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Abstract  

While the building sector has a significant thermodynamic improvement potential, exergy analysis has 

been shown to provide new insight for the optimisation of building energy systems. This paper presents 

an exergy-based multi-objective optimisation tool that aims to assess the impact of a diverse range of 

retrofit measures with a focus on non-domestic buildings. EnergyPlus was used as a dynamic 

calculation engine for first law analysis, while a Python add-on was developed to link dynamic exergy 

analysis and a Genetic Algorithm optimisation process with the aforementioned software. Two UK 

archetype case studies (an office and a primary school) were used to test the feasibility of the proposed 

framework. Different measures combinations based on retrofitting the envelope insulation levels and 

the application of different HVAC configurations were assessed.  The objective functions in this study 

are annual energy use, occupants’ thermal comfort, and total building exergy destructions. A large 

range of optimal solutions was achieved highlighting the framework capabilities. The model achieved 

improvements of 53% in annual energy use, 51% of exergy destructions and 66% of thermal comfort 

for the school building, and 50%, 33%, and 80% for the office building. This approach can be extended 

by using exergoeconomic optimisation.  
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1. Introduction 

 

To address the UK’s national dependency on high quality energy sources such as, natural gas and 

coal, recent energy policies and regulatory shifts have aimed to improve cross-sectoral efficiency. At 

present, the UK non-domestic building sector is responsible for 17% of the country’s total energy use 

and is highly dependent on fossil fuels (60% gas, 10% oil, and 25% non-renewable electricity) [1]. 

Particularly, in the English and Welsh non-domestic building sector, the final energy utilisation in 2013 

was estimated to be 840.9 PJ (equivalent to 20.085 Mtoe annually) with a primary energy input of 

1576.9 PJ [2]. From an end-use perspective, about 50% of all energy demand in the sector was due to 

space heating, followed by lighting (17%), DHW (10%) and catering (10%). As the majority of non-

domestic buildings were built before energy regulations were implemented, this resulted in poor fabric 

characteristics, inefficient HVAC equipment and controls, and poor occupant energy awareness and 

comfort levels [3]. Also, the expansion of HVAC systems in new and existing buildings represent higher 

energy usage rates every year, mainly driven by the constant increasing of cooling demands. In 

addition, the building replacement rate is typically low (<2%) [4], and although is expected that by 2050 

the footprint will increase by a third, 80% of existing buildings will still be in use. In this sense, energy 

retrofit measures (ERMs) represent a significant opportunity to reduce existing buildings energy use 

and carbon emissions. 

  

Currently in the UK, there are a wide range of building energy codes and programmes that encourage 

the implementation of ERMs on existing buildings by setting minimum values for energy efficiency. For 

example, Part L2B [5] sets minimal envelope insulation levels when retrofits actions are implemented 

in existing non-domestic buildings. Moreover, a number of financial mechanisms have been introduced 

in an aim to drive down demand and improve efficiency (e.g. Climate Change Levy, CRC Energy 

Efficiency Scheme, ESOS). In addition, policies to support the implementation of low carbon HVAC 

systems have been developed (Energy Labelling Directive, Renewable Heat Incentive), where 

technologies such as biomass boilers, heat pumps, and solar thermal equipment are widely supported. 

Other example at a European level is the recast of the Energy Performance of Buildings Regulations 

[6]. The directive took effect in 2013 and among the articles; it sets minimum energy performance 

requirements on all renovated buildings (Article 7) as well as minimum energy performance on energy 
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systems retrofits (Article 8).  The directive seeks that ERMs projects should aim to achieve a trade-off 

between energy saving and cost-effectiveness.  

 

2. Background  

2.1 Simulation-based tools and optimisation of ERMs  

 

With the current range of available technologies and measures, the identification of the most appropriate 

of these is a critical aspect of the early design phase. As with any energy system, buildings are 

physically complex systems where interactions between the building, the occupants, the equipment, 

and the environment are poorly understood. In order to improve the selection of appropriate measures, 

practitioners require robust tools for effective design, where building simulation play a major role in the 

design of energy efficient buildings [7]. The use of simulation tools for ERMs represents a quick and 

cost-effective method to estimate pre and post retrofit energy use of a building. Although building 

simulation tools lack direct orientation to retrofit analysis, the outputs can be used in life cycle cost 

analysis tools to calculate energy and cost savings in the future. Too overcome this, several retrofit 

oriented tools have been developed in the last decade. Hong [8] provided a review of 18 retrofit toolkits 

categorized in three kinds of methods: a) empirical data driven, b) normative calculations, and c) 

physics-based modelling. The latest provide the highest fidelity but with the drawback of being more 

complex because of the need of more input data and longer simulation times. These tools commonly 

use as the main energy calculation engine open source tools such as DOE 2.2 [9] and EnergyPlus [10]. 

Among the most recent developments are ROBESim [11], CBES [12] and SLABE [13]. On the other 

hand, Rysanek and Choudhary [14] developed an exhaustive retrofit simulation tool using TRNSYS [15] 

and MatLab [16]; the tool is capable to simulate a large set of building retrofit strategies under economic 

uncertainty.  

 

In practice, the most common approach to assess a wide range of retrofit strategies is the “scenario by 

scenario” approach, where the practitioner models several solutions based on experience. The main 

limitation associated with this approach is that the number of analysed scenarios is typically very low, 

which often leads to solutions that can be far from optimal. In recent years, parametric or full factorial 

tools have been developed. In this method, a large number of simulations are carried out in order to 

assess all the possible combinations, usually having a search space of thousands of solutions with the 
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certainty of reaching the theoretical optimal scenario. This method has the strength that can provide a 

large amount of data that, for example, can be used to train artificial neural networks (ANN) [17]. 

However, in practice the method presents the limitation that is computationally and time expensive. 

Another user-experienced based approach is multi-criteria, where a set of pre-defined and pre-

evaluated alternatives are assessed, with no assurance of finding the optimal solution because the 

alternatives search is constrained by the user [18]. Finally, an approach that has shown potential to 

explore large search spaces in an efficient manner is multi-objective optimisation (MOO). Three basic 

types of algorithms are used in optimisation problems applied to buildings: enumerative, deterministic, 

and stochastic [19]. As Nguyen et al. [20] claims, stochastic methods are widely used, being genetic 

algorithms the most popular method for building optimisation. Other popular methods are Direct Search, 

Simulated Annealing, and Particle Swarm optimisation [21]. Attia et al. [19] found that MOO methods 

are normally used during early designs as researchers and practitioners that use optimisation 

techniques applied 93% of the cases for new buildings. However, some studies have demonstrated the 

strength of MOO for retrofit projects [7, 22, 23]. Improvement of the envelope, HVAC equipment, 

renewable generation, controls, etc., while optimising objectives such as energy savings, occupant 

comfort, total investment, and life cycle cost has been investigated. 

 

2.2 The use of exergy analysis for buildings 

 

However, the aforementioned building energy regulations, modelling tools and optimisation procedures 

usually only follow the first law of thermodynamics. Energy analysis typically shows similar efficiencies 

between different systems configurations, so it has significant limitations when it comes to assess the 

characteristics of energy conversion systems. It also struggles to pinpoint exact locations where 

inefficiencies are taking place through the whole energy supply chain. As Hammond and Stapleton [24] 

and Shukuya [25] showed, the majority of the buildings are thermodynamically inefficient, hence have 

a significant potential for improvement. These inefficiencies are related to the concept of exergy (energy 

quality or potential to do work), and where unlike energy which is conserved, exergy is exposed to 

destructions. In the buildings’ energy supply chains, these destructions are mainly caused from 

combustion and heat exchange processes derived from a poor quality match between the supply and 

the demand. By destroying exergy, useful work that could be useful for other higher quality processes 
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(e.g. industrial, transport, and chemical) is wasted. Inefficient and unwise use of resources can 

significantly impact national energy security [26]. Among all economic sectors in the UK, the building 

sector has the highest potential to improve its thermodynamic efficiency (Fig. 1), and among end-uses, 

space conditioning processes present the lowest efficiencies (>6.5%) [27]. 

