
Multi-objective Software Effort Estimation

Federica Sarro∗, Alessio Petrozziello† and Mark Harman∗
University College London, London, United Kingdom

∗

University of Portsmouth, Portsmouth, UK
†

f.sarro@ucl.ac.uk, alessio.petrozziello@port.ac.uk, mark.harman@ucl.ac.uk

ABSTRACT
We introduce a bi-objective effort estimation algorithm that
combines Confidence Interval Analysis and assessment of
Mean Absolute Error. We evaluate our proposed algorithm
on three different alternative formulations, baseline com-
parators and current state-of-the-art effort estimators ap-
plied to five real-world datasets from the PROMISE reposi-
tory, involving 724 different software projects in total. The
results reveal that our algorithm outperforms the baseline,
state-of-the-art and all three alternative formulations, sta-
tistically significantly (p < 0.001) and with large effect size

(Â12 ≥ 0.9) over all five datasets. We also provide evidence
that our algorithm creates a new state-of-the-art, which
lies within currently claimed industrial human-expert-based
thresholds, thereby demonstrating that our findings have ac-
tionable conclusions for practicing software engineers.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management

Keywords
Software effort estimation; multi-objective evolutionary al-
gorithm; confidence interval; estimates uncertainty.

1. INTRODUCTION
Effort estimation is a critical activity for planning and

monitoring software project development in order to deliver
the product on time and within budget [9, 51, 88]. The
competitiveness (and occasionally the survival) of software
organisations depends on their ability to accurately predict
the effort required for developing software systems; both
over- or under-estimates can negatively affect the outcome
of software projects [59, 63, 84, 88]. Several algorithmic ap-
proaches have been proposed in literature to support soft-
ware engineers in improving the accuracy of their estima-
tions. These methods often produce a point estimate of the
effort required to develop a new project.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.

ICSE’16 May 14-22, 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3900-1/16/05.

DOI: http://dx.doi.org/10.1145/2884781.2884830

Very few previous studies have accounted for the inher-
ent uncertainty of the estimates produced [4, 6, 76, 83, 85,
86]. Some previous work has instead investigated the over-
confidence and/or under-confidence of the prediction given
by expert judgement [35, 36, 37, 38, 40, 41, 67]. Exist-
ing surveys on estimation practice [37, 67] suggest that hu-
man effort estimates are over-optimistic and there is a strong
over-confidence in their accuracy.

We introduce a multi-objective evolutionary approach that
seeks to build a robust estimation model by simultaneously
maximising the estimation accuracy and minimising the un-
certainty associated with the estimation model itself. We
named this approach Confidence Guided Effort Estimator
(CoGEE). We use the familiar sum of absolute error, abs(real
effort - estimated effort), as one objective to guide our algo-
rithm, combining this with the (less widely-known and less
widely-used) confidence interval. The confidence interval is
an estimated range of values that are likely (according to
the chosen interval range) to include the estimated effort.

We report the results of four sets of experiments on five
publicly available datasets to compare and evaluate our ap-
proach against candidate competitors: baseline estimators
[82], state-of-the-art estimators [39, 50, 90], alternative sin-
gle and multi-objective formulations, and currently claimed
best industrial practice based on human judgment [67]. In
our evaluation we follow recent best practice to assess pre-
diction systems [82, 90] and evolutionary approaches [3, 31].

Our new bi-objective effort estimation algorithm outper-
forms baseline estimators (a sanity check), state-of-the-art
techniques (case-based reasoning, linear regression, regres-
sion trees) and also three alternatives that we implemented
in order to assess the degree to which multi-objectivity plays
a role in the performance of our algorithm. These claims
have been tested using a non-parametric (Wilcoxon) test
for statistical significance which reveals that the results are
significant (p < 0.001), after applying the Bonferroni correc-
tion for multiple statistical testing (the most conservatively
cautious of all corrections). Furthermore, in all cases, our
bi-objective algorithm outperforms these candidate competi-
tors with a large effect size, as measured using the Vargha-
Delaney non-parametric effect size measure (Â12 ≥ 0.9).

We also compare both the estimation error produced by
our algorithm (and the current state-of-the-art) and the bud-
get overruns that would accrue from using them against two
claimed thresholds for industrial best estimation practice.
The results are very encouraging, suggesting that CoGEE
moves median expected state-of-the-art performance within
at least one, and sometimes both thresholds.

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering

 619

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text

rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution
International 4.0 License.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

The rest of the paper is organised as follows. Section
2 gives some background on Software Development Effort
Estimation. Section 3 describes our proposal, CoGEE, for
multi-objective effort estimation. The research questions
and experimental method we used to address them are de-
scribed in Section 4. The results of the empirical study are
reported in Section 5. The study validity is discussed in Sec-
tion 6. Section 7 reports on related work, while final remarks
are presented in Section 8.

2. SOFTWARE EFFORT ESTIMATION
Software development effort estimation is the process of

predicting the most realistic amount of effort (usually ex-
pressed in terms of person-hours or person-month) required
to develop or maintain a software project based on informa-
tion collected in the early stage of a software project. Expert
estimation remains the dominant strategy when estimating
software development effort in practice [37]. Research re-
sults have focused on the construction of formal software
effort estimation models to support the engineers in the es-
timation process. The first estimation models were based
on regression analysis. Since then, different model build-
ing approaches have been investigated, including approaches
based on analogy-based techniques (e.g., Case-Based Rea-
soning) [2, 47, 49, 81], machine learning techniques (e.g.,
Support Vector Regression, Bayesian Network [58]), search-
based approaches (e.g., Genetic Programming, Tabu Search
[24]), and combinations of two or more of these models (e.g.,
[15, 16, 50, 52]).

Formal estimation approaches usually exploit training data
about past projects to build an estimation model which is
then used to predict the effort for a new project. Such a
model takes as input a set of predictors (e.g., manager ex-
perience, team experience) and returns a scalar value that
represents the effort estimated to develop a new software
system having the characteristics captured by the predictors.
This model can be described by the following equation:

EstimatedEffort = c1 op1 f1 ... cn op2n−1 fn op2n C (1)

where fi represents the value of the ith project feature and ci
its coefficient, C represents a constant, while opi represents
the ith mathematical operator of the model.

The way in which the predictors are used is specific to
the prediction approach. For example, when using a linear
regression technique, the predictors are combined through
a linear combination, while Case-Based Reasoning exploits
the predictors to identify the most similar past projects.

Several measures have been proposed to evaluate the ac-
curacy of a prediction model. Generally they are based on
the Absolute Error (i.e, |RealEffort − EstimatedEffort |).

The most popular are MMRE and Pred(25) [14]. The
former is the Mean of Magnitude of Relative Error (MRE),
where MRE [14] is defined as:

MRE = |RealEffort − EstimatedEffort |/RealEffort (2)

MRE is calculated for each project whose effort has to be
estimated and MMRE is used to have a cumulative mea-
sure of the error. The Prediction at level l – Pred(l) – [14]
measures the percentage of the estimates whose error is less
than l% and l is usually set at 25. It is defined as follows:

Pred(25) = k/N (3)

where N is the total number of projects and k is the number
of observations whose MRE is less than or equal to 0.25.

These measures have been criticised [25, 45, 53, 71, 79, 87]
as being biased towards underestimations and can behave
very differently when comparing prediction models, thereby
motivating the use of other (more standardised) measures,
such as the Mean Absolute Error (MAE) and the Standard-
ized Accuracy (SA), recently recommended [55, 82] to com-
pare the performance of prediction models. MAE is unbiased
(towards over or underestimation) and is defined as:

MAE =
1

N

N∑
i=1

|REi − EEi| (4)

where N is the number of projects used for evaluating the
performance, and REi and EEi are the actual and estimated
effort, respectively, for the project i.
SA is based on MAE and it can be defined as follows:

SA = (1−MAEPj/MAErguess) · 100 (5)

where MAEPj is the MAE of the approach Pj being eval-
uated and MAErguess is the MAE of a large number (e.g.,
1000 runs) of random guesses. Thus, SA represents how
much better Pj is than random guessing. A value close to
zero means that the prediction model Pj is practically use-
less, performing little better than a mere random guess [82].
Effort estimation techniques seek to minimise MAE; whereas
they seek to maximise SA.

3. BI-OBJECTIVE ESTIMATION
Our approach to software effort estimation uses Search

Based Software Engineering (SBSE), an increasingly preva-
lent approach to software engineering [13, 26, 28, 30] in
which software engineering problems are reformulated as
search problems within the search space that can be ex-
plored using computational search algorithms.

