein], numerical works have shown that in many cases one-dimensional
simulations are generally successful in representing the physics of the turbulence [e.g., Rowland et al., 1981].
Moreover, in situ observations of beam-generated Langmuir turbulence in the topside auroral ionosphere have
shown that the generated waves dominantly propagate with angles less than 10° with respect to the magnetic
field lines [Newman et al., 1994a]. This is in part due to the highly field-aligned nature of the source electron
beams and in part due to the cyclotron damping for the waves propagating in oblique directions. In this work
we restrict our attention to one-dimensional simulations since it enables a wider range of parameters to be stu-
died in reasonable times. One-dimensional simulations, however, are not suitable at higher altitudes where the
electron cyclotron frequency exceeds the plasma frequency [Newman et al., 1994b].

In one dimension, the modified electrostatic Zakharov equations are given by [Guio and Forme, 2006]

0 . 3, wp N
(Ia‘FIﬂeX +§wp/1Dﬁ)E_7n—0E+SE (1)
o d & €0 O|E)?
2 429ix —— C2=—\n= 2
(6t2+ O 5= G axz)" am; ox2 = Sn @)

where n is the low-frequency plasma density fluctuation and E is the slowly varying envelope of the
high-frequency electric field (the total electrostatic field in terms of the slowly varying envelope is given
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by & =1[E exp(—iwpt) + E* exp(impt)] ). Other quantities are no, the background plasma density;

— . — NMe 2 H e 2 _ ks T
wp = 2rfp,, angular plasma frequency; C; = e Ve the ion sound velocity; and v; = L

In the above equations, Sg and S, are stochastic complex source terms that account for the thermal level
emission of Langmuir and ion-acoustic waves. Landau and collisional damping are also accounted for by
including appropriate damping coefficients . = —*< + y, and ¢; = —* + 7, which include kinetically deter-
mined linear Landau damping of Langmuir and ion-acoustic waves (y, and y,, given by equations (3) and (4),
respectively) and the effect of electron and ion collision frequencies (vec and v, respectively) [Guio and
Forme, 2006]. Note that the damping coefficients are wave number-dependent and are implemented in

the Zakharov equations by incorporating the convolution product operator X.

2
= == {df(v)} 3)
[k

2n0 K2 5| av

ATCAYNIAS T. 3
S 2 R = 2k 4
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In equation (3), f(v) is the total one-dimensional electron distribution function which consists of the bulk iono-
spheric electrons, as well as the beam of electrons that provide the free energy for the turbulence via inverse
Landau damping. The bulk and the electron beam populations are each modeled with Maxwellian distribu-
tions (equation (5)) with the proper choices of number density (n), mean velocity (u), and thermal velocity
spread (6).

n

1 _ 2
fMaxweIIian (V) = Hm exp |:_§ (V 9 u> :| ®

During periods of electron precipitation, such as the one we model here with a beam of electrons, an addi-
tional population of electrons with suprathermal energies (a few eV to ~ 100 eV), often called the secondary
electrons [Lummerzheim and Lilensten, 1994] or the scattered electrons [Newman et al., 1994b], emerges in
the auroral ionosphere. This suprathermal population consists of an energetic tail, introducing a departure
from the bulk Maxwellian distribution. Such departure will increase the Landau damping of Langmuir waves
with phase velocity in the range of the modeled electron beam. Despite the significant effect of the second-
ary electrons on the dynamics of the turbulence, the majority of the results presented in the next section are
obtained when the secondary (or scattered) electron population is not taken into account in the electron
velocity distribution. This is because the lower level of Landau damping associated with Maxwellian distribu-
tions enables a richer dynamics for the turbulence to be observed. The effect of secondary electrons is further
discussed in the next section, where a Kappa distribution is included in the total one-dimensional distribution
function in order to model the associated energetic tail and enhanced Landau damping.

