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When remembering the past, we typically recall ‘events’ that are bounded in time and space. However, as
we navigate our environment our senses receive a continuous stream of information. How do we create
discrete long-term episodic memories from continuous input? Although previous research has provided
evidence for a role of spatial boundaries in the online segmentation of our sensory experience within
working memory, it is not known how this segmentation contributes to subsequent long-term episodic
memory. Here we show that the presence of a spatial boundary at encoding (a doorway between two
rooms) impairs participants’ later ability to remember the order that objects were presented in. A
sequence of two objects presented in the same room in a virtual reality environment is more accurately
remembered than a sequence of two objects presented in adjoining rooms. The results are captured by a
simple model in which items are associated to a context representation that changes gradually over time,
and changes more rapidly when crossing a spatial boundary. We therefore provide the first evidence that
the structure of long-term episodic memory is shaped by the presence of a spatial boundary and provide
constraints on the nature of the interaction between working memory and long-term memory.

� 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

As we move through our environment our senses receive a con-
tinuous stream of information, yet our memory of the past is sub-
jectively discrete in nature. We typically recall single instances in
time and space. These discrete ‘event engrams’ are thought to be
the fundamental unit of episodic memory (Tulving, 1983), allowing
us to re-experience or recollect previous life events (Aggleton &
Brown, 1999; Jacoby, 1991; Yonelinas, 1994). Thus, our continuous
sensory experience must be segmented in order to encode these
more discrete episodic events. Previous research has shown that
spatial boundaries play a key role in the online segmentation of
events, and this segmentation affects short-term memory
(Radvansky & Copeland, 2006; Radvansky, Tamplin, & Krawietz,
2010). However, it is not known how spatial boundaries affect
the structure of long-term episodic memory.

When asked to watch a short video clip, participants are readily
able to segment the video into ‘events’, with close agreement
across participants on the location of these event boundaries
(Newtson, 1973; Newtson & Engquist, 1976). This event segmenta-
tion process is thought to be automatic in nature, with consistent
neural responses in a network of cortical regions in the presence
of an event boundary, despite participants passively watching
videos (Zacks et al., 2001). The ‘event segmentation theory’ pro-
poses that these boundaries are defined by an increase in temporal
prediction error (Reynolds, Zacks, & Braver, 2007; Zacks, Speer,
Swallow, Braver, & Reynolds, 2007). Participants perceive an event
boundary when they are unable to predict what is about to happen
(Zacks, Kurby, Eisenberg, & Haroutunian, 2011).

However, these studies are agnostic in relation to what drives
this prediction error and therefore the perception of an event
boundary. Put simply, what environmental factors contribute to
the presence of an event boundary? Research related to the reading
of narratives suggests that readers automatically create represen-
tations analogous to those that would be created in real life. These
‘situation models’ are thought to aid the reader in understanding
and interpreting the narrative of written text (van Dijk & Kintsch,
1983; Zwaan, 1999; Zwaan & Radvansky, 1998). Within this
literature, the ‘event-indexing model’ suggests that these situation
models are centred on ‘events’ (Zwaan, Langston, & Graesser,
1995). Importantly, they suggest that events are segmented based
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on five specific dimensions, most notably both space and time (also
see Rinck & Bower, 2000; Rinck, Hähnel, Bower, & Glowalla, 1997).
This emphasis on both space and time accords with the idea that
human episodic memory is inherently spatiotemporal in nature
(O’Keefe & Nadel, 1978; Tulving, 1983). Therefore, whether
watching a video or reading a narrative, we segment our sensory
experience into ‘events’ based on the spatiotemporal characteris-
tics of the environment. Here we concentrate on the role of spatial
boundaries in event segmentation, and its effect on long-term
episodic memory.

The presence of event boundaries has been shown to affect
short-term memory. When watching videos depicting a series of
events with embedded objects, participants are better at remem-
bering objects if they are still watching the same event relative
to if they are watching a subsequent event (Swallow, Zacks, &
Abrams, 2009). Similarly, when reading narratives, participants
are better at remembering words they have seen just before
reading the phrase ‘‘a while later” relative to ‘‘an hour later”
(Speer & Zacks, 2005). The implied passage of time in ‘‘an hour
later” impaired participants’ performance for words they had just
read.

Short-term memory has also been shown to be disrupted in the
presence of a spatial boundary – in this case, a doorway. When
participants navigate a series of rooms in a virtual reality (VR)
environment, picking up and placing down objects in each room,
memory for the object they are carrying is more accurate when
tested in the same room relative to when tested in an adjoining
room (the ‘location updating effect’; Radvansky & Copeland,
2006). This effect is not simply due to being tested in the same
relative to a different context (in this case, a room) (i.e., a ‘‘con
text-dependent” memory effect; Gooden & Baddeley, 1975;
Thomson & Tulving, 1970), as performance was also impaired if
participants returned to the original room after moving to a new
room (Radvansky, Krawietz, & Tamplin, 2011). Importantly, as
the same effect is seen when participants physically walk
(Radvansky et al., 2011) or imagine walking (Lawrence &
Peterson, 2014) from one room to another, the effect is not specific
to VR environments. Although the presence of a spatial boundary
can affect short-termmemory, it is not clear whether longer lasting
effects are seen in relation to episodic memory (see Section 6 for
how the short-term ‘location updating effect’ could affect
long-term memory). In sum, the presence of an event boundary,
in narratives, videos and VR environments, can disrupt short-
term memory, suggesting a link between event segmentation and
subsequent memory.

There is also a close correspondence between event segmenta-
tion and long-term memory. The ability to consistently segment
videos into events is correlated with participants ability to remem-
ber those events later in time (Sargent et al., 2013). Further, partic-
ipants memory for video narratives is disrupted when scenes
including event boundaries are removed (Schwan & Garsoffky,
2004). Thus, remembering entire narratives is aided by the pres-
ence of event boundaries.

The key question we wish to address here is how the presence
of an event boundary affects long-term memory within a specific
event. For example, if participants encounter two objects that are
separated in both time and space, is the association between these
objects modulated by whether or not they were encountered in the
same event? Ezzyat and Davachi (2011) addressed this question,
manipulating the suggested time between two actions with the
words ‘‘a moment later” vs ‘‘a while later”. When later cued with
an action, participants were less accurate at remembering the next
action in the narrative when they were separated by the words ‘‘a
while later” relative to ‘‘a moment later”. Therefore, it is harder to
remember two sequential actions separated by an event boundary
than two actions that occurred in the same event. More recently,
the presence of an event boundary has been shown to affect mem-
ory for the temporal order of objects (DuBrow & Davachi, 2013).
Participants were presented with a series of faces and objects
and performed a different categorisation task for each stimulus
type. Event boundaries were defined as a switch in both stimulus
type and categorisation task. When later tested with a recency dis-
crimination judgement (‘‘which of these two stimuli were seen
first?”), performance was impaired if an event boundary had been
encountered between the two stimuli at encoding. These results
are consistent with the idea that stimuli encountered within an
event are more tightly associated than those encountered across
events.

Here we wanted to assess the role of spatial boundaries in rela-
tion to long-term episodic memory. By focussing on how space
shapes long-term memory we are able to draw upon existing
knowledge of the underlying neural architecture of the medial
temporal lobes (MTL), including the spatially modulated firing
characteristics of specific neurons (Hafting, Fyhn, Molden, Moser,
& Moser, 2005; Lever, Burton, Jeewajee, O’Keefe, & Burgess, 2009;
O’Keefe & Dostrovsky, 1971; Solstad et al., 2008). Of particular
interest, neurons in the MTL fire in relation to the rodents proxim-
ity to a spatial boundary (Lever et al., 2009; O’Keefe & Burgess,
1996; Solstad et al., 2008) and place cells may cluster around
doorways in multi-compartment environments (Spiers, Hayman,
Jovalekic, Marozzi, & Jeffery, 2013). This preferential coding of
boundary information might, in part, be driven by the behavioural
relevance of boundaries, allowing for the MTL system to
appropriately compartmentalise space (Stachenfeld, Botvinick, &
Gershman, 2014). Finally, we can start to link between experimen-
tal evidence for ‘contextual’ signals in the hippocampus, and how
they change across time (Mankin et al., 2015; Manns, Howard, &
Eichenbaum, 2007) with psychological models of temporal mem-
ory (e.g., Burgess & Hitch, 2005; Estes, 1950; Howard & Kahana,
2002), to further understand how the MTL supports long-term epi-
sodic memory.