In the SBSE literature there has been more than 15 years
of work on the use of search-based approaches for software
effort estimation (e.g., [11, 18, 19, 20, 21, 22, 56, 77]). A
recent survey of work on SBSE for effort prediction in par-
ticular (and software project management in general) can
be found in the work of Ferrucci et al. [24]. However, all
previous search-based effort estimation approaches seek to
produce point estimates. Furthermore, only two previous
studies [66, 74] concerned multi-objective formulations of ef-
fort estimation. Both of these two previous multi-objective
studies focused on point estimates and aimed to analyse the
tradeoff among different accuracy measures for the single
overall objective of producing the most accurate point esti-
mate.

By contrast, our multi-objective approach treats the ac-
curacy of the point estimate as one of the two objectives,
and the confidence interval as the other. In the following
we describe our proposed approach, using the standard [26,
27, 29, 31] three ‘key ingredients’ of any SBSE approach:
representation, fitness function, and computational search
algorithm. Since our formulation is a bi-objective formula-
tion we also describe how we handle multi-objective search.
Representation: Feasible solutions to the problem defined
in Section 2 are estimation models described by Equation
1. Such a model can be encoded as a Genetic Algorithm
individual using an expression syntax tree and randomly
choosing the coefficients ci ∈ R and opi ∈ {+,−, ∗}, while
the factors values depend on the training data and do not

620

change during the evolution process. It is worth noting that
the equations feasible for the effort estimation problem are
those providing positive value for EstimatedEffort . The ini-
tial population was generated by building 100 random trees
of fixed depth.
Fitness: To evaluate the fitness of each chromosome we
employed a multi-objective function to simultaneously min-
imise the estimates accuracy and the estimates distribution
uncertainty.

Many different indicators can be used to evaluate the ac-
curacy of the estimates (see Section 2). Previous work [20,
57] showed that the use of different measures can impact
both the fitting and the predictive performance of the mod-
els built by GA: relative measures (e.g., MMRE, MEMRE)
often affect negatively the overall model accuracy, while ab-
solute measures (e.g., SAE) seem to not have any detrimen-
tal effect. Thus, in this paper, we choose to employ the Sum
of Absolute Error (SAE) [14] as fitness function.

On the other hand, fewer measures have been suggested
in the literature to assess the uncertainty of the effort esti-
mates and no previous work has been carried out so far to
investigate their effectiveness as a fitness function. There-
fore, in this paper we measure the estimate uncertainty by
employing the confidence interval1 associated with the esti-
mation model to assess the uncertainty of the mean value of
the distribution of absolute errors produced by the model as
follows:

φ(p, df) ∗ std(AbsoluteErrors)√
n

(6)

where n is the size of the sample, std(AbsoluteErrors) is
the standard deviation of the distribution of absolute errors
produced by the estimation model, and φ(p, df) is the quan-
tile function [32]. This function returns a threshold value x,
below which random draws from the given cumulative dis-
tribution function (c.d.f.) would fall p percent of the time:

Q(p) = inf{x ∈ R : p ≤ F (x)} (7)

for a probability 0 < p < 1. Confidence intervals are usually
calculated so that this percentage is 95%; while the degree
of freedom, df , depends on the number of parameters we are
estimating. In regression models, an n-sized sample usually
leads to n− k degrees of freedom, where k is the number of
parameters to be estimated.
Handling Multiple Objectives: In our case, the two ob-
jectives are measured on orthogonal scales so we use Pareto
optimality, which states: “A solution x1 is said to dominate
another solution x2, if x1 is no worse than x2 in all objectives
and x1 is strictly better than x2 in at least one objective.”

Using Pareto optimality we can plot the set of solutions
found to be non-dominating (and therefore equally viable).
Computational Search: As a ranking method, we em-
ployed a widely used Multi-objective evolutionary algorithm,
namely NSGAII [17]. We experimented with two widely
used selection operators, i.e., roulette wheel selector and

1Please note that an important difference between Confi-
dence Interval (CI) and Prediction Interval (PI) is that PI
refers to the uncertainty of an estimate, while CI usually
refers to the uncertainty associated with the parameters of
an estimation model or distribution. The confidence level of
a PI refers to the expected (or subjective) probability that
the real value is within the predicted interval, while the con-
fidence level of a model assesses the uncertainty of the mean
value of a distribution of effort values.

tournament selector [54], whereas the crossover and muta-
tion operators are specific for our solution encoding. We
used the roulette wheel selector [54] to choose the individ-
uals for reproduction, while we employed the tournament
selector [54] to determine the individuals that are included
in the next generation (i.e., survivals). The former assigns
a roulette slice to each chromosome according to its fitness
value. In this way, even if candidate solutions with a higher
fitness have more chances to be selected, there is still a
chance that they may remain unselected. On the contrary,
using the tournament selector only the best n solutions (usu-
ally n ∈ [1, 10]) are copied straight into the next generation.

Crossover and mutation operators were defined to pre-
serve well-formed equations in all offspring [20]. To this
end, we used a single point crossover which randomly se-
lects the same point in each predictive model expression
tree and swaps the subtrees corresponding to the selected
node. Since both trees are cut at the same point, the trees
resulting after the swapping have the same depth as com-
pared to those of parent trees. We used a mutation operator
that selects a node of the tree and randomly changes the
associated value. Mutation can affect internal nodes (i.e.,
operators) or leaves (i.e., coefficients) of the tree. In partic-
ular, when mutation involves internal nodes, a new operator
op′i ∈ {{+,−, ∗} \ opi} is randomly generated and assigned
to the node, while if the mutation involves a leaf, a new
coefficient c′i ∈ R is assigned to the node. It is worth not-
ing that also the mutation operator we used preserves the
syntactic structure of the equation. Crossover and mutation
rate were fixed to 0.5 and 0.1, respectively, since in previous
work recommended crossover rates ranged from 0.45 to 0.95
and mutation rates ranged from 0.06 to 0.1 [20, 33]. The
evolutionary process terminates after 250 generations.

4. EMPIRICAL STUDY DESIGN
This section presents the design of the empirical study we

carried out to get an insight into the use of multi-objective
effort estimation. We first present the research questions we
aim to answer and then the data and techniques we exper-
imented with, and the evaluation criteria we used to assess
the results.

4.1 Research Questions
A novel effort estimation approach must outperform base-

line methods. Thus, the first research question we aim to
answer represents a sanity check of our proposal:
RQ1 Sanity Check: Is the proposed approach CoGEE
suitable for effort estimation? To answer this question we
compare our algorithm with three common baseline bench-
marks used in the context of effort estimation (i.e., Mean
and Median Effort and Random Guessing) and described
in Section 4.4. If the investigated estimation method does
not outperform the results achieved using these baselines, it
cannot be transferred to industry [61].

If a proposed estimation method outperforms the bench-
mark, then the next natural question to ask is whether it
outperforms state-of-the-art techniques currently proposed
in the effort estimation literature. If not, then there would
be no reason to adopt it, since it could not be guaranteed to
advance the state-of-the-art. This motivates RQ2:
RQ2. State of the Art Benchmark: Does CoGEE pro-
vide more accurate and robust estimates than currently used
effort estimation methods?

621

To answer RQ2 we compared our proposal (CoGEE) to
three widely-used and well-studied state-of-the-art effort es-
timation methods, namely LR [90], CART [8], and CBR
[81], as detailed in Section 4.4. We compare against three
different approaches, in order to improve the scientific ev-
idence that our proposed approach does, indeed, advance
the state-of-the-art. For different datasets, one or other of
these techniques may produce the best effort estimates, but
among the three of them, they typically can be expected to
perform better than other techniques in the literature [34,
39, 50, 62]. Since CBR is configurable, depending on the
number of cases used, and this can influence performance,
we also report results for three different choices.

If we find that our multi-objective algorithm can outper-
form the state-of-the-art, then we have scientific evidence
to suggest that it should be adopted. However, this would
not provide scientific evidence that it is the multi-objective
nature of our approach that confers the improvements in
estimation accuracy we observe. Therefore, in RQ3, we in-
vestigate whether there is evidence that the use of the two
objectives we have chosen leads to any improvements we
might have observed in answering RQ2.

There is evidence in the literature on multi-objective op-
timisation [5, 72] that multi-objective formulations can out-
perform single objective formulations, even when compared
against the specific single objective targeted by a single ob-
jective formulation. When this happens, it provides evi-
dence that the multiple objectives are, in a sense, ‘sym-
pathetic’ to the targeted single objective; they help guide
the search towards desired single objective even better and
focusing solely on the single objective itself. This arises be-
cause search spaces are non-monotonic, and therefore disim-
proving moves may be required in order to arrive at overall
results that lie closer to global optima. Hitherto, this pos-
sibility has not been investigated for software project effort
estimation, thereby motivating RQ3:
RQ3. Benefits from Multi-objective Formulation:
Does CoGEE provide more accurate and robust estimates
than alternative single and multi-objective approaches?