One final point regarding our simulations that needs to be discussed is the fact that the electron velocity dis-
tribution function is kept unchanged throughout the simulation time. It is well known that the distribution
function evolves as the electrostatic waves grow in intensity and become intense enough to affect the
motions of electrons. In the quasi-linear limit, beam-generated waves ultimately lead to flattening of the posi-
tive slope of the distribution function, at which point the transfer of energy from the beam to the waves
ceases. For the parameters of electron beams and background plasma used in our simulations (see

2
section 3), the time scale of quasi-linear flattening 74 = (;’—g) (!—ﬂ) a);1 [Thurgood and Tsiklauri, 2015] (where

no, np, Vi, andAV, are the background and the beam electron number densities and the beam mean velo-
city and velocity spread, respectively) is in the order of tens of milliseconds, which is comparable to time
scales, in which the turbulence develops. In such situations, a competition between quasi-linear flattening,
replenishment of the positive slope by the streaming electron beam, and additional processes that influence
the rate of flattening (such as wave scattering or refraction) determines the amount of energy that is pumped
into the turbulence. Investigating such effects is beyond the scope of this work, and proper discussions may
be found in a number of previously published works [e.g., Sanbonmatsu et al., 2001; Krafft et al., 2013;
Baumgdirtel, 2014; Thurgood and Tsiklauri, 2015]. Assuming that the major effect of evolution of the distribu-
tion function and the quasi-linear flattening is to limit the amount of input energy into the system, we believe
—for the purpose of this work that focuses on simulating well-developed turbulence that could account for
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Figure 2. (left and right) The evolution of the electric field and the ion-density perturbations, respectively, as a function of time and wave number for a simulation
with the beam parameters on—‘; =30x10" and £, =125 eV applied at time t=0 ms onward.

the ISR observations—that the use of Zakharov equations, which exclude the quasi-linear flattening effect,
would still produce insightful results.

Assuming a one-dimensional simulation space of length L with periodic boundary condition, the equations
can be solved by the pseudo spectral method [Guio and Forme, 2006]. For the simulations we consider a
70 — 100 m long plasma, time resolution of 0.1 us, and N = 2048 — 4096 spatial Fourier components and apply
the one-third zero padding rule to avoid spectral aliasing.

4. Simulations and Discussion

Inputs to the simulator are parameters of the background plasma, as well as parameters of the source electron
beams. For the background plasma we consider the typical parameters of the F region peak. These are electron
temperature T, =3000 K, ion temperature T;= 1000 K, electron density ng=5 x 10'" m™ 3, electron-neutral col-
lision frequency vec=100 s~ 1. ion-neutral collision frequency vic=1s" ! and we assume that the plasma only
consists of atomic oxygen ions. Unless specified, the bulk electron population is considered Maxwellian. As men-
tioned before, electron beams are modeled by a Doppler-shifted Maxwellian distribution superposed on top of
the bulk electron population. In order to capture the whole spectrum of interactions, we considered a wide
range of parameters for the electron beams. These are electron number density ratio 10~/< %‘O’S 2.5x107° aver-

age beam energy 40 eV <E;, = %me V§§2 keV, and beam velocity spread AV, =0.3 V,,; here subscript b indicates
beam. The upper bound for the average beam energy has been chosen with regard to the fact that the radar
echoes are found to be correlated with soft electron precipitations. The lower bound has been chosen with
regard to the observation altitudes (~250 km). Precipitating electrons with yet lower energies will be collisionally
stopped at higher altitudes and cannot reach to the observation altitudes [Fang et al., 2008]. Below, we present
results from a number of simulations that well represent the entire parameter regime that was investigated.

For electron number density ratios Z—Z ~1077, the growth rate of the resonant Langmuir waves, given by equation (3),
is small and the waves do not reach to the nonlinear regime within the 100 ms simulation time. In fact, with such
low growth rates, waves would most likely never reach to high intensities, since in the ionosphere and in the
presence of background density gradient, propagation of the resonant waves over a longer time period leads to
sufficient refraction, which saturates the wave growth due to detuning from the beam [Akbari et al., 2013; Krafft
et al, 2013].