We adopted the approach introduced by Radvansky and col-
leagues (e.g., Radvansky & Copeland, 2006), requiring participants
to navigate through a series of rooms in a VR environment. How-
ever, similar to DuBrow and Davachi (2013), we were interested
in long-term memory for the temporal order of objects. Therefore,
we presented two objects in each room, separated in both time and
space. Following encoding, participants performed several memory
tasks (see Methods). Critically, we assessed temporal memory by
presenting a single object and asking ‘‘which object came next?”
or ‘‘which object came immediately before?”. For half of these tri-
als, the cued and retrieved objects were encountered in the same
room, whereas for the other half they were encountered in adjoin-
ing rooms (i.e., separated by a spatial boundary). In Experiment 1,
we found evidence that temporal memory for two sequentially
presented objects was more accurate when the objects were
encountered in the same room relative to adjoining rooms. Exper-
iment 2 replicated this effect, controlling for the distance between
each object and the time between interacting with each object.
Experiment 3 replicated the effect, whilst further controlling for
the time between first seeing each object. We therefore
provide the first evidence that spatial boundaries play a key role
in shaping the content of long-term episodic event representations.
2. Experiment 1

2.1. Methods

2.1.1. Participants
43 participants (25 male) were recruited through the online

UCL Psychology Subject Pool. 22 were assigned to the ‘‘which
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object came next?” group (Group 1) and 21 to the ‘‘which object
came before?” group (Group 2). By self-report 4 participants were
left-handed and the remainder right-handed. All participants gave
informed consent and were reimbursed for their time (£7.50). The
experiment was approved by the UCL Institute of Cognitive
Neuroscience Departmental Research Ethics Committee
(ICH-AH-PWB-2-10-13a).

In total, 3 participants did not finish the experiment, leaving 20
participants per group. Group 1 had a mean age of 23.2 (SD = 3.5),
Group 2 had a mean age of 22.9 (SD = 3.3).
2.1.2. Materials
The experiment used a desktop PC, with the VR environment

displayed on a standard TFT monitor. For the VR study task, the
rooms environment was created using Google SketchUp
(http://www.sketchup.com/) and imported into Unity (https://
unity3d.com/). There were 48 equally sized rooms, distinguishable
by their wall-paper and floor colour. Each room contained two
different tables (one per object, see below). Each table was placed
relatively close to one of the doors to maximise the distance
between tables within-room and minimise the distance between
tables across-room. The 48 rooms were connected to each other
via doorways with closed but navigable doors (i.e., it was possible
to walk through the door into the next room). Each room was con-
nected to two other rooms via separate doorways creating a single
loop of 48 rooms. All scripting related to the encoding task was
based in Unity.

144 colour objects were used, a subset of those used in Horner
and Henson (2008), half man-made, half natural. 96 of these
objects were shown in the VR Study task (two per room; 48
man-made, 48 natural). The remaining 48 objects were used as
‘‘new” items in the recognition task at Test (24 man-made, 24
natural). Object presentation at Study was fixed, so that all
participants saw the same sequence of objects and rooms. Stimulus
presentation at Test was controlled by the Cogent toolbox
(http://www.vislab.ucl.ac.uk/cogent.php) in MATLAB. Presentation
order at Test was randomly chosen for each participant.
2.1.3. Procedure
2.1.3.1. Study phase. Prior to Study, participants practiced the VR
task in a separate 4-room environment with objects not used in
the main experiment. They then practiced the test tasks with these
same objects.

At Study, participants were required to navigate through a VR
environment (displayed on a computer screen in front of the par-
ticipant from a first-person perspective) and were shown a series
of objects embedded in this environment. Specifically, they navi-
gated through a series of rooms, each separated by a closed door
(Fig. 1). Objects were positioned in the centre of the tables within
the rooms, with only one object present on one table at any one
time. Participants were required to navigate to the object, using
the arrow keys on a standard keyboard. Once positioned in front
of the object, close to the edge of the table, a prompt box appeared
in the centre of the screen with two response options: ‘‘man-made”
or ‘‘natural”. Participants were required to press the ‘‘M” key if the
object was man-made and the ‘‘N” key if the object was natural
(mean accuracy = 98%). The object and response options were
removed following the participant’s response, and the next object
appeared on the next table in the sequence. As such, no two objects
were seen at the same time. If the next object was located in the
same room, participants were required to navigate to the location
of the next object (i.e., the other table) without leaving the room. If
the next object was located in the following room, participants had
to walk through a doorway into the next room, before approaching
the object. Participants moved through the rooms sequentially,
without returning to any previous rooms. The order of objects at
Study was fixed across participants.

2.1.3.2. Test phase. At Test, memory for an object was tested in
three separate ways in a single trial: (1) recognition memory, (2)
temporal memory and (3) context memory (Fig. 2). Object order
at Test was randomised. Following a 500 ms fixation cross, a single
object appeared in the middle of the screen on a grey background
with the words ‘‘old” and ‘‘new” presented below the object to the
left and right of centre respectively. The object was either ‘‘old”
(seen at Study) or ‘‘new” (not previously seen in the experiment).
There were 88 old objects (taken from rooms 3–46, see below)
and 48 new objects. Participants were required to respond using
buttons 1 (old) and 3 (new) on the keypad, within 3000 ms. If
the object was new (irrespective of how the participant responded)
a blank grey screen was presented for 1500 ms prior to the start of
a new trial.

If the object was old (again, irrespective of how the participant
responded) the object remained on screen and below this the ques-
tion ‘‘which object came next?” (Group 1) or ‘‘which object came
immediately before” (Group 2) appeared. Below the question three
further old objects were presented to the left, middle and right of
screen centre. One of the objects was the next (Group 1) or previ-
ous (Group 2) object in the encoding sequence. Participants had to
select this object, ignoring the two ‘foils’. The location (left, middle
or right) of the correct object on the screen was randomly chosen
on each trial. One of the foils was randomly selected from any of
the previous objects (i.e., seen before the cue object at Study), with
the constraint that it was not seen in the same room as the cue, or
an adjoining room. The other foil was randomly selected from any
of the subsequent objects (i.e., seen after the cue object at Study),
with the same constraint that it was not seen in the same rooms as
the cue, or an adjoining room. This constraint was imposed so that
none of the foils were taken from the same room as the cue or tar-
get object. This constraint meant we only tested memory for
objects in rooms 3–46, hence there were only 88 old objects (rather
than the full set of 96 seen at Study). Note, the selection of foils was
not constrained by whether the object had been previously pre-
sented as a cue for the recognition judgement, thus it is possible
that recognition performance may be inflated for certain objects
if they were selected as a foil in the temporal memory task prior
to being selected as a cue in the recognition task. However, this
should apply equally to objects seen first or second in a room, so
should not affect the relative difference between conditions.

For half the objects, the correct (to be selected) object was from
the same room (within-context) and for the other half the correct
object was from an adjoining room (across-context). For Group 1
(‘‘which object came next?”), the first object in the room was
always in the within-context condition (as the next object
was the second object in the room) whereas the second object
was always in the across-context condition (as the next
object was the first object in the next room). This relationship
between object number within a room and within- vs across-
context temporal order judgement was reversed for Group 2
(‘‘which object came before?”). Participants were required to
respond using buttons 1–3 on the keypad, within 6000 ms.