First, we seek to establish whether the two objectives we
consider together outperform each when considered individ-
ually. Therefore, we compare two variants of the effort es-
timation formulated as a single-objective problem in which
each optimise one of the two objectives used by our ap-
proach, i.e., GA-SAE, where the goal is to minimize the Sum
of Absolute Error and GA-CI, where the goal is to minimize
the Confidence Interval:
RQ3.1. Does CoGEE provide more accurate and robust
estimates than GA-SAE and GA-CI?

When we optimise the Sum of Absolute Error (SAE) we
are implicitly searching for a compromise between underesti-
mates and overestimates, because the sum of absolute error
is the sum of underestimates and over estimates. However,
these are clearly two contrasting goals that our formula-
tion combines to give SAE. For completeness, we therefore
separate out these two components of SAE, to investigate
whether they should be separately optimised (using an im-
plementation we call NSGAII-UO) or whether it is sufficient
to combine them as a single objective (SAE):
RQ3.2. Does CoGEE provide better results than NSGAII-
UO?

If our proposed approach (CoGEE) satisfies all of the eval-
uation criteria covered by RQs, 1, 2 and 3, then we will have

strong scientific evidence that it outperforms the state-of-
the-art, and also other candidate alternative formulations.
However, in order to have real world impact, it will also be
necessary to outperform current industrial practice. There is
little reliably consistent scientific evidence concerning the ac-
tual estimate accuracy of current industrial practice. There-
fore, our CoGEE technique may have to outperform current
beliefs about industrial practice, as reported by practising
software engineers, in order to promote wider industrial up-
take (of our approach and of automated effort estimation
more generally). This motivates our final research question,
in which we evaluate the performance of our proposed esti-
mation technique against the claims for the performance of
current industry best practice in effort estimation:
RQ4. Comparison to Industrial Practices: Does our
CoGEE provide more accurate and robust estimates than
the ones claimed for current industrial best practice?

To answer RQ4 we compare the performance of our Co-
GEE (and other state-of-the-art estimators) against claims
made for best human-expert-based results currently achiev-
able in industry [37, 67]. We investigate the magnitude of
relative error (compared to claimed industrial best practice),
and, because industrialists tend to be more concerned with
under estimated results (rather than overestimated results)
[59], we also evaluate the budget overrun that would accrue
from using our technique, compared to these claimed for
industrial best practice and the state-of-the-art.

4.2 Datasets
To carry out the empirical study we exploited five publicly

available datasets included in the PROMISE repository [64],
namely China, Desharnais, Finnish, Maxwell and Miyazaki.

These datasets represent an interesting sample of indus-
trial software projects collected from a single company or
several software companies. The datasets cover a diversity
of application domains and projects’ characteristics. In par-
ticular, they differ for: observation number (from 38 to 499
projects); number and type of features (from 4 to 17 fea-
tures, including a variety of features describing the soft-
ware projects, such as number of developers involved in
the project and their experience, technologies used, size in
terms of Function Points [48], etc.); technical characteristics
(software projects developed in different programming lan-
guages and for different application domains, ranging from
telecommunications to commercial information systems); in-
volved companies (the Desharnais dataset is within-company
(WC), the others are cross-company (CC)); geographical lo-
cations (software projects coming from China, Canada, Fin-
land). Furthermore all these datasets have been widely used
in previous research work to evaluate effort estimation meth-
ods. Table 1 summarises the descriptive statistics of the fea-
tures of the datasets we considered, while further details are
provided in Appendix A to allow readers to assess whether
the results we gathered can scale up to their own contexts.

4.3 Validation and Evaluation
To verify whether a method gives useful estimations of

the actual development effort, a validation process is re-
quired. To this end, we performed a multiple-fold cross vali-
dation, partitioning the whole dataset into training sets, for
model building, and test sets, for model evaluation. Indeed,
when the accuracy of the model is computed using the same
dataset employed to build the prediction model, the accu-

622

Dataset Type Variable Min Max Mean Std. Dev.
China CC Input 0 9404 167.10 486.34
(499 projects) Output 0 2455 113.60 221.27

Inquiry 0 952 61.60 105.42
File 0 2955 91.23 210.27
Interface 0 1572 24.23 85.04
Effort 26 54620 3921 6481

Desharnais WC TeamExp 0 4 2.30 1.33
(77 projects) ManagerExp 0 4 2.65 1.52

Entities 7 386 121.54 86.11
Transactions 9 661 162.94 146.09
AdjustedFPs 73 1127 284.48 182.26
Effort 546 23490 4903.95 4188.19

Finnish CC HW 1 3 1.26 0.64
(38 projects) AR 1 5 2.24 1.50

FP 65 1814 763.58 510.83
CO 2 10 6.26 2.73
Effort 460 26670 7678.29 7135.28

Miyazaki CC SCRN 0 281 33.69 47.24
(48 projects) FORM 0 91 22.38 20.55

FILE 2 370 34.81 53.56
Effort 896 253760 13996 36601.56

Maxwell CC SizeFP 48 3643 673.31 784.04
(62 projects) Nlan 1 4 2.55 1.02

T01 1 5 3.05 1.00
T02 1 5 3.05 0.71
T03 2 5 3.023 0.89
T04 2 5 3.19 0.70
T05 1 5 3.05 0.71
T06 1 4 2.90 0.69
T07 1 5 3.24 0.90
T08 2 5 3.81 0.96
T09 2 5 4.06 0.74
T10 2 5 3.61 0.89
T11 2 5 3.42 0.98
T12 2 5 3.82 0.69
T13 1 5 3.06 0.96
T14 1 5 3.26 1.01
T15 1 5 3.34 0.75
Effort 583 63694 8223.2 10500

Table 1: Descriptive statistics of the dataset.

racy evaluation is considered optimistic [9]. To apply the
multiple-fold cross validation, we partitioned a dataset in
three test sets (the observations were sampled uniformly at
random, without replacement), and then for each test set
we considered the remaining observations as training set.
This procedure was applied to each dataset, thus obtain-
ing: for China a test set of 167 observations and two of 166;
for Desharnais a test set of 25 observations and two of 26;
for Finnish a test set of 12 observations and two of 13; for
Maxwell a test set of 20 observations and two of 21; for
Miyazaki three test sets of 16 observations.

Concerning the evaluation of the estimates obtained with
the analysed estimation methods, we used the Mean Ab-
solute Error and the Standardized Accuracy (see Section
2). To establish if the estimations of one method were sig-
nificantly better than the estimations provided by another
method, we tested the statistical significance of the absolute
errors achieved with different estimation methods [45]. To
check for statistical significance we used the Wilcoxon Signed
Rank Test [12], since the Shapiro test [73] showed that many
of our samples came from non-normally distributed popu-
lations, making the T -test unsuitable. The Wilcoxon test
is a safe test to apply (even for normally distributed data),
since it raises the bar for significance, by making no assump-
tions about underlying data distributions. In particular, we
tested the following Null Hypothesis: “The absolute errors
provided by the prediction model Pi are significantly less
that those provided by the prediction model Pj .”, and set
the confidence limit, α, at 0.05 and applied the standard
Bonferroni correction (α/K, where K is the number of hy-
potheses) when multiple hypotheses were tested.

As it has been previously noted in advice on statistical
testing of randomised algorithms [3], it is inadequate to
merely show statistical significance alone; we also need to
know whether the effect size is worthy of interest. To as-
sess whether the effect size is worthy of interest we em-
ployed a non-parametric effect size measure, namely the
Vargha and Delaney’s A12 statistic [3], since not all sam-
ples were normally distributed. Indeed, as suggested in
recent best practice [3, 82], it is better, in cases such as
ours, to use a standardised measure rather than a pooled
measure such as the Cohen’s d effect size. Given a perfor-
mance measure M , the A12 statistic measures the probabil-
ity that running algorithm A yields better M -values than
running another algorithm B, based on the following for-
mula Â12 = (R1/m − (m + 1)/2)/n, where R1 is the rank
sum of the first data group we are comparing, and m and n
are the number of observations in the first and second data
sample, respectively. If the two algorithms are equivalent,
then Â12 = 0.5. Given the first algorithm performing better
than the second, Â12 is considered small for 0.6 ≤ Â12 < 0.7,
medium for 0.7 < Â12 < 0.8, and large for Â12 ≥ 0.8, al-
though these thresholds are somewhat arbitrary. In this
case we are always interested in any improvement in predic-
tive performance, so no transformation of the Â12 metric is
needed [69].

To assess the performance of the multi-objective optimi-
sation algorithms we carried out a quantitative assessment
by employing three solution set quality indicators, namely
Contributions (IC), Hypervolume (IHV), and Generational
Distance (IGD) [23]. To compute these indicators, we nor-
malised the fitness values to avoid unwanted scaling effects,
and we used the set of non-dominated solutions found by
the union of all the approaches compared as Reference Set
(RS)[46].