 

Fig.  1 Exergy Efficiency in different UK sectors. Source: [27].  

 

In recent years, the extent of research and application of exergy analysis in buildings has significantly 

increased, mainly supported by two IEA Energy in Buildings and Communities Programme Annexes 

[28, 29]. The application of exergy analysis has significant potential in the identification of what can be 

considered unconventional opportunities and the consequent reduction of dependency of high quality 

fuels. Some research has demonstrated how primary energy input into buildings can be reduced by the 

application of different principles based on exergy, such as minimizing large temperatures differences, 

using renewable energy smartly, and considering appropriate passive design measures [30-32].  In 

addition, a number of simulation tools have been developed with the intention of calculating exergy 

consumption throughout building energy systems by using a steady-state analysis [33-34]. 

Nevertheless, as is noted in the final report of the ECB Annex 49, a steady state assessment can only 

be used to get a first comparison between systems and can contain high uncertainty on the results. To 
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overcome the limitation of using a steady-state exergy method on retrofit projects, automated dynamic 

exergy-based retrofit-oriented modelling tools are required.  

 

Although exergy based multi-objective optimisation are common practice for power plants and chemical 

processes [35-40] with common optimisation objectives such components cost, fuel cost, exergy 

destructions, exergy efficiency, and CO₂ emissions, in the literature, no optimisation studies were found 

which uses exergy analysis as a basis for building energy retrofit design. One aim of using exergy 

analysis for building energy retrofits is to show the exergy interactions when different parts of the energy 

supply chain are retrofitted. The objective of this paper is to present EXRETOpt (Exergy Analysis Model 

for Retrofit Optimisation), a retrofit-oriented tool that integrates energy and exergy analysis for buildings 

with a multi-objective optimisation framework by considering three objectives: energy use, occupant 

thermal comfort, and exergy destructions (irreversibilities). To understand the differences from an 

exergy-based scenario by scenario approach against the results of an optimisation process and to test 

the model capabilities, at first we present a pre-optimisation parametric study considering individual 

ERMs, such as insulation measures and HVAC systems. Later, we use a robust ERMs database 

considering more technologies (glazing, lighting, sealing, etc.) to perform a multi-objective optimisation 

study.  

 

3. Modelling Framework 

 

The proposed framework rellies in a recently developed modelling tool which combines two main 

modules: a) an energy/exergy analysis simulation for buildings, and b) a retrofit optimisation module. 

The modelling engine is based on different existing tools and modules specifically developed for this 

research. This framework gives the possibility to study a wide range of measures and optimise retrofit 

designs under different objective functions such as energy savings, exergy destructions, user thermal 

comfort, CO2 emissions, return of investment, etc. The simulation workflow and modelling environments 

are illustrated in Fig. 2. This section will focus on introducing the chosen exergy calculation method and 

the link between different modules and software. The first two modules regarding building energy model 

development and calibration will be discussed in the “Case Study” section (Section 4).  
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Fig.  2 Workflow overview: Exergy Analysis Model for Retrofit Optimisation (EXRETOpt)  



3.1 Integrating Exergy analysis and MOO into EnergyPlus 

3.1.1 Exergy analysis 

 

The selected exergy method, which has the potential to analyse the whole building energy supply chain 

is based on the model developed by Schmidt [41] which was further improved in the ECB IEA Annex 

49 [29]. For thermal systems (HVAC and DHW), this method follows an input-output approach based 

on seven different subsystems that are very strongly related to each other, and thus the performance 

of one subsystem is highly dependent on the other subsystems. In this study, additions to the exergy 

method were undertaken through implementing exergy analysis on end-uses such as lighting, electric 

appliances, refrigeration, and catering; thus considering all the possible exergy streams through the 

building subsystems. Fig. 3 illustrates the abstraction that was made to identify all the building 

subsystems and streams to be analysed.  

 

 

Fig.  3 Energy supply chain and subsystems for exergy calculations. Based on the IEA ECB Annex 49 
method calculation [29]. 

 

 

The calculation is performed in the opposite sequence to the demand, starting from the envelope and 

concluding in the conversion of primary energy. The demand of each subsystem must be satisfied by 
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the subsystem before. Unlike energy analysis, exergy demand is not calculated using “exergy balance” 

equations; but is instead calculated by using the energy balance outputs multiplied by the quality factor, 

given by the Carnot1 equation for thermal exergy. This is one of the reasons why exergy is not a 

substitute of typical energy analysis and should therefore always be considered complementary to it. 

 

Although the analysis method is well documented in the aforementioned references, in this section a 

simplification of the method is presented through highlighting the most important equations and some 

particularities of the current model. Firstly, to calculate the building exergy demand for thermal end uses 

the detailed exergy demand approach is used [29]. This approach differentiates the demand related to 

heat 𝐸𝑥𝑑𝑒𝑚,𝑡ℎ𝑒𝑟𝑚 (Eq. 1) to the demand related to matter 𝐸𝑥𝑑𝑒𝑚,𝑣𝑒𝑛𝑡 (Eq. 2). In both the use of the Carnot 

factor is needed:  

 

𝐸𝑥𝑑𝑒𝑚,𝑡ℎ𝑒𝑟𝑚,𝑧𝑜𝑛𝑒 𝑖𝑡ℎ(𝑡𝑘) = ∑ (𝐸𝑛𝑑𝑒𝑚,𝑡ℎ𝑒𝑟𝑚 𝑖𝑡ℎ(𝑡𝑘) ∗ (1 −
𝑇0 (𝑡𝑘)

𝑇𝑖𝑡ℎ (𝑡𝑘)
))𝑛

𝑖=1       (1)        

 𝐸𝑥𝑑𝑒𝑚,𝑣𝑒𝑛𝑡,,𝑧𝑜𝑛𝑒 𝑖𝑡ℎ(𝑡𝑘) = ∑ (𝐸𝑛𝑑𝑒𝑚,𝑣𝑒𝑛𝑡 𝑖𝑡ℎ(𝑡𝑘) ∗ (1 −
𝑇0 (𝑡𝑘)

𝑇𝑖𝑡ℎ (𝑡𝑘)−𝑇0 (𝑡𝑘)
𝑙𝑛

𝑇𝑖𝑡ℎ (𝑡𝑘)

𝑇0 (𝑡𝑘)
))𝑛

𝑖=1     (2)         

 

 

where, 𝑇0 is the outdoor temperature and 𝑇𝑖𝑡ℎ is the average inside temperature of the zones, 

𝐸𝑛𝑑𝑒𝑚,𝑡ℎ𝑒𝑟𝑚 is the energy demand for thermal-based end uses, 𝐸𝑛𝑑𝑒𝑚,𝑣𝑒𝑛𝑡 is the energy demand due to 

ventilation, 𝑡𝑘 is the time-step, and n is the number of thermal zones analysed.  

In a similar manner, exergy demand for refrigeration 𝐸𝑥𝑑𝑒𝑚,𝑟𝑒𝑓, domestic hot water 𝐸𝑥𝑑𝑒𝑚,𝐷𝐻𝑊, and 

cooking 𝐸𝑥𝑑𝑒𝑚,𝑐𝑜𝑜𝑘𝑖𝑛𝑔 can also be calculated using the Carnot factor. 