Following the temporal memory judgement, the centrally pre-
sented old object remained on screen for 500 ms. The question
‘‘which room was the object in?” then appeared below the object.
Three images of rooms from the Study task were then presented
underneath this question. One of the images was of the room in
which the object was originally presented. The location (left, mid-
dle or right) of the correct room was randomly chosen on each
trial. One foil was from a preceding (but not adjacent) room and
the other foil was from a subsequent (but not adjacent) room. Par-
ticipants had to select the image of the room in which the object
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Fig. 1. Virtual reality environment. Screenshots of (A) an example room in Experiment 1, showing a doorway and the two tables where objects were shown and (B) an
example man-made/natural question when the participant approached an object. (C) An overhead view of the room layout in Experiment 1 including the locations of the
tables, with an example path (in blue) taken by a participant through all 48 rooms. The bottom right hand corner zooms in on two rooms, showing the path (in blue), tables (in
green) and doorways (in magenta). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Experimental design. (A) An example object sequence at Study showing within-context and across-context object pairs. (B) Trail sequence at Test for an ‘old’ object,
showing trial timings for the recognition, temporal order and context memory judgements. Timings shown are the maximum time during which participants were required
to respond. Each trial began with a 500 ms fixation cross. Between each memory judgement the object stayed on the screen with no other text or stimuli for 500 ms. A blank
screen was presented for 1500 ms at the end of each trial.
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was originally seen using buttons 1–3 on the keypad, within
6000 ms. Following the context task, a grey screen was presented
for 1500 ms prior to the start of a new trial. Participants were
encouraged to respond on each trial, such that guessing was
encouraged. If participants failed to respond to any of the tasks
in the time given, that specific task component of the trial was
marked as incorrect. Across participants, the mean percentage
of trials where no response was given was low (3.3% for the
recognition judgement, 0.99% for the temporal memory judgement
and 0.63% for the context memory judgement).

2.1.4. Statistical analyses
First, for temporal order memory, we report a 2 � 2 mixed

ANOVA with the within-subject factor ‘‘Context” (within- vs
across-context) and the between-subject factor ‘‘Direction”,
relating to the direction of the temporal order question (i.e., which



A.J. Horner et al. / Cognition 154 (2016) 151–164 155
object came next/before). The first object in each room was
assigned to the within-context condition in Group 1 and the
across-context condition of Group 2 (and vice versa for the second
object in each room). This analysis was designed to look for an
effect of context, and to assess whether this effect varied as a func-
tion of the direction of the temporal order question being asked.

For the main recognition and context memory results, we report
2 � 2 mixed ANOVAs with the within-subject factor ‘‘Object”,
relating to whether the object was seen first or second in the room,
and the between-subject factor ‘‘Direction”, relating to the
direction of the temporal order question (i.e., which object came
next/before). These analyses were conducted to rule out any
difference in either recognition or context memory in relation to
whether objects were seen first or second within a room, and fur-
ther whether this effect differed between the two participant
groups. Note, the groups only differed in relation to the direction
of the temporal order question, so no differences were predicted
in relation to recognition or context memory. For completeness,
we also present this analysis on temporal order memory (an inter-
action between Object and Direction in this analysis is identical to
a main effect of Context in the main temporal order analysis
described above).

For the main effects and interactions within each ANOVA we
report partial-eta squared effect sizes (gp2). Significant interactions
are further interrogated with paired t-tests. For these t-tests, we
report Cohen’s d as the mean difference between conditions
Table 1
Temporal memory. Mean (and standard deviation) across Experiments 1–3 and the contr
Across-context conditions across the two temporal memory questions ‘‘which object cam

Which object came next?

Within-context Across-co

Experiment 1 0.52 (0.15) 0.42 (0.10
Experiment 2 0.45 (0.17) 0.38 (0.18
Experiment 2-C 0.45 (0.18) 0.38 (0.19
Experiment 3 0.52 (0.18) 0.44 (0.14
Experiment 3-C 0.52 (0.20) 0.41 (0.15

Fig. 3. Temporal memory. Mean temporal accuracy for within-context and across-con
Experiment 1, (B) Experiment 2 and (C) Experiment 3 as well as the control analyses for (
mean. The dotted line shows chance level of performance (0.33, given three-alternative
divided by the mean standard deviation across conditions (dav)
(Cumming, 2012; Lakens, 2013). Given the specific predictions
relating to temporal order memory, we report these data prior to
the recognition and context memory data.

All data required for these analyses are freely available on
Figshare (http://dx.doi.org/10.6084/m9.figshare.1609803.v3). The
means for each participant across all conditions for the recognition
memory, temporal order memory and context memory tasks, as
well as the time and path distance across conditions, are included.

2.2. Results

2.2.1. Temporal memory
Mean temporal accuracy was above chance at 44% (Table 1), t

(39) = 5.46, p < 0.001, d = 0.86 (chance = 33%). A 2 � 2 mixed
ANOVA with a within-subject factor of Context (within-context
vs across-context) and a between-subject factor of Direction
(‘‘which object came next” – Group 1 vs ‘‘which object came
before” – Group 2) revealed a main effect of Context, F(1,38)
= 12.50, p < 0.001, gp2 = 0.25, with higher accuracy in the within-
context than across-context condition (Fig. 3A). This effect did
not interact with Direction, F(1,38) = 2.57, p = 0.12, gp2 = 0.06
(nor was there a main effect of Direction, F(1,38) = 3.60, p = 0.07,
gp2 = 0.09, though we note a trend for higher accuracy in the
‘‘which came next” (0.47) versus ‘‘which came before” (0.40)
question). Participants were better at remembering the sequence
ol analyses of Experiments 2–3 (Experiments 2-C & 3-C) for the Within-context and
e next?” and ‘‘which object came before?”.

Which object came before?

ntext Within-context Across-context

) 0.42 (0.15) 0.38 (0.13)
) 0.46 (0.21) 0.41 (0.16)
) 0.44 (0.21) 0.42 (0.17)
) 0.49 (0.18) 0.44 (0.15)
) 0.47 (0.19) 0.43 (0.17)

text object pairs (collapsed across the direction of the temporal question) for (A)
D) Experiment 2 and (E) Experiment 3. Error bars represent ±1 standard error of the
forced choice). *** p < 0.001, ** p < 0.01, * p < 0.05.

http://dx.doi.org/10.6084/m9.figshare.1609803.v3


Table 2
Recognition memory. Mean (and standard deviation) across Experiments 1–3 for the 1st and 2nd object hit rate and correct rejections (CRs) across the two temporal order
questions ‘‘which object came next?” and ‘‘which object came before?”.

Which object came next? Which object came before?

1st Object 2nd Object CRs 1st Object 2nd Object CRs

Experiment 1 0.79 (0.16) 0.76 (0.18) 0.85 (0.15) 0.75 (0.15) 0.73 (0.17) 0.81 (0.19)
Experiment 2 0.79 (0.17) 0.80 (0.14) 0.87 (0.13) 0.78 (0.17) 0.77 (0.15) 0.86 (0.17)
Experiment 3 0.85 (0.19) 0.86 (0.17) 0.93 (0.11) 0.87 (0.16) 0.87 (0.16) 0.93 (0.07)

Table 3
Context memory. Mean (and standard deviation) across Experiments 1–3 for the 1st
and 2nd objects across the two temporal order questions ‘‘which object came next?”
and ‘‘which object came before?”.

Which object came next? Which object came
before?

1st Object 2nd Object 1st Object 2nd Object

Experiment 1 0.32 (0.08) 0.33 (0.08) 0.33 (0.08) 0.33 (0.08)
Experiment 2 0.31 (0.10) 0.33 (0.10) 0.33 (0.07) 0.36 (0.10)
Experiment 3 0.35 (0.10) 0.30 (0.09) 0.34 (0.10) 0.31 (0.10)
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of objects when both objects were seen in the same room relative
to when they were seen in adjoining rooms. Crossing a spatial
boundary, by walking through a doorway, therefore affects long-
term memory for sequentially presented objects.

Finally, a 2 � 2 (Object � Direction) mixed ANOVA revealed a
significant interaction, F(1,38) = 12.50, p < 0.001, gp2 = 0.25
(identical to the main effect of Context seen above). No significant
main effects of either Object, F(1,38) = 2.57, p = 0.12, gp2 = 0.06, or
Direction, F(1,38) = 3.60, p = 0.07, gp2 = 0.09, were present.
2.2.2. Recognition & context memory
Recognition accuracy was high, with a mean hit rate of 76%

(though note the mean hit rate across conditions may be inflated
due to the use of objects as foils in the temporal memory task,
making them easier to recognise in later trials) and a correct rejec-
tion rate of 83% (Table 2). A 2 � 2 (Object � Direction; see Meth-
ods) mixed ANOVA on hit rate failed to reveal any significant
main effects or interactions, F’s < 2.50, p’s > 0.12, gp2’s < 0.07. Thus,
recognition memory did not differ according to whether the object
was seen first or second in the room.