The IC quality indicator is the simplest measure. It mea-
sures the proportion of solutions given by an algorithm, A,
that lie on the reference front (i.e., RS) [23]. The higher
this proportion, the more A contributes to the best solutions
found by the approaches compared, and so the better is the
quality of its solutions. IC is a simple and intuitive mea-
sure, but it is affected by the number of solutions produced,
unfavourably penalising algorithms that might produce ‘few
but excellent’ solutions. This is why we also consider two
other measures of solution quality, IHV and IGD.

The IHV quality indicator [91] calculates the volume (in
the objective space) covered by members of a non-dominated
set of solutions from an algorithm of interest. The larger this
volume, the better the algorithm, because the more it cap-
tures of the non-dominated solution space. Zitzler demon-
strates [92] that this hypervolume measure is also strictly
‘Pareto compliant’. That is, the hypervolume of A is higher
than B if the Pareto set of A dominates that of B. By using
a volume rather than a count, this measure is also less sus-
ceptible to bias when the numbers of points on the compared
fronts are very different.

The IGD quality indicator [89] computes the average dis-
tance between the set of solutions, S, from the algorithm
measured and the reference set, RS. The distance between
S and RS in an n-objective space is computed as the aver-
age n-dimensional Euclidean distance between each point in
S and its nearest neighbouring point in RS. We can think
of IGD as the distance between the front S and the reference
front RS in the n-dimensional problem objective space.

623

Due to the stochastic nature of evolutionary algorithms,
best practice requires the use of careful deployment of in-
ferential statistical testing to assess the differences in the
performance of the algorithms used [3, 31]. We therefore
performed 30 independent runs per algorithm, per fitness
function measure, per project to allow for such statistical
testing, correcting for multiple statistical tests.

4.4 Benchmarks
Random Guessing. Random guessing is a näıve bench-

mark suggested to assess the usefulness of a prediction sys-
tem [82]. It randomly assigns the y value of another case
to the target case. More formally, it is defined as: pre-
dict a y for the target case t by randomly sampling (with
equal probability) over all the remaining n−1 cases and take
y = r where r is drawn randomly from 1...nr = t [82]. Any
prediction system should outperform random guessing since
an inability to predict better than random implies that the
prediction system is not using any target case information.

Mean (Median) Effort. These are two baseline bench-
marks commonly used for effort estimation techniques. Specif-
ically, the mean (median) of the past project efforts is used
as predicted effort for a new project.

Linear Regression. We used the Automatically Trans-
formed Linear Model (ATLM) recently proposed as a suit-
able approach for comparison against novel software effort
estimation methods [90]. Despite its simplicity ATLM per-
forms well over a range of different project types and requires
no parameter tuning; it is also deterministic, meaning that
results obtained are amenable to replication [90].

Case-Based Reasoning. CBR is a branch of artificial
intelligence that has been successfully used in Software En-
gineering for prediction and reuse type applications [78].
Given a new software project (i.e., target project) — charac-
terised by its set of features — the past projects relevant to
solve it are retrieved from a case base of past projects. These
relevant cases are identified by using a similarity function
that measures the distance between the target case and the
other cases based on the values for the n features of these
projects. The effort values of the k most similar projects
(i.e., analogies) are then used as final prediction for the new
project. The choice of k is left to the user and has been a
matter of some debate [42]. We used ANGEL [80] to ob-
tain CBR predictions. It is a tool introduced by Shepperd
and Schofield to estimate the development effort of a soft-
ware project. It supports the Euclidean distance measure
between vectors and we used this metric to compute project
similarity, while the final estimation was computed as the
mean effort of the k nearest analogies. We report results of
each of the choices of k, between k = 1 and k = 3 analogies.

Classification and Regression Trees. CART are ma-
chine learning methods to build prediction models by recur-
sively partitioning the data and fitting a simple prediction
model within each partition [8]. The partitioning can be
represented graphically with a decision tree. Decision trees
where the dependent variable takes a finite set of values are
called classification trees, while decision trees where the de-
pendent variable takes continuous values are called regres-
sion trees. In our work, regression trees were generated using
the R package rpart2.

Genetic Algorithms. We considered two variants of
the effort estimation formulated as a single-objective prob-

2https://cran.r-project.org/web/packages/rpart/index.html

China SA Desharnais SA Finnish SA Maxwell SA Miyazaki SA
CoGEE 0.48 CoGEE 0.47 CART 0.52 CoGEE 0.56 CoGEE 0.90
GA-SAE 0.48 LR 0.46 CoGEE 0.45 GA-SAE 0.56 LR 0.76
GA-CI 0.45 GA-SAE 0.45 GA-CI 0.45 CART 0.51 GA-CI 0.66
CART 0.40 CART 0.38 LR 0.42 CBR3 0.51 GA-SAE 0.66
CBR3 0.40 CBR3 0.34 CBR3 0.41 GA-CI 0.48 NSGAII-UO 0.60
Median 0.38 Median 0.33 GA-SAE 0.41 CBR2 0.47 CBR2 0.56
CBR2 0.35 CBR2 0.32 CBR2 0.38 NSGAII-UO 0.41 CBR3 0.56
CBR1 0.29 CBR1 0.27 CBR1 0.31 LR 0.38 CBR1 0.55
Mean 0.25 Mean 0.26 NSGAII-UO 0.19 Median 0.33 Median 0.49
LR 0.23 GA-SAE 0.09 Mean 0.17 Mean 0.27 CART 0.46
NSGAII-UO -1.73 NSGAII-UO 0.08 Median 0.14 CBR1 0.26 Mean 0.30

Table 2: RQs1-2: Standard Accuracy (SA) val-
ues achieved by our approach CoGEE, the base-
line (Mean and Median Effort) and state-of-the-art
(CBR1-2, LR, and CART) techniques over the five
datasets. For completeness, SA results are also
included for the other three alternative evolution-
ary algorithms considered later (in answer to RQ3):
GA-CI, GA-SAE, and NSGAII-UO.

lem and one formulated as a multi-objective problem. These
variants differ only in the objective function: (1) GA-SAE,
where the goal is to minimize the Sum of Absolute Er-
rors; (2) GA-IC, where the goal is to minimize the Confi-
dence Interval associated to the mean of the absolute errors;
(3) NSGAII-UO, where the goal is to simultaneously min-
imise over- and under-estimates. The single-objective GAs
were implemented by using the R package GA3. The multi-
objective algorithms, NSGAII-UO and CoGEE, were imple-
mented using the R package nsga2R4. All these algorithms
use the same solution encoding and setting (see Section 3).

5. RESULTS
This section presents our results in answer to RQs1-4.

5.1 RQ1. Sanity Check
The analysis of SA (see Table 2) suggests that the estima-

tions obtained with CoGEE are better than those achieved
by using Mean, Median, and Random estimates.

Table 3 shows the results of the Wilcoxon test (together

with the corresponding Â12 effect size) to compare the sta-
tistical significance and effect size of the improvements over
the baseline due to CoGEE. The first row of the table, for
each dataset, presents the results that compare our proposed
approach, CoGEE, with the accuracy provided by Mean,
Median, and Random baseline estimates. For completeness,
Table 3 also compares the performance of the other evo-
lutionary approaches we investigate subsequently in RQ3.
Table 3 reveals that the improvements over the baseline we
observed in Table 2 for our proposed approach are significant
(p < 0.001) and with large effect size (Â12 ≥ 0.97). The re-
sults remain significant after correcting for multiple statisti-
cal testing. This inferential statistical analysis confirms that
our approach significantly outperforms the baseline, thereby
passing the sanity check set by RQ1.

5.2 RQ2. Comparison to State-of-the-Art
The analysis of the SA measure (see Table 2) reveals that

our proposed algorithm, CoGEE, not only outperforms the
baseline, but also the different state-of-the-art techniques
against which we compare it. Indeed, the SA values pro-
vided by CoGEE are always higher than those provided by
CBR and LR on all the datasets we considered and higher
than those provided by CART on 4 out 5 datasets. These

3https://cran.r-project.org/web/packages/GA/index.html
4https://cran.r-project.org/package=nsga2R

624

Dataset Technique Mean Median Random
China CoGEE <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)

NSGAII-UO 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
GA-CI <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
GA-SAE <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)

Desharnais CoGEE <0.001 (1.00) <0.001 (0.97) <0.001 (1.00)
NSGAII-UO 1.00 (0.00) 1.00 (0.00) <0.001 (0.73)
GA-CI <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
GA-SAE <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)

Finnish CoGEE <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
NSGAII-UO 0.32 (0.53) 0.002 (0.70) <0.001 (0.93)
GA-CI <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
GA-SAE <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)

Maxwell CoGEE <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
NSGAII-UO <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
GA-CI <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
GA-SAE <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)

Miazaky CoGEE <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
NSGAII-UO <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
GA-CI <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
GA-SAE <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)

Table 3: RQ1. Results of the Wilcoxon test (Â12 ef-
fect size in brackets) performed on the Mean of Ab-
solute Errors provided by our algorithm, CoGEE,
compared to baseline comparators: Mean, Median,
and Random estimates. For completeness, sanity
check comparators are also included for the other
three alternative algorithms considered later (in an-
swer to RQ3): GA-CI, GA-SAE, and NSGAII-UO.