Refrigeration: 

𝐸𝑥𝑑𝑒𝑚,𝑟𝑒𝑓(𝑡𝑘) =  𝑄𝑟𝑒𝑓(𝑡𝑘) ∗  𝐶𝑂𝑃𝑟𝑒𝑓(𝑡𝑘) (
𝑇0(𝑡𝑘)

𝑇𝑝𝑟𝑒𝑓𝑟
(𝑡𝑘)

− 1)          (3) 

 

                                                 
1 The Carnot formula sets the limiting value on the fraction of the heat or matter which can be used. 



where 𝑄𝑟𝑒𝑓 is the energy demand for refrigeration, 𝐶𝑂𝑃𝑟𝑒𝑓 is the refrigerator’s coefficient of 

performance, and 𝑇𝑝𝑟𝑒𝑓𝑟
 is the refrigerator working temperature. 

Domestic Hot Water: 

𝐸𝑥𝑑𝑒𝑚,𝐷𝐻𝑊(𝑡𝑘) = 𝑄𝐷𝐻𝑊(𝑡𝑘) ∗   
𝜂𝑊𝐻(𝑡𝑘)

𝑞𝑓𝑢𝑒𝑙
∗  (1 − ( 

𝑇0(𝑡𝑘)

𝑇𝑝𝑊𝐻
(𝑡𝑘)−𝑇0(𝑡𝑘)

) ∗  ln (
𝑇𝑝𝑊𝐻

(𝑡𝑘)

𝑇0(𝑡𝑘)
))                       (4) 

 

where 𝑄𝐷𝐻𝑊 is the domestic hot water energy demand, 𝜂𝑊𝐻 is the DHW generation system efficiency, 

𝑞𝑓𝑢𝑒𝑙 is the quality factor of the energy source used, and 𝑇𝑝𝑊𝐻
 is the heated water temperature.  

Catering: 

𝐸𝑥𝑑𝑒𝑚,𝑐𝑜𝑜𝑘𝑖𝑛𝑔 =  𝑄𝑐𝑜𝑜𝑘(𝑡𝑘) ∗  
𝜂𝑐𝑜𝑜𝑘(𝑡𝑘)

𝑞𝑓𝑢𝑒𝑙
∗ (1 −  

𝑇0 (𝑡𝑘)

𝑇𝑝𝑐𝑜𝑜𝑘
(𝑡𝑘)

)           (5) 

 

where 𝑄𝑐𝑜𝑜𝑘(𝑡𝑘) is the cooking energy demand,  𝜂𝑐𝑜𝑜𝑘 is the catering equipment efficiency, and 

𝑇𝑝𝑐𝑜𝑜𝑘
(𝑡𝑘) is the cooking temperature.  

As electricity has similar energy and exergy contents, the majority of electric-based equipment such as 

fans, pumps, lighting, computers, and motors were considered to have the same exergy efficiency as 

their energy counterpart ( 𝜓𝑒𝑙𝑒𝑐 ≈  𝜂𝑒𝑙𝑒𝑐) and therefore the same exergy consumption. Hence, to 

calculate the electrical exergy demand 𝐸𝑥𝑑𝑒𝑚,𝑒𝑙𝑒𝑐,𝑖𝑡ℎ the following formula was used:          

 

𝐸𝑥𝑑𝑒𝑚,𝑒𝑙𝑒𝑐,𝑖𝑡ℎ(𝑡𝑘) = 𝐸𝑛𝑑𝑒𝑚,𝑒𝑙𝑒𝑐,𝑖𝑡ℎ(𝑡𝑘) ∗ 𝐹𝑞,𝑒𝑙𝑒𝑐                                 (6) 

 

where 𝐸𝑛𝑑𝑒𝑚,𝑒𝑙𝑒𝑐,𝑖𝑡ℎ is the energy demand for the ith electric-based end use equipment, and 𝐹𝑞,𝑒𝑙𝑒𝑐 is 

the quality factor of electricity. The values in Table 1 were used for the analysis of electric-based 

equipment: 

 

 

 

 



Table 1 Exergy efficiency values for electric-based devices [42] 

Equipment Energy Efficiency 

(%) 

Exergy efficiency 

(%) 

Motors 80-87 80-87 

Fuel cell system 33 33 

CHP 74 31 

Electric battery (lead-acid) 75-85 75-85 

Pumps 70 70 

Fans 90 90 

Lighting fluorescent and LED 20 20 

Electric-based catering 85 50 

Internal/office equipment 70 70 

 
 

Finally, to obtain the total exergy demand at the building level  𝐸𝑥𝑑𝑒𝑚,𝑏𝑢𝑖 all previous calculated demands 

are added as follows: 

 

 𝐸𝑥𝑑𝑒𝑚,𝑏𝑢𝑖 =  ∑ 𝐸𝑥𝑑𝑒𝑚,𝑒𝑛𝑑 𝑢𝑠𝑒,𝑖𝑡ℎ                                               (7) 

 

where 𝐸𝑥𝑑𝑒𝑚,𝑒𝑛𝑑 𝑢𝑠𝑒 is the exergy demand for each end-use.  

 

 

Primary Exergy Input and Irreversibilities calculation 

 

After demands are calculated, the model proceeds to calculate exergy destructions at each subsystem 

level. As can be seen in Fig. 3, the subsystem analysis is more detailed for thermal based end uses, 

where the energy supply chain is divided in 7 components (PET, generation, storage, distribution, 

emission, room, and envelope). On the other hand, for DHW, 4 subsystems are considered (PET, 

generation, distribution, demand); while for electric based equipment only 3 subsystems are considered 

(PET, distribution, demand). To analyse exergy input at the primary generation subsystem (𝐸𝑥𝑝𝑟𝑖𝑚) and 

distinguish the impact of using different types of energy sources, equation (8) was used: 

 

𝐸𝑥𝑝𝑟𝑖𝑚(𝑡𝑘) =   ∑  (
𝐸𝑛 𝑔𝑒𝑛,𝑖(𝑡𝑘)

∗𝜂𝑔𝑒𝑛,𝑖 (𝑡𝑘)
 ∗  𝐹𝑝,𝑠𝑜𝑢𝑟𝑐𝑒,𝑖 ∗  𝐹𝑞,𝑠𝑜𝑢𝑟𝑐𝑒,𝑖)     +  (𝐸𝑥𝑑𝑒𝑚,𝑒𝑙𝑒𝑐,𝑖𝑡ℎ(𝑡𝑘) ∗ 𝐹𝑝,𝑒𝑙𝑒𝑐)        𝑖                   (8) 

 



where, 𝐸𝑛 𝑔𝑒𝑛 is the total energy used by the building HVAC/DHW generation systems (chiller, boiler, 

CHP, etc.),  𝜂𝑔𝑒𝑛  is the system efficiency, 𝐹𝑝,𝑠𝑜𝑢𝑟𝑐𝑒  and 𝐹𝑞,𝑠𝑜𝑢𝑟𝑐𝑒 is the is the UK primary energy factor  

[43] and fuel quality factor [29], respectively, 𝐸𝑥𝑑𝑒𝑚,𝑒𝑙𝑒𝑐,𝑖𝑡ℎ is the exergy demand for electric based 

equipment, and 𝐹𝑝,𝑒𝑙𝑒𝑐 is the primary energy factor for electricity. Fuel primary energy factors and quality 

factors used in this study are shown in Table 2.  