As we increase the electron number density ratio, the growth rate increases and the waves may reach to high
intensities before the growth is saturated by other processes. Figure 2 shows results of the simulation for one
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68% set of beam parameters (72 = 30x1077
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Figure 3. Normalized density fluctuations shown in Figure 2, in real space ~ beam are initially enhanced. These are
as a function of time. $; and 5; are the ion-acoustic waves produced by the  the Langmuir waves, for which the
first and the second PDI in Figure 2.

damping coefficient 9, is positive due
to inverse Landau damping. It can be
seen that once the waves with the highest growth rate at k~—8 m™ ' reach to high intensities, the PDI is
triggered producing counter propagating Langmuir waves (L;) at k~+7.1 m~ ' and ion-acoustic wave
(Sp) at k~15.1 m~ ' (in Figure 2b). Soon after the first PDI, the second (L,, S5), third (L3, S3), and the fourth

(L4, S4) parametric decays occur and energy quickly transfers to lower wave numbers.

For the plasma parameters used in this simulation we derive k*~0.9 m~ ' and we verify that the wave num-

ber matching conditions ks~2k;; — k*k and ki~ — ki1 + k*k are satisfied in Figure 2. In Figure 2b note that
since n(x, t) is a real-valued function, its spatial Fourier transform F(n(x, t))(k, t) is a complex function of real
wave number k, with even real part, and odd imaginary part, thus even modulus. Therefore, the wave number
density spectrum is symmetric with respect to the origin k=0, and the direction of propagation of ion-
acoustic waves cannot be distinguished in such wave number density spectrum. Moreover, note that due
to strong Landau damping the generated ion-acoustic waves are short lived and damp away shortly after
the PDI stops operating at the corresponding wave numbers. This can be seen more clearly in Figure 3, which
shows the density fluctuations in real space as a function of time. Here ion-acoustic waves propagating with
the sound speed (slope of the patterns in space-time domain) in either directions, as well as a standing wave
pattern produced by counter propagating waves, are seen.

In Figure 2b, in addition to the enhancements produced by the parametric decay instability, enhancements
at small wave numbers (k~0 m™ ") are also seen. These are produced by beat modulation between the
intense Langmuir waves located close to each other on the Langmuir dispersion curve. Such density
enhancements follow their own dispersion relation and will be discussed later. Coalescence-like processes,
where Langmuir and ion-acoustic waves merge to produce additional wave activities, are also expected in
the presence of strong Langmuir and ion-acoustic waves. Such interactions are secondary compared to
the PDI, and thus, the related product waves are not visible in Figure 2 due to the chosen scale for the plot.
However, these features are visible in Figure 4, which shows the same data as in Figure 2 but for a broader
range of wave numbers and intensities.

In Figure 4a, Langmuir waves at ko~ — 8 m~ ! (labeled as L @ ko), Langmuir waves at k= + |ko| (labeled as
L@ — ko), and ion-acoustic waves at k~ 2k, (labeled as S @ 2ko) are produced by direct interaction with the
electron beam and by the parametric decay instability. These are the same waves as in Figure 2.
Coalescence of L@ — kg and S@ — 2kg then produces Langmuir-like enhancements at k~ — 3kq (labeled as
L@ — 3ko), which subsequently decay into Langmuir waves at k~ kg and ion density waves at k~ — 4kg.
The newly generated ion density waves participate in a three-wave coalescence interaction with the most
intense Langmuir waves to produce Langmuir-like enhancements at yet higher wave numbers which are,
in turn, subject to decay, generating ion density enhancements at yet higher wave numbers. A series of such
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Figure 4. The same data as shown in Figure 2 but for a broader range of wave numbers and intensities to illustrate the products of beat modulations and
coalescence-like interactions.

interactions ultimately gives rise to the enhancements seen in Figure 4. It is important to note that although
the products of the three-wave coalescence and beat modulations are orders of magnitude weaker than the
waves produced by the PDI, they are yet orders of magnitude more intense than the background thermal
waves. Such interactions might be therefore detectable by incoherent scatter radars.