CoGEE vs. CBR1 CBR2 CBR3 LR CART
China <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
Desharnais <0.001 (1.00) <0.001 (0.97) <0.001 (0.97) 0.98 (0.13) <0.001 (0.97)
Finnish <0.001 (0.93) <0.001 (0.93) <0.001 (0.93) <0.001 (0.93) 1.00 (0.03)
Maxwell <0.001 (0.97) <0.001 (0.97) <0.001 (0.97) <0.001 (0.97) <0.001 (0.97)
Miyazaki <0.001 (0.97) <0.001 (0.97) <0.001 (0.97) <0.001 (0.97) <0.001 (0.97)

Table 4: RQ2. Results of the Wilcoxon test (with

Â12 effect sizes in brackets) which compare the Mean
and Median of the Absolute Errors for our algo-
rithm, CoGEE, to those for the state-of-the-art tech-
niques, CBR1–3, LR, and CART.

observations are confirmed by the inferential statistical anal-
ysis, the results of which are presented in Table 4; the im-
provement of our algorithm over the three state-of-the-art
techniques is significant (p < 0.001) and the effect size is

large (Â12 ≥ 0.9) in 23 out 25 cases. The results remain sig-
nificant after correcting for multiple statistical testing. We
also verified that CoGEE remains the best algorithm when
we use the Median of Absolute Error (usually less sensitive
to extreme values than the mean) as evaluation criterion5.

5.3 RQ3. Does Multi-objectivity Help?
Table 5 shows the quality indicators of the Pareto fronts

obtained from the 30 runs by using the proposed bi-objective
algorithm (i.e., CoGEE) and the single objective algorithms
GA-CI and GA-SAE. We can observe that for the three data
sets China, Finnish and Miyazaki our proposed approach
produces comfortably better results according to any qual-
ity indicator (such as hypervolume, or contribution to or dis-
tance from the reference Pareto front typically used in such
experiments [23, 68, 70]). For the remaining two datasets,
Desharnais and Maxwell, the two single objective competi-
tors occasionally provide solutions on or close to the Pareto
front produced by our algorithm.

The results of the Wilcoxon test (see Table 6) executed to

5All our results, including these, are available at http://
www0.cs.ucl.ac.uk/staff/F.Sarro/projects/CoGEE/

Dataset Technique IGD IHV IC
China CoGEE 0.00 0.31 0.50

GA-SAE 0.06 0.45 0.16
GA-CI 0.00 0.23 0.33

Desharnais CoGEE 0.00 0.94 0.34
GA-SAE 0.00 0.95 0.58
GA-CI 0.34 0.53 0.08

Finnish CoGEE 0.11 0.36 0.33
GA-SAE 0.00 0.13 0.33
GA-CI 0.41 0.17 0.33

Maxwell CoGEE 0.01 0.58 0.71
GA-SAE 0.07 0.42 0.19
GA-CI 0.16 0.34 0.10

Miyazaki CoGEE 0.00 1.00 1.00
GA-SAE 0.11 0.27 0.00
GA-CI 0.10 0.3 0.00

China CoGEE 0.00 0.9 0.93
NSGAII-UO 0.07 0.71 0.07

Desharnais CoGEE 0.03 0.67 0.39
NSGAII-UO 0.00 0.75 0.61

Finnish CoGEE 0.00 0.90 0.67
NSGAII-UO 0.06 0.63 0.33

Maxwell CoGEE 0.03 0.72 0.53
NSGAII-UO 0.09 0.69 0.47

Miyazaki CoGEE 0.00 0.99 0.96
NSGAII-UO 0.08 0.34 0.04

Table 5: RQ3. Mean of the quality indicators (IGD,
IHV , IC) computed on the Pareto fronts of the con-
sidered evolutionary approaches over 30 runs.

compare the quality indicators of the Pareto fronts obtained
by CoGEE are significantly better than the ones provided by
GA-CI and GA-SAE in 23 out 30 of the comparisons (and
never worse in 6 cases) often with medium or large effect
size. These observations remain after Bonferroni correction
for multiple statistical tests. Thus, we conclude that our
proposed algorithm, CoGEE, outperforms the single objec-
tive competitors, GA-SAE and GA-CI (RQ3.1).

To answer RQ3.2 we compared the Pareto fronts obtained
by the proposed algorithm, CoGEE, and a multi-objective
algorithm that minimises under and over estimates (NSGAII-
UO). From the Pareto fronts we observe that CoGEE pro-
duces better results than NSAGAII-UO (Table 5). In fact,
the competitor, NSGAII-UO, never produces a solution that
dominates any solution on the Pareto front produced by Co-
GEE. The Wilcoxon test (see Table 6) executed to compare
the quality indicators of the Pareto fronts obtained by Co-
GEE and NSGAII-UO confirms that CoGEE significantly
outperforms NSGAII-UO in 9 out 15 cases (and never worse
in the other 6), often with medium or large effect size. These
observations remain after Bonferroni correction. As a final
check, we confirmed that CoGEE remains the best perform-
ing algorithm when we use under and over estimation as
the evaluation criterion (though space does not permit us to
include the corresponding Pareto fronts5).

5.4 RQ4. Comparison to Industrial Practices
In Figure 1(a) we show box plots for the Magnitude of

Relative Error (MRE) obtained in the prediction for each
project in a given dataset by using our proposed multi-
objective approach, CoGEE, and the three state-of-the-art
techniques (i.e., CBR, LR, and CART). On the figure, we
plot two dotted lines that denote desirable thresholds within
which we would like to see these errors lie. These two thresh-
olds, set at 1.3 and 1.89, denote predictions of project effort
which lie within 30% and 40% of the true value. The reason
for choosing these two thresholds derives from evidence that
industrial practice based on human judgment hopes/claims

625

Dataset Technique IGD IHV IC
China CoGEE vs. GA-SAE 0.440 (0.49) 0.010 (0.60) 0.010 (0.42)

CoGEE vs. GA-CI 0.830 (0.71) 0.010 (0.66) 0.010 (0.71)
CoGEE vs. NSGAII-UO <0.001 (0.26) <0.001 (0.73) <0.001 (0.94)

Desharnais CoGEE vs. GA-SAE 0.010 (0.39) <0.001 (0.33) 0.997 (0.39)
CoGEE vs. GA-CI 0.005 (0.39) <0.001 (0.88) 0.040 (0.66)
CoGEE vs. NSGAII-UO 0.680 (0.56) 0.180 (0.56) 0.780 (0.44)

Finnish CoGEE vs. GA-SAE <0.001 (0.32) 0.130 (0.55) 0.640 (0.69)
CoGEE vs. GA-CI 0.430 (0.51) <0.001 (0.65) 0.920 (0.56)
CoGEE vs. NSGAII-UO <0.001 (0.70) <0.001 (0.82) <0.001 (0.71)

Maxwell CoGEE vs. GA-SAE <0.001 (0.08) <0.001 (0.63) <0.001 (0.98)
CoGEE vs. GA-CI <0.001 (0.25) <0.001 (0.70) <0.001 (0.92)
CoGEE vs. NSGAII-UO 0.094 (0.03) 0.700 (0.72) 0.470 (0.53)

Miazaky CoGEE vs. GA-SAE <0.001 (0.25) <0.001 (1.00) <0.001 (1.00)
CoGEE vs. GA-CI <0.001 (0.25) <0.001 (1.00) <0.001 (1.00)
CoGEE vs. NSGAII-UO <0.001 (0.26) <0.001 (0.95) <0.001 (0.95)

Table 6: RQ3. Results of the Wilcoxon test (with

Â12 effect sizes in brackets) which compare the qual-
ity indicators (IGD, IHV , IC) of our algorithm, Co-
GEE, to the ones obtained by the other evolutionary
approaches over 30 runs.

to produce predictions within these tolerances. The evidence
for these thresholds comes from a survey of current industry
practices by Molkken and Jørgensen [67].

As can be seen from Figure 1(a) the magnitude of rela-
tive error lies comfortably within both thresholds. Indeed,
as the box plots show, in all but one case, the entire dis-
tribution of estimation errors for our proposed approach,
CoGEE, lies within both thresholds. The same cannot be
said for Case-Based Reasoning, one of the state-of-the-art
techniques. Although these box plots show the Median of
Magnitude Relative Error (MdMRE) this value should not
be used to compare techniques against one another as, like
MMRE, it can be misleading [25, 45, 53, 71, 79, 87]. We
present the box plots simply to depict the distribution of
relative errors for each technique and their relationship to
these two industry thresholds.