Table 2 Primary Energy Factors and Quality Factors by energy sources [43] 

Energy source 

Primary energy  factor 

(𝑭𝒑) 

(kWh/kWh) 

Quality factor 

(𝑭𝒒) 

(kWhex/kWhen) 

Natural gas 1.11 0.94 

Electricity (Grid supplied) 2.58 1.00 

District Energy2 1.11 0.94 

Oil 1.07 1.00 

Biogas (Wood pellets) 0.20 1.20 

 

Finally, an important indicator in this research is ’total exergy destructions’ 𝐸𝑥𝑑𝑒𝑠𝑡,. When the energy 

supply passes through the energy supply chain, exergy destructions are expected throughout all the 

subsystems. These are dependent on factors such as the building envelope or the systems components 

characteristics. Although the ‘primary energy transformation subsystem’ is located outside the building 

boundary, the exergy method used in this study also considers the destructions at this stage. Within 

this framework it is possible to distinguish many sources (e.g. electricity, natural gas, and district 

energy), and external supplies (gas, oil, renewables), which gives a more robust understanding of the 

impact of different primary energy sources used for buildings and its systems. This indicator is important 

as it is used as one of the optimisation objectives. This was obtained by subtracting the primary exergy 

supplied minus the exergy demanded by the building as follows: 

 

𝐸𝑥𝑑𝑒𝑠𝑡 =  𝐸𝑥𝑝𝑟𝑖𝑚 −  𝐸𝑥𝑑𝑒𝑚,𝑏𝑢𝑖                                    (9) 

 

                                                 
2 The District system was assumed to be run by a single-effect indirect-fired absorption chiller with a coefficient of performance (COP) of 
0.7. 



where 𝐸𝑥𝑝𝑟𝑖𝑚  and 𝐸𝑥𝑑𝑒𝑚,𝑏𝑢𝑖 are the total primary exergy supplied and total building exergy demand, 

respectively. A limitation of this analysis is that only thermal exergy is considered, neglecting the 

effect of chemical and mechanical exergy.  

The reference environment 

 

Exergy calculations are highly dependent on the choice of the reference environment. This is 

determined with a preliminary analysis to identify the environment able to act as entropy-disposal sink. 

An essential characteristic of the reference environment is that it has to be irreversibilities-free, where 

all the major exergy destructions should occur on the system or process being analysed [44]. The 

majority of studies in this field perform steady state calculations using monthly or seasonal average 

temperatures. For this work, hourly external temperatures given by the TMY2 weather files were taken 

as the reference environment, which allows the model to perform 1-h step calculations.  

3.1.2 Coupling Exergy analysis with EnergyPlus 

 

The open source software tool EnergyPlus [10] was selected as the calculation tool for first law analysis. 

While EnergyPlus in its original format is not capable of performing exergy analysis, its characteristics 

allow users to easily develop external add-ons.  EnergyPlus is able to deliver the detailed inputs needed 

for the dynamic exergy analysis such as building energy demand, primary energy use, indoor and 

outdoor temperatures, and HVAC/DHW working fluid temperatures, mass, and enthalpies at any 

system location.   For the linking of the selected exergy method with EnergyPlus the jEPlus 1.6.0 

software environment [45] was used. JEPlus is an open source tool created to manage complex 

parametric studies. The latest versions provide users with the ability to use Python scripting for running 

own-made processing scripts. Miller et.al [46] outlined the capabilities of using Python for building 

energy performance simulation and analysis, where adaptability, reliability, and calculation speed were 

the main advantages. For the EXRETOpt model, Python 2.7 programming language was used for the 

exergy building performance simulation. The developed scripts manipulate a series of outputs obtained 

from EnergyPlus, then a new set of thermodynamic equations are applied to finally provide a new set 

of outputs for jEPlus to handle. The code reads any selected hourly outputs from EnergyPlus and 

creates new spreadsheets with exergy indicators. The model is capable of providing 250+ energy, 

exergy, environmental, and economic indicators. Communication between EnergyPlus and the Python-
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based exergy model is mainly supported through the use of jEPlus .rvx files (extraction files), which 

allows the manipulation and handling of data back and forth between EnergyPlus, Python, and jEPlus. 

This process, shown in Fig.4, is embedded in the “MODULE: Energy/Exergy analysis, parametric 

simulations, and retrofit scenarios” in the simulation framework previously illustrated in Fig.2. 

 

 

Fig.  4 Flow of Energy/Exergy co-simulation using EnergyPlus, Python scripting and jEPlus 

 

For the calibration and verification of the exergy analysis method, model outputs were compared to 

results obtained from the steady-state Annex 49 pre-design tool. This comparison should be considered 

with caution as dynamic simulation results can vary greatly from steady state assessments due to 

variations in the reference environment.  

3.1.3 Retrofit scenarios and parametric simulation 

 

Prior to conducting the optimisation problem analysis, a retrofit module that considers all the variables 

that will be changed to the defined baseline models was developed. Based on this approach, different 

retrofit measures were designed at each level of the building energy supply system and building 

envelope (Table 3 and Table 4). This module encompasses a variety of retrofit measures (parameters) 

typically applied to UK non-domestic buildings [47]. For example, for the case of the insulation 

thickness, the values were taken from current available products in the UK market [48, 49], as such 

each technology has a different thickness.  

 

 

 



Table 3 HVAC systems considered in the optimisation project. 

P HVAC Systems Emission systems 

𝑋1  Condensing Gas Boiler (η:0.95)  + 
Water-based Chiller (COP: 3.2) 

 CAV 

 VAV 

 VRF 

 Wall 

 Underfloor 

 Wall+Underfloor 

  Biomass Boiler (η:0.90)  + Water-
based Chiller (COP: 3.2) 

  Air Source Heat Pump (COP: 3.4) 

  District system (CHP with absorption 
chiller COP: 0.7)  

  Ground Source Heat Pump (COP: 4.6) 

  

 

Table 4 Non-HVAC retrofit measures considered in the optimisation project. 

P  Measure description Values 

 Wall, roof and 
ground 
insulation 

 Polyurethane 2 to 15 cm in 1 cm steps 

𝑋2  Extruded 
polystyrene 

1 to 15 cm in 1 cm steps 

  Cellular Glass 4 to 18 cm in 1 cm steps 

  Cork board 2 to 20 cm in 2 cm steps 
 

   Phenolic foam 
board 

2 to 10 cm in 1 cm steps 

     

𝑋3 Sealing  A hypothetically 
sealing of cracks, 
joints and holes 

From 10% to 90% 
improvement in 10% intervals 

(respect to baseline value) 

     

𝑋4 Glazing  Double Glazed 

(6mm glazing) 

 Triple Glazed (6mm 

glazing) 

Any combination of air, argon, 

and krypton filled either in  a 

6mm or 13mm gap 

U-values range (W/m²K): 5.7 
to 0.5 

     

𝑋5 Set-points  Heating  18,19,20,21,22 

  Cooling  23,24,25,26,27 

     

𝑋6   T8 LFC Between 5 and 12 W/m² 

 Lighting  T5 LFC  

   T8 LED  

     

𝑋7 Electric 
Equipment 

 Retrofit to a more 
efficient internal 
equipment 

From 20% to 80% 
improvement in 20% intervals 
(in respect to baseline value) 

*Only considered for the office case 
°Only considered for the school case 

 
    

As retrofit models involve the selection of several modelling parameters, and to be able to handle 

different systems designs, the definition must be made by using EnergyPlus Macro function. The 



function allows for the creation of compact .idf files that can represent each measure. jEPlus will then 

pick the files and put them into the main building model to then ‘call on’ EnergyPlus for final 

simulation. jEPlus has facilitated the coupling by encoding retrofit measures into ‘genes’, expressing 

new genes as new building models. 

 

3.1.4 Multi objective optimisation module with NSGA-II 

 

To merge the ‘energy/exergy analysis and retrofit module’ with a multi-objective algorithm, a link to 

jEPlus + EA [50] was developed. The optimisation process is embedded in the “Module: GA 

Optimisation” shown in Fig. 2. In the modelling process, once jEPlus has handled the simulation files 

and provided the final outputs from the energy/exergy model, the optimisation module takes over. This 

communication was coupled with the help of the .rvx file (jEPlus extraction file), where objective 

functions as well as constraints have to be defined. The tool has the ability to tackle multi-objective 

optimisation by using a Non-Dominated Sorting Genetic Algorithm (NSGA-II). This stochastic method 

imitates the evolution of species described by Charles Darwin. The algorithm works with a set of 

individuals, which can represent possible solutions of the problem. In this case, the individuals are the 

different building models previously created. Each of these individuals (or chromosomes) are composed 

by a set of genes, in this case the different building parameters or retrofit measures ({𝑋1, 𝑋2,…, 𝑋7}. The 

selection of individuals is undertaken through the application of the “survival of the fittest” principle [51], 

which selects the building models that are closer to the objective functions. jEPlus+EA then ranks 

chromosomes and calculates a uniqueness value related to the distance between each solution and its 

two closest neighbours. The ‘genes’ located in the best chromosomes often go through to the next 

generation, so similar models will be evaluated. For more variability among models, other recombination 

processes such as crossover and mutation take place to drive better solutions to the next generation 

by avoiding the algorithm’s focus on only a limited number of parameters. The detailed algorithm 

process as well as the modelling environments are shown in Fig. 5.   
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Fig.  5 Genetic algorithm optimisation applied to the EXRETOpt tool. 