Figure 5 shows the dispersion relations of the electric field and density perturbations shown in Figure 4. In
Figure 4, the 100 — ms simulation time is divided into 1 — ms periods. Each period is then Fourier transformed
with respect to time, and the results for all periods are averaged to produce Figure 5. In Figure 5a, the
PDI-generated Langmuir waves, that closely follow the linear dispersion relation wf = wrz, + 3k2v§ and waves

Relative intensity (dB) Relative intensity (dB)
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Figure 5. Dispersion relations of the electric field and density perturbations shown in Figure 4. Products waves of the PDI, beat modulations, and coalescence-like
interactions are observed.
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Figure 6. Similar to Figure 2, the left and right plots show the evolution of the electric field and the ion-density perturbations, respectively, as a function of time and
wave number for a simulation with the beam parameters of% =60x10"7 and E, =125 eV applied at time t=0 ms onward.

at higher wave numbers (L @ 3ky and L @ — 3ko) produced by the coalescence-like interactions are seen. Note
that the features are downshifted in frequency by an amount equal to the plasma frequency, i.e., zero on the
horizontal axis corresponds tof, = % lon density perturbations are symmetric with respect to the origin (0, 0)
on the frequency-wave number plane; therefore, in Figure 5b we arbitrarily decide to focus on the top half
region of the frequency-wave number plane rather than on the right half region. In this case, a horizontal
cut through Figure 5b exactly mimics the ion-line spectra that an ISR would measure from the ionospheric
plasma. In this figure, the PDI-generated ion-acoustic waves are seen at 8 <k < 18 m™ '. The enhancements
at higher wave numbers (S @ — 4ky and S @ — 6k;) are those produced by the decay of electric fields trans-
ferred to higher wave numbers in Figure 5a. At the highest wave numbers the thermal ion-acoustic waves
are seen that follow the linear dispersion relation w? = C2k>. Finally, the enhancements at small wave
numbers (k<8 m~') are the density
perturbations produced by the beat
modulations between Langmuir waves.
It can be shown that such enhancements

follow the dispersion relation cozk<3 (,—i)

~  (P. Guio, private communication). In both
38 3 j ‘ ' I, i panels of Figure 5 the horizontal spread
7 ' | g of energy from the most intense features
g ' are artefacts that appear due to the cho-
Foaz " ' B sen scale for the plot in order to simulta-
44 ! 1 neously capture features with different

2k ' B levels of intensity.
agl 2 gl In Figure 2, the cascades of parametric
decay continue until the total electro-

50- 1

static energy loss, due to Landau damp-
25 30 35 40 45 50 -30 ing, equals the energy transfer from the

X(m) beam to the system. At this point a

Figure 7. Normalized density fluctuations shown in Figure 6, in real quasi-steady state is reached. Providing

space as a function of time, showing the formation of stationary more energy into the system by increas-
density cavities following the transfer of energy to the condensate. ing the beam number density increases
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Figure 8. Evolution of the turbulence in k space for a simulation with the following electron beam parameters: %g = 150x1077 and E, =500 eV.

the number of cascades and, eventually, energy reaches to the condensate (k~0 m™ "), where the PDI is
prohibited and waves are subject to the modulational instabilities. This scenario has often been mentioned
in the literature as one route to caviton formation and wave collapse. Note that transfer of energy to the
condensate can also be facilitated by increasing the energy of the beam which, according to the resonance
condition V=%, results in the injection of energy at smaller wave numbers, where the Landau damping
is smaller.

Figures 6 and 7 show the results of a simulation for beam parameters Z—Z =60x10"" and E,=125 eV (the

beam electron number density has been increased by a factor of 2 compared to the simulation shown in
Figures 2-5). It can be seen that following the first electrostatic decay at t~ 32 ms energy quickly transfers
to the condensate, which is characterized in real space by formation of stationary density cavities. In
Figure 6a, a portion of Langmuir energy at small wave numbers falls into the modulational, subsonic mod-
ulational, and supersonic modulational instability regimes. However, no evident signatures of such instabil-
ities appear.

We next further increase the input energy to the system. Figure 8 shows the evolution of turbulence in k
space for the electron beam parameters Z—ﬁ =150x10"7 and E,=500 eV. The first electrostatic decay
happens at time t~8 ms, after which energy rapidly flows to higher and lower wave numbers. After a
few milliseconds the energy at the very high wave numbers dissipates and a quasi-steady state is reached,
which is characterized by the concentration of energy at |k| <20 m™ ' and occasional impulsive energy
transfers to higher wave numbers. In Figure 8, the initial stage of the turbulence (8 <t <9 ms) develops
extremely fast making it difficult to observe the development in frequency domain. Therefore, in order
to capture the frequency domain features at the initial stage we decrease the beam number density
to Z—Z =90x 1077, which allows a slower development and repeat the simulation. The results are pre-
sented in Figure 9.