Mean accuracy in the context memory task (33%) did not differ
from chance, t(39) = 0.17, p = 0.87, d = 0.03 (Table 3). A 2 � 2
(Object � Direction) mixed ANOVA failed to reveal any significant
main effects or interactions, F’s < 0.21, p’s > 0.65, gp2’s < 0.01.
Therefore, context memory did not differ from chance, and was
not modulated by whether the object was seen first or second
within the room.
2.2.3. Time and distance between objects at encoding
We next focussed on the mean time and path distance

between objects within- vs across-room. If the time (and
distance) between objects is shorter within-context relative to
across-context then this might explain the pattern of results
we observed. Participants may have better memory for objects
seen closer together in time and space than those seen
further apart, regardless of the presence of any spatial
boundaries. Note that the VR environment was designed such
that the straight line distance between objects within-room
was 10.2 virtual metres (vm) and across-rooms was 8.7 vm. As
such, the straight line distance was further within-room than
across-rooms. However, it is the path distance and time
between objects that may also be critical.
Due to a bug in the VR Study task (resolved in Experiments
2–3), we only had accurate time and path distance data from 10
participants in Experiment 1 (4 from Group 1 and 6 from Group
2). In all 10 participants, the time (mean: 7.75 sec vs 10.72 sec)
and path distance (mean: 7.86 vm vs 10.46 vm) was shorter
between objects within- than across-rooms. Note, the shorter path
distance than straight line distance within-room is due to how the
location for each is measured. The straight line distance is mea-
sured from the exact location of the object in the environment.
The path distance is measured from the location the participant
was in when the object question was triggered. These are not iden-
tical, as the question was triggered just before the participant
reached the edge of the table. Experiment 1 therefore can’t rule
out the possibility that the temporal memory effect is driven by
this difference in time and path distance (though cannot be
explained in relation to straight line distance).
2.3. Discussion

Experiment 1 revealed that participants were more accurate
when judging which object came next (or before) in a sequence
if they were seen in the same room relative to if they were seen
in adjoining rooms. This effect is seen despite the temporal judge-
ment always testing sequentially presented objects (i.e., which
object came immediately next or before in the sequence). Further,
though participants were required to navigate through the rooms,
the spatial context was not directly relevant to the encoding task
(semantic categorisation) or the temporal memory task. Finally,
participants performed at chance in the context memory task, sug-
gesting they could not explicitly remember what room the object
was seen in. Thus, it would seem that participants’ memory for
object order was modulated by spatial context (and the presence
of spatial boundaries) despite no explicit memory for these spatial
contexts at retrieval. However, one key issue needs to be
addressed, as the time and path distance was shorter between
objects within- than across-context.
3. Experiment 2

Experiment 2 was designed to replicate Experiment 1, with sev-
eral important changes. First, the experiment was split into two
separate Study-Test blocks, resulting in fewer objects/rooms to
encode during each block. This was done in order to potentially
improve both temporal and context memory accuracy. Second,
the size of each roomwas doubled (with the number of total rooms
halved). This increased the distance between objects within-room
relative to across-room, with the intention of removing (or revers-
ing) the time/path distance confound present in Experiment 1.
Importantly, each half of these larger rooms had different
wallpaper. As such, the background visual information at the time
of encoding each object was different for both within-room and
across-room object pairs. Finally, the direction of the temporal
order question (i.e., ‘‘which object came next?” vs ‘‘which object
came before?”) became a within-subject manipulation. In one of
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the Study-Test blocks, participants were asked the ‘‘next” question
and in the other they were asked the ‘‘before” question.

3.1. Methods

Experiment 2 was identical to Experiment 1 with the following
exceptions.

3.1.1. Participants
From Experiment 1, collapsing across Groups 1 and 2, we calcu-

lated a Cohen’s d of 0.49 for the difference in within-context vs
across-context temporal order judgements. To achieve a power of
0.90, this requires 37 participants. 42 participants (21 Male) were
recruited in Experiment 2. By self-report 6 participants were
left-handed and the remainder right-handed. In total, 6 partici-
pants did not finish the experiment, leaving 36 participants with
a mean age of 23.4 (SD = 4.6).

3.1.2. Materials
The VR environment was modified by removing the walls

between alternate rooms (i.e., rooms 1 and 2 became a single room,
as did rooms 3 and 4, etc.), creating half the number of rooms that
were double the size. The two tables were situated close to each
doorway in order to maximise the distance between objects
within- than across-rooms. The wallpaper was kept the same as
in Experiment 1, such that each half room had different wallpaper
from the other half of the room. This was done in order to minimise
the background similarity when encoding each object within- vs
across-rooms. The same number of objects was seen at Study,
but split between two separate Study-Test phases. The order of
objects at Study was changed from Experiment 1 (though still
fixed).

3.1.3. Procedure
Participants navigated the 24 rooms, categorising 48 objects in

a single Study block. This was followed by a Test block where 40
old objects (from rooms 3–22) and 24 new objects were presented
in the same format as Experiment 1. Participants then performed a
second Study block. The rooms were identical between blocks,
however participants started in a different room and navigated in
the opposite direction to the first Study block (i.e., anti-clockwise
if the first block was clockwise). 48 new objects were encoded
0during the second Study block. This was followed by a final Test
block where 40 of these objects and 24 new objects were
presented. Participants performed both temporal order questions
(i.e., ‘‘which object came next?” and ‘‘which object came before?”)
separately, one in each Test block. The order of encoding blocks
and the direction of the temporal order question was counterbal-
anced across participants, resulting in four counterbalancing
permutations. This counterbalancing ensured that, across
participants, each object acted as cue and target in both the
within-context and across-context condition. Thus, despite the
fixed encoding order, each object contributed to both the within-
context and across-context condition.

3.1.4. Statistical analyses
For temporal memory, we present a 2 � 2 repeated measures

ANOVA with the factors Context (within- vs across-context) and
Direction (‘‘which object came next” vs ‘‘which object came
before”). For recognition and context memory we present 2 � 2
repeated measures ANOVAs with factors Object (first vs second)
and Direction (‘‘which object came next” vs ‘‘which object came
before”). We also present a similar ANOVA of the temporal
memory data for completeness.

Finally, for temporal memory, we also present a 2 � 2 � 2
mixed ANOVA (Block � Object � Question order), where Block
(1st vs 2nd) and Object (1st vs 2nd) are within-subject factors
and Question order (which came next, which came before vs which
came before, which came next) is a between-subjects factor. This
analysis allows us to assess whether temporal memory
performance differed across encoding blocks. Note, a three-way
interaction in this ANOVA is equivalent to the main effect of
Context seen in the main analysis.

3.2. Results

3.2.1. Temporal order memory
Mean temporal memory accuracy was above chance at 43%

(Table 1), t(35) = 4.43, p < 0.001, d = 0.74. Accuracy was therefore
similar to Experiment 1, despite the number of objects encoded
during one Study block being halved. A 2 � 2 repeated measures
ANOVA with factors Context and Direction revealed a main effect
of Context, F(1,35) = 8.39, p < 0.01, gp2 = 0.19, with higher accuracy
in the within-context than across-context condition (Fig. 3B). This
effect did not interact with Direction, F(1,35) = 0.43, p = 0.52,
gp2 = 0.01 (nor was there a main effect of Direction,
F(1,35) = 0.22, p = 0.64, gp2 = 0.01). We therefore replicated the
results of Experiment 1 – participants were better at judging
temporal order within- than across-context.