There is also evidence from industry [59] that managers
are far more concerned about underestimated project effort
(and thereby underestimated project duration), than they
are about overestimates. While an overestimate may give
rise to missed opportunities, an underestimate, and conse-
quent project overrun, can have far more pernicious con-
sequences. A project manager may therefore be interested
to see the distribution of the magnitude of underestimated
predictions for each technique. The industrial thresholds we
used of 1.3 and 1.89 are, in fact, derived from the current
industrial claims concerning project overrun. As such, they
better indicate the threshold within which the set of all un-
derestimates must lie (in order to be competitive and action-
able for industrial uptake), than they indicate a threshold
for the magnitude of relative error.

Perhaps the risk aversion and reticence to risk overrun
might be a contributory factor to the current lack of take-
up of effort estimation within the industry. Therefore, in
order to address the managers’ natural disinclination for un-
derestimates and consequent budget overrun, we report box
plots for the distribution of overrun project budgets that
would be expected from each effort prediction approach in
Figure 1(b).

As can be seen from the results, the median expected bud-
get overrun for our approach lies within the claimed best re-
sults obtained from industrial practice, for all data sets ex-
cept the China (where it is very close to the upper bound).
In two of the five datasets the entire distribution of overrun
values expected from our estimation algorithm lie within the
upper bound, while in the other two, the vast majority of

the distribution of overruns lies within this bound.
By contrast, the current state-of-the-art techniques yield

median expected overrun values that lie outside the currently-
claimed industrial upper abound.

We therefore find evidence to support the claim that our
proposed estimation algorithm, CoGEE, moves the state-
of-the-art that can be expected from automated estimators
within the bounds of current claims for industrial best prac-
tice. This may prove to be an important finding, because
it provides evidence that our new multi-objective approach
can advance the claimed state-of-best-practice as well as the
known scientific state-of-the-art.

6. THREATS TO VALIDITY
Several factors can bias the validity of empirical studies.

In this section we discuss the validity of our empirical study
based on three types of threats, namely construct, conclu-
sion, and external validity.

To satisfy construct validity a study has “to establish cor-
rect operational measures for the concepts being studied”
[44]. This means that the study should represent to what ex-
tent the predictor and response variables precisely measure
the concepts they claim to measure [60]. Thus, the choice of
the features and how to collect them represents a crucial as-
pect. We tried to mitigate such a threat by using real-world
data coming from five publicly available datasets [64] widely
used to empirically evaluate effort estimation methods.

With regards to the conclusion validity, we carefully ap-
plied the statistical tests, verifying all the required assump-
tions and correcting for multiple statistical testing. We also
used datasets of different sizes to mitigate the threats re-
lated to the number of observations in each dataset. To
reduce conclusion instability [65], we followed recent best
practice to assess prediction systems [82, 90] and evolution-
ary approaches [3, 31, 69].

To mitigate threats to external validity we used datasets
containing projects related to different contexts that might
be characterised by some specific project and human fac-
tors, such as development process, developer experience,
tools and technologies used, time and budget constraints
[10]. Despite we used a set of subjects that has such a de-
gree of diversity, we cannot claim that our results generalise
beyond the subjects studied. Moreover, the industrial pre-
diction thresholds used in our study come from a survey of
industry practices carried out in 2003 [67], thus they may
not generalise to other periods.

7. RELATED WORK
A comprehensive review of work exploiting evolutionary

approaches for effort estimation can be found elsewhere [24].
In this section we summarise the main work investigating ro-
bust effort estimates with confidence intervals by highlight-
ing the difference with the approach we proposed herein.

These studies can be classified into two broad categories:
(i) those that produce confidence intervals for point esti-
mates during the estimation process and (ii) those that pro-
duce probabilities of predefined intervals before the estima-
tion process. Our approach, CoGEE, falls in the first cat-
egory, since it builds estimation models that optimise both
the accuracy of the point estimates and the confidence in-
tervals during its evolutionary process.

Angelis and Stamelos [1] report the first empirical investi-
gation of estimation models based on prediction intervals

626

0

1

2

3

CoG
EE

CBR1
CBR2

CBR3 LR
CART

CoG
EE

CBR1
CBR2

CBR3 LR
CART

CoG
EE

CBR1
CBR2

CBR3 LR
CART

CoG
EE

CBR1
CBR2

CBR3 LR
CART

CoG
EE

CBR1
CBR2

CBR3 LR
CART

CHINA DESHARNAIS FINNISH MAXWELL MIYAZAKI

M
R

E

(a) Magnitude of Relative Error

2

4

6

8

CoG
EE

CBR1
CBR2

CBR3 LR
CART

CoG
EE

CBR1
CBR2

CBR3 LR
CART

CoG
EE

CBR1
CBR2

CBR3 LR
CART

CoG
EE

CBR1
CBR2

CBR3 LR
CART

CoG
EE

CBR1
CBR2

CBR3 LR
CART

CHINA DESHARNAIS FINNISH MAXWELL MIYAZAKI

O
ve

rru
n

(b) Overrun

Figure 1: RQ4. Comparison with claimed optimal industrial practice when the magnitude of relative error
(a) and overrun (b) of each project in a given dataset are considered. These results provide evidence that
our multi-objective approach can move the current state-of-the-art for automated effort estimation within
current claims for human-expert-based industrial best practice.

in the context of software development effort estimation.
They compared the effort prediction intervals derived from
a bootstrap-based model with the ones obtained by using
regression based effort estimation models. However, this
study displays a confusion of terms, and a critique was con-
sequently made by Jørgensen [35] to clarify the ambiguity.
The same authors also investigated statistical simulation
techniques for calculating confidence intervals for project
portfolios [85]. In a subsequent study [40], Jørgensen de-
scribed the uncertainty of the estimate through an effort
Prediction Interval (PI) and introduced an approach that is
based on the assumption that the estimation accuracy of ear-
lier software projects predicts the effort PI of new projects.
The approach has been evaluated with two empirical stud-
ies to provide insight into when to use the proposed ap-
proach, regression-based approaches, or software profession-
als’ judgment. Braga et al. [7] introduced a method based
on machine learning which gives the estimation of the effort
together with a confidence interval for it. They used ro-
bust confidence intervals, which do not depend on the form
of probability distribution of the errors in the training set.
They evaluated the proposed approach on two datasets. The
results showed that the proposed method was able to build
robust confidence intervals.

The first study that falls in the second category used
multinomial logistic regression for modeling productivity in-
tervals [75]. In this study Sentas et al. also investigated pre-
defined intervals of productivity in a Bayesian belief network
to support expert opinion. Subsequently, the same authors
[76] investigated ordinal regression to model the probabil-

ities of both effort and productivity intervals. Bibi et al.
[6] also provided an empirical comparison between models
producing point estimates and models producing predefined
interval estimates. Bakir et al. [4] proposed a new ap-
proach that converts effort estimation into a classification
problem to classify new software projects in one of the effort
classes, each of which corresponds to an effort interval. Dif-
ferently from the previous studies, the effort intervals are not
predefined manually but determined by clustering analysis.
Moreover, Bakir et al. used classification algorithms instead
of regression-based methods. The approach, evaluated on
7 public datasets, provided point estimations comparable
to those in literature, but estimation hit around 90–100%,
which is higher than those obtained in previous studies.

8. CONCLUSION
This paper has introduced and evaluated a bi-objective

software project effort estimation algorithm. The primary
novelty of the algorithm lies in its incorporation of confi-
dence intervals to guide a multi-objective evolutionary al-
gorithm. Our results indicate that the new algorithm out-
performs the state of the art, moving it to within current
claimed thresholds for industrial human-expert-based best
practice in effort estimation. Our results also provide evi-
dence that it is the multi-objective nature of our approach
that conveys this significantly improved performance. As
well as the inherently attractive performance improvements,
we believe developers and their managers may also find the
provision of confidence intervals on effort estimations useful,
since they bound the uncertainty of the estimation.

627

Acknowledgement
The research is funded by the Dynamic Adaptive Automated
Software Engineering Programme Grant (EP/J017515) and
supported by two Microsoft Azure Research Grants (Sarro
2014, Petrozziello 2015).

Appendix A: Datasets
In this appendix we provide details on the datasets used in
our study (descriptive statistics are shown in Table 1).

The China dataset includes data of 499 projects. We em-
ployed, as independent variables, the elements used to cal-
culate Function Points (i.e., Input, Output, Inquiry, File,
Interface) and Effort as dependent variable.