Figures 9a and 9e correspond to the electric field and density perturbation spectra averaged over the
1 —ms period during which the initial interactions start to appear. Signatures of the initial electrostatic
decay are seen on the Langmuir and ion-acoustic dispersion curves (the white dashed lines). During the
next 1 —ms period (Figures 9b and 9f) the PDI-generated Langmuir waves intensify and the products of
the coalescence-like interactions appear in the electric field spectrum. In the ion density spectrum the
enhancement that was located on the dispersion curve, indicating the formation of ion-acoustic waves,
now appears at zero frequency, indicating the presence of stationary structures. During the next 1 —ms
period (Figures 9c and 9q) it is seen that the energy has covered a broad range of wave numbers and
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Figure 9. Development of the turbulence (beam parameters’n’f = 90x1077 and E, = 500 eV) in the dispersion relation plane. The top and bottom plots correspond to
the electric field and density perturbations, respectively, for four consecutive periods of the turbulence. The dashed white curves are the theoretical dispersion curves
for the Langmuir and ion-acoustic waves.

the major portion of the turbulence does not lie on the linear dispersion curves. In the electric field spec-
trum, in addition to the enhanced Langmuir waves, features appear below the plasma frequency indicat-
ing the existence of Langmuir-like fields at regions of low electron density, i.e., density cavities. In the ion
density spectrum, zero frequency enhancements appear for a broad range of wave numbers, again indi-
cating the presence of stationary structures. As will be clarified later such spectral features are signatures
of caviton formation and wave collapse. Finally, Figures 9d and 9h show the spectral features averaged
over a long period once the steady state has reached. Enhanced linear Langmuir and ion-acoustic waves,
as well as the signatures of caviton formation as seen in Figures 9c and 9g, although much smoother and
less intense, are present.

The time evolution of the ion density perturbations in real space is shown in Figure 10. A strong response
appears soon after the initial electrostatic decay at time t~8 ms. This stage is quickly followed by the forma-
tion of narrow, deep, stationary density cavities where the plasma density is up to 10% below the mean back-
ground plasma density. Inside the density cavities there exist intense electric fields with amplitudes of up to
40 Vm™ ' whose ponderomotive force is necessary in order to maintain the density cavities. Such combina-
tion of the intense electric field and the associated density cavity is called a caviton. Cavitons have been
shown to go through the cycle of nucleation-collapse-dissipation-relaxation [Doolen et al., 1985; Russell
et al., 1988; Robinson et al., 1988]. At the start of the cycle and during the nucleation stage, Langmuir energy
is trapped (or nucleated) in a density cavity, which may have been generated via stochastic fluctuations in the
plasma density. The nucleated Langmuir energy may intensify by accumulating energy from the background
turbulence. Once the energy reaches to a threshold, collapse initiates, i.e., the Langmuir energy becomes
progressively more intense and the density cavity narrows and deepens as the ponderomotive force further
digs the cavity. The extra plasma then propagates to the sides in the form of ion sound pulses. This stage can
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Figure 10. Normalized density fluctuations shown in Figure 8 in real

space as a function of time.

relaxes, shallows and spreads to sides.
The remaining shallow density cavities
have been shown to be ideal for renu-
cleation of Langmuir energy, which
leads to the launch of a new cycle. This

is seen in Figure 10 where collocated collapse events happen immediately after the relaxation stage of
previous events.