A 2 � 2 � 2 mixed ANOVA (Block � Object � Question order)
failed to reveal a main effect of Block, F(1,34) = 1.82, p = 0.19,
gp2 = 0.05, nor did this factor interact with Object or Question
order, F’s < 0.16, p’s > 0.69, gp2’s < 0.01. The only significant effect
was a three-way interaction between Block, Object and Question
order, F(1,34) = 8.12, p < 0.01, gp2 = 0.19 (equivalent to the main
effect of Context in the main analysis). A 2 � 2 repeated measures
ANOVA with factors Object and Direction revealed a significant
interaction, F(1,35) = 8.39, p < 0.01, gp2 = 0.19, identical to the
main effect of Context reported above (and no main effects
F’s < 0.44, p’s > 0.51, gp2 < 0.02).

3.2.2. Recognition and context memory
Recognition accuracy was high, with a mean hit rate of

79% and a correction rejection rate of 87% (Table 2). A 2 � 2
(Order � Direction) repeated measures ANOVA on hit rate failed
to reveal any significant main effects or interactions, F’s < 1.51,
p’s > 0.22, gp2 < 0.05. As in Experiment 1, recognition memory did
not differ according to whether the object was seen first or second
in the room.

Mean accuracy in the context memory task (33%) did not differ
from chance, t(35) = 0.32, p = 0.75, d = 0.05 (Table 3). A 2 � 2
(Order � Direction) repeated measures ANOVA on hit rate failed
to reveal any significant main effects or interactions, F’s < 2.30,
p’s > 0.13, gp2 < 0.07. As in Experiment 1, context memory did not
differ from chance, and wasn’t modulated by whether the object
was seen first or second in the room.

3.2.3. Time and distance between objects at encoding
In Experiment 2, we collected accurate time and distance

information at encoding for all participants. By increasing the size
of each room, the straight line distance between objects
within-room (17.9 vm) was greater than across-rooms (10.7 vm).
Therefore, whereas the difference in straight line distance between
within-room and across-room in Experiment 1 was �1 vm, here it
was �7 vm. Importantly, this increase in distance was maintained
for the mean path length between objects. The mean path length
was significantly greater within-room (17.55 vm) than across-
rooms (13.56 vm), t(35) = 14.84, p < 0.001, d = 2.51. Experiment 2
therefore produced the same pattern of temporal order results
despite the straight line and path distance being longer between
objects within- than across-rooms.
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However, the time taken to navigate between objects was
shorter within-room (11.98 sec) than across-rooms (12.95 sec), t
(35) = 3.50, p < 0.01, d = 0.28. As such, the temporal memory effect
seen in Experiments 1 and 2 may still be attributable to this differ-
ence in time between objects within- vs across-rooms. To control
for this difference, we performed a control analysis that removed
pairs of objects (per room) based on the time taken to travel
between object 1 and 2 (within-room) vs between object 2 and
object 1 in the next room (across-room). We rank-ordered pairs
according to the difference between within- vs across-room time,
and iteratively removed pairs until the mean time within- vs
across-rooms across all remaining trials was equal, or the relation-
ship had been reversed (i.e., longer mean time within- than across-
rooms). This procedure resulted in a mean removal of 3.56 trials
per participant per block per condition (range = 1–14; from a total
of 20 trials).

Following this paired trial removal procedure, the time within-
room (12.06 sec) was longer than across-rooms (11.62 sec), t(35)
= 27.75, p < 0.001, d = 0.14. Thus, we reversed the time difference
seen in the main analyses of Experiment 1 and 2. Despite this, a
2 � 2 (Context � Direction) repeated measures ANOVA on tempo-
ral order accuracy (Table 1) revealed a main effect of Context,
F(1,35) = 6.72, p < 0.05, gp2 = 0.16, with higher accuracy within-
room than across-room (Fig. 3D). This effect did not interact with
Direction, F(1,35) = 1.48, p = 0.23, gp2 = 0.04 (nor was there a main
effect of Direction, F(1,35) = 0.18, p = 0.67, gp2 < 0.01). Therefore,
the temporal order difference was seen in Experiment 1 and 2,
regardless of whether the time, straight line distance, or path
distance between sequential objects was longer or shorter
within-room than across-rooms.
3.3. Discussion

Experiment 2 replicated Experiment 1. Temporal order accuracy
was higher for objects seen in the same room than adjoining
rooms. This was seen despite the straight line distance and path
distance between successive objects being longer within-room
than across-room. Further, the effect remained when we per-
formed an analysis to control for the time between successive
objects. The effect was also seen despite the two halves of each
room having different wallpaper, such that the background scene
when performing the object categorisation task was different
within-room and across-room. Thus, objects becomemore strongly
associated by virtue of their shared context, despite being sepa-
rated in both space and time.

However, Experiments 1–2 may still suffer from one further
issue. When a participant interacted with an object, the next object
was immediately present on the next table. When interacting with
the first object in a room, the second object in the room
(within-context) could be seen immediately (or shortly after par-
ticipants turned to face the next table). When interacting with
the second object in a room, the first object in the next room
(across-context) would only be seen once the participant moved
through the doorway. Thus, although we controlled for the time
between interacting with each object within- vs across-room, the
time between viewing each object was not controlled.
4. Experiment 3

We conducted a final experiment to control for the viewing
time of objects within- vs across-room. When a participant inter-
acted with an object, a question mark would appear in the location
that the next object would be seen. Participants were required to
walk up to the question mark. Once close enough, the same prompt
window would appear, as in Experiments 1–2, asking whether the
object was man-made or natural. Only at the point when the
prompt box appeared would the question mark be replaced by
the object to be encoded. Thus, the time the object was seen was
identical to the time the encoding task prompt box was triggered.

4.1. Methods

Experiment 3 was identical to Experiment 2 with the following
exceptions.

4.1.1. Participants
41 participants (13 Male) were recruited. By self-report 2 par-

ticipants were left-handed and the remainder right-handed. 3 par-
ticipants did not finish the experiment, leaving 38 participants
with a mean age of 22.2 (SD = 4.4).

4.1.2. Procedure
The procedure was identical to Experiment 2, apart from a

question mark would appear in the location of the next object to
be encoded. Only when the participants triggered the encoding
question would the question mark be replaced by the object.

4.2. Results

4.2.1. Temporal order memory
Mean temporal memory accuracy was above chance at 48%

(Table 1), t(37) = 8.07, p < 0.001, d = 1.31. A 2 � 2 repeated
measures ANOVA with factors Context and Direction revealed a
main effect of Context, F(1,37) = 15.73, p < 0.001, gp2 = 0.30, with
higher accuracy in the within-context than across-context
condition (Fig. 3C). This effect did not interact with Direction,
F(1,37) = 1.89, p = 0.18, gp2 = 0.05 (nor was there a main effect of
Direction, F(1,37) = 0.56, p = 0.46, gp2 = 0.02). We therefore repli-
cated the results of Experiments 1–2 – participants were better
at judging temporal order within- than across-context.

As in Experiment 2, a 2 � 2 � 2 mixed ANOVA
(Block � Object � Question order) failed to reveal a main effect of
Block, F(1,36) = 0.17, p = 0.69, gp2 < 0.01, nor did Block interact sig-
nificantly with Object or Question order, F’s < 0.55, p’s > 0.46,
gp2’s < 0.02. The only significant effect was a three-way interaction
between Block, Object and Question order, F(1,36) = 15.37,
p < 0.001, gp2 = 0.30 (equivalent to the main effect of Context in
the main analysis). A 2 � 2 repeated measures ANOVA with factors
Object and Direction revealed a significant interaction,
F(1,37) = 15.73, p < 0.001, gp2 = 0.30, identical to the main effect
of Context reported above (and no main effects F’s < 1.90,
p’s > 0.17, gp2 < 0.05).

4.2.2. Recognition and context memory
Recognition accuracy was high, with a mean hit rate

of 86% and a correction rejection rate of 93% (Table 2). A 2 � 2
(Order � Direction) repeated measures ANOVA on hit rate failed
to reveal any significant main effects or interactions, F’s < 1.21,
p’s > 0.27, gp2 < 0.04. As in Experiments 1–2, recognition memory
did not differ according to whether the object was seen first or
second in the room.