 

3.1.5 Objective functions 

 

In general, an energy optimisation problem requires at least two conflicting problems. In this study three 

objectives that have to be satisfied simultaneously were investigated. These were the increase of 

exergy efficiency (or reduction of exergy destructions), reduction of building energy use, and the 

increase of occupant thermal comfort hours. The minimization of energy use can be strongly related to 

exergy use but may have different implications on energy sources with different quality levels, where 

destructions could be bigger for higher quality sources depending on the energy conversion 



technologies.  Hence, the optimisation problem was formulated as follows: given a 7-dimensional 

decision variable vector x={𝑋1, 𝑋2,𝑋3,𝑋4,𝑋5,𝑋6,𝑋7} in the solution space X, find the vector(s) x* that 

minimizes a given set of three objective functions: Z(x*) = {𝑍1(x ∗), 𝑍2(x ∗), 𝑍3(x ∗)}. The objective 

functions being: 

 

a) Building annual energy use: 

𝑍1(𝑥) 𝑚𝑖𝑛 = 𝐸𝑈𝐼   , [kWh/m²-year]                                (10) 

 

b) Occupant discomfort hours: 

𝑍2(𝑥)𝑚𝑖𝑛 =   (⃒𝑃𝑀𝑉⃒⃒ > 0.7) 3,  [Hours],         (11) 

 

c) Building annual exergy destructions: 

𝑍3(𝑥)𝑚𝑖𝑛 =  {∑ [
𝐸𝑛 𝑔𝑒𝑛,𝑖(𝑡𝑘)

𝜂𝑔𝑒𝑛,𝑖 (𝑡𝑘)
 ∗  𝐹𝑝,𝑠𝑜𝑢𝑟𝑐𝑒,𝑖 ∗  𝐹𝑞,𝑠𝑜𝑢𝑟𝑐𝑒,𝑖]𝑖 − [𝐹𝑞,𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 ∗  ∑ 𝑄𝑖(𝑡𝑘)𝑖 ] } , [kWh/m²-year] (12) 

 

No constraints in the building parameters or in the modelling outputs were considered in this paper. As 

there is usually no single solution that can satisfy all the objectives in MOO, a Pareto front was obtained. 

All these solutions were equally satisfactory unless the decision maker put more importance on one 

objective than the others.  Regardless of this, the main goal of the tool is to find as many of optimal 

solutions as possible. 

 

 

 

 

 

                                                 
3 Given by [52] ASHRAE. ANSI/ASHRAE Standard 55-2004. Thermal Environmental Conditions for Human Occupancy. 

American Society of Heating, Refrigerating and Air-conditioning Engineers; 2004. It shows the amount of uncomfortable hours 
for each zone under the criteria of assuming both summer and winter clothes (0.5 Clo and 1.0 Clo respectively). These are 
based on whether the humidity ratio and the operative temperature are within region. 

 



4. Case Study 

4.1 Building Archetypes 

 

The EXRETOpt model was applied to two archetypal UK non-domestic buildings-a primary school and 

an air-conditioned (A/C) office building- which belong to two-subsectors that in the UK have an annual 

energy demand of more than 200 PJ [53].  These archetypes were selected to allow for comparison 

and to perform analysis for both heating and cooling cases (for the office building). These archetypes 

models (Fig. 6), were developed based on an extensive review of relevant literature [54-56] combined 

with statistical analysis from data sources. The main characteristics of each can be described as follows: 

 

Primary School Archetype: The form and geometry of the archetype is based on the baseline designs 

for primary schools  developed by the UK Education Funding Agency [57]. These designs demonstrate 

good practice and are based on the departmental guidelines for area planning. The simulation model 

consists of a 14 thermal zone building distributed over two storeys. The largest proportion of the floor 

area is occupied by classrooms, staff offices, laboratories, and the main hall. Other minor zones include 

corridors, bathrooms, and other common rooms. Heating is provided by means of conventional gas 

boiler and high temperature radiators (80°C/60°C) with no heat recovery.  

Office Archetype: An open-plan office model based on 6 thermal zones over three storeys was 

developed based on the UK offices archetypes developed by Korolija & Marjanovic-Halburd [55]. As 

previous analysis of the model showed high homogeneity between areas, fewer thermal zones were 

analysed compared to the primary school archetype. This archetype consists of only office areas and 

common areas (including bathrooms and kitchen) on each of the three floors. The HVAC system 

includes a gas boiler for heating and an air-based chiller (COP: 2.0) to meet cooling demands. The air 

distribution system is composed of Constant Air Volume (CAV) fan-coil units. 

 

The minimum fabric thermal values from the 1985 UK Building Regulations [58] were used for the 

building fabric elements for both archetypes.  All other model variables such as occupancy patterns, 

thermostat temperatures, infiltration, and interior equipment were based on CIBSE guides [59]. The 

weather data file, and thus the reference temperature for exergy analysis, was based on the London-

Gatwick TMY2 file.  

https://www.gov.uk/government/publications/baseline-designs-for-schools-guidance
https://www.gov.uk/government/publications/baseline-designs-for-schools-guidance


 

Fig.  6  Computer generated 3D model of the UK primary school and office building archetypes 

 

4.2 Building energy model calibration 

 

As modelling process includes assuming inputs that are either unknown or hard to measure, this can 

therefore have a significant impact on outputs. To assess the impact of these uncertainties related to 

what were considered important input variables on the total predicted annual energy use [60], a 

comprehensive sensitivity and uncertainty analysis (SA&UA) was performed using SimLab 2.2 [61]. 

SA&UA is a common method for calibration of baseline building designs and for exploration of retrofit 

measurers where payback periods can vary depending on the input variable assumptions made [62].  

To calibrate the models, 8 significant parameters were analysed: building orientation, envelope thermal 

conductivity, air tightness, occupant density, set point values, HVAC system efficiency, and lighting and 

equipment power density. For parameters where limits were hard to measure normal distributions were 

considered for the analysis. The Latin Hypercube Sampling method was used to create 200 models for 

each building followed by a Monte Carlo Analysis to obtain sensitivity and uncertainty results. To ensure 

that the predicted energy use for both models was realistic, values obtained from the analysis of 

thousands of Display Energy Certificates (DEC) of non-domestic buildings located in England and 

Wales were used for reference [63-65]. The archetype models were calibrated with values representing 

the top 25% performing buildings in the subsector. For the primary school archetype these values were 

42 kWh/m² for electricity and 107 kWh/m² for gas, while for the office archetype these were 105 kWh/m² 

for electricity and 87 kWh/m² for gas. The entire search space simulation and calibrated baseline model 

(in red) for both buildings is illustrated in Fig. 7.  