Desharnais is an industrial dataset comprising 81 software
projects derived from a Canadian software company. We
considered the total effort as dependent variable, but not the
length of the code. We also excluded from our analysis the
categorical variables (i.e., Language and YearEnd) and four
projects that have missing values, as done in previous works
(e.g., [43, 81]). Therefore, we used the following independent
variables: TeamExp (i.e., the team experience measured in
years), ManagerExp (i.e, the manager experience measured
in years), Entities (i.e., the number of the entities in the
system data model), Transactions (i.e., the number of basic
logical transactions in the system), AdjustedFPs (i.e., the
Adjusted Function Points).

The Finnish dataset contains data from 38 projects de-
veloped by 9 different Finnish companies. Each project is
described by a dependent variable, the Effort expressed in
person-hours, and five independent variables. Among them
we decided to not consider the PROD variable since it repre-
sents the productivity expressed in terms of Effort and size.
The independent variables we employed are: HW (i.e., the
type of harware), FP (i.e., Function Points), AR and CO.

The Maxwell dataset contains 62 projects developed for
one of the biggest commercial banks in Finland. We em-
ployed 17 features: Function Points (SizeFP) and 16 ordinal
variables, i.e., number of different development languages
used (Nlan), customer participation (T01), development en-
vironment adequacy (T02), staff availability (T03), standards
used (T04), methods used (T05), tools used (T06), software’s
logical complexity (T07), requirements volatility (T08), qual-
ity requirements (T09), efficiency requirements (T10), instal-
lation requirements (T11), staff analysis skills (T12), staff
application knowledge (T13), staff tool skills (T14), and staff
team skills (T15). As with the Desharnais dataset, we did
not use categorical variables.

The Miyazaki dataset is composed by 48 projects devel-
oped by 20 different software companies of the Fujitsu Large
Systems Users Group. For this dataset, we considered the
following independent variables: SCRN (i.e., the number of
different input or output screens), FORM (i.e., the number of
different report forms), and FILE (i.e., the number of differ-
ent record format). The dependent variable is Effort, de-
fined as the number of person-hours needed from system de-
sign to system test, including indirect effort such as project
management.

9. REFERENCES
[1] L. Angelis and I. Stamelos. A simulation tool for

efficient analogy based cost estimation. EMSE,
5(1):35–68, 2000.

[2] L. Angelis, I. Stamelos, and M. Morisio. Building A
software cost estimation model based on categorical
data. In Proc. of METRICS’01, pages 4–15, 2001.

[3] A. Arcuri and L. C. Briand. A hitchhiker’s guide to
statistical tests for assessing randomized algorithms in
software engineering. STVR, 24(3):219–250, 2014.

[4] A. Bakir, B. Turhan, and A. Bener. A comparative
study for estimating software development effort
intervals. SQJ, 19(3):537–552, 2011.

[5] M. Barros. An analysis of the effects of composite
objectives in multiobjective software module
clustering. In Proc. of GECCO ’12, pages 1205–1212,
2012.

[6] S. Bibi, I. Stamelos, and E. Angelis. Software Cost
Prediction with Predefined Interval Estimates. In
Proc. of SMEF’04, pages 237–246, 2004.

[7] P. Braga, A. Oliveira, and S. Meira. Software effort
estimation using machine learning techniques with
robust confidence intervals. In Proc. of HIS’07, pages
352–357, 2007.

[8] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classification and Regression Trees.
Statistics/Probability Series. Wadsworth Publishing
Company, Belmont, California, U.S.A., 1984.

[9] L. C. Briand and I. Wieczorek. Software resource
estimation. Encyclopedia of Software Engineering,
pages 1160–1196, 2002.

[10] L. C. Briand and J. Wüst. Modeling development
effort in object-oriented systems using design
properties. IEEE TSE, 27(11):963–986, 2001.

[11] C. J. Burgess and M. Lefley. Can genetic
programming improve software effort estimation? a
comparative evaluation. IST, 43(14):863–873, 2001.

[12] J. Cohen. Statistical power analysis for the behavioral
sciences. Lawrence Earlbaum Associates, 2nd edition,
1988.

[13] T. E. Colanzi, S. R. Vergilio, W. K. G. Assuncao, and
A. Pozo. Search based software engineering: Review
and analysis of the field in Brazil. JSS, 86(4):970–984,
2013.

[14] D. Conte, H. Dunsmore, and V. Shen. Software
engineering metrics and models. Benjamin/Cummings
Publishing Company, Inc., 1986.

[15] A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino,
F. Sarro, and E. Mendes. How effective is tabu search
to configure support vector regression for effort
estimation? In Proc. of PROMISE’10, pages 4:1–4:10,
2010.

[16] A. Corazza, S. D. Martino, F. Ferrucci, C. Gravino,
F. Sarro, and E. Mendes. Using tabu search to
configure support vector regression for effort
estimation. EMSE, 18(3):506–546, 2013.

[17] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE TEC, 6:182–197, 2002.

[18] J. J. Dolado. A validation of the component-based
method for software size estimation. IEEE TSE,
26(10):1006–1021, 2000.

[19] F. Ferrucci, C. Gravino, R. Oliveto, and F. Sarro.
Using tabu search to estimate software development
effort. In Proc. of MENSURA’09, pages 307–320.

628

LNCS 5891, Springer, 2009.

[20] F. Ferrucci, C. Gravino, R. Oliveto, and F. Sarro.
Genetic programming for effort estimation: An
analysis of the impact of different fitness functions. In
Proc. of SSBSE’10, pages 89–98, 2010.

[21] F. Ferrucci, C. Gravino, R. Oliveto, F. Sarro, and
E. Mendes. Investigating tabu search for web effort
estimation. In Proc. of EUROMICRO-SEAA’10, pages
350–357, 2010.

[22] F. Ferrucci, C. Gravino, and F. Sarro. How
multi-objective genetic programming is effective for
software development effort estimation? In Proc. of
SSBSE’11, pages 274–275, 2011.

[23] F. Ferrucci, M. Harman, J. Ren, and F. Sarro. Not
going to take this anymore: Multi-objective overtime
planning for software engineering projects. In Proc. of
ICSE’13, 2013.

[24] F. Ferrucci, M. Harman, and F. Sarro. Search-based
software project management. In Software Project
Management in a Changing World, pages 373–399.
Springer, 2014.

[25] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit.
A simulation study of the model evaluation criterion
MMRE. IEEE TSE, 29(11):985–995, 2003.

[26] F. G. Freitas and J. T. Souza. Ten years of search
based software engineering: A bibliometric analysis. In
Proc. of SSBSE’11, pages 18–32, 2011.

[27] M. Harman. The current state and future of search
based software engineering. In Proc. of FOSE’07,
pages 342–357, 2007.

[28] M. Harman, Y. Jia, and Y. Zhang. Achievements,
open problems and challenges for search based
software testing (keynote). In Proc. of ICST’14, 2014.

[29] M. Harman and B. F. Jones. Search based software
engineering. IST, 43(14):833–839, 2001.

[30] M. Harman, A. Mansouri, and Y. Zhang. Search based
software engineering: Trends, techniques and
applications. ACM Computing Surveys,
45(1):11:1–11:61, 2012.

[31] M. Harman, P. McMinn, J. Teixeira de Souza, and
S. Yoo. Search based software engineering: Techniques,
taxonomy, tutorial. In LASER, pages 1–59, 2010.

[32] G. W. Hill. Algorithm 396: Student’s t-quantiles.
Commun. ACM, 13(10):619–620, 1970.

[33] S.-J. Huang and N.-H. Chiu. Optimization of analogy
weights by genetic algorithm for software effort
estimation. JSS, 48(11):1034–1045, 2006.

[34] R. Jeffery, M. Ruhe, and I. Wieczorek. A comparative
study of cost modelling techniques using public
domain multi-organisational and company-specific
data. In Proc. of ESCOM’2000, 2000.

[35] M. Jørgensen. Comments on ‘A simulation tool for
efficient analogy based cost estimation’. EMSE,
7(4):375–376, 2002.

[36] M. Jørgensen. The ignorance of confidence levels in
minimum-maximum software development effort
interval. LNSE, 2(4):327–330, 2004.

[37] M. Jørgensen. A review of studies on expert
estimation of software development effort. JSS,
70(1-2):37–60, 2004.

[38] M. Jørgensen and K. Moløkken. Combination of

software development effort prediction intervals: Why,
when and how? In Proc. of SEKE’02, pages 425–428,
2002.

[39] M. Jørgensen and M. Shepperd. A systematic review
of software development cost estimation studies. IEEE
TSE, 33(1):33–53, 2007.

[40] M. Jørgensen and D. Sjöberg. An effort prediction
interval approach based on the empirical distribution
of previous estimation accuracy. IST, 45(3):123 – 136,
2003.

[41] M. Jørgensen, K. H. Teigen, and K. MoløKken. Better
sure than safe? over-confidence in judgement based
software development effort prediction intervals. JSS,
70(1-2):79–93, 2004.