In Figure 10, it can be seen that the initial stage of the turbulence, which is dominated by the formation of
many cavitons, is different from the later stage once the quasi-steady state has reached. Moreover, the exact
mechanism that leads to the formation of the initial cavitons needs to be clarified. In Figure 12, we revisit the
development of the density perturbations (Figure 10) in more details in a logarithmic scale. At t=8.2 ms
density perturbations are produced as a result of the initial electrostatic decay. We verify that the density
structures propagate with the sound speed and that the wavelength of the structure is what that is expected
from the parametric decay of the initial Langmuir waves. The propagating ion-acoustic waves are seen to
gradually turn into a stationary structure. At this point, every valley of the structure is an ideal location for
nucleation and formation of a caviton. This development is consistent with the spectral features observed
in Figures 9e-9g. After a few milliseconds the level of density perturbations in the form of ion sound pulses
increases due to the burnout of cavitons. The high level of density fluctuations can then disturb the shallow
density depressions before they serve as nucleation centers for new cavitons, and thus, the number of
cavitons significantly drops after the initial stage.

Note that the caviton formation at the

61 d early stages has dominated the turbu-
0.01 lence and prevented any electrostatic

62 | decay cascade or modulational instabil-
- ities. Figure 13 shows the evolution of
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o
[

Time (ms)
(2}
ey

65

66

67

Figure 11. Normalized density fluctuations in real space as a function of
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time showing the cycle of nucleation-collapse-dissipation.

-0.03

energy density (W) for the waves with
the highest electrostatic energy in the
simulation shown in Figures 8, 10, and
12. Initially the Langmuir waves with
wave number kx4 m~' grow above
the thermal level. At the time that
the ion density response appears in
Figure 12, the Langmuir waves with the
highest intensity appear on the bound-
ary of region IV (supersonic MI) and
region V (modified decay instability). Yet
no signs of supersonic Ml or modified
decay instability are seen. These results

AKBARI ET AL.

ZAKHAROV SIMULATIONS AURORAL IONOSPHERE

4821



@AG U Journal of Geophysical Research: Space Physics 10.1002/2016JA022605

-10 are similar to those of Nicholson and
Goldman [1978], who noted that once
the criterion W > (kip)? is satisfied loca-
lized packets of waves moving at speeds
less than the sound speed would directly
lead to collapse and that for such intensi-
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In summary, as we increased the input

energy into the system we observed a
40 smooth transition in the dynamics of
turbulence from a cascade of PDIs to
direct collapse at initial stages. Further
increasing the input energy does not
significantly alter the initial develop-
ment of the turbulence and only
increases the number of collapse events
in the quasi-steady state. However, one
should note that upon using much stronger electron beams the validity of the Zakharov equations would
soon be under question and the beam-plasma interactions may fall under the control of other processes
or higher order nonlinearities, such as electron bunching [Ergun et al., 1991], that cannot be described by
the Zakharov equations.

Figure 12. Normalized density fluctuations seen in Figure 10 in logarith-
mic scale.

5. The Effect of Secondary (Scattered) Electrons

In the auroral ionosphere, the assumption of pure Maxwellian distribution for the electron gas is often not
precise during periods of auroral activity. As a result of primary auroral electrons impinging on the
Earth’s neutral atmosphere, a secondary electron population with suprathermal energies (a few eV up to
~100 eV) emerges [Lummerzheim and Lilensten, 1994]. The total number density of the produced secondary
electrons is only a fraction of the number density of the bulk electrons. However, at energies greater than
2—3 eV these secondary electrons dominate the bulk population and generate a power law type tail for
the total distribution function. The presence of this energetic tail significantly enhances the Landau damp-
ing for Langmuir waves with a range of
> phase velocities, and as a result signifi-
0 cantly alters the dynamics of Langmuir
10 turbulence.

Based on the electron distributions mea-
sured with instrument on board sound-
107} 3ms ing rockets, Newman et al. [1994a, 1994b]

showed that the presence of secondary

electrons with the total number density
of 4% of the bulk thermal electrons (at
the observation altitude of ~700 km)
truncates the cascade of parametric
I I decay instability after a few steps and
prevents the energy from flowing
10'6 5 I 6 ms toward small wave numbers.

et 0 EE— p k  1n this section, we investigate the effect
10 10 of secondary electrons on the dynamics

Figure 13. Evolution of the electrostatic to thermal energy density (W) for of Langmuir turbulence at the F region

the waves with the highest electrostatic energy for the simulation shown  Peak. In order to model the secondary
in Figures 8, 10, and 12. electrons, we decide to employ the
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Figure 14. Evolution of the high-frequency electric field (E) in k space for two sets of beam parameters ((left) 2—‘; = 4x107°, E, =50 eV and (right) ,”,—g =7x107, E, = 50 eV)
once secondary electrons are added to the bulk Maxwellian distribution.