https://www.researchgate.net/publication/233357736_Using_Display_Energy_Certificates_to_quantify_schools'_energy_consumption?el=1_x_8&enrichId=rgreq-c94be86e79b435ade00203cbda857f7b-XXX&enrichSource=Y292ZXJQYWdlOzMwNDUzNTY4NjtBUzo0MDU4OTI1NjM1MjE1MzlAMTQ3Mzc4MzczNjkxMg==
https://www.researchgate.net/publication/260805611_Understanding_the_risks_and_uncertainties_introduced_by_common_assumptions_in_energy_simulations_for_Australian_commercial_buildings?el=1_x_8&enrichId=rgreq-c94be86e79b435ade00203cbda857f7b-XXX&enrichSource=Y292ZXJQYWdlOzMwNDUzNTY4NjtBUzo0MDU4OTI1NjM1MjE1MzlAMTQ3Mzc4MzczNjkxMg==
https://www.researchgate.net/publication/277919807_Using_Display_Energy_Certificates_to_quantify_public_sector_office_energy_consumption?el=1_x_8&enrichId=rgreq-c94be86e79b435ade00203cbda857f7b-XXX&enrichSource=Y292ZXJQYWdlOzMwNDUzNTY4NjtBUzo0MDU4OTI1NjM1MjE1MzlAMTQ3Mzc4MzczNjkxMg==
https://www.researchgate.net/publication/261177621_A_review_of_sensitivity_analysis_methods_in_building_energy_analysis?el=1_x_8&enrichId=rgreq-c94be86e79b435ade00203cbda857f7b-XXX&enrichSource=Y292ZXJQYWdlOzMwNDUzNTY4NjtBUzo0MDU4OTI1NjM1MjE1MzlAMTQ3Mzc4MzczNjkxMg==


 
 

Fig.  7 Simulation cases from Latin Hypercube Sampling. In red the selected calibrated building 

 

The baseline building characteristics for both energy models are listed in Table 5.  
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Table 5 Baseline characteristics for the primary school and A/C office archetypes. 

Baseline characteristics Primary School A/C Office 

Year of construction 1980s 1980s 

Number of floors 2 3 

Floor space (m²) 1990 2590 

Thermal Zones 14 6 

Orientation (°) 245 255 

Infiltration (ach) 0.58 0.78 

Exterior Walls Cavity wall-Brick walls 100 mm 
brick with 25mm air gap 

U-value=0.34 (W/m²K)  

Cavity wall-Brick walls 100 mm 
brick with 25mm air gap 

U-value=0.50 (W/m²K) 

Roof 200mm concrete block 

U-value=0.35 (W/m²K) 

200mm concrete block 

U-value=0.55 (W/m²K) 

Ground floor 150mm concrete block 

U-value=0.53 (W/m²K) 

150mm concrete block 

U-value=0.53(W/m²K) 

Windows Double-pane clear (5mm thick) 

U-value=3.66 (W/m²K) 

Double-pane clear (5mm thick) 

U-value=3.66 (W/m²K) 

Glazing ratio 28% 41% 

HVAC System Gas-fired boiler 419 kW 

η = 83% 

No cooling system 

Gas-fired boiler 603 kW 

η = 70% 

Air-based Chiller205 kW 

COP=2.0 

Emission system Heating: HT Radiators 90/70°C 

Cooling: Natural ventilated 

 

Heating: CAV 80/50°C 

Cooling: CAV 7/12°C 

Heating Set Point (°C) 19.6 22.3 

Cooling Set Point (°C) -- 25.3 

Occupancy (people/m²)* 2.2  9.3 

Equipment (W/m²)* 4.3  10.1 

Lighting level (W/m²)* 12.7 12.0 

EUI electricity (kWh/m²-y) 45.8 110.9 

EUI gas (kWh/m²-y) 106.7 84.9 

Thermal discomfort (hours) 1193 1434 

CO2 emissions (Ton) 185.2 195.5 

*Just for main areas. School: Classrooms and Staff offices. A/C office: Open plan office space 

 

 

5. Results and Analysis 

 

5.1 Baseline results 

 

Baseline outputs were obtained for both models. The school archetype EUI (one of the optimisation 

objectives) was 152.5 kWh/m²-year; with gas as the main energy source (70.0%). By end-use, heating 

represented 48.2% of the total energy demand, followed by DHW (21.8%) and lighting (17.5%). In the 



case of the office, the EUI was 197.5 kWh/m²-year with similar demands for gas and electricity (gas: 

57%, electricity: 43%). The main end-use was heating (36.7%) followed by interior equipment (23.0%) 

and lighting (21.8%). The results show different end-use patterns between building types, mainly due 

to the cooling demand in summer months for the office archetypes. A monthly breakdown by end-use 

can be seen in Fig. 8.

 

 

Fig.  8 Monthly Energy Use Indicators by end-uses for the baseline models. In red colours gas based end-

uses. In blue colours electricity based end-uses.  

 

The second objective, the non-comfortable hours, was to be 1,193 hours per year for the school archetype. 

This considered all the main occupied zones (classrooms, offices and common areas) as well as evening 

activities, summer time activities, and staff working hours.  For the office archetype this was found to be 1,439 

hours.   

 

The normalized exergy destructions (considering HVAC, DHW, and electric-based equipment) were 207.3 

kWh/m²-year (ψbui: 10.3%, ψhvac: 0.72%) and 326.0 kWh/m²-year (ψbui: 15.7%, ψhvac: 6.9%) for the school 

and office, respectively. These results express the actual thermodynamic efficiency of the buildings and 

provide more insight on how exergy diminishes inside the energy supply chain. To illustrate the advantages of 

a dynamic exergy modelling, Fig. 9 shows the primary school archetype HVAC hourly exergy destructions for 

a winter design day disaggregated by subsystem. The largest destructions are caused by and occur at the 
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generation subsystem (gas fired boiler) due to the high-temperature combustion process that takes place. In 

the summer, as no mechanical cooling is required, exergy destructions were zero.   

 

Fig.  9 Primary school: Winter Design Day. Baseline Exergy destructions by HVAC subsystems 

 

Fig. 10 and Fig. 11 illustrate the office archetype HVAC hourly exergy destructions for the winter and summer 

design days, respectively. A markedly different pattern can be seen in the two seasons; while the main 

destructions in colder months are located in the generation subsystem (boiler) during the summer the main 

destructions shift to the ‘Primary Energy Transformation’, where the conversion process from natural energy 

sources to electricity produces the highest exergy destructions in the supply chain. In this case, the use of a 

high quality source (electricity) for a low quality demand such as cooling process in a temperate climatic is 

highly penalised by exergy analysis. As can be seen in Fig. 11, the dotted line representing the envelope 

destructions are below zero, this indicates that the building has exergy that has to be removed from within it 

to the environment. This usually occurs when a cooling process is required even when the outside temperature 

is below the room set point temperature.  
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Fig.  10 A/C office: Winter Design Day. Baseline Exergy destructions by HVAC subsystems 

 

 

Fig.  11 A/C office: Summer Design Day. Baseline Exergy destructions by HVAC subsystems 

 

In both archetypes, the largest exergy destructions occur at the primary transformation and the generation 

stage, representing 98% and 90% of the total exergy destructions for schools and offices respectively (Fig. 
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12). This gives an initial insight on the thermodynamic performance of each component and provides a direct 

comparison of the magnitude of exergy irreversibilities of the two case studies.  

 

Fig.  12 Hourly exergy destructions and destruction percentage the HVAC subsystems of a typical primary 
school and an A/C office building 

 

While a seemingly obvious solution would be to reduce this high irreversibilities, this should be preceded by 

the improvement of building generation systems. However, it is important to note that although some 

components may have higher exergy destructions rates than others, it is probable that these destructions are 

caused by exogenous origins (i.e. due to inefficiencies of other components within the system such as the 

envelope or emission subsystems). This means that passive measures may also be used for the minimisation 

of irreversibilities, but will have a lower impact on how the destructions are distributed between subsystems.  

 

5.2  Pre-optimisation parametric study  

To provide insight on the concept and test the EXRETOpt capabilities, a parametric analysis was performed 

for two subsystems: at the envelope subsystem by adding insulation, and at the generation subsystem by 

exploring different HVAC technologies.  