[42] G. Kadoda, M. Cartwright, and M. Shepperd. Issues
on the effective use of cbr technology for software
project prediction. In Case-Based Reasoning Research
and Development, LNCS v. 2080, pages 276–290. 2001.

[43] G. Kadoda and M. Shepperd. Using simulation to
evaluate predictions techniques. In Proc. of Int.
Software Metrics Symposium, pages 349–358. IEEE
press, 2001.

[44] B. Kitchenham, L. Pickard, and S. Pfleeger. Case
studies for method and tool evaluation. IEEE
Software, 12(4):52–62, 1995.

[45] B. Kitchenham, L. M. Pickard, S. G. MacDonell, and
M. J. Shepperd. What accuracy statistics really
measure. IEEE Proc. Software, 148(3):81–85, 2001.

[46] J. D. Knowles, L. Thiele, and E. Zitzler. A tutorial on
the performance assessment of stochastic
multiobjective optimizers. Technical Report 214, ETH
Zurich, 2006.

[47] E. Kocaguneli, T. Menzies, A. Bener, and J. Keung.
Exploiting the essential assumptions of analogy-based
effort estimation. IEEE TSE, 38(2):425–438, 2012.

[48] E. Kocaguneli, T. Menzies, J. Hihn, and B. H. Kang.
Size doesn’t matter?: On the value of software size
features for effort estimation. In Proc. of
PROMISE’12, pages 89–98, 2012.

[49] E. Kocaguneli, T. Menzies, J. Keung, D. Cok, and
R. Madachy. Active learning and effort estimation:
Finding the essential content of software effort
estimation data. IEEE TSE, 39(8):1040–1053, 2013.

[50] E. Kocaguneli, T. Menzies, and J. W. Keung. On the
value of ensemble effort estimation. IEEE TSE,
38(6):1403–1416, 2012.

[51] E. Kocaguneli, A. Misirli, B. Caglayan, and A. Bener.
Experiences on developer participation and effort
estimation. In Proc. of EUROMICRO-SEAA’11, pages
419–422, 2011.

[52] E. Kocaguneli, A. Tosun, and A. Bener. Ai-based
models for software effort estimation. In Proc. of
EUROMICRO-SEAA’10, pages 323–326, 2010.

[53] M. Korte and D. Port. Confidence in software cost
estimation results based on mmre and pred. In Proc.
of PROMISE’08, pages 63–70, 2008.

[54] J. R. Koza. Genetic Programming. MIT Press, 1992.

[55] W. B. Langdon, J. Dolado, F. Sarro, and M. Harman.
Exact mean absolute error of baseline predictor,
MARP0. IST, 73:16 – 18, 2016.

[56] M. Lefley and M. J. Shepperd. Using genetic

629

programming to improve software effort estimation
based on general data sets. In Proc. of GECCO’03,
pages 2477–2487, 2003.

[57] C. Lokan. What should you optimize when building an
estimation model? In Proc. of METRICS’05, page 34,
2005.

[58] C. Mair, G. Kadoda, M. Lefley, K. Phalp,
C. Schofield, M. Shepperd, and S. Webster. An
investigation of machine learning based prediction
systems. JSS, 53(1):23–29, 2000.

[59] S. McConnell. Software Estimation: Demystifying the
Black Art. Microsoft Press, 2006.

[60] E. Mendes, S. Counsell, N. Mosley, C. Triggs, and
I. Watson. A comparative study of cost estimation
models for web hypermedia applications. EMSE,
8(23):163–196, 2003.

[61] E. Mendes and B. Kitchenham. A comparison of
cross-company and within-company effort estimation
models for web applications. In Proc. of EASE’04,
pages 47–55, 2004.

[62] E. Mendes and N. Mosley. Further investigation into
the use of cbr and stepwise regression to predict
development effort for web hypermedia applications.
In Proc. of Int. Symposium on Empirical Software
Engineering, pages 79–90, 2002.

[63] T. Menzies, Z. Chen, J. Hihn, and K. Lum. Selecting
best practices for effort estimation. IEEE TSE,
32(11):883–895, 2006.

[64] T. Menzies, M. Rees-Jones, R. Krishna, and C. Pape.
The promise repository of empirical software
engineering data, 2015.

[65] T. Menzies and M. Shepperd. Special issue on
repeatable results in software engineering prediction.
EMSE, 17(1):1–17, 2012.

[66] L. L. Minku and X. Yao. Software effort estimation as
a multiobjective learning problem. ACM TOSEM,
22(4):35, 2013.

[67] K. Molkken and M. Jörgensen. A review of surveys on
software effort estimation. In Proc. of ISESE’03, pages
223–230, 2003.

[68] S. Nejati and L. C. Briand. Identifying optimal
trade-offs between cpu time usage and temporal
constraints using search. In Proc. of ISSTA’14, pages
351–361, 2014.

[69] G. Neumann, M. Harman, and S. M. Poulding.
Transformed vargha-delaney effect size. In Proc. of
SSBSE’15, pages 318–324, 2015.

[70] R. Olaechea, D. Rayside, J. Guo, and K. Czarnecki.
Comparison of exact and approximate multi-objective
optimization for software product lines. In Proc. of
SPLC’14, pages 92–101, 2014.

[71] D. Port and M. Korte. Comparative studies of the
model evaluation criterions mmre and pred in software
cost estimation research. In Proc. of ESEM’08, pages
51–60, 2008.

[72] K. Praditwong, M. Harman, and X. Yao. Software
module clustering as a multi-objective search problem.
IEEE TSE, 37(2):264–282, 2011.

[73] P. Royston. An extension of Shapiro and Wilk’s W
test for normality to large samples. Applied Statistics,
31(2):115–124, 1982.

[74] F. Sarro, F. Ferrucci, and C. Gravino. Single and
multi objective genetic programming for software
development effort estimation. In Proc. of ACM
SAC’12, pages 1221–1226, 2012.

[75] P. Sentas, L. Angelis, and I. Stamelos. Multinomial
logistic regression applied on software productivity
prediction. In 9th Panhellenic Conf. in Inf., 2003.

[76] P. Sentas, L. Angelis, I. Stamelos, and G. Bleris.
Software productivity and effort prediction with
ordinal regression. IST, 47(1):17–29, 2005.

[77] Y. Shan, R. I. Mckay, C. J. Lokan, and D. L. Essam.
Software project effort estimation using genetic
programming. In Proc. of CCS’02, pages 1108–1112,
2002.

[78] M. Shepperd. Case-based reasoning and software
engineering. In Managing Software Engineering
Knowledge, pages 181–198. Springer, 2003.

[79] M. Shepperd, M. Cartwright, and G. Kadoda. On
building prediction systems for software engineers.
EMSE, 5(3):175–182, 2000.

[80] M. Shepperd and C. Schofield. Estimating Software
Project Effort using Analogies. IEEE TSE, 23(11):736
–743, 1997.

[81] M. Shepperd and C. Schofield. Estimating software
project effort using analogies. IEEE TSE,
23(11):736–743, 2000.

[82] M. J. Shepperd and S. G. MacDonell. Evaluating
prediction systems in software project estimation.
IST, 54(8):820–827, 2012.

[83] D. L. Shrestha and D. P. Solomatine. Machine learning
approaches for estimation of prediction interval for the
model output. Neural Networks, 19(2):225 – 235, 2006.

[84] I. Sommerville. Software Engineering. Pearson, 9th
edition, 2010.

[85] I. Stamelos and L. Angelis. Managing uncertainty in
project portfolio cost estimation. IST, 43(13):759–768,
2001.

[86] I. Stamelos, L. Angelis, P. Dimou, and E. Sakellaris.
On the use of bayesian belief networks for the
prediction of software productivity. IST, 45(1):51–60,
2003.

[87] E. Stensrud, T. Foss, B. Kitchenham, and I. Myrtveit.
A further empirical investigation of the relationship
between MRE and project size. EMSE, 8(2):139–161,
2003.

[88] A. Trendowicz. Software Project Effort Estimation:
Foundations and Best Practice Guidelines for Success.
Springer, 2014.

[89] D. A. V. Veldhuizen and G. B. Lamont.
Multiobjective evolutionary algorithm research: A
history and analysis, 1998.

[90] P. A. Whigham, C. A. Owen, and S. G. Macdonell. A
baseline model for software effort estimation. ACM
TOSEM, 24(3):20:1–20:11, 2015.

[91] E. Zitzler and L. Thiele. Multiobjective evolutionary
algorithms: a comparative case study and the strength
pareto approach. IEEE TEC, 3(4):257 –271, 1999.

[92] E. Zitzler, L. Thiele, M. Laumanns, C. Fonseca, and
V. da Fonseca. Performance assessment of
multiobjective optimizers: an analysis and review.
IEEE TEC, 7(2):117–132, 2003.

630