Mean accuracy in the context memory task (32%) did not differ
from chance, t(37) = 0.85, p = 0.40, d = 0.14 (Table 3). A 2 � 2
(Order � Direction) repeated measures ANOVA on hit rate revealed
a main effect of object 1 versus object 2, F(1,37) = 4.97, p < 0.05,
gp2 = 0.12. Neither the main effect of Direction, F(1,37) = 0.30,
p = 0.86, gp2 < 0.01, nor the interaction between Order and
Direction, F(1,37) = 0.43, p = 0.52, gp2 = 0.01, reached significance.
Given that performance did not differ from chance in any of the
four conditions separately, t’s < 1.97, p’s > 0.06, and no effect of
Order was seen in Experiments 1 and 2, the main effect of Order
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seen here is most likely a Type I error. In sum, as in Experiments
1–2, context memory did not differ from chance (though some
evidence was seen for variation across object order, unlike in
Experiments 1–2).

4.2.3. Time and distance between objects at encoding
As in Experiment 2, the straight line distance between objects

within-room (17.9 vm) was greater than across-rooms (10.7 vm).
Also in line with Experiment 2, the mean path length was signifi-
cantly greater within-room (17.51 vm) than across-rooms
(13.45 vm), t(37) = 27.99, p < 0.001, d = 3.39. Experiment 3 there-
fore replicated the results of Experiments 1–2 despite straight line
and path distance being longer between objects within- than
across-rooms.

In line with Experiment 2, the time taken to navigate between
objects was shorter within-room (13.33 sec) than across-rooms
(15.15 sec), t(37) = 7.12, p < 0.001, d = 0.56. We performed the
same control analysis as in Experiment 2, selectively removing
pairs of trials based on the time taken to travel between objects
within-room versus across-room. This procedure resulted in a
mean removal of 5.54 trials per participant per block per condition
(range = 1–18; from a total of 20 trials).

Following this paired trial removal procedure, the time within-
room (13.58 sec) was longer than across-rooms (13.20 sec), t(37)
= 6.23, p < 0.001, d = 0.12. Thus, we reversed the time difference
seen in the main analyses of Experiments 1–3. Despite this, a
2 � 2 (Context � Direction) repeated measures ANOVA on tempo-
ral memory accuracy (Table 1) revealed a main effect of Context,
F(1,37) = 11.52, p < 0.01, gp2 = 0.24, with higher accuracy within-
room than across-room (Fig. 3E). This effect did not interact with
Direction, F(1,37) = 2.05, p = 0.16, gp2 = 0.05 (nor was there a main
effect of Direction, F(1,37) = 0.23, p = 0.64, gp2 < 0.01). Therefore,
Experiment 3 replicated the results of Experiment 2 for both the
main temporal memory analysis, and the analysis to control for
time between objects within- versus across-rooms.

4.3. Discussion

Experiment 3 replicated Experiments 1–2. This was despite
tightly controlling for the time each object was seen. Thus, across
three experiments we show better temporal memory for objects
seen within the same room relative to those seen in adjacent
rooms despite controlling for (1) the straight line, (2) the path dis-
tance, (3) the encoding time and (4) the viewing time between
objects within- versus across-rooms.
5. Computational model

The results of Experiments 1–3 provide clear evidence for the
role of spatial boundaries in the formation of event memories.
Items encountered within a single spatial context are more readily
associated than items encountered in adjacent spatial contexts,
even when similarly distanced in both space and time. We next
present a simple computational model to account for these results.
The model makes as few assumptions as possible with regard to
the potential mechanism driving the effect. The intent was to
develop the most parsimonious model that is capable of
parametrising the spatial boundary effect.

We built upon an existing class of memory models, where items
become associated with a ‘context’ signal present at encoding (e.g.,
Bower, 1972; Burgess & Hitch, 1999; Estes, 1950; Howard &
Kahana, 2002; Raaijmakers & Shiffrin, 1981). This context signal
varies over time, such that items presented in a sequence will each
become associated with a different context. Because the context
signal drifts over time, items encountered closer together in time
will be associated with more similar contexts than items encoun-
tered further away in time. Importantly, we allow the rate of
change in this context signal to vary according to external stimuli.
Specifically, the rate of change increases in the presence of a spatial
boundary, resulting in greater differentiation in contexts between
adjacent objects encountered in separate rooms relative to those
encountered in the same room. This simple addition to the model
captures the temporal memory effect seen in Experiments 1–3.

5.1. Methods

As in Estes (1950), we explicitly modelled a time-varying ‘con-
text’ representation at encoding. The context was a vector of 100
‘features’ that each moved independently and stochastically
between two binary states (0 and 1) over time according to a
specified matrix of transition probabilities (i.e., a Markov model).
Initially, each feature was randomly assigned to one of the binary
states with equal probability. At subsequent timepoints, the
‘baseline’ probability of a feature transitioning from 0-to-1 or
1-to-0 was 0.01. As such the population of feature states – i.e.,
the context vector – drifted stochastically over time (Fig. 4A). The
baseline transition probability was chosen to ensure a relatively
slow drift across time. Future studies would be needed to accu-
rately estimate the ‘real world’ drift rate.

We simulated 191 timepoints for each iteration of the model
(see below). 48 objects were ‘presented’ at fixed intervals across
these timepoints. The first object was presented at the 2nd time-
point, and each successive object was presented 4 timepoints
thereafter. To simplify the model, we presumed the association
between each object presented and the context vector at that time-
point was maximal (i.e., there is no variation in encoding strength
between the object and its context).

The key manipulation we made to incorporate the effect of spa-
tial boundaries was to allow the rate of change of the context vec-
tor to vary across time. Every 8 timepoints (for a single timepoint),
we changed the probability of each feature making a transition
between states from 0.01 to 0.08. This served to increase the rate
of change of the context vector for these timepoints. The increase
in transition probabilities was chosen to ensure a clear distinction
between contextual representations across rooms. Future studies
will be needed to precisely measure this increase, relative to the
baseline transition probabilities. We defined these timepoints as
‘spatial boundaries’, with the 7 timepoints between each spatial
boundary corresponding to a single ‘room’. Each object was pre-
sented on the 2nd and 6th timepoint in each room, ensuring every
object was separated by three timepoints irrespective of the
within-context vs across-context manipulation (Fig. 4D). Thus, as
in Experiments 1–3, the model was presented with two objects,
then a spatial boundary, continuously for 24 ‘rooms’.

At retrieval, we compared the dissimilarity (referred to as
‘representational distance’) between the context vector associated
with the cue object at encoding relative to the three choice alterna-
tives presented (i.e., the correct adjacent object and the two foils).
The two foils were randomly chosen with the same constraints as
Experiments 1–3. We calculated Pearson’s r for the cue context rel-
ative to the three choice object contexts, defining representational
distance as 1 � r (Fig. 4C and D). For each trial, we calculated this
distance measure and calculated the proportion of the distance
for the correct choice relative to the foil with the next shortest dis-
tance. We then set a threshold based on these proportions across
all trials (irrespective of within- vs across-context condition) so
that the model was correct in �45% of trials (i.e., approximately
equating performance to Experiments 1–3). For simplicity, we do
not model a formal ‘decision making’ process at retrieval (e.g.,
Ratcliff, 1978). Though such a mechanism could readily be
incorporated into the model, we wanted to focus explicitly on



Fig. 4. Computational model. (A) Schematic of the model, showing the ‘context vector’ and transition probabilities at 5 arbitrary timepoints. The transition probabilities
increase in the presence of a ‘spatial boundary’, as shown between timepoints t = n + 2 and n + 3 (highlighted in red). Note, the example ‘context vectors’ are for illustrative
purposes and show a higher rate of change between timepoints than the actual model. (B) Mean accuracy for the 10 model iterations for the within-context and across-
context conditions. Error bars represent ±1 standard error of the mean. The dotted line shows chance level of performance (0.33, given three-alternative forced choice). Note,
the mean level of performance across conditions is set to 0.45 in each iteration to match the behavioural performance in Experiments 1–3. (C) Representational distance
(1 � r) for each timepoint relative to all other timepoints for a single iteration of the model. The black square in the top left shows the area magnified in (D). (D) A magnified
view of the representational distance across three ‘rooms’. The 7 timepoints of each square are shown with black squares. Red lines represent a ‘spatial boundary’ where the
rate of change in the context vector is increased. The solid magenta squares highlight when each object is ‘presented’ and the non-solid magenta squares highlight the
representational distance between each successive object pairing, highlighting the smaller distance within-room than across-room. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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how a time-varying context representation could account for our
findings. We ran 10 differently seeded iterations of the model
and calculated the accuracy for within-context and across-
context accuracy for each iteration.