5.2.1 Impact of different insulation materials  

Firstly, in considering all the insulation options listed in Table 4, 64 simulations were performed for each 

archetype. For the school archetype, with 0.15m of polyurethane envelope insulation, energy reductions up to 

3.6% and an improvement of 6.8% (82 hours) in occupant comfort were achieved. For the office archetype, a 
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maximum reduction of only 0.5% of energy savings and 0.9% of thermal comfort improvement was achieved 

through the use of 0.20m of cork board insulation. The lower energy saving was due to an increasing demand 

on electricity to cover the higher summer cooling loads. The minimal comfort improvement was due to the 

occurrence of overheating during the summer months, so although an improvement was seen in heating 

season, summer months became more uncomfortable.  Finally, exergy destructions in the primary school 

archetype were reduced by 2.7% (Fig. 13), while all insulation measures for the office resulted in an increase 

in total irreversibilities, ranging from a 1.0 to 2.5% increment (Fig. 14). In the primary school case, the reduction 

was higher due to a much lower input of fossil fuels, while in the office reductions were not achieved due to 

increased electricity consumption for cooling processes. 

 

Fig.  13 Impact of different insulation types and thickness on energy use and exergy destructions:  primary 
school case study. 
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Fig.  14 Impact of different insulation types and thickness on energy use and exergy destructions: A/C Office 
case study. 

 

5.2.2 Impact of different HVAC systems  

 

To investigate the impact of different HVAC technologies, a further parametric analysis was performed by 

combining the insulation material with the best performance and nine different system configurations.  From 

the insulation analysis, only the 0.06m thickness was considered, since thicker values did not have a significant 

impact. For the school case, the use of 0.06m of polyurethane insulation combined with a GSHP with low 

temperature underfloor heating (35ºC supply/25ºC return) achieved a reduction of 56.7% in energy use, but 

with no major improvement in occupant thermal comfort. The highest exergy destruction minimization (21.1%) 

was obtained through the use of District Heating with the same low-temperature emission system configuration 

(Fig. 15). This increased HVAC exergy efficiency from 0.7% to 14.7%.  
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Fig.  15 Influence of different HVAC configurations on energy, exergy destructions, and comfort levels:  
School case study with 0.06m of polyurethane 

 

For the office archetype, 0.06m of cork board insulation combined with the GSHP with underfloor 

heating/cooling configuration achieved the maximum energy saving reduction (40.9%) and the highest exergy 

destructions reduction (20.4%). This system represents an increase in the exergy efficiency of the HVAC 

system from 6.9% to 23.1%. Also, the system was able to reduce discomfort hours by 59.9% as compared to 

the baseline. The configuration that achieved better thermal comfort levels was the condensing gas and 

biomass boilers with underfloor heating. This achieved an improvement of 90.0%, but with a lower decrease 

in exergy destructions (Fig. 16).  
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Fig.  16 Influence of different HVAC configurations on energy, exergy destructions, and comfort levels. Office 
case study with 0.06m of cork board insulation. 

 
 

5.3 Retrofit Design Optimisation 

 

As the investigation of the impact of more technologies, configurations, and combinations between retrofit 

measures using the aforementioned approach is both impractical and time consuming, the multi-objective 

optimisation module was tested at this stage. As expected, the search space (all possible retrofit combinations) 

for the school and the office archetypes were 77,955,072,000 and 389,775,360,000 options, respectively. 

Since running both full parametric projects with a 4-core laptop would be unfeasible to due computational 

constraints, the use of an optimisation algorithm drastically reduced the number of simulations needed to at 

least achieve close to optimal results. It should be noted that an important task fundamental to this process is 

the identification of optimal computing settings to improve calculation time and accuracy. As GA needs a large 

population size to work efficiently [66] to define the Pareto front within the entire search space, the following 

settings were therefore defined for this study:  

 Population size: 100 

 Max Generations: 50 

 Crossover Rate: 100% 

 Mutation Rate: 20% 
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 Tournament Selection: 2 

Following 170 hours of simulation, 5,015 and 5,013 simulations were gathered for the school and office, 

respectively. This represents less than 0.00001% of the entire search space. The “Pareto space” consisted of 

344 possible solutions for the school, and 342 solutions for the office. Figures 17 and 18  show a comparison 

of all the simulated solutions and the non-dominated Pareto optimal solutions found by the model. Infiltration 

(ach) was taken as the colour range to illustrate the combined impact of this parameter on the three objectives. 

For both cases results show that the impact of an increasingly air-tight building in a temperate climate such as 

London (UK). It should be noted that as highlighted in the office case in particular, overheating risk in summer 

months is a factor that should be taken into consideration for further analysis.   

 



 

 

Fig.  17 Results of the multi-objective optimisation (left) and the Pareto optimal solutions (right). Primary school 



 

Fig.  18 Results of the multi-objective optimisation (left) and the Pareto optimal solutions (right). Office building 



 

These “Pareto solutions” represent major improvements of the objectives with respect on the baseline, and 

the insulation and HVAC parametric studies. Since all the Pareto solutions can be considered ‘equally good’, 

the decision-maker can therefore make a choice depending on the importance given to each one of the 

objectives. Tables 6 (school) and 7 (office) illustrate the scenarios when objectives are optimised individually 

as well as the  solution that is closer to the Utopia point (min𝑍1(𝑥), min𝑍2(𝑥), min𝑍3(𝑥)). The percentage 

reduction in each objective with respect to the baseline in highlighted inside parentheses.  

 

The results show that measures such as triple glazed windows systems, high insulation thickness, low 

infiltration levels (<0.2 ach), condensing boilers and GSHP systems dominate the best solutions. By 

individually optimizing either energy use or exergy destructions, some similarities can be noted in the obtained 

retrofit measures, thus indicating non-competitive objectives. Although by using exergy as an objective yields 

better comfort levels results. On the other hand, the competitive nature of thermal comfort with the other two 

objectives is noticeable in some parameters, especially for the HVAC characteristics (heating/cooling setpoint). 

Nevertheless, the model highlights that even the outputs of non-competitive objectives can lead to different 

outcomes. For example, in the school case if exergy destructions are used as the main objective, 

improvements of 62.1% in annual energy use, 57.9% of exergy destructions and 29.3% of thermal comfort can 

be achieved. However, by using energy use as the primary objective, it was possible to achieve improvements 

of 69.5% for energy use, 13.5% for exergy destructions, but this negatively impacts thermal comfort (-42.2%). 

On the other hand, the office case shows that optimising either objective leads to an insignificant deterioration 

in the thermal comfort indicator.  Yet, by individually optimising thermal comfort, reductions of 3.6% in energy 

use and 99.6% of discomfort were achieved, but with a deterioration in exergy destructions by 25.4%.  

 

In general, to achieve better solutions a compromise in objectives is required. The closest model to the utopia 

point considers the same weight to the three analysed objectives.  For the primary school, this was achieved 

through a design based on a condensing gas boiler with a VAV emission system, with lower levels of insulation 

thickness, and an improvement of 30% (from 0.58 to 0.40) on the envelope’s infiltration rate. The achieved 

reductions were 52.9%, 66.5%, and 50.9% for the energy use, non-comfortable hours, and exergy 

destructions, respectively. The office improved by 50.3%, 79.8%, and 33.0% for energy, thermal comfort, and 

irreversibilities, respectively, through the use of a GSHP with underfloor heating/cooling, with high insulation 

thickness for only the roof and the same infiltration rate as the baseline building (0.78 ach). 



Table 6.  Best solution by objective function discovered in the Pareto front. Primary school case. 

Objective 
EUI [kWh/ 
m²-year] 

Non-
comfort 

[hrs] 

Exergy 
destructions  

[kWh/ 
m²-year] 

Wall Insulation 
[m] 

Roof 
Insulation [m] 

Ground 
Insulation [m] 

Infiltration 
reduction % 

[ach] 

Glazing  
[glass-gap-glass, 

in mm] 
HVAC 

[-] 

Heat
ing 

Setp
oint 
[°C] 

Cooling 
Setpoint 

[°C] 
Light. 