Kappa distribution of Broughton et al. [2016] that was determined by fitting the sounding rocket measure-
ments of Newman et al. [1994a, 1994b]. The one-dimensional Kappa distribution function is given by

-k
ne 1 T(k+1) < v2 )
f V)= ———— = 1+— (6)
Kappa( ) \/7—1. k3/2 Bce r(k-1/2) k‘gie
where n, is the number density of the secondary population, 0 = (#) 2",‘;,# is the modified thermal

velocity, T, =18.2 eV is the secondary electron population temperature, k=1.584 is the velocity spectral index,
and I'(t) = IxHe*de. We conducted our simulations over a range of secondary electron number densities
(0.01% < ‘:%; < 1%). However, only the results for’,%oe = 0.1%, which is a more suitable number at the F region

peak [Maggs and Lotko, 1981; Lotko and Maggs, 1981], are presented. Such low levels of secondary electrons are
assumed to have negligible effect on the real part of the plasma dispersion function, and therefore, the disper-
sion relation of Langmuir waves is assumed to remain unaffected by the secondary electrons.

Figure 14 shows the development of the turbulence (high-frequency electric field as a function of time and
wave number) for two sets of beam parametersg—‘; = 4x107° and E, =50 eV (Figure 14a) andZ—s =7x10"and
E, =50 eV (Figure 14b), where a secondary electron population with ’,’%; = 0.1 has been added to the bulk
Maxwellian population. For number density ratios % < 3x107%, no parametric decay instability is observed.
Therefore, the first obvious effect of the secondary electron population is to significantly increase the mini-
mum beam number density that is required to initiate nonlinear interactions. PDI finally occurs as we increase
the beam number density to n,=ngx4x 10~ 5 (Figure 14a). However, further increasing n, does not lead to a
cascade of PDI or even a secondary PDL. This is in stark contrast to the results previously presented in Figures
2 and 6. As can be seen in Figure 14b, instead of additional PDIs, Langmuir waves produced by the initial PDI
grow in intensity, and soon signs of early-stage caviton formation (similar to those in Figure 8) appear. This
stage is followed by the broadening of the main Langmuir waves in wave number space, which continues
to remain unchanged throughout the simulation. Further increasing the beam number density does not
significantly alter the evolution of the turbulence from the results shown in Figure 14b.

6. Summary

In this work we investigated Langmuir turbulence as would be generated in the lower auroral F region by
ionospheric electron beams. We investigated a broad range of beam parameters, extending by more than
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2 orders of magnitude in average energy and electron number density. As we increased the number density
of the electron beam, a smooth transition in dynamics of the turbulence was observed, ranging from a single
parametric decay, to a cascade of PDlIs, to formation of stationary density cavities in the condensate region, to
direct collapse at initial stages of the turbulence.

No definitive signature of modulational instabilities at small wave numbers was seen once the energy
reached to the condensate via a cascade of parametric decays. Moreover, no signs of supersonic modula-
tional instability or modified decay instability at high wave numbers were seen once we increased the input
energy to the system. Instead, the system quickly moved toward direct formation of cavitons.

The presence of secondary electrons, as modeled by the Kappa distribution, was seen to have a strong weak-
ening effect on the turbulence. Much stronger electron beams are required in order to reach the nonlinear
regimes once the secondary electrons are included. Moreover, the enhanced Landau damping introduced
by the secondary electrons prevents the turbulence from generating a cascade of PDlIs.

Finally, the product waves of coalescence-like interactions, although much weaker than the products of the para-
metric decay instability, were seen to be orders of magnitude more intense than the thermal-level ion-acoustic
and Langmuir waves (see Figures 4 and 5). Such wave enhancements appear at higher wave numbers compared
to the beam-resonant Langmuir waves and therefore may be detected by incoherent scatter radars tuned at the
proper wave numbers even if the beam-resonant Langmuir waves themselves are invisible to the radar.
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