The MATLAB code to run this model, and produce the figures
shown in Fig. 4, is freely available on Figshare (http://dx.doi.org/
10.6084/m9.figshare.1609804.v3).
5.2. Results

How can such a time-varying context signal account for our
results? Presuming the context signal drifts at a uniform rate
across time (p = 0.01), no differences in accuracy would be
expected between the within-context and across-context condi-
tions. This is because the similarity in contexts between the cue
and correct answer will be similar between the two conditions.
Indeed, when we did not modulate the rate of change in the pres-
ence of an event boundary, performance in the within-context
(47%) condition was comparable to the across-context condition
(48%).
In our model, we varied the rate of contextual drift in the pres-
ence of a spatial boundary (increasing from p = 0.01 to p = 0.08). In
other words, the context signal changes more quickly when you
walk through a doorway than when walking across a room.
Allowing the rate of contextual drift to vary in the presence of a
spatial boundary decreases the similarity in contexts between
two adjacent objects across-rooms relative to within-room. As
object representations are directly associated with this context sig-
nal, and accuracy is driven by the similarity of the context signal at
encoding, this results in more accurate temporal memory
within-context (57%) than across-context (38%; Fig. 4B). Our model
therefore appropriately captures the main behavioural finding in
Experiments 1–3.
6. General discussion

Our continuous sensory experience is thought to be segmented
into discrete events that are subsequently encoded in long-term
episodic memory. Across three experiments we show that spatial
boundaries play an important role in this segmentation process.

http://dx.doi.org/10.6084/m9.figshare.1609804.v3
http://dx.doi.org/10.6084/m9.figshare.1609804.v3


A.J. Horner et al. / Cognition 154 (2016) 151–164 161
Specifically, the presence of a spatial boundary affects long-term
memory for the temporal order of objects. When two objects are
sequentially presented in the same room, temporal memory is
more accurate than when the two objects are presented in
adjoining rooms. In other words, long-term temporal memory is
disrupted when two objects are separated by a spatial boundary.
Further, we provide a parsimonious algorithmic model to explain
this effect, allowing for the parameterisation of the effect in future
studies.

Previous research has shown that moving through a spatial
boundary (doorway) disrupts short-term memory for objects from
the previous room, the ‘location updating effect’ (Radvansky &
Copeland, 2006). In these experiments, memory for the object they
are currently ‘carrying’ (i.e., the second object in the room) is
disrupted when probed shortly after moving through a doorway
relative to the same object when probed midway through the
room. Could the simple act of forgetting the last object in the room
account for our long-term temporal memory effect? If the associa-
tive strength between two objects is modulated by their availabil-
ity in working memory, it is possible this would lead to stronger
associations between objects seen in the same room relative to
those seen in adjoining rooms. This is because the last object in
the previous room will no longer be available in working memory
when the first object in the next room is encountered.

The most obvious predicted long-term consequence of the
short-term ‘location updating effect’ would be that, if the last
object seen in each room was removed from working memory
more rapidly than the first object in each room, it should have less
opportunity to be stored in long term memory so that recognition
memory for these items would be impaired compared to those
seen first in the room. Collapsing across all three experiments,
we could find no difference in recognition hit rate between objects
seen first or second in each room, t(113) = 0.55, p = 0.59, d = 0.03.
Thus, we could find no evidence for a simple consequence of the
‘location updating effect’ on long-term memory, at least in relation
to recognition memory for single items. Rather, while the transi-
tion of information from working memory to long-term memory
may be triggered by crossing a spatial boundary, the efficiency of
the transition is not affected (consistent with Barreau & Morton,
1999).

This finding seems potentially at odds with the ‘location updat-
ing effect’. If removal of items from working memory by crossing a
boundary shortly after encoding does not affect their encoding into
long-term memory, why is short-term memory performance
affected? Why can’t the newly encoded long-term representation
support performance in the absence of a working memory repre-
sentation? The most obvious resolution is that performance based
on long term memory representations is worse than that based on
working memory, perhaps due to the large number of similar items
already encoded into long-term memory, or because of impaired
retrieval from long-term memory when in a new room (e.g.,
context-dependent memory; Gooden & Baddeley, 1975; Thomson
& Tulving, 1970; Tulving & Thompson, 1973, though see
Radvansky et al., 2011).

Although the present spatial boundary effect is unlikely to be
driven up the ‘location updating effect’ per se (i.e., recent objects
being removed from working memory), both effects are likely to
be driven by the same underlying event segmentation process.
Whereas event segmentation may remove specific items from
working memory (affecting short-term memory), the same process
must also modulate the associative strength between items (either
directly, or indirectly by a shared contextual representation, see
Computational Model and further discussion below), thus affecting
long-term temporal memory. These two apparently independent
effects of event segmentation, giving rise respectively to distinct
short-term and long-term effects, may be mutually consistent
within the context of a more sophisticated model of the interaction
between working memory and long term memory. Thus, if we
assume that associations between items and contextual
representations (which may include item information) are formed
by both being present simultaneously in working memory, then
the location updating effect on working memory means that
within-room items will be associated to similar contextual repre-
sentations (while co-active in working memory), whereas items
in contiguous rooms will be associated to distinct contextual
representations. This possibility corresponds to the idea that work-
ing memory comprises the active part of long term memory (e.g.,
Cowan, 1995; Fuster, 1997; Melton, 1963) and that plasticity is
Hebbian in associating co-active elements (Hebb, 1949). It also
corresponds to the idea that processing in working memory con-
tributes directly to the formation of episodic memories, consistent
with the idea that working memory contains an ‘episodic buffer’
(Baddeley, 2000).

Such long-term event segmentation effects have been shown in
relation to non-spatial event boundaries (DuBrow & Davachi,
2013). However, the role of spatial boundaries in relation to the
structure of long-term episodic memory has not been explored.
In the case of DuBrow and Davachi (2013), event boundaries were
defined by a change in the stimulus-type (faces vs objects) and in
the categorisation task performed to each stimulus-type (see
Davachi & DuBrow, 2015 for a review). Thus, the event boundaries
were explicitly linked to the encoding task. Here, the event bound-
aries were incidental to the object encoding task. Although partic-
ipants had to navigate through the rooms, the encoding task
related to each object remained constant throughout. Thus, we
show that changes in the background context (as opposed to the
encoding task) also affects memory for object sequences.

One important difference between the current experiments and
those of DuBrow & Davachi is the nature of the temporal memory
task. Whereas we asked ‘‘which object came next (or before)?”,
they presented two objects and asked ‘‘which object was more
recent?”. Although seemingly subtle, it could be that these tasks
are solved with different mechanisms. For example, whereas
DuBrow & Davachi’s recency judgement could utilise an item-
based familiarity signal (if one presumes that such a signal
decreases over time, such that objects seen further back in time
will generate a smaller familiarity signal), our sequential judge-
ment could be inferred from direct associations between objects,
or between objects and an associated ‘context’ signal (as we have
explicitly modelled). In other words, it is possible that our ‘‘tempo-
ral memory” task could be solved without any specific ‘‘temporal”
memory representation. However, here we were not interested in
‘temporal memory’ per se, but the effects of spatial boundaries on
episodic memory; our ‘temporal memory’ task being the most
effective means to assess such an effect.