Techn. [-] 

Equip. 
power 

red. [%] 

[min]  
EUI 

46.5  
(69.5%) 

1696.3 
(-42.2%) 

179.1 
(13.5%) 

Phenolic foam 
(0.09m) 

Polyurethane 
(0.14m) 

Polyurethane 
(0.02m) 

90% (0.06 ach) 
Triple Glazed 

Argon 
(6-13-6) 

GSHP + 
Underfloor 

18 - T8 LED 80% 

[min]  
Non-
comfort 

125.4  
(17.0%) 

138.1 
(88.4%) 

169.4 
(18.3%) 

XPS  
(0.12m) 

Polyurethane 
(0.11m) 

Cellular Glass 
(0.05m) 

80% (0.12 ach) 
Triple Glazed 

Argon 
(6-13-6) 

Condensing 
Gas Boiler + 

CAV 
22 - T8 LFC 80% 

[min]  
Exergy dest. 

57.7 
(62.1%) 

843.0 
(29.3%) 

87.1 
(57.9%) 

Polyurethane 
(0.13m) 

Cellular Glass 
(0.16m) 

No insulation 90% (0.06 ach) 
Triple Glazed 

Argon 
(6-13-6) 

Condensing 
Gas Boiler + 

VAV 
18 - T8 LED 80% 

Closest to 
Utopia point 

71.7 
(52.9%) 

399.2 
(66.5%) 

101.6 
(50.9%) 

Cork board 
(0.10m) 

Polyurethane 
(0.12m) 

Cork board 
(0.02m) 

 
30% (0.40 ach) 

Triple Glazed 
Krypton 
(6-13-6) 

Condensing 
Gas Boiler + 

VAV 
22 - T8 LED 80% 

 
Table 7.  Best solution by objective function discovered in the Pareto front. A/C Office. 

Objective 
EUI [kWh/ 
m²-year] 

Non-
comfort 

[hrs] 

Exergy 
destructions  

[kWh/ 
m²-year] 

Wall Insulation 
[m] 

Roof 
Insulation [m] 

Ground 
Insulation [m] 

Infiltration 
reduction % [ach] 

Glazing  
[glass-gap-glass, 

in mm] 
HVAC 

[-] 

Heating 
Setpoint 

[°C] 

Cooling 
Setpoint 

[°C] 
Light. 

Techn. [-] 

Equip. 
power 

red. [%] 

[min] 
EUI 

89.4 
(54.7%) 

2090.5 
(-45.3%) 

240.4 
(26.3%) 

Cork board 
(0.16m) 

Cellular Glass 
(0.18m) 

XPS  
(0.09m) 

90% (0.08 ach) 
Triple Glazed 

Argon 
(6-6-6) 

GSHP + 
Wall 

20 26 T8 LED 60% 

[min] 
Non-
comfort 

190.3 
(3.6%) 

5.8 
(99.6%) 

408.9 
(-25.4%) 

XPS  
(0.08m) 

Cork board 
(0.18m) 

Phenolic foam 
(0.03m) 

90% (0.08 ach) 
Triple Glazed  

Air 
(6-13-6) 

Biomass 
Boiler + 

VAV 
22 23 T8 LFC 20% 

[min] 
Exergy dest. 

107.5 
(45.6%) 

1925.9 
(-33.9%) 

182.1 
(44.1%) 

Cork board 
(0.16m) 

Phenolic foam 
(0.04m) 

No insulation 90% (0.08 ach) 
Triple Glazed 

 Air 
(6-6-6) 

District 
system + 

Wall 
20 26 T8 LED 0% 

Closest to 
Utopia point 

98.3 
(50.3%) 

290.3 
(79.8%) 

218.5 
(33.0%) 

Cork board 
(0.02m) 

XPS  
(0.11m) 

Phenolic foam 
(0.02m) 

0% (0.78 ach) 
Triple Glazed 

 Air 
(6-6-6) 

GSHP + 
Underfloor 

22 23 T8 LED 0% 



 

6. Conclusions and Future work 

 

The focus of this paper was to propose a means by which exergy analysis can be integrated into a retrofit-

oriented energy simulation tool to strengthen the typical analysis applied to the comparison and selection of 

the most optimal building energy retrofit projects. Firstly, the tool (EXRETOpt) was tested though the 

application of a typical parametric process by exploring the impact of different types of insulation and HVAC 

configurations. This demonstrated that although this process leads to improvements in energy and exergy 

indicators, it is considered to be time-consuming.  

 

By using the developed exergy-based multi-objective optimisation model, major improvements (close to 

optimal) were achieved in regards to the size of the search space.  This method can provide more information 

than the typical optimisation methods based solely on energy analysis.  The aim of implementing this model 

was to find the optimal retrofit measures by minimising energy use, exergy destructions, and thermal 

discomfort. As expected, optimal results based on energy analysis, and considering the London climate and 

without any economic constraints, are dominated by measures such as triple glazing, high exergy systems 

(condensing and biomass boilers), while having an airtight envelope.  If we consider exergy as the main 

objective, solutions switch to systems such as district heating/cooling and GSHP while having envelopes with 

lower insulation levels and airtightness. Also, this approach leads to better thermal comfort conditions for the 

occupants, giving ERMs practitioners and decision makers more flexibility in the design process.  

 

The model was able to identify a large space of Pareto solutions, where even the outputs of non-competitive 

objectives such as minimization of exergy destructions and energy use can lead to different results on the 

objectives. Significant output uncertainties exist due to the nature of building simulation tools, exergy analysis 

(e.g. reference environment) and the lack of empirical data. More model runs of the same projects are required 

to avoid results that can be obtained due to a hypothetical early convergence of the algorithm.  

 

The most significant limitation of the study is that the cost objective function was not considered. This is an 

objective that would radically change the optimal solutions obtained in this research. As thermoeconomics is 

a valuable tool for optimisation of energy systems under second-law parameters, further work will aim to further 

the development of an exergoeconomic module by considering the exergy cost of streams, cost of retrofits 



(information on capital investment and operating cost of technologies), fuel tariffs and government incentives. 

In addition, it is recommended that a Life Cycle Analysis (LCA) of exergy destructions at the production stage 

of equipment and materials is considered. This is especially true for thermal insulations, which typically 

requires large amounts of exergy for manufacturing. The model application in real building will determine its 

robustness and limitations, and it is expected to apply the model in a real case in the near future.  
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Nomenclature 

𝐶𝑂𝑃     coefficient of performance (W/W) 

𝐸𝑛 𝑔𝑒𝑛       energy demanded by the generation system, kWh 

𝐸𝑈𝐼     energy use index, kWh/m²-year 

𝐸𝑥𝑑𝑒𝑚 ,       exergy demand, kWh 

𝐸�̇�𝑑𝑒𝑠𝑡       exergy destructions, kWh 

𝐸�̇�𝑡𝑜𝑡𝑎𝑙,𝑖𝑛   system average exergy input, kWh 

𝐹𝑝     primary energy factor (-) 

𝐹𝑞              quality factor (-) 

𝑃𝑀𝑉⃒     predicted mean vote index 

𝑄      energy demand, kWh 

𝑇0      reference temperature, K 

𝑇𝑖      room temperature, K 

Greek symbols 

𝜂𝑔𝑒𝑛      energy efficiency (-) 

𝜓𝑡𝑜𝑡      exergy efficiency (-) 

Subscripts and superscripts 

cook      cooking 

dhw      domestic hot water 

elec      electricity 

hvac      heating, ventilation, and air conditioning 

ith      ith zone, equipment or energy source 

refr      refrigeration 

prim      primary energy 

𝑡𝑘      time step 

therm         thermal demand 

vent           ventilation 
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