Given the key role spatial context is thought to play in episodic
memory (Burgess, Maguire, & O’Keefe, 2002; O’Keefe & Nadel,
1978; Tulving, 1983), it is perhaps surprising that the relationship
between spatial boundaries and the structure of episodic memory
has not been previously assessed. The emphasis of previous work
has often related to the information encoded in an event engram
within the hippocampus – i.e., whether ‘event’ representations are
inherently spatial in nature (e.g., Burgess, Becker, King, & O’Keefe,
2001; Byrne, Becker, & Burgess, 2007; Cohen & Eichenbaum,
1993; Robin et al., 2016; Ryan, Althoff, Whitlow, & Cohen, 2000).
Here, we focus on the role of spatial boundaries in the formation
of event representations. When two objects are separated in space
and time, what environmental factors increase/decrease the likeli-
hood that theywill be associated, and therefore encoded in the same
event representation? The formation of associations between infor-
mation separated in space and time is thought to be a key function
of the hippocampus (Staresina & Davachi, 2009; Wallenstein,
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Eichenbaum, & Hasselmo, 1998). Here we show that spatial
boundaries play a role in determining the extent to which dis-
parately presented objects become associated.

Models of memory often include a time-varying ‘context’ repre-
sentation (e.g., Bower, 1972; Estes, 1950; Raaijmakers & Shiffrin,
1981). When a stimulus is encountered, it is associated with the
context representation at that specific time-point. These models
have been used to explain a wide body of behavioural phenomena,
from spontaneous recovery in traditional associative learning
(Estes, 1955), to primacy and recency in short-term memory
(Burgess & Hitch, 1999), to forward recall in free recall tasks
(Howard & Kahana, 2002). This class of model is also readily able
to support temporal order memory judgements (Bower, 1972).
We infer that two objects were seen closer together in time as they
are each associated with context representations that are more
similar than two objects seen further apart in time. This type of
model, in which the context signal drifts relatively separately from
the external surroundings, is consistent with the observation of
slow ‘drift’ in the population firing of pyramidal cells in CA1 of
the rodent hippocampus across time, when controlling for the
location and behaviour of the rodent (Mankin et al., 2015; Manns
et al., 2007; Rubin, Geva, Sheintuch, & Ziv, 2015).

In the present experiments participants had better memory for
object pairs seen within the same room relative to adjoining
rooms, despite controlling for both the time and distance between
object pairs. Thus, a model with uniform contextual drift cannot
account for this effect. As such, we allowed the rate of contextual
drift to vary in relation to the presence of a spatial boundary. This
allowed the context representation to change more rapidly in the
presence of a spatial boundary relative to the baseline level of drift.
This simple addition was able to fully account for the key finding in
Experiments 1–3 (Fig. 4).

What might drive this change in context signal across rooms?
The most likely possibility is the external environmental features
themselves. For example, the layout of the room, the colour of
the wallpaper, the locations of the doors, etc. might all contribute
to a general ‘context’ representation in the hippocampus and sur-
rounding medial temporal lobe. This idea is similar to the way in
which the Temporal Context Model allows the context signal at
timepoint t + 1 to incorporate item information from timepoint t
(Howard & Kahana, 2002; Polyn & Kahana, 2008). However, here
the effect would need to be driven by the surrounding spatial
context, as opposed to the items themselves, as we controlled for
the time between objects within- vs across-rooms (in the control
analyses of Experiments 2–3). The neural signature of this
might be the phenomenon of ‘‘remapping”, whereby place cells
in the rodent hippocampus change their firing dependent on the
context (Anderson & Jeffery, 2003; Bostock, Muller, & Kubie,
1991; Leutgeb et al., 2005; Wills, Lever, Cacucci, Burgess, &
O’Keefe, 2005).

Importantly, the extent of remapping is driven by environmen-
tal differences such as the locations of boundaries, the colour of the
walls or the smell of the environment. Note, in Experiment 2 the
two halves of each room had different wallpaper and the two
tables in each room were never the same. Thus, at the time of
performing the object encoding task, the background scene was
dissimilar both within- and across-room. If a context signal was
changing in relation to the surrounding context, it would appear
that basic visual features (e.g., the colour of the walls) do not con-
tribute (or contribute minimally). Thus the present experiments
indicate a specific role for the walls in separating the different
rooms into different contexts. This may reflect the specific role
played by physical boundaries in spatial navigation – such that
enhanced encoding of doorways by hippocampal place cells is seen
(Spiers et al., 2013), supporting subsequent navigation
(Stachenfeld et al., 2014), while their spatial receptive fields within
a given context are specifically determined by the proximal
boundaries (Hartley, Burgess, Lever, Cacucci, & O’Keefe, 2000).

Note, our model makes no predictions in relation to whether
the context signal passively ‘‘drifts” at variable rates determined
by the external environment, or whether it changes as a direct
response to perceptual changes in the external environment. It is
an algorithmic model that enables the quantification of the spatial
boundary effect. Finally, it is interesting to note that participants
were at chance in the context judgement task. Although they could
remember the order that objects were presented, they could not
remember what room the object was seen in. Thus, if participants
were solving the temporal memory judgement via an associated
context signal (as we have explicitly modelled), they would appear
to not have conscious access to such a signal (at least in the present
experiments).

An alternative explanation for the doorways effect is that the
act of walking through a spatial boundary results in the encoding
of information encountered pre-boundary into long-term memory.
For instance, the objects (as well as surrounding contextual
information) might be actively maintained in working memory,
akin to the idea of an ‘‘episodic buffer” (Baddeley, 2000), and sub-
sequently encoded into long-term memory in the presence of a
spatial boundary (see also Barreau & Morton, 1999). Interestingly,
recent fMRI research has shown an increase in hippocampal BOLD
response at the offset of video clips is predictive of subsequent
memory for the videos (Ben-Yakov & Dudai, 2011; Ben-Yakov,
Eshel, & Dudai, 2013; Ben-Yakov, Rubinson, & Dudai, 2014).
Extending this research to the current experiments, the prediction
would be that an increase in hippocampal BOLD should be seen
when participants walk through a doorway (equivalent to the
end of a video clip in the studies by Ben-Yakov and colleagues).
The behavioural doorways effect should correlate with this
increase, as opposed to hippocampal activity at the time of encod-
ing the individual objects. It is worth noting that Ezzyat and
Davachi (2011) did not see such a relationship in their fMRI study
of narrative structures. However, the spatial boundaries in the pre-
sent experiment might be more salient event boundaries than the
perhaps more subtle narrative manipulation used by Ezzyat &
Davachi (i.e., ‘‘a while later” vs ‘‘a moment later”). As such,
hippocampal activity changes might be more prominent, and more
predictive of subsequent temporal memory, when using the door-
way manipulation relative to narrative manipulations.

Despite the evidence presented that spatial boundaries play a
key role in shaping long-term episodic memory, it is important
to note that space is unlikely to be the sole determining factor.
The work of Davachi and colleagues suggests a role for short vs
long passages of time in narratives, where no clear spatial context
manipulation is present (Ezzyat & Davachi, 2011). Further,
switches in task and/or stimulus-type appear to also segregate
our experience and have lasting consequences on temporal order
memory (DuBrow & Davachi, 2013, 2014). Finally, ‘event’ represen-
tations can also be constructed through shared content, where no
obvious overlap in spatiotemporal context is present. For example,
independently encoded but overlapping pairwise associations can
be integrated into coherent ‘event’ representations when all possi-
ble pairs are explicitly encoded (Horner, Bisby, Bush, Lin, &
Burgess, 2015; Horner & Burgess, 2014). Thus, hippocampus
dependent ‘event’ representations (Burgess et al., 2001; Cohen &
Eichenbaum, 1993; Eichenbaum, Yonelinas, & Ranganath, 2007;
O’Keefe & Nadel, 1978; Ryan et al., 2000) can be formed via shared
context or content, allowing for subsequent recollection (Jacoby,
Toth, & Yonelinas, 1993; Tulving, 1983; Yonelinas, 1994).

Regardless of the precise mechanism, the present experiments
provide evidence that the presence of a spatial boundary
modulates temporal memory for object sequences. Participants
are better at remembering ‘‘which object came next (or before)”
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when the two objects were encountered in the same room relative
to when they were encountered in adjacent rooms. This effect was
seen despite controlling for both the time and path distance
between object pairs within- versus across-room. We therefore
provide the first evidence that the structure of long-term episodic
memory is shaped by participants’ surrounding spatial context.